bifurcation and chaos in coupled bvp...

42
Bifurcation and Chaos in Coupled BVP Oscillators T. Ueta, T. Kosaka, and H. KawakamiTokushima University, Japan Fukuyama University Japan Bifurcation and Chaos in Coupled BVP Oscillators – p.1/42

Upload: others

Post on 12-Mar-2020

10 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Bifurcation and Chaos in Coupled BVP Oscillatorsrisa.is.tokushima-u.ac.jp/~tetsushi/talks/pns2001.pdfBifurcation and Chaos in Coupled BVP Oscillators T. Uetay, T. Kosakaz, and H. Kawakamiy

Bifurcation and Chaos in Coupled BVPOscillators

T. Ueta†, T. Kosaka‡, and H. Kawakami††Tokushima University, Japan ‡Fukuyama University Japan

Bifurcation and Chaos in Coupled BVP Oscillators – p.1/42

Page 2: Bifurcation and Chaos in Coupled BVP Oscillatorsrisa.is.tokushima-u.ac.jp/~tetsushi/talks/pns2001.pdfBifurcation and Chaos in Coupled BVP Oscillators T. Uetay, T. Kosakaz, and H. Kawakamiy

History of BVP Oscillator• Introduced as a simplified model of

Hodkin-Huxley equation (four-dimensionalautonomous system)

• alias is FitzHugh-Nagumo oscillator• extraction of excitatory activity from HH

equation

x = c(x − x3

3+ y + z)

y = −1c

(x + by − a)

Bifurcation and Chaos in Coupled BVP Oscillators – p.2/42

Page 3: Bifurcation and Chaos in Coupled BVP Oscillatorsrisa.is.tokushima-u.ac.jp/~tetsushi/talks/pns2001.pdfBifurcation and Chaos in Coupled BVP Oscillators T. Uetay, T. Kosakaz, and H. Kawakamiy

Analogue of BVP equation

An natural extension of van der Pol equation.• 2nd dimensional autonomous system.• Evaluate a resistance in a coil.• Adding a bias source to destroy symmetric

property.

• A. N. Bautin, “Qualitative investigation of aParticular Nonlinear System,” PPM, vol. 39, No.4, pp. 606–615, 1975. → Topologicalclassification of solutions in BVP equation

• Doi, et. al: Response of BVP with an impulsiveforce

Bifurcation and Chaos in Coupled BVP Oscillators – p.3/42

Page 4: Bifurcation and Chaos in Coupled BVP Oscillatorsrisa.is.tokushima-u.ac.jp/~tetsushi/talks/pns2001.pdfBifurcation and Chaos in Coupled BVP Oscillators T. Uetay, T. Kosakaz, and H. Kawakamiy

Coupled BVP equation• O. Papy, H. Kawakami: Analysis on coupled

BVP equations from symmetry point of view.• Kitajima: Chaos generation from symmetry

coupled BVP equations

No chaotic oscillations in symmetrical configuration of

coupled BVP equations

Bifurcation and Chaos in Coupled BVP Oscillators – p.4/42

Page 5: Bifurcation and Chaos in Coupled BVP Oscillatorsrisa.is.tokushima-u.ac.jp/~tetsushi/talks/pns2001.pdfBifurcation and Chaos in Coupled BVP Oscillators T. Uetay, T. Kosakaz, and H. Kawakamiy

BVP Oscillator

g(v)C

L

v

E

R

Circuit equation:

Cdvdt= −i − g(v)

Ldidt= v − ri + E

(1)

Bifurcation and Chaos in Coupled BVP Oscillators – p.5/42

Page 6: Bifurcation and Chaos in Coupled BVP Oscillatorsrisa.is.tokushima-u.ac.jp/~tetsushi/talks/pns2001.pdfBifurcation and Chaos in Coupled BVP Oscillators T. Uetay, T. Kosakaz, and H. Kawakamiy

Nonlinear conductor2SK30A FET:

