bhagvad p. shrestha prediction of hydrolysis rate

187
BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate Constants for Esters and Hydration Equilibrium Constant for Aldehydes/Ketones and Quinazolines (Under the Direction of LIONELL A. CARREIRA) SPARC stands for SPARC Performs Automated Reasoning in Chemistry. It analyzes an organic molecule like an expert chemist does. It calculates chemical reactivity and physical properties of organic compounds. For chemical reactivity parameters, it splits each organic molecule into its reaction center and a collection of perturbers. Then from the various interactions between the reaction center and the perturbers, it calculates the chemical reactivity of the molecule. For physical properties, intermolecular interactions are expressed as a summation of all the interacting forces between the molecules. Each of these interacting forces are then expressed in terms of a limited set of molecular-level descriptors that, in turn, are calculated from the molecular structure. It now calculates pKa, electron affinity, vapor pressure, activity coefficient, distribution coefficient, Henry’s constant, etc. Our main goal is to extend the SPARC’s capability to calculate hydrolysis rate constants of esters and hydration equilibrium constants of aldehydes/ketones and quinazolines. INDEX WORDS: Base hydrolysis rate constant, Acid hydrolysis rate constant, General base hydrolysis constant, Hydration equilibrium constants of aldehydes and ketones, Hydration equilibrium constants of quinazolines

Upload: others

Post on 03-May-2022

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

BHAGVAD P. SHRESTHAPrediction of Hydrolysis Rate Constants for Esters and Hydration Equilibrium Constant for Aldehydes/Ketones and Quinazolines(Under the Direction of LIONELL A. CARREIRA)

SPARC stands for SPARC Performs Automated Reasoning in Chemistry. It

analyzes an organic molecule like an expert chemist does. It calculates chemical

reactivity and physical properties of organic compounds. For chemical reactivity

parameters, it splits each organic molecule into its reaction center and a collection of

perturbers. Then from the various interactions between the reaction center and the

perturbers, it calculates the chemical reactivity of the molecule. For physical properties,

intermolecular interactions are expressed as a summation of all the interacting forces

between the molecules. Each of these interacting forces are then expressed in terms of a

limited set of molecular-level descriptors that, in turn, are calculated from the molecular

structure. It now calculates pKa, electron affinity, vapor pressure, activity coefficient,

distribution coefficient, Henry’s constant, etc. Our main goal is to extend the SPARC’s

capability to calculate hydrolysis rate constants of esters and hydration equilibrium

constants of aldehydes/ketones and quinazolines.

INDEX WORDS: Base hydrolysis rate constant, Acid hydrolysis rate constant,

General base hydrolysis constant, Hydration equilibrium constants

of aldehydes and ketones, Hydration equilibrium constants of

quinazolines

Page 2: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

PREDICTION OF HYDROLYSIS RATE CONSTANTS FOR ESTERS AND

HYDRATION EQUILIBRIUM CONSTANT FOR ALDEHYDES/KETONES AND

QUINAZOLINES BY SPARC

by

BHAGVAD P. SHRESTHA

B.S., Piedmont College, 1997

A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial

Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE

ATHENS, GEORGIA

2001

Page 3: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

© 2001

Bhagvad P. Shrestha

All Rights Reserved

Page 4: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

PREDICTION OF HYDROLYSIS RATE CONSTANTS FOR ESTERS AND

HYDRATION EQUILIBRIUM CONSTANT FOR ALDEHYDES/KETONES AND

QUINAZOLINES BY SPARC

by

BHAGVAD P. SHRESTHA

Approved:

Major Professor: Lionell A. Carreira

Committee: James L. Anderson

James A. de Haseth

Electronic Version Approved:

Gordhan L. PatelDean of the Graduate SchoolThe University of GeorgiaMay 2001

Page 5: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

iv

TABLE OF CONTENTS

Page

CHAPTER

1 INTRODUCTION………………………………………………………………...1

Esters……………………………………………………………………………..2

Base Catalyzed Hydrolysis………………………………………………………2

Acid Catalyzed Hydrolysis………………………………………………………2

General Base Catalyzed Hydrolysis……………………………………………..7

Aldehydes/ Ketones……………………………………………………………...7

Quinazolines……………………………………………………………………12

2 SPARC COMPUTATIONAL MODEL FOR HYDROLYSIS OF ESTERS…...15

Hydrolysis Model………………………………………………………………15

Reference Rate Model………………………………………………………….15

Internal Perturbation Model……………………………………………………16

Electrostatic Effect……………………………………………………………..16

Direct Field Effect……………………………………………………………...19

Mesomeric Field Effect (MF) ………………………………………………….20

Sigma Induction Effect………………………………………………………....23

Resonance Effect……………………………………………………………….24

External Perturbation Model…………………………………………………...24

Solvation Effect………………………………………………………………...25

Hydrogen Bonding……………………………………………………………..25

Page 6: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

v

Field Stabilization Effect……………………………………………………….28

Steric Effect…………………………………………………………………….29

Temperature Effect………………………………………………………….….30

3 SPARC COMPUTATIONAL MODEL FOR HYDRATION EQUILIBRIA…...31

Hydration Model…………………………………………………………….….31

4 EXPERIMENTAL……………………………………………………………….35

Data Collection…………………………………………………………………35

Data File………………………………………………………………………...35

Training File……………………………………………………………………38

Jacobian Least Squares Fit…………………………………………………...…38

5 RESULTS AND DISCUSSIONS FOR HYDROLYSIS……….……………….46

Sample Calculation……………………………………………………………..46

Reference Rate………………………………………………………………….53

Internal Perturbations…………………………………………………………...53

External Perturbations…………………………………………………………..56

Graphical Representation……………………………………………………….58

Solvation Effect………………………………………………………………....97

Temperature Effect…………………………………………………….……….104

Outliers………………………………………………………………………....104

6 RESULTS AND DISCUSSIONS FOR HYDRATION………………………....115

Sample Calculation……………………………………………………………..115

Perturbations…………………………………………………………………....120

Graphical Representation………………………………………………………122

Outliers……………………………………………………………………….....127

Page 7: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

vi

7 CONCLUSION………………………………………………………………....128

REFERENCES................................................................................................................177

Page 8: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

1

CHAPTER 1

INTRODUCTION

The main objective of this project is to extend the calculational ability of SPARC to

the calculation of hydrolysis rate constants of ester compounds and hydration

equilibrium constants of aldehydes/ketones and quinazolines. The SPARC calculator has

been successful in calculating the pKa, electron affinity and various physical properties

of organic compounds. 1 According to EPA, each year the number of organic compounds

synthesized far exceeds their ability to evaluate the physical and chemical properties.

Determining the physical and chemical reactivity properties of organic compounds

experimentally is expensive and time consuming. Many times reactants half-lives cannot

be determined within a reasonable time in the laboratory. As a result, alternative

methods are needed, which is reliable, faster and determines the values of these physical

and chemical properties within the experimental error. That alternative method is the

SPARC calculator, which can accurately calculate the value of these properties

inexpensively and within a reasonable time. In addition, the SPARC calculator can

calculate values of physical and chemical properties of organic compounds at elevated

temperatures and in many solvents. Esters, aldehydes/ketones and quinazolines have

environmental, industrial and pharmaceutical importance. Understanding the hydrolysis

rate constants and hydration equilibrium constants for these compounds will help us to

assess and use them safely.

Page 9: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

2

Esters

Esters are important carbonyl compounds. The general structure for esters is

represented by R1C(=O)OR2, where R1 and R2 are substituents. These substituents can

be substituted alkyl chains, phenyl groups or heteroatoms. They are used industrially to

make flavors, soaps, herbicides, pesticides (phosphoesters in particular) and so on. The

esters undergo hydrolysis through three different mechanisms. They are, namely, base,

acid and general base-catalyzed ester hydrolyses.

Base Catalyzed Hydrolysis

The base-catalyzed or alkaline hydrolysis of esters generally takes place via a BAC2

mechanism (figure 1). BAC2 stands for base-catalyzed, acyl-oxygen fission and

bimolecular reaction. It is similar to the SN2 reaction and it occurs when the hydroxide

ion attacks the carbonyl carbon of an ester to give the carboxylic acid and alcohol. In

addition, alkaline hydrolysis of esters may also occur through other mechanisms, such as

BAC1 (base-catalyzed, acyl-oxygen fission, unimolecular), BAL1 (base-catalyzed, alkyl-

oxygen fission, unimolecular) and BAL2 (base-catalyzed, alkyl-oxygen fission,

bimolecular). However, BAC2 is the most common mechanism for alkaline hydrolysis of

esters and it usually masks all the other plausible mechanisms. 2, 3

Acid Catalyzed Hydrolysis

The acid catalyzed hydrolysis of esters takes place via AAC2 mechanism (figure 2).

AAC2 stands for acid-catalyzed, acyl-oxygen fission and bimolecular reaction. It is

similar to the SN2 reaction. It occurs when the positive hydrogen ion catalyzes the esters

Page 10: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

3

Figure 1

BAC2 mechanism: Base-catalyzed, Acyl-oxygen fission and Bimolecular reaction.