47K 47K

100

2SK30AGR5B

g(v) = −a tanh bv

Bifurcation and Chaos in Coupled BVP Oscillators – p.6/42

Page 7: Bifurcation and Chaos in Coupled BVP Oscillatorsrisa.is.tokushima-u.ac.jp/~tetsushi/talks/pns2001.pdfBifurcation and Chaos in Coupled BVP Oscillators T. Uetay, T. Kosakaz, and H. Kawakamiy

Fitting

Marquardt-Levenberg method (nonlinear least squaremethod)

a = 6.89099 × 10−3, b = 0.352356

Bifurcation and Chaos in Coupled BVP Oscillators – p.7/42

Page 8: Bifurcation and Chaos in Coupled BVP Oscillatorsrisa.is.tokushima-u.ac.jp/~tetsushi/talks/pns2001.pdfBifurcation and Chaos in Coupled BVP Oscillators T. Uetay, T. Kosakaz, and H. Kawakamiy

Approximation error

g(v) = −a tanh bv

with a = 6.89099 × 10−3, b = 0.352356Theoretical value versus measurement value.

-0.001

-0.0005

0

0.0005

0.001

-10 -5 0 5 10

fittin

g er

ror

[A]

v [V]→

A reasonable approximation.Bifurcation and Chaos in Coupled BVP Oscillators – p.8/42

Page 9: Bifurcation and Chaos in Coupled BVP Oscillatorsrisa.is.tokushima-u.ac.jp/~tetsushi/talks/pns2001.pdfBifurcation and Chaos in Coupled BVP Oscillators T. Uetay, T. Kosakaz, and H. Kawakamiy

BVP equation

x = −y + tanh γxy = x − ky.

· = d/dτ, x =

CL

v, y =ia

τ =1√

LCt, k = r

CL, γ = ab

LC

Bifurcation and Chaos in Coupled BVP Oscillators – p.9/42

Page 10: Bifurcation and Chaos in Coupled BVP Oscillatorsrisa.is.tokushima-u.ac.jp/~tetsushi/talks/pns2001.pdfBifurcation and Chaos in Coupled BVP Oscillators T. Uetay, T. Kosakaz, and H. Kawakamiy

Bifurcation of equilibria for single BVPoscillator

0

0.5

1

1.5

2

0 0.5 1 1.5 2

k

γ

d

h1 h2

G

(b)

(a)

(c)

(d)

(e)

Oscillatory

Bifurcation and Chaos in Coupled BVP Oscillators – p.10/42

Page 11: Bifurcation and Chaos in Coupled BVP Oscillatorsrisa.is.tokushima-u.ac.jp/~tetsushi/talks/pns2001.pdfBifurcation and Chaos in Coupled BVP Oscillators T. Uetay, T. Kosakaz, and H. Kawakamiy

An example phase portrait

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

y →

x →

At region (d):• Two stable sinks.• A saddle.• Two unstable

limit cycles.• A stable limit cy-

cle.

Bifurcation and Chaos in Coupled BVP Oscillators – p.11/42

Page 12: Bifurcation and Chaos in Coupled BVP Oscillatorsrisa.is.tokushima-u.ac.jp/~tetsushi/talks/pns2001.pdfBifurcation and Chaos in Coupled BVP Oscillators T. Uetay, T. Kosakaz, and H. Kawakamiy

Circuit parameters setup

L = 10 [mH], C = 0.022 [µF]

γ = 1.6369909,

LC= 674.19986.

0

0.5

1

1.5

2

0 0.5 1 1.5 2

k

γ

d

h1 h2

G

(b)

(a)

(c)

(d)

(e)

Oscillatory

Bifurcation and Chaos in Coupled BVP Oscillators – p.12/42

Page 13: Bifurcation and Chaos in Coupled BVP Oscillatorsrisa.is.tokushima-u.ac.jp/~tetsushi/talks/pns2001.pdfBifurcation and Chaos in Coupled BVP Oscillators T. Uetay, T. Kosakaz, and H. Kawakamiy

Coupled BVP oscillators

A pair of BVP oscillators coupled by a register R.

g(v1)L

v1

C

r1

g(v2)L

v2

C

r2

R

G = 1/R

Bifurcation and Chaos in Coupled BVP Oscillators – p.13/42

Page 14: Bifurcation and Chaos in Coupled BVP Oscillatorsrisa.is.tokushima-u.ac.jp/~tetsushi/talks/pns2001.pdfBifurcation and Chaos in Coupled BVP Oscillators T. Uetay, T. Kosakaz, and H. Kawakamiy

Circuit equation

Cdv1

dt= −i1 + a tanh bv1 −G(v1 − v2)

Ldi1dt= v1 − ri1

Cdv2

dt= −i2 + a tanh bv2 −G(v2 − v1)

Ldi2dt= v2 − ri2

(2)

Bifurcation and Chaos in Coupled BVP Oscillators – p.14/42

Page 15: Bifurcation and Chaos in Coupled BVP Oscillatorsrisa.is.tokushima-u.ac.jp/~tetsushi/talks/pns2001.pdfBifurcation and Chaos in Coupled BVP Oscillators T. Uetay, T. Kosakaz, and H. Kawakamiy

Scaling

x j =

CL

v j, y j =i j

a, k j = r j

CL, j = 1, 2.

τ =1√

LCt, γ = ab

LC, δ =

LC

G.

x1 = −y1 + tanh γx1 − δ(x1 − x2)y1 = x1 − k1y1

x2 = −y2 + tanh γx2 − δ(x2 − x1)y2 = x2 − k2y2

Bifurcation and Chaos in Coupled BVP Oscillators – p.15/42

Page 16: Bifurcation and Chaos in Coupled BVP Oscillatorsrisa.is.tokushima-u.ac.jp/~tetsushi/talks/pns2001.pdfBifurcation and Chaos in Coupled BVP Oscillators T. Uetay, T. Kosakaz, and H. Kawakamiy

Symmetry

x = f (x)

where, f : Rn → Rn : C∞ for x ∈ Rn.

P : Rn → Rn

x 7→ Px

P-invariant equation:

f (Px) = P f (x) for all x ∈ Rn

Bifurcation and Chaos in Coupled BVP Oscillators – p.16/42

Page 17: Bifurcation and Chaos in Coupled BVP Oscillatorsrisa.is.tokushima-u.ac.jp/~tetsushi/talks/pns2001.pdfBifurcation and Chaos in Coupled BVP Oscillators T. Uetay, T. Kosakaz, and H. Kawakamiy

A matrix P• in case k1 = k2,

P =

0 0 1 00 0 0 11 0 0 00 1 0 0

Γ = P,−P, In,−Informs a group for production.

• in case k1 , k2:

Γ = In,−In

Bifurcation and Chaos in Coupled BVP Oscillators – p.17/42

Page 18: Bifurcation and Chaos in Coupled BVP Oscillatorsrisa.is.tokushima-u.ac.jp/~tetsushi/talks/pns2001.pdfBifurcation and Chaos in Coupled BVP Oscillators T. Uetay, T. Kosakaz, and H. Kawakamiy

Bifurcation of Equilibria

0

0.5

1

1.5

2

0 0.5 1 1.5 2

k2

k1

0D

2D

4D

Bifurcation and Chaos in Coupled BVP Oscillators – p.18/42

Page 19: Bifurcation and Chaos in Coupled BVP Oscillatorsrisa.is.tokushima-u.ac.jp/~tetsushi/talks/pns2001.pdfBifurcation and Chaos in Coupled BVP Oscillators T. Uetay, T. Kosakaz, and H. Kawakamiy

Poincaré mapping

A solution ϕ(t) :

x(t) = ϕ(t, x0), x(0) = x0 = ϕ(0, x0) .

Poincaré section:

Π = x ∈ Rn | q(x) = 0 ,

T : Π→ Π; x 7→ ϕ(τ(x), x) ,

The fixed point x0 for the limit cyclde ϕ(t):

T (x0) = x0.

Bifurcation and Chaos in Coupled BVP Oscillators – p.19/42

Page 20: Bifurcation and Chaos in Coupled BVP Oscillatorsrisa.is.tokushima-u.ac.jp/~tetsushi/talks/pns2001.pdfBifurcation and Chaos in Coupled BVP Oscillators T. Uetay, T. Kosakaz, and H. Kawakamiy

Characteristic equation

χ(µ) = det

(

∂ϕ

∂x0− µIn

)

.