Page 11: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

CR

1O

R2

O OH

-

C

HO

O-

R1

OR

2

C

- O

OR

1

OR

2-

H+

R1C

OO

H +

R2O

H +

OH

-H

2O

Page 12: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

5

Figure 2

AAC2: Acid-catalyzed, acyl-oxygen fission and bimolecular reaction

Page 13: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

CR

1O

R2

OH

+

C

OH

OR

2

R1

COH

OR

2

R1

O

H H

OR

1CO

OH

+ R

2OH

+ H

+

H H

+:

Page 14: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

7

and the water molecule attacks the carbonyl carbon of the ester to give the carboxylic

acid and alcohol. In addition, the acid-catalyzed hydrolysis of esters may also take place

by other mechanisms, such as AAC1 (acid-catalyzed, acyl-oxygen fission, unimolecular),

AAL1 (acid-catalyzed, alkyl-oxygen fission, unimolecular) and AAL2 (acid-catalyzed,

alkyl-oxygen fission, bimolecular). However, AAC2 is the general mechanism for acid-

catalyzed hydrolysis of esters and it usually masks all the other possible mechanisms. 2, 3

General Base Catalyzed Hydrolysis

The general base-catalyzed hydrolysis of esters takes place via BAC2 mechanism

(figure 3). BAC2 stands for base-catalyzed, acyl-oxygen fission, bimolecular reaction. It

is similar to the SN2 reaction. It occurs when the base (B:) abstracts the hydrogen atom

from the water molecule releasing the hydroxide ion, which eventually attacks the

carbonyl carbon of esters to give the carboxylic acid and alcohol. The base, B:, stands

for any base, such as ammonia, acetate ion, imidazole and so on. In case of neutral

hydrolysis, B: represents the water molecule. 2, 3

Aldhehydes/Ketones

Aldehydes and ketones are important carbonyl compounds with the structures

R1C(=O)H and R1C(=O)R2 respectively. R1 and R2 can either be alkyl chains, phenyl

rings or heteroatoms. They are industrially used for making plastics, food additives and

flavors. 4 The hydration of aldehydes/ketones takes place when a water molecule attacks the

carbonyl carbon of the aldehydes/ketones and the released hydrogen ion of water molecule

attacks the carbonyl oxygen to give the hydrated forms of aldehydes/ketones (figure 4). It is

a nucleophilic reaction. The hydration of aldehydes/ketones may take place under a neutral,

Page 15: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

8

Figure 3

BAC2 mechanism (Base-catalyzed, Acyl-oxygen fission, Bimolecular reaction) for

general base-catalyzed hydrolysis of esters. B: stands for any base and for neutral

hydrolysis it represents the water molecule.

Page 16: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

CR

1O

R2

O

CO

R2

R1

OH

H

B:

O-

OH

C

O-

O

R1

OR

2-

H+

R1C

OO

H +

R2O

H +

B:

BH

Page 17: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

10

Figure 4

Hydration of aldehydes and ketones under acidic, alkaline or neutral condition. Keq is

the hydration equilibrium constant.

Page 18: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

R

CO

H

C

H

OH

OH

RK

eq

OH

H

Page 19: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

12

acidic or basic medium. 5, 6 Most of the aldehydes/ketones data we are reporting are

hydrating under the basic condition.

Quinazolines

The quinazolines are also important organic compounds, which are used in the field

of pharmaceutical research 7 and pesticide chemistry. The quinazolines have a basic

structure of n(cc1cc2)cnc1cc2 and many different substituents can be added to 1, 2, 3, 4,

5, 6, 7 or 8 positions. The substituents can be an alkyl chains, phenyl rings or

heteroatoms. The hydration of quinazolines takes place when the hydroxide ion of water

molecule attacks the carbon at the fourth position and the remaining hydrogen ion attacks

the nitrogen at the third position as shown in figure 5. The hydrated quinazolines can further

transform into different tautomeric species. 8 However, we are currently interested in and

concentrating on hydration of quinazolines into the first hydrated species as shown in the

figure 5.

Page 20: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

13

Figure 5

Hydration of quinazolines showing various hydrated species. However, we are currently

interested only in hydration of quinazolines into its first hydrated species, displayed by

pK(hyd.)1.

Page 21: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

N

N

N

N

N

N

N

N

N

NOH

H

OH

H

OH

H

H

+

H

+

4.3

(4.0

)

pKa

=7.7

(7.0

)ap

p. pK

a = 3.

5pK

a =

1.95

(1.9

6)

-1.5

pK(h

yd.)1

quin

azol

ine

hydr

ated

form

of q

uina

zolin

efir

st sp

ecie

s

seco

nd h

ydra

te sp

ecie

sthird

hydr

ated

spec

ies

four

th sp

ecie

s

12

3

45

6 78

Page 22: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

15

CHAPTER 2

SPARC COMPUTATIONAL MODEL FOR HYDROLYSIS OF ESTERS

Hydrolysis Model

The hydrolysis computational model for hydrolysis of esters is categorized into three

submodels, namely, reference rate, internal perturbation and external perturbation

models. The reference rate model calculates the hydrolysis rate constant for the smallest

ester compound, which excludes internal perturbation and steric effects. The internal

perturbation model calculates the hydrolysis rate constant due to the internal perturbation

interactions between the reaction center and the substituents. The internal perturbation

interactions include resonance and electrostatic effects. Finally, the external perturbation

model calculates the hydrolysis rate constant due to steric and solvent-reactants

interactions. The external perturbation interactions include steric, solvation and field

stabilization effects. The hydrolysis rate constant contributions from these three models

are then added to give the total calculated hydrolysis rate constant.

Calculated Rate = Reference + Internal Perturbation + External Perturbation

Reference Rate Model

The reference rate is a hydrolysis rate constant for the smallest ester compound,

which resembles the structure of reaction center (C(=O)O). It is methyl formate for the

hydrolysis of esters. The reference rate does not show any internal perturbation

interactions, such as resonance and electrostatic effects. Neither does it show steric

Page 23: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

16

effects. However, it is dependent upon the temperature. As the temperature increases, the

reference rate increases. The mathematical expression for the reference rate is given

below.

Reference = Pre-exp + LogTk + Ref1 + Ref2/Tk

Where, Reference is the reference rate, Pre-exp is the logarithmic pre-exponential factor,

Tk is the temperature in Kelvin, Ref1 is the entropic term and Ref2 is the enthalpic term.

Internal Perturbation Model

In the internal perturbation computational model for hydrolysis of esters, molecular

structure is broken down into the reaction center (C), conductor (R) and perturber (P)

(figure 6). The reaction center (C) is hooked to the perturber (P) via the conductor (R).1,

10 The conductors are usually alkyl chains or phenyl rings. The perturbers are usually

functional groups or heteroatoms attached to the conductor. Some molecules may not

have the conductors, for example, the reaction center (‘C(=O)O’) of phenyl acetate is

directly connected to the perturbers: the phenyl ring and the carbon atom. Keq. is a

critical equilibrium constant, representing the equilibrium between the initial and

transition states. The logarithm of the critical equilibrium (logKeq.) is a summation of

various interactions between the reaction center and the perturber. The various

interactions include electrostatic and resonance. Further, the electrostatic interaction

embodies the direct field, the indirect field and sigma induction effects.

Electrostatic Effect

The electrostatic effect is a phenomenon of interaction of dipoles or charges of the

perturber with the dipoles or charges of the reaction center. 1, 10 The types of electrostatic

Page 24: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

17

Figure 6

K(eq)c is the critical equilibrium due to the unperturbed reaction center and δp is the

change due to interaction between the reaction center and the perturber. δele and δres

are changes due to electrostatic and resonance interactions between the reaction center

and the perturbers and, of course, δele comprises changes due to sigma induction, direct

and indirect field effects.

Page 25: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

PC

iP

Cf

Keq

.

RR

=δ p

* lo

g K

(eq)

clo

gK(e

q)

δ ele

* lo

gK(e

q)c

δ p *

log

K(e

q)c

δ res

* lo

gK(e

q)c

=+

Page 26: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

19

effects that can occur between the perturber and the reaction center are direct field,

mesomeric field (also called pi-induction or indirect field) and sigma induction effects.

Direct Field Effect

The direct field effect occurs when the dipole of the perturber interacts with the

dipole of the reaction center through space. 1, 10 Since the transition states for base and

general base-catalyzed hydrolyses of esters are positively charged, the dipole will

increase the hydrolysis rate constant for these reactions. In contrast, the transition state

for acid hydrolysis of esters is positively charged and the dipoles will decrease the

hydrolysis rate constant in this situation. The direct field effect due to the interaction

between dipoles of the reaction center and the perturber is demonstrated in the following

equation:

Where, ( δfield * logK(eq)c ) is the direct field effect due to the interaction between the

field of the perturber and the reaction center. ρfield is the susceptibility of the reaction

center due to the field and is presumed to be independent of the perturber. 1, 10 σp is the

field strength that the perturber exerts on the reaction center and has been previously

calculated on ionization pKa. σp is further divided into σcs and Fs , which are

conduction descriptor and field strength of the perturber. The conduction descriptor (σcs)

accounts for the change that the conductor can bring about in the electrostatic interaction

to the reaction center and is the length dependence on interaction. The field strength (Fs)

is the dipole field parameter, which gauges the magnitude of the substituent dipole. 1, 9

ρfield σpδfield * logK(eq)c = ρfield Σ σcs Fs .=

Page 27: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

20

Mesomeric Field Effect (MF)

The mesomeric field is generated when an electron withdrawing or donating group

puts (or removes) the charges on the conductor R (figure 7). An electron withdrawing

group puts positive charges on the conductor, while an electron donating group puts the

negative charges.1, 9 Since the transition states of base and general base-catalyzed

hydrolyses are negatively charged, the electron withdrawing groups will increase the

hydrolysis rate constant because the induced positive charges on the conductor will

stabilize negative charges or electrons that may exist in the reaction center. On the other

hand, the induced negative charges have opposite effect. For acid hydrolysis of esters,

the MF effect due to induced positive charges is smaller compared to the MF effect in

base and general base-catalyzed hydrolyses because the transition state of acid

hydrolysis is positively charged. However, the induced negative charges will have larger

MF effect on acid hydrolysis than in base and general base-catalyzed hydrolyses for the

same reason. Further, the MF effect due to interaction between either the electron

withdrawing or donating group with the reaction center is shown in the following

equation.