Local bifurcations:• µ = 1: tangent bifurcation G• µ = −1: period-doubling bifurcation I

• µ = e jθ: Neimark-Sacker bifurcation NS• µ = ±1: Pitchfork bifurcation P f

Bifurcation and Chaos in Coupled BVP Oscillators – p.20/42

Page 21: Bifurcation and Chaos in Coupled BVP Oscillatorsrisa.is.tokushima-u.ac.jp/~tetsushi/talks/pns2001.pdfBifurcation and Chaos in Coupled BVP Oscillators T. Uetay, T. Kosakaz, and H. Kawakamiy

Bifurcation diagram, δ = 0.337(R =

2000[Ω])

0

0.5

1

1.5

2

0 0.5 1 1.5 2

G

Pf

Pf

Chaotic area

k1

k 2

h

I1

two limit

cycles

two limit

cycles

non-oscillatory

h

I2

I2

I1

G

G

single limit cycle

Bifurcation and Chaos in Coupled BVP Oscillators – p.21/42

Page 22: Bifurcation and Chaos in Coupled BVP Oscillatorsrisa.is.tokushima-u.ac.jp/~tetsushi/talks/pns2001.pdfBifurcation and Chaos in Coupled BVP Oscillators T. Uetay, T. Kosakaz, and H. Kawakamiy

Hopf bifurcation k1 = 1.18(r1 ≈ 800)

r2 ≈ 600

r2 ≈ 400

Bifurcation and Chaos in Coupled BVP Oscillators – p.22/42

Page 23: Bifurcation and Chaos in Coupled BVP Oscillatorsrisa.is.tokushima-u.ac.jp/~tetsushi/talks/pns2001.pdfBifurcation and Chaos in Coupled BVP Oscillators T. Uetay, T. Kosakaz, and H. Kawakamiy

Period-doubling cascade

r2 ≈ 400( k ≈ 0.72)

r2 ≈ 395[Ω] Rössler-type attractor

Bifurcation and Chaos in Coupled BVP Oscillators – p.23/42

Page 24: Bifurcation and Chaos in Coupled BVP Oscillatorsrisa.is.tokushima-u.ac.jp/~tetsushi/talks/pns2001.pdfBifurcation and Chaos in Coupled BVP Oscillators T. Uetay, T. Kosakaz, and H. Kawakamiy

Presence of Double scroll

r2 ≈ 390→ r2 ≈ 380[Ω].

Bifurcation and Chaos in Coupled BVP Oscillators – p.24/42

Page 25: Bifurcation and Chaos in Coupled BVP Oscillatorsrisa.is.tokushima-u.ac.jp/~tetsushi/talks/pns2001.pdfBifurcation and Chaos in Coupled BVP Oscillators T. Uetay, T. Kosakaz, and H. Kawakamiy

Chaotic attractor. r1 = 370[Ω]

(a) v1-r1i1. (b) v2-r2i2.

(c) v1-v2, (d) r1v1-r2i2.

Bifurcation and Chaos in Coupled BVP Oscillators – p.25/42

Page 26: Bifurcation and Chaos in Coupled BVP Oscillatorsrisa.is.tokushima-u.ac.jp/~tetsushi/talks/pns2001.pdfBifurcation and Chaos in Coupled BVP Oscillators T. Uetay, T. Kosakaz, and H. Kawakamiy

Numerical simulation

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

x 2 →

x1 →

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

x 2 →

x1 →

x1-y1 x2-y2

Bifurcation and Chaos in Coupled BVP Oscillators – p.26/42

Page 27: Bifurcation and Chaos in Coupled BVP Oscillatorsrisa.is.tokushima-u.ac.jp/~tetsushi/talks/pns2001.pdfBifurcation and Chaos in Coupled BVP Oscillators T. Uetay, T. Kosakaz, and H. Kawakamiy

Phase portrait between oscillators

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

x 2 →

x1 →

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

x 2 →

x1 →

(c) x1-x2 (d) y1-y2

Bifurcation and Chaos in Coupled BVP Oscillators – p.27/42

Page 28: Bifurcation and Chaos in Coupled BVP Oscillatorsrisa.is.tokushima-u.ac.jp/~tetsushi/talks/pns2001.pdfBifurcation and Chaos in Coupled BVP Oscillators T. Uetay, T. Kosakaz, and H. Kawakamiy

Poincaré mapping

x1-x2 plane: Π = x|q(x) = y1 = 0

-1

-0.5

0

0.5

1

-0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2

x 2 →

x1 →

0

0.02

0.04

0.06

0.08

0.1

-0.2 -0.19 -0.18 -0.17 -0.16

x 2 →

x1 →

Bifurcation and Chaos in Coupled BVP Oscillators – p.28/42

Page 29: Bifurcation and Chaos in Coupled BVP Oscillatorsrisa.is.tokushima-u.ac.jp/~tetsushi/talks/pns2001.pdfBifurcation and Chaos in Coupled BVP Oscillators T. Uetay, T. Kosakaz, and H. Kawakamiy

Time response of Oscillator 1

Chaotic attractor. δ = 0.337, k1 = 1.187, k2 = 0.593,(R = 2000[Ω], r1 = 400[Ω], r2 = 800[Ω]).

-1.5-1

-0.50

0.51

1.5

600 800 1000 1200 1400

x 1 →

t →

-1.5-1

-0.50

0.51

1.5

600 800 1000 1200 1400

y 1 →

t →

Bifurcation and Chaos in Coupled BVP Oscillators – p.29/42

Page 30: Bifurcation and Chaos in Coupled BVP Oscillatorsrisa.is.tokushima-u.ac.jp/~tetsushi/talks/pns2001.pdfBifurcation and Chaos in Coupled BVP Oscillators T. Uetay, T. Kosakaz, and H. Kawakamiy

Time response of Oscillator 2

-1.5-1

-0.50

0.51

1.5

600 800 1000 1200 1400x 2

→t →

-1.5-1

-0.50

0.51

1.5

600 800 1000 1200 1400

y 2 →

t →

Bifurcation and Chaos in Coupled BVP Oscillators – p.30/42

Page 31: Bifurcation and Chaos in Coupled BVP Oscillatorsrisa.is.tokushima-u.ac.jp/~tetsushi/talks/pns2001.pdfBifurcation and Chaos in Coupled BVP Oscillators T. Uetay, T. Kosakaz, and H. Kawakamiy

Projection into x1-x2-y1—(1)

Bifurcation and Chaos in Coupled BVP Oscillators – p.31/42

Page 32: Bifurcation and Chaos in Coupled BVP Oscillatorsrisa.is.tokushima-u.ac.jp/~tetsushi/talks/pns2001.pdfBifurcation and Chaos in Coupled BVP Oscillators T. Uetay, T. Kosakaz, and H. Kawakamiy

Projection into x1-x2-y1—(2)

Bifurcation and Chaos in Coupled BVP Oscillators – p.32/42

Page 33: Bifurcation and Chaos in Coupled BVP Oscillatorsrisa.is.tokushima-u.ac.jp/~tetsushi/talks/pns2001.pdfBifurcation and Chaos in Coupled BVP Oscillators T. Uetay, T. Kosakaz, and H. Kawakamiy

Projection into x1-x2-y1—(3)

Bifurcation and Chaos in Coupled BVP Oscillators – p.33/42

Page 34: Bifurcation and Chaos in Coupled BVP Oscillatorsrisa.is.tokushima-u.ac.jp/~tetsushi/talks/pns2001.pdfBifurcation and Chaos in Coupled BVP Oscillators T. Uetay, T. Kosakaz, and H. Kawakamiy