Where, (δMF * logK(eq)c ) is the mesomeric field effect due to the interaction between the

induced charges on the conductor and the reaction center. ρele is the susceptibility of the

reaction center, which is independent of the substituent. The MF is the mesomeric field

constant that is characteristic of the substituents and it describes the ability of the

substituent to induce the field in the pi-system. It has been previously calculated in

ρele MF qRδMF * logK(eq)c = = ρele MF Σ(qik/rkc)

Page 28: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

21

Figure 7

The figure 7 shows possible distribution of positive charges on the conductors R1 and

R2.

Page 29: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

CO

O

O2N

NO

2

+

++

+

+ +R

1R

2

Page 30: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

23

ionization pKa. qR describes the location and the relative charge distribution in

conductor and it is further factored into qik and rkc. qik is the charge induced at atom k

with a reference probe attached at atom I and is calculated using PMO theory. 1, 10 rkc

is the through cavity distance between the charge and the reaction center.1, 10 The MF

contribution also depends upon where the conductor is hooked to the reaction center. If it

is hooked to the carbonyl carbon, the distance between the charge and the reaction center

is smaller than if it is hooked to the oxygen. To illustrate, we have calculated the MF

contribution for alkaline hydrolysis of ethyl p-nitrobenzoate to be 0.32 log-unit

compared to 0.03 log-unit for alkaline hydrolysis of p-nitrophenyl acetate under the

same conditions.

Sigma Induction Effect

The sigma induction occurs due to the difference in electronegativity between the

reaction center and the substituents.1, 10 For base and general base-catalyzed hydrolyses

the reaction center has a large electronegativity and methyl substituents, for example,

will move charge or electrons into the reaction center and decrease the hydrolysis rate

constant. The acid reaction center, on the other hand, is found to be less electronegative

and the perturbations are always quite small. The sigma induction is effective only up to

two atoms away from the reaction center and beyond the second atom it is assumed to be

negligible. The sigma induction due to electronegativity difference between the reaction

center and the perturber is calculated using the following equation.

ρele Σ (χc−χs).δsigma * logK(eq)c =

Page 31: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

24

Where, (δsigma * logK(eq)c ) is the sigma induction effect due to electronegativity

difference between the reaction center and the perturber and ρele is the susceptibility of

the reaction center due to field. χc and χs are the electronegativity of the reaction center

and the substituents respectively.1 The χs terms were previously calibrated using

ionization pKa.

Resonance Effect

Resonance is a phenomenon of pi-electrons moving in or out of the reaction center. It

plays two important roles in ester hydrolysis. The major impact is that of resonance

stabilization of the leaving group. Thus pi-network attached to the oxygen of the ester

reaction center have a pronounced effect and greatly increase the hydrolysis rate. Pi-

network attached to the carbonyl tends to destabilize the leaving group, but the effect is

much smaller. The resonance effect is calculated from a following equation.

Where (δres * logK(eq)c ) is the resonance effect due to interaction between the pi-network

in the perturber and reaction center. ρres is the susceptibility of the reaction center to the

resonance interactions. (∆q)c is the fraction loss of NBMO (nonbonding molecular

orbital) charge from the surrogate reaction center calculated based on PMO theory. 1, 10

External Perturbation Model

The external perturbation model describes the solvation, steric and temperature

effects and their contributions to the hydrolysis rate constant.

δres * logK(eq)c = * qc

ρres

Page 32: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

25

Solvation Effect

Solvation effect for ester hydrolysis includes hydrogen bonding and field

stabilization effects. The hydrogen bonding gauges the hydrogen acceptor effect (alpha)

and hydrogen donor effect (beta) of the esters, while the field stabilization describes the

effect of dielectricity upon the hydrolysis rate constant.

Hydrogen Bonding

The hydrogen-bonding model for ester hydrolysis includes hydrogen acceptor effect

(alpha) and hydrogen donor effect (beta). The alphas and betas describe the difference in

solvation between the initial and transition states. If the transition state is more solvated

or stabilized than the initial state, the hydrolysis rate constant increases. The negatively

charged transition states of base and general base catalyzed hydrolysis are strongly

solvated or stabilized by alphas, while the betas tend to destabilize it. Thus, the alphas

are supposed to increase the hydrolysis rate constant and the betas decrease it. However,

the alphas not only solvate the transition states, but also solvate the attacking hydroxide

ion making the initial state more stabilized than the transition state (figure 8). Thus, the

alphas decrease the hydrolysis rate constant. On the other hand, the betas interact with

the alphas freeing up the hydroxide ions to react with the esters and it increases the

hydrolysis rate constant. For acid-catalyzed hydrolysis both the alphas and betas

stabilize the initial state more than the transition state. Therefore, they both decrease the

hydrolysis rate constant. Further, the alpha and beta contributions to the hydrolysis rate

constant from various mixed solvents depend on the amount of alphas and betas

available in those solvents. To illustrate, pure water solvent has equal alpha and beta,

while the mixed solvents have less alpha and more beta. Consequently, the alpha

Page 33: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

26

Figure 8

The effect of alphas on initial and transition states. The alphas tremendously solvate the

hydroxide ion and stabilize the initial state more than the transition state. As a result, the

alphas decrease the hydrolysis rate constant during ester hydrolysis.

Page 34: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

Initi

al st

ateTr

ansi

tion

stat

e

Rea

ctio

n co

ordi

nate

Ener

gy

Page 35: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

28

contribution from pure water to hydrolysis rate constant in base and general base

catalyzed hydrolysis should be lower or more negative than from the mixed solvents.

The beta contribution, on the other hand, should be higher in mixed solvents than in pure

water. The mathematical expressions for alpha and beta are given below.

Where, Alpha is the hydrogen acceptor effect of the esters, CA is the data-fitted

parameter for hydrogen donor effect, alpha is the hydrogen donating value of the

solvent, Fb6 is the data-fitted parameter for the volume of alpha of the solvent, Volume

is the volume of alpha of the solvent and Tk is the temperature in Kelvin. Further, Beta is

the hydrogen donor effect of the ester, BA is the data-fitted parameter for the hydrogen

donor effect, beta is the hydrogen acceptor value of the solvent and Tk is the temperature

in Kelvin.

Field Stabilization Effect

The field stabilization effect includes the dielectric constant term. The dielectric

constant describes the solvation of initial and transition states of the reactants in the

hydrolysis of esters. The dielectricity of the solvents solvates or stabilizes the initial state

more than the transition state. Thus, it decreases the hydrolysis rate constant. Comparing

dielectricity effect on hydrolysis rate constant in different mixed solvents, we observe

dielectricity or field stabilization effect to be higher or less negative in pure water than in

Alpha = CA ** alpha Tk1 - Fb6 * Volume

Beta = BA * beta Tk

Page 36: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

29

other mixed aqueous solvents. The reason for this phenomenon is that the high

dielectricity of pure water stabilizes the transition state more than by the mixed solvents,

which have less dielectricity. The mathematical expression for the field stabilization

effect is given below.

Where, CFS is the data-fitted parameter for the field stabilization, Tk is the temperature in

Kelvin and Damp is the adjustment factor.

Steric Effect

The normal trend for steric effect is that as the bulkiness of the substituents increases

the steric effect increases. Thus, the steric effect always decreases the hydrolysis rate

constant. Comparing the steric effect on hydrolysis rate constant in various solvents, we

observe the trend of lesser steric effect in pure water than in other mixed solvents. The

reason for this trend is that pure water solvates the substituents more and aligns the

structure of the esters in suitable position for the attacking hydroxide ion or water

molecule. On the other hand, the mixed aqueous solvents partially solvate the

substituents and deform the structure of esters, which creates the hindrance to attack

from the hydroxide ion or water molecule. Thus, the reaction does not proceed in normal

rate and the hydrolysis rate constant decreases. The mathematical expression for steric

effect is given below.

Field stabilization = CFS ** 1e6 Tk Dielectric Damp+

Page 37: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

30

Where, CS is the data-fitted parameter for the steric term, Volume is the steric volume of

the substituents and Damp is the adjustment factor.

Temperature Effect

For temperature effect, we use the Arrhenius equation as shown below.

Where k is the hydrolysis rate constant, A is the pre-exponential factor or the frequency

factor, Ea is the activation energy (the minimum energy required to form a product from

the reactants), ∆G≠ is the activation Gibbs energy, R is the gas constant (8.31451 JK-1

mol-1) and T is the temperature in Kelvin. If we take a log of the above latter equation,

we obtain log k = - ∆G≠/ 2.317(RT ). The previous equation shows that the logarithmic

rate constant increases as the temperature in Kelvin increases. The temperature effect is

incorporated in field stabilization effect, alpha, beta and steric effect. To illustrate, we

consider the temperature term in expression for steric effect above. According to the

expression, as the temperature increases the steric effect decreases. The reason behind

this trend is that as the temperature increases the reactants tend to mimic gas phase

structure, which shows minimal or null steric effect for hydrolysis of esters.

OR k = e-( G/RT)k = A e-(Ea/RT)

Steric = CS ** Volume Tk Dielectric Damp+

Page 38: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

31

CHAPTER 3

SPARC COMPUTATIONAL MODEL FOR HYDRATION EQUILIBRIA

Hydration Model

The computational model of hydration equilibria for aldehydes/ketones and

quinazolines incorporates the pKa and Henry constant computational models. The pKa

computational models are used to calculate the effects of resonance, mesomeric field,

direct field, steric, etc. on the hydration reaction calculated. For detailed information on

these effects, please, refer to reference 1. These various effects are perturbation terms.

That is, appended molecular structures (the perturbers) perturb the reactivity of the

reference compounds, which are formaldehyde and quinazoline for hydration of

aldehydes/ketones and quinazolines, respectively. For the resonance contribution to the

hydration equilibrium:

Where, Res(hydration) is resonance contribution to the hydration equilibrium of

aldehydes/ketones or quinazolines, Res(ald/quin) is the magnitude of NBMO (Non Bonding

Molecular Orbit) delocalization out of the reaction center for aldehydes/ketones or

quinazolines from the pKa resonance model, Res(reference) is this same resonance value for

the reference compound (formaldehyde or quinazoline) and ‘Zres’ is a data fitted or

trained parameter. The rest of the perturbation terms for hydration of aldehydes/ketones

and quinazolines are calculated similarly. All the perturbations are assumed to be for gas

phase hydration of the molecule. This was done to make the calculation in mixed solvent

Res(hydration) = (Res(ald/quin) - Res(reference) )* Zres.

Page 39: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

32

system easier to do. On the other hand, the Henry constant model predicts the Henry

constants for aldehydes/ketones, quinazolines and their hydrated forms.

The various free energies calculated in determining the hydration of a ketone/aldehyde

are shown in figure 9. Here, ∆Ghydration(g) is the free energy for hydration of

aldehydes/ketones in the gas phase, and its value is calculated by adding the perturbations as

described earlier. ∆Gtransfer(o) is the free energy of transfer of the hydrated form (the gem-

diol). ∆Gtransfer(=o) is the free energy of transfer of the aldehyde/ketone and ∆Ghydration(l) is the

resultant free energy of hydration of aldehyde/ketone in solution. The resultant free energy

(∆Ghydration(l) ) is related to the hydration equilibrium constant by a following equation:

Where R, T and Khydration(l) are gas constant, temperature in Kelvin and hydration

equilibrium constant respectively. pKhydration(l) is the logarithmic hydration equilibrium

constant. The hydration equilibrium constant for quinazolines is calculated similarly.

Ghydration(l) = -RT lnKhydration(l)

pKhydration(l) = Ghydration(l) / (2.33 * RT).

Page 40: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

33

Figure 9

A thermodynamic Cycle involving various free energies, while determining the

hydration equilibrium constant of a aldehyde/ketone.

Page 41: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

P-C

=O(g

)

P-C

=O(l)

P-C

=O(g

)P-

C=O

(l)

P-C

(OH

) 2 (g

)

P-C

(OH

) 2 (g

)

P-C

(OH

) 2 (l

)

P-C

(OH

) 2 (l

)

____

____

____

____

____

____

____

____

____

____

____

____

____

____

____

__

Ghy

drat

ion (

g)---

--1.

Ghy

drat

ion (

l)---

--4.

Gtra

nsfe

r (=O

)---

--3.

Gtra

nsfe

r (O

)---

--2.

-

Page 42: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

35

CHAPTER 4

EXPERIMENTAL

Data Collection

For our calculational simulations, we have collected as many data as possible. The

number of experimental measurements for hydrolysis of esters is reasonable. We have

653, 657, and 150 measurements for base, acid and general base-catalyzed ester

hydrolysis. However, we have collected only 37-aldehydes/ketones and 28-quinazolines

measurements for the hydration constants. We believe we have found all the

measurements in the literatures for the hydration of these compounds.

Data File

After collecting the data, we convert these measurements into a format suitable for

batch processing by the SPARC calculator. A sample data file is shown in figure 10.

Four lines describe the molecule’s conditions and the calculation type. The first line

characterizes the reaction solvent specifying a list of volume fractions and a list of

corresponding solvents that make up the reaction medium. The second line describes the

experimental ester hydrolysis rate constant in log-unit and the temperature at which the

hydrolysis took place. The third and the fourth lines give the molecular structure in

SMILE notation and type of mechanism for the hydrolysis, respectively. For example,

the ‘a_rcor’ in the fourth line means that the reaction mechanism for hydrolysis is acid-

catalyzed.

Page 43: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

36

Figure10

A data file for hydrolysis of esters.

Page 44: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

[[1],[water]]. % 1['-3.97/25'].'CC(=O)OCC'.a_rcor.

[[0.7,0.3],[acetone,water] % 377['-4.83/25'].'CCOC(=O)Cc1ccccc1'.a_rcor.

[[0.25,0.75],[dioxane,water]]. % 499['-4.46/25'].'CC(=O)OCCl'.a_rcor.

[[0.75,0.25],[ethanol,water]]. % 234['-2.24/25'].'CCOC(=O)Cc1c(I)cccc1'.rcor. % base hydrolysis

[[0.33,0.67],[acetonitrile,water]]. % 314['-1.25/25'].'c1ccccc1C(=O)Oc2ccccc2'.rcor.

[[1],[water]]. % 37['-7.08/25'].'CC(=O)Oc1cc(N(=O)=O)c(N(=O)=O)cc1'.g_rcor. % general base hydrolysiswater. % catalyst

[[0.4,0.6],[ethanol,water]]. % 137['-3.66/25'].

Page 45: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

38

Training File

A training file is a modified version of the data file. The training file is used to train

various reaction center susceptibility parameters, such as field, resonance and sigma to

obtain a best least squares fit of the observed and calculated hydrolysis rate constants. A

sample training file is shown in figure 11. The training file usually consists of three

sections. The first section gives the number of hydrolysis rate constant calculations to be

performed. The second section is a list of the various reaction center susceptibility

parameters being trained. Finally, the last section consists of description of molecular

structure, conditions and reaction type as in the data file.

Jacobian Least Squares Fit

We use a non-linear Jacobian Least Squares Fit method to extract training

parameters, such as sigma, resonance, steric, alpha, beta, and so on, while determining

the hydrolysis rate constant of esters. The Jacobian Least Squares Fit calculation

involves the determination of ∆φ, Jij, J, JT and ∆C. ∆φ is a vector representing the

difference between the observed and calculated hydrolysis rate constants. Jij is an

element of the Jacobian matrix, i = 1, 2, 3,……m are the experimental data points and j

= 1, 2, …..n are the parameters to be extracted. J is the Jacobian matrix of the Jij

elements and JT is the transpose of Jacobian matrix J. ∆C is a correction factor for the

parameter to be extracted, which is given an arbitrary guess. 9

Page 46: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

39

Figure 11

A sample training file

Page 47: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

*First section

363.

*Second section

[ [a_rcor,b2_factor,1,1], [a_rcor,b3_factor,1,1], [a_rcor,rcor_mf_adjust,1,1], [a_rcor,r_pi,1,1], [a_rcor_,pka_ro_minus,1,1],%% [a_rcor,pka_ro_minus,1,1],% [a_rcor,pka_a_f,1,1],%% [a_rcor,pka_pe,1,1], [a_rcor,b5_factor,1,1], [a_rcor,reference_point2,1,1]].

*Third section

['Acid Hydrolysis',[1],[water]]. % 125.-3.97.'CC(=O)OCC'.a_rcor.

['Acid Hydrolysis',[1],[water]]. % 225.-4.04.'CCC(=O)OCC'.a_rcor.

Page 48: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

41

Determination of ∆φ

The ∆φ vector is determined as follows. We make initial guesses of the parameters to

be trained. Using these initial guesses and the models described above we calculate the

hydrolysis rate constants for a large set of molecules. The ∆φ vector is calculated for the

m experimental data points as follows:

Whe

cons

Dete

T

Whe

resp

the e

Sinc

calc

( ∆φ )i = Ratei(observed) - Ratei(calculated) 9

re Ratei(observed) and Ratei(calculated) are the observed and calculated hydrolysis rate

tants for the m experimental data points respectively.

rmination of Jij

he Jij represents the elements of Jacobian Matrix J, and it is denoted as:

re, δ denotes partial derivative of the ith calculated hydrolysis rate constant with

ect to the jth parameter. For example, if we extract two parameters Beta and Steric,

lements of Jacobian matrix will be as follows:

e the above equations do not represent the exact analytical expressions for

ulating the hydrolysis rate constant, the partial derivative of the hydrolysis rate

JijδRatei

δCj=

9

Ji1δRatei

δCBeta=

Ji2δRatei

δCSteric= .

Page 49: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

42

constant cannot be performed directly and a numerical solution must be chosen. For the

numerical solution, for example, the CBeta parameter is changed by 5 %, while CSteric is

kept unchanged or constant for every cycle. That is, δCBeta = 0.05 * CBeta. Then

(CBeta)modified is calculated as follows: (CBeta)modified = CBeta + δCBeta. Using the

(CBeta)modified value, the new or modified hydrolysis rate constant ( Ratei(modified) ) can be

calculated. Then δRatei is calculated as follows: δRatei = Ratei - Ratei(modified). The

matrix element Ji1 is then calculated as the ratio of δRateI / δCBeta. Similarly, the matrix

element Ji2 is calculated for CSteric parameter provided that the CBeta parameter is changed

back to its original value and kept constant. 9

For m experimental data points, the Jacobian matrix elements Ji1 and Ji2 are calculated

as follows 9 :

Determination of Jacobian matrix J and JT

The Jacobian matrix J is defined as m * n elements 9, while JT is simply a transposed

matrix of J. The JT matrix is formed by interchanging the rows and columns of the J

J11δRate1

δCBeta=

J21δRate2

δCBeta=

J31δRate3

δCBeta=

δRatem

δCBeta=

J12δRate1

δCSteric=

J22δRate2

δCSteric=

J32δRate3

δCSteric=

Jm2δRatem

δCSteric=Jm1

.

.

.

.

.

.

Page 50: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

43

matrix. 9 Then ( JT * J ) matrix is constructed as follows 9 :

Next, an inverse matrix, ( JT * J )-1, is formed. The ( JT * J )-1 is formed in such a way so

that the multiplication of ( JT * J ) and ( JT * J )-1 gives a unique matrix. 9

JT * J =

J11

J21

J31

Jm1

J12

J22

J32

Jm2

.

.

.

.

.

.

J11 J21 J31 . . . Jm1

J12 J22 J32 . . . Jm2

JT

J

Σ (Ji1)2=

Σ (Ji1* Ji2)

Σ (Ji2)2Σ (Ji2* Ji1)

J =

J11

J21

J31

Jm1

J12

J22

J32

Jm2

.

.

.

.

.

.

Page 51: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

44

Then (JT * ∆φ ) matrix is formed as follows 9 :

Determination of ∆C

The ∆C vector is determined using an expression: ∆C = ( JT * J )-1 * (JT * ∆φ ). 9

The multiplications generate the following elements of the ∆C matrix:

(JT * J)-1 =Σ (Ji2)2 − Σ (Ji1* Ji2)

Σ (Ji1)2− Σ (Ji2* Ji1)

J11 J21 J31 . . . Jm1

J12 J22 J32 . . . Jm2

(JT * ∆φi ) =

∆φ1

∆φ2

∆φ3

∆φm

.

.

.

∆φ

JT

=Σ ( Ji1 * ∆φi )

Σ ( Ji2 * ∆φi )

(∆C) =Σ ( Ji1 * ∆φi )

Σ ( Ji2 * ∆φi )

Σ (Ji2)2 − Σ (Ji1* Ji2)

Σ (Ji1)2− Σ (Ji2* Ji1)

(JT * J)-1 (JT * ∆φi )

(∆CBeta) = Σ ( Ji1 * ∆φi ) Σ ( Ji2 * ∆φi )∗ Σ ( Ji2)2 ∗ Σ ( Ji1* Ji2)

(∆CSteric) = Σ ( Ji2 * ∆φi ) Σ ( Ji1 * ∆φi )∗ Σ ( Ji1)2 ∗ Σ ( Ji2* Ji1)

Page 52: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

45

Where, ∆CBeta and ∆CSteric are corrections for arbitrary guesses ( CBeta )old and (CSteric)old

respectively. The new guesses for the parameters can then be calculated as follows:

Where ( CBeta )new and (CSteric)new are new values for the parameters Beta and Steric

respectively. Once the new values for the parameters are calculated, the convergence test

is done to see if the newly calculated values are reasonable. The convergence test for

Jacobian Least Squares Fit method requires that the difference between the old and new

parameters be less than 0.1 % of the old value. 9 For example, if we were calculating the

CBeta parameter, the convergence test would have to satisfy following condition:

If the above condition is met, the new value for CBeta parameter gets accepted.

Otherwise, the above cycle is repeated until the new value for CBeta parameter is

converged.

(CBeta)new = + (∆CBeta)(CBeta)old

(CSteric)new = + (∆CSteric)(CSteric)old

(CBeta)new (CBeta)old < 0.001 * (CBeta)old

Page 53: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

46

CHAPTER 5

RESULTS AND DISCUSSIONS FOR HYDROLYSIS

Tables 5-7 show observed versus calculated values for hydrolysis rate constants of

esters in base, acid and general base catalyzed hydrolysis respectively. These sets

represent 321, 416 and 50 unique esters in base, acid and general base catalyzed

hydrolysis of esters respectively. Because several of the esters were measured under

different conditions (solvent mixtures and temperatures) there were 653, 667 and 150

base, acid and general base catalyzed calculations performed. The RMS values obtained

for these three mechanisms are 0.37, 0.37 and 0.35 log-units respectively. To show how

the SPARC calculates each ester’s hydrolysis rate constant, we have provided sample

calculations for the hydrolysis rate constants for ethyl p-nitrobenzoate and p-nitrophenyl

acetate. The calculations are described below.

Sample Calculation

Figures 12-14 show the sample calculations of hydrolysis rate constant for ethyl p-

nitrobenzoate in base and acid catalyzed media and p-nitrophenyl acetate in general base

medium at room temperatures. As described earlier in the SPARC computational model

section, the hydrolysis rate constant is a summation of contributions from the reference

rate, internal perturbations and external perturbations.

Page 54: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

47

Figure 12

A sample calculation for determination of hydrolysis rate constant for alkaline

hydrolysis of ethyl p-nitrobenzoate in water at 25C.

Page 55: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

NO

2CO

OC

CO

H-

H2O

, BA

C2

NO

2CO

OH

+

HO

CC

Ref

eren

ce R

ate

= P

re-e

xp +

Log

T k +

Ref

1 +

Ref

2 / T

k

= 3

.357

+ L

og(2

98.1

5) +

2.2

83 +

(-21

34.6

/ 29

8.15

)

= 0

.951

Rat

e (In

tern

al P

ertu

rbat

ion)

= R

eson

ance

+ S

igm

a +

Fiel

d +

MF

+ r_

pi

=

-0.1

34 +

(-0.

905)

+ 0

.319

+ 0

.647

+ (-

0.77

0)

=

-0.

842

Rat

e (Ex

tern

al P

ertu

rbat

ion)

= F

ield

Sta

biliz

atio

n +

Alp

ha +

Bet

a +

Ste

ric

=

-2.

843

+ (-

1.55

9) +

5.3

11 +

(-1.

289)

=

-0.

382

Cal

cula

ted

Rat

e =

-0.

273

Obs

erve

d R

ate

= -0

.58

Page 56: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

49

Figure 13

A sample calculation for determination of hydrolysis rate constant for acid catalyzed

hydrolysis of ethyl p-nitrobenzoate in 60% ethanol-water at 80C.

Page 57: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

Ref

eren

ce R

ate

= P

re-e

xp +

Log

T k +

Ref

1 +

Ref

2 / T

k

=

3.3

57 +

Log

(353

.15)

+ 1

.161

+ (-

2509

.1 /

353.

15)

=

-0.0

41

Rat

e (In

tern

al P

ertu

rbat

ion)

= R

eson

ance

+ S

igm

a +

Fiel

d +

MF

+ r_

pi

=

-0.2

95 +

(-0.

154)

+ (-

0.04

2) +

0.1

47 +

(-0.

977)

=

-1.

116

Rat

e (Ex

tern

al P

ertu

rbat

ion)

= F

ield

Sta

biliz

atio

n +

Alp

ha +

Bet

a +

Ste

ric

=

-0.

297

+ (-

0.65

9) +

(-0.

792)

+ (-

1.55

2)

=

-3.

302

Cal

cula

ted

Rat

e =

-4.

459

Obs

erve

d R

ate

= -4

.54

NO

2CO

OC

CH

+

60%

eth

anol

-wat

er a

t 80C

, AA

C2

NO

2CO

OH

+

HO

CC

Page 58: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

51

Figure 14

A sample calculation for determination of hydrolysis rate constant for neutral hydrolysis

of p-nitrophenyl acetate in water at 25C.

Page 59: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

Ref

eren

ce R

ate

= P

re-e

xp +

Log

T k +

Ref

1 +

Ref

2 / T

k

=

3.3

57 +

Log

(298

.15)

+ 1

.174

+ (-

4098

.7 /

298.

15)

=

-9.0

96

Rat

e (In

tern

al P

ertu

rbat

ion)

= R

eson

ance

+ S

igm

a +

Fiel

d +

MF

+ r_

pi

=

0.7

22 +

(-1.

865)

+ 0

.346

+ 0

.513

+ 0

.904

=

0.6

22

Rat

e (Ex

tern

al P

ertu

rbat

ion)

= F

ield

Sta

biliz

atio

n +

Alp

ha +

Bet

a +

Ste

ric +

GB

C e

ffec

t

=

-4.5

30 +

(-0.

736)

+ 7

.173

+ (-

0.78

1) +

(-0.

769)

=

0.3

55

Cal

cula

ted

Rat

e =

-8.

118

Obs

erve

d R

ate

= -

7.81

NO

2N

O2

OH

OC

C

O

+

C

C(=

O)O

HH

2O

wat

er a

s a c

atal

yst,

in w

ater

at 2

5C

Page 60: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

53

Reference Rate

The reference rate is a summation of pre-exponential factor in log units, the log of

temperature in Kelvin, the entropic (Ref1) and the enthalpic (Ref2/Tk) terms in log units.

The reference rates for base and acid catalyzed hydrolysis of ethyl p-nitrobenzoate are

0.951 and -0.041 log-units (figures 12 and 13) respectively and –9.096 log-unit for

general base catalyzed hydrolysis of p-nitrophenyl acetate (figure 14).

Internal Perturbations

The internal perturbations are summation of resonance, sigma, r_pi, direct field and

indirect field (MF) interactions. The r_pi interaction term has not been described earlier.

It is similar to sigma induction, except it involves the pi-electrons instead of sigma

electrons. The internal perturbations for ethyl p-nitrobenzoate in base and acid catalyzed

hydrolysis are –0.842 and –1.116 log-unit respectively, while 0.622 log-unit for p-

nitrophenyl acetate in general base catalyzed hydrolysis. The analyses of various internal

perturbation interactions, which contribute to the total internal perturbation, are

described below.

Resonance Effect

The total forward resonance effects are -0.134 and –0.295 log-units for hydrolysis of

ethyl p-nitrobenzoate in base and acid catalyzed media. That is, the resonance

contributions are negative and decrease the hydrolysis rate constant because the phenyl

ring attached to the alkyl side of the esters increases the activation energy. In contrast,

the total forward resonance is 0.722 log-unit for hydrolysis of p-nitrophenyl acetate in

general base catalyzed medium. The huge positive contribution and resulting increase in

Page 61: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

54

hydrolysis rate constant is due to stabilization of the leaving group by the phenyl ring

and decreases the activation energy.

Sigma Induction

The total sigma induction is -0.905 and -0.154 log-units for hydrolysis of ethyl p-

nitrobenzoate in base and acid catalyzed media respectively. Since the reaction center in

the base catalyzed hydrolysis is more electronegative than in the acid catalyzed

hydrolysis, we see more negative contribution from the ethyl group in the base than in

the acid catalyzed hydrolysis. In addition, we observe –1.865 log-unit contribution from

sigma for general base catalyzed hydrolysis of p-nitrophenyl acetate because the methyl

substituent is attached directly to the highly electronegative reaction center. That is, the

methyl substituent attached to the alkyl side does not encounter shielding from the

oxygen atom and the sigma induction effect is enhanced more than if it is attached to the

acyl side.

Direct Field

The direct field (F) is 0.319 and -0.042 log-units for base and acid catalyzed

hydrolysis of ethyl p-nitrobenzoate respectively, while it is 0.346 log-unit for general

base catalyzed hydrolysis of p-nitrophenyl acetate. Since the transition states of the base

and general base catalyzed hydrolysis of esters are negative, the field always contributes

positively to the internal perturbations. In contrast, the field contributes negatively to the

internal perturbations for acid catalyzed hydrolysis because of the positive transition

state that occurs during the hydrolysis reaction.

Page 62: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

55

Pi-Induction (MF or Indirect Field)

The pi-induction or indirect field (MF) is 0.647 and 0.147 log-units for hydrolysis of

ethyl p-nitrobenzoate in base and acid catalyzed media respectively and it is 0.513 log-

unit for hydrolysis of p-nitrophenyl acetate in general base catalyzed medium. The MF

contributions are positive in all three catalyzed media and increase the hydrolysis rate

constant because the induced positive charges on the phenyl ring stabilize the charged

transition states. In addition, we see large positive values for the base and general base

catalyzed hydrolysis because of the negative transition states that occur during the

hydrolysis reactions for these mechanisms. The induced positive charges on the phenyl

ring enhance the stabilization of the negative transition states more. In contrast, the

small positive value for acid catalyzed hydrolysis is due to the positive transition state

that occurs during the hydrolysis reaction and diminishing stabilization of it.

r_pi Effect

The r_pi effect is similar to the sigma induction, except it involves the pi-electrons

instead of the sigma electrons. In addition, our SPARC computational model for r_pi

divides the reaction center (C(=O)O) into e+ (carbonyl carbon) and e- (acyl oxygen)

groups. If the substituent containing the pi-system is attached to the e+ group, the r_pi

effect contributes negatively or lowers the hydrolysis rate constant. In contrast, if the pi-

system is attached to the e- group, the r_pi increases the hydrolysis rate constant. That is

exactly what we observe for hydrolysis of p-nitrobenzoate and p-nitrophenyl acetate.

The r_pi effects are –0.770 and -0.977 log-units for base and acid catalyzed hydrolysis

of ethyl p-nitrobenzoate and 0.904 log-unit for general base catalyzed hydrolysis of p-

nitrophenyl acetate.

Page 63: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

56

External Perturbations

The external perturbations are summation of Alpha, Beta, Field Stabilization, Steric

and GBC interactions. The GBC effect applies only to the general base catalyzed

hydrolysis of esters. The external perturbations for ethyl p-nitrobenzoate in base and acid

catalyzed hydrolysis are –0.382 and –3.302 log-unit respectively, while 0.355 log-unit

for p-nitrophenyl acetate in general base catalyzed hydrolysis. The analyses of various

external perturbation interactions, which contribute to the total external perturbation, are

described below.

Field Stabilization Effect

The field stabilization effects are –2.843 and –0.297 log-units for hydrolysis of ethyl

p-nitrobenzoate in base and acid media respectively, while it is –4.530 log-unit for

hydrolysis of p-nitrophenyl acetate in general base catalyzed medium. The field

stabilization effect involves the dielectric constant of the solvent and in general it raises

the energy of the transition state more than the initial state. As a result, it lowers the

hydrolysis rate constant. However, comparing the pure water solvent with the mixed

aqueous-nonpolar solvents, we see that a higher dielectric constant increases the

hydrolysis rate constant. For example, if we calculate the hydrolysis rate constants for

base catalyzed hydrolysis of ethyl p-nitrobenzoate in aqueous-nonpolar mixed solvents,

we will observe values more negative than –2.843 log-unit. Similar trends occur for acid

and general base catalyzed hydrolysis of esters.

Page 64: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

57

Alpha Effect (Hydrogen Acceptor Effect of Esters)

The Alpha effects are –1.559 and –0.659 log-units for hydrolysis of ethyl p-

nitrobenzoate in base and acid media respectively, while it is –0.736 log-unit for

hydrolysis of p-nitrophenyl acetate in general base catalyzed medium. For base and

general base catalyzed hydrolysis, the alphas of the solvent not only solvate the

hydrogen acceptor site (β) of the ester, but also solvate the attacking hydroxide ions.

This phenomenon stabilizes the initial state more than the transition state. As a result, we

see negative contribution from Alpha to the external perturbations. For the acid

catalyzed hydrolysis, the alphas of the solvent stabilize the initial state more than the

positively charged transition state; therefore, we also see negative contribution from the

Alpha to the external perturbations.

Beta Effect (Hydrogen Donor Effect of Esters)

The Beta effects are 5.311 and –0.792 log-units for hydrolysis of ethyl p-

nitrobenzoate in base and acid media respectively, while it is 7.173 log-unit for

hydrolysis of p-nitrophenyl acetate in general base catalyzed medium. For base and

general base catalyzed hydrolysis, the betas of the solvent interact less with the

hydroxide ions. This phenomenon stabilizes the transition state more than the initial

state. As a result, we see positive contribution from Beta to the external perturbations.

For the acid catalyzed hydrolysis, the betas of the solvent also destabilize the transition

state; therefore, we see negative contribution from the Beta to the external perturbations.

Page 65: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

58

Steric Effect

The steric effects are –1.289 and –1.552 log-units for hydrolysis of ethyl p-

nitrobenzoate in base and acid media respectively and it is -0.781 log-unit for hydrolysis

of p-nitrophenyl acetate in general base catalyzed medium. The normal trend of steric

effect is that bulkier the substituents lower the hydrolysis rate constants. Since both ethyl

p-nitrobenzoate and p-nitrophenyl acetate have bulky phenyl rings, the steric effects

display huge negative values.

GBC Effect

The GBC effect applies only to the general base catalyzed hydrolysis of esters. It is a

product of data-fitted parameter, ‘ro_g’, and pKa of the catalyst. More basic catalysts

have higher the hydrolysis rate constants. Since water is a weak base, we see –0.769 log-

unit contribution from the GBC effect to the external perturbations.

Graphical Representation

Using a similar method described in the sample calculation, we have calculated the

hydrolysis rate constants for 321, 416 and 50 unique esters in base, acid and general base

catalyzed media in various solvents and at different temperatures. Because these

measurements are often made in more than one solvent and/or at more than one

temperature the total number of calculations for base, acid and general base catalyzed

hydrolysis are 653, 667 and 150 respectively.

Page 66: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

59

Base Hydrolysis

The figure 15 shows the graph of observed and calculated hydrolysis rate constants

of 321 unique esters hydrolyzed in various solvents and different temperatures. The

observed RMS and R2 values for base catalyzed hydrolysis of esters are 0.37 log-unit

and 0.936 respectively. In addition, the graphs for base catalyzed hydrolysis in pure

water and individual mixed solvents have been constructed (figures 16-21). The mixed

solvents are acetone-water, ethanol-water, methanol-water, dioxane-water and

acetonitrile-water. All of the graphs show reasonable RMS and R2 values, except for

hydrolysis of esters in dioxane-water mixed solvents. The RMS and R2 values for

hydrolysis of esters in dioxane-water mixed solvents are 0.473 log-unit and 0.743

respectively. The values for the dioxane-water mixed solvents may be further off than

the other sets because this set contains many measurements at very elevated

temperatures. The observed values for hydrolysis rate constants in dioxane-water mixed

solvents show 0.5 log-unit increase per every 10 C increase in temperature, but our

SPARC calculation is showing only a 0.2- 0.3 log-unit increase of hydrolysis rate

constant per every 10 C increase in temperature. Therefore, the difference in increase of

hydrolysis rate constant per every 10 C increase in temperature between the observed

and calculated hydrolysis rate constants adds up quickly in the calculated hydrolysis rate

constant to give a significant error. This is probably due to the fact that we do not take

into account the variation of effective dielectric constant as a function of temperature. In

addition, SPARC was calculating the hydrolysis rate constants for pyridine esters in

ethanol-water and methanol-water mixed solvents one log-unit slower than the observed

hydrolysis rate constants. We believe that the reason SPARC is calculating the

hydrolysis rate constants of pyridine esters one log-unit lower than the observed

Page 67: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

60

Figure 15

Observed vs calculated hydrolysis rate constants for alkaline hydrolysis of 321 unique

esters in six different solvents and at varying temperatures.

Page 68: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

-4-3-2-10123456

-4-3

-2-1

01

23

45

67

89

1011

1213

14

obse

rved

logk

calculated logk

RMS

= 0.3

7R2

= 0.9

3632

1 uni

que e

ster

s65

3 calc

ulat

ions

Page 69: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

62

Figure 16

Observed vs calculated hydrolysis rate constants for alkaline hydrolysis of 112 unique

esters in water at various temperatures.

Page 70: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

-3-2-1012345

-3-2

-10

12

34

56

78

910

1112

1314

obse

rved l

ogk

calculated logk

RMS =

0.39

1 log

-unit

R2 = 0.9

3211

2 uniq

ue es

ters

142 c

alcula

tions

Page 71: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

64

Figure17

Observed vs calculated hydrolysis rate constants for alkaline hydrolysis of 100 unique

esters in acetone-water mixed solvent at various temperatures.

Page 72: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

-3-2-101

-3-2

-10

12

34

5ob

serve

d log

k

calculated logk

RMS

= 0.3

4 lo

g-un

itR2 =

0.82

610

0 uni

que e

ster

s14

3 calc

ulat

ions

Page 73: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

66

Figure 18

Observed vs calculated hydrolysis rate constants for alkaline hydrolysis of 44 unique

esters in ethanol-water mixed solvent at various temperature.

Page 74: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

-4-3-2-10

-4-3

-2-1

01

23

45

obse

rved

logk

calculated logk

RMS

= 0.2

89 lo

g-un

itR2 =

0.82

244

uni

que e

ster

s10

5 calc

ulat

ions

Page 75: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

68

Figure 19

Observed vs calculated hydrolysis rate constants for alkaline hydrolysis of 69 unique

esters in methanol-water mixed solvent at various temperatures.

Page 76: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

-4.5

-3.5

-2.5

-1.5

-0.50.5 -4

.5-3

.5-2

.5-1

.5-0

.50.

51.

52.

53.

54.

55.

5

obse

rved

logk

calculated logk

RMS

= 0.3

67 lo

g-un

itR2 =

0.77

769

uni

que e

ster

s14

9 calc

ulat

ions

Page 77: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

70

Figure 20

Observed vs calculated hydrolysis rate constants for alkaline hydrolysis of 57 unique

esters in dioxane-water mixed solvent at various temperatures.

Page 78: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

-5-4-3-2-10

-5-4

-3-2

-10

12

34

56

obse

rved

logk

calculated logk

RMS

= 0.4

73 lo

g-un

itR2 =

0.74

357

uni

que e

ster

s90

calcu

latio

ns

Page 79: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

72

Figure 21

Observed vs calculated hydrolysis rate constants for alkaline hydrolysis of 24 unique

esters in acetonitrile-water mixed solvent at 25C.

Page 80: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

-3.5

-2.5

-1.5

-0.50.5

1.5 -3

.5-2

.5-1

.5-0

.50.

51.

52.

53.

54.

55.

5

obse

rve

logk

calculated logk

RMS

= 0.3

13 lo

g-un

itR2 =

0.97

424

uni

que e

ster

s24

calcu

latio

ns

Page 81: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

74

calculations is that the pyridine esters were also undergoing general base catalysis in

addition to the regular base catalyzed hydrolysis. If the pyridine esters were undergoing

mixed hydrolysis reactions, this would result in faster observed hydrolysis rate constants.

To overcome this one log-unit deficit for hydrolysis rate constants of pyridine esters, we

have added one log-unit to the calculated hydrolysis rate constants in our SPARC model.

Acid Hydrolysis

The figure 22 shows the graph of observed and calculated hydrolysis rate constants

of 416 unique esters hydrolyzed in various solvents and different temperatures. The

calculated RMS and R2 values for acid catalyzed hydrolysis of these esters are 0.359 log-

unit and 0.893 respectively. In addition, the graphs for acid catalyzed hydrolysis in pure

water and individual mixed solvents have been constructed (figures 23-27). The mixed

solvents are acetone-water, ethanol-water, methanol-water and dioxane-water. All of the

graphs show reasonable RMS and R2 values.

General Base Catalyzed Hydrolysis

The figure 28 shows the graph of observed and calculated hydrolysis rate constants

of 50 unique esters hydrolyzed in various solvents and different temperatures. The

calculated RMS and R2 values for general base catalyzed hydrolysis of esters are 0.371

log-unit and 0.96 respectively. In addition, the graphs for general base catalyzed

hydrolysis in pure water and individual mixed solvents have been constructed (figures

29-32). The mixed solvents are acetone-water, ethanol-water and dioxane-water. All of

the graphs show reasonable RMS and R2 values, except for esters in dioxane-water

mixed solvents. The RMS and R2 values are 0.473 log-unit and 0.664 and the reason for

Page 82: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

75

Figure 22

Observed vs calculated hydrolysis rate constants for acid catalyzed hydrolysis of 416

unique esters in five different solvents and at varying temperatures.

Page 83: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

-9-8-7-6-5-4-3-2

-9-8

-7-6

-5-4

-3-2

-10

12

34

56

obse

rved

logk

calculated logk

RMS =

0.35

9R2 =

0.893

416 u

nique

ester

s66

7 calc

ulatio

ns

Page 84: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

77

Figure 23

Observed vs calculated hydrolysis rate constants for acid catalyzed hydrolysis of 373

unique esters in pure water at varying temperatures.

Page 85: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

-9-8-7-6-5-4-3-2

-9-8

-7-6

-5-4

-3-2

-10

12

34

56

obse

rved

logk

calculated logk

RMS =

0.4

R2 = 0.

889

373 u

nique

ester

s38

3 calc

ulatio

ns

Page 86: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

79

Figure 24

Observed vs calculated hydrolysis rate constants for acid catalyzed hydrolysis of 49

unique esters in acetone-water mixed solvent at varying temperatures.

Page 87: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

-8-7-6-5-4-3-2

-8-7

-6-5

-4-3

-2-1

01

23

45

6

obse

rved

logk

calculated logk

RMS =

0.32

7R2 =

0.90

649

uniqu

e este

rs20

8 calc

ulatio

ns

Page 88: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

81

Figure 25

Observed vs calculated hydrolysis rate constants for acid catalyzed hydrolysis of 9

unique esters in ethanol-water mixed solvents at varying temperatures.

Page 89: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

-6-5-4-3

-6-5

-4-3

-2-1

0

obse

rved

logk

calculated logk

RMS =

0.16

7R2 =

0.976

9 uniq

ue es

ters

39 ca

lculat

ions

Page 90: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

83

Figure 26

Observed vs calculated hydrolysis rate constants for acid catalyzed hydrolysis of 13

unique esters in methanol-water mixed solvent at varying temperatures.

Page 91: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

-5-4-3-2

-5-4

-3-2

-10

1

RMS =

0.21

7R2 =

0.947

13 un

ique e

sters

22 ca

lculat

ions

Page 92: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

85

Figure 27

Observed vs calculated hydrolysis rate constants for acid catalyzed hydrolysis of 4

unique esters in dioxane-water mixed solvent at varying temperatures.

Page 93: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

-5-4-3

-5-4

-3-2

-1

obse

rved

logk

calculated logk

RMS =

0.15

5R2 =

0.85

4 uni

que e

sters

15 ca

lculat

ions

Page 94: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

87

Figure 28

Observed vs calculated hydrolysis rate constants for general base catalyzed hydrolysis of

50 unique esters in various mixed solvents and at varying temperatures.

Page 95: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

-13

-11-9-7-5-3-11 -1

3-1

1-9

-7-5

-3-1

13

57

911

13

obse

rved

logk

calculated logk

RMS

= 0.

371

R2 =

0.9

650

uni

que

este

rs15

0 ca

lcul

atio

ns

Page 96: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

89

Figure 29

Observed vs calculated hydrolysis rate constants for general base catalyzed hydrolysis of

29 unique esters in water and at varying temperatures.

Page 97: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

-13-11-9-7-5-3-1 -13-11

-9-7

-5-3

-11

35

79

1113

1517

19

obse

rved l

ogk

calculated logk

RM

S =

0.34

1R

2 =0.

977

29 u

niqu

e es

ters

51 c

alcu

latio

ns

Page 98: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

91

Figure 30

Observed vs calculated hydrolysis rate constants for general base catalyzed hydrolysis of

19 unique esters in acetone-water mixed solvents and at varying temperatures.

Page 99: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

-11-9-7-5-3

-11

-9-7

-5-3

-11

35

7

obse

rved

logk

calculated logk

RMS =

0.35

9 R2 =

0.956

19 u

nique

ester

s73

calcu

lation

s

Page 100: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

93

Figure31

Observed vs calculated hydrolysis rate constants for general base catalyzed hydrolysis of

2 unique esters in ethanol-water mixed solvents and at varying temperatures.

Page 101: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

-8-6-4-2

-8-6

-4-2

02

46

obse

rved

logk

calculated logk

RMS =

0.10

2R2 =0

.992

2 uniq

ue es

ters

9 calc

ulati

ons

Page 102: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

95

Figure 32

Observed vs calculated hydrolysis rate constants for general base catalyzed hydrolysis of

9 unique esters in dioxane-water mixed solvents and at varying temperatures.

Page 103: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

-8-7-6-5-4

-8-7

-6-5

-4-3

-2-1

0

Obse

rved

logk

calculated logk

RMS

= 0.47

3R2 =

0.664

9 uni

que e

sters

17 ca

lculat

ions

Page 104: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

97

these inconsistencies are due to the outlier trichloroethyl acetate, which shows huge field

effect. If we remove this outlier, we obtain the RMS and R2 values of 0.333 log-unit and

0.931 respectively.

Solvation Effect

Collecting data for different solvents in base, acid and general base catalyzed media,

we have observed the trend of Alpha, the hydrogen bond donor strength of the solvent,

to increase the activation energy and decrease the hydrolysis rate constant. In contrast,

the Beta, the hydrogen bond acceptor strength of the solvent, to decrease the activation

energy and increase the hydrolysis rate constant. These trends go contrary to what we

originally expected of Alpha and Beta. The results are summarized in Table 1 for

alkaline hydrolysis of esters. Water, with the largest alpha value lowers the hydrolysis

rate constant the most and acetone with the smallest alpha value decreases it the least.

Similarly, dioxane, with the largest beta value increases the hydrolysis rate constant the

most and acetone with the smallest beta value increases it the least. Similar trends are

observed in acid and general base catalyzed hydrolysis of esters (tables 2 and 3).

In addition, we have observed the Field Stabilization term, which depends on the

dielectric constant of the medium. An increase in the dielectric constant stabilizes the

complex and increases the rate. Table 1 shows the Field Stabilization increasing the

alkaline hydrolysis rate constant with an increase in the dielectric constant or polarity of

the solvents. Water, with a dielectric constant value of 78.54 increases the hydrolysis

rate constant the most, while dioxane with a dielectric constant value of 2.2 increases it

Page 105: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

98

Table 1

Alpha, Beta, Field Stabilization and Steric effects on determining hydrolysis rate

constants for alkaline hydrolysis of ethyl acetate in six different solutions. The six

solutions are pure water and the rest are 50% water and 50% listed solvents in the table.

Page 106: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

Solv

ents

alp

ha

of solv

ents

hydro

gen a

ccepto

r effe

ct

of este

rs (

Alp

ha)

aceto

ne

0-1

.254

dio

xane

0-1

.28

aceto

nitrile

0.1

-1.2

6eth

anol

0.2

5-1

.44

meth

anol

0.3

12

-1.5

4w

ate

r0.3

84

-1.5

5

Solv

ents

beta

of solv

ents

hydro

gen d

onor

effe

ct

of este

rs (

Beta

)dio

xane

0.8

86.5

13

aceto

ne

0.4

66

5.5

4eth

anol

0.5

35.7

2m

eth

anol

0.3

95.3

5w

ate

r0.3

82

5.3

1aceto

nitrile

0.2

74.9

1

Solv

ents

die

lectr

ic c

onsta

nt

Fie

ld S

tabili

zation

wate

r78.5

4-2

.84

aceto

nitrile

35.9

4-3

.52

meth

anol

32.6

3-3

.58

eth

anol

24.3

-3.7

6aceto

ne

20.7

-3.8

4dio

xane

2.2

-4.3

3

Page 107: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

100

Table 2

Alpha, Beta, Field Stabilization and Steric effects on determining hydrolysis rate

constants for acid-catalyzed hydrolysis of ethyl acetate in five different solutions at 25C.

The five solutions are pure water and the rest are 50% water and 50% listed solvents in

the table.

Page 108: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

Sol

vent

sal

pha

of s

olve

nts

hydr

ogen

acc

epto

r ef

fect

(A

lpha

)ac

eton

e0

-0.7

diox

ane

0-0

.72

etha

nol

0.25

-0.8

met

hano

l0.

312

-0.8

7w

ater

0.38

4-0

.88

Sol

vent

sbe

ta o

f sol

vent

shy

drog

en d

onor

effe

ct (

Bet

a)di

oxan

e0.

88-1

.02

etha

nol

0.53

-0.9

1ac

eton

e0.

466

-0.8

7m

etha

nol

0.39

-0.8

4w

ater

0.38

2-0

.84

Sol

vent

sdi

elec

tric

con

stan

tF

ield

Sta

biliz

atio

nw

ater

78.5

4-0

.21

met

hano

l32

.63

-0.2

7et

hano

l24

.3-0

.29

acet

one

20.7

-0.2

9di

oxan

e2.

2-0

.33

Page 109: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

102

Table 3

Alpha, Beta, Field Stabilization and Steric effects on determining hydrolysis rate

constants for water-catalyzed hydrolysis of ethyl acetate in four different solvents at

25C. The four solvents are pure water and the rest are 50% water and 50% listed

solvents in the table.

Page 110: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

Sol

vent

sal

pha

of s

olve

nts

hydr

ogen

acc

epto

r effe

ct o

f est

ers

(Alp

ha)

acet

one

0-0

.6di

oxan

e0

-0.6

1et

hano

l0.

25-0

.68

wat

er0.

384

-0.7

4

Sol

vent

sbe

ta o

f sol

vent

shy

drog

en d

onor

effe

ct o

f est

ers

(Bet

a)di

oxan

e0.

888.

8et

hano

l0.

537.

83ac

eton

e0.

466

7.48

wat

er0.

382

7.17

Sol

vent

sdi

elec

tric

cons

tant

Fiel

d S

tabi

lizat

ion

wat

er78

.54

-4.5

3et

hano

l24

.3-6

acet

one

20.7

-6.1

3di

oxan

e2.

2-6

.9

Page 111: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

104

the least. Similar trends are observed in acid and general base catalyzed hydrolysis of

esters (tables 2 and 3).

Temperature Effect

We use the Arrhenius equation for the temperature effect, as described earlier in the

SPARC computational model. A general trend of temperature effect upon the hydrolysis

rate constant is that as the temperature in Kelvin increases the logarithmic hydrolysis

rate constant increases. The temperature effect is incorporated in field stabilization

effect, alpha, beta and steric effect of the SPARC computational model. Our SPARC

calculation shows 0.2 to 0.3, 0.3 to 0.4 and 0.3 and 0.4 log-units increase in hydrolysis

rate constants per 10-degree Kelvin/ Celsius rise in temperature for base, acid and

general base-catalyzed hydrolysis of esters respectively. Further, figures 33-35 show

effect of temperature upon various esters in base, acid and general base catalyzed

hydrolysis of esters respectively.

OUTLIERS

The outliers in the context of hydrolysis of esters are defined as esters, whose

absolute difference in calculated and observed hydrolysis rate constant values exceeds

3RMS value. For example, we have observed seven outliers in our training set for the

alkaline hydrolysis of esters. They are (1-methyl-1-vinyl)-propyl acetate, 2-fluorenyl

benzoate, isopropenyl acetate at two different temperatures, methyl o-

(tertiary)butylbenzoate, diphenylmethyl benzoate and methyl p-trifluoromethylbenzoate.

We do not exactly know why (1-methyl-1-vinyl)-propyl acetate and isopropenyl acetate

stand out as outliers because all the other compounds with carbon-carbon double bond

Page 112: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

105

Figure 33

Temperature vs hydrolysis rate constants for alkaline hydrolysis of methyl benzoate in

80% methanol-water (circles), cyclopropyl acetate in pure water (triangles), and

cyclohexyl acetate in 70% acetone-water (diamonds). In addition, the solid figures

represent the observed values, while the empty figures represent the calculated values for

the hydrolysis rate constants.

Page 113: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

-3

-2.5-2

-1.5-1

-0.50

010

2030

4050

60te

mpe

ratu

re (d

egre

e C

elsi

us)

calculated logk

met

hyl

benz

oate

cycl

ohex

yl

acet

ate

cycl

opro

pyl

ace

tate