Enlargement of bifurcation diagram

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

1 1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2

NS

G

GPf

Pf

I

I

bi-stable

k1

k 2

Rossler type

Double scrollI

I

Bifurcation and Chaos in Coupled BVP Oscillators – p.34/42

Page 35: Bifurcation and Chaos in Coupled BVP Oscillatorsrisa.is.tokushima-u.ac.jp/~tetsushi/talks/pns2001.pdfBifurcation and Chaos in Coupled BVP Oscillators T. Uetay, T. Kosakaz, and H. Kawakamiy

r2 = 390→ 360[Ω]

Bifurcation and Chaos in Coupled BVP Oscillators – p.35/42

Page 36: Bifurcation and Chaos in Coupled BVP Oscillatorsrisa.is.tokushima-u.ac.jp/~tetsushi/talks/pns2001.pdfBifurcation and Chaos in Coupled BVP Oscillators T. Uetay, T. Kosakaz, and H. Kawakamiy

The end of scrolling. left: r2 = 360[Ω], right: r2 =

358[Ω], lower: r2 = 346[Ω].

Bifurcation and Chaos in Coupled BVP Oscillators – p.36/42

Page 37: Bifurcation and Chaos in Coupled BVP Oscillatorsrisa.is.tokushima-u.ac.jp/~tetsushi/talks/pns2001.pdfBifurcation and Chaos in Coupled BVP Oscillators T. Uetay, T. Kosakaz, and H. Kawakamiy

to be synchronized

upper left: r2 = 342[Ω], upper right: r2 = 340[Ω].

lower left: r2 = 290[Ω], lower right: r2 = 184[Ω].

Bifurcation and Chaos in Coupled BVP Oscillators – p.37/42

Page 38: Bifurcation and Chaos in Coupled BVP Oscillatorsrisa.is.tokushima-u.ac.jp/~tetsushi/talks/pns2001.pdfBifurcation and Chaos in Coupled BVP Oscillators T. Uetay, T. Kosakaz, and H. Kawakamiy

Features• There is no period-doubling route for k1 = k2.• (Osc. 1) equilibrium + (Osc. 2) limit cycle =

(Osc. 1+2) chaotic solution.

• Cubic characteristics is essential: g(v) = ax + bx3

with a = −2.27 × 10−3, b = 4.72 × 10−5.

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

x 2 →

x1 →

Bifurcation and Chaos in Coupled BVP Oscillators – p.38/42

Page 39: Bifurcation and Chaos in Coupled BVP Oscillatorsrisa.is.tokushima-u.ac.jp/~tetsushi/talks/pns2001.pdfBifurcation and Chaos in Coupled BVP Oscillators T. Uetay, T. Kosakaz, and H. Kawakamiy

An application: Hybrid coupling

g(v1)L

v1

C

r1

L

v2

C

r2

G1

g(v2)

G2

i01 i02

Bifurcation and Chaos in Coupled BVP Oscillators – p.39/42

Page 40: Bifurcation and Chaos in Coupled BVP Oscillatorsrisa.is.tokushima-u.ac.jp/~tetsushi/talks/pns2001.pdfBifurcation and Chaos in Coupled BVP Oscillators T. Uetay, T. Kosakaz, and H. Kawakamiy

Period-doubling cascade

Bifurcation and Chaos in Coupled BVP Oscillators – p.40/42

Page 41: Bifurcation and Chaos in Coupled BVP Oscillatorsrisa.is.tokushima-u.ac.jp/~tetsushi/talks/pns2001.pdfBifurcation and Chaos in Coupled BVP Oscillators T. Uetay, T. Kosakaz, and H. Kawakamiy

Chaotic response

Bifurcation and Chaos in Coupled BVP Oscillators – p.41/42

Page 42: Bifurcation and Chaos in Coupled BVP Oscillatorsrisa.is.tokushima-u.ac.jp/~tetsushi/talks/pns2001.pdfBifurcation and Chaos in Coupled BVP Oscillators T. Uetay, T. Kosakaz, and H. Kawakamiy

RemarksA resistively coupled BVP oscillators• Bifurcation of periodic solutions• Chaos is observed with k1 , k2.• No bifurcation for k1 = k2

Future problems:• synchronization of oscillators• higher dimensional cases

Bifurcation and Chaos in Coupled BVP Oscillators – p.42/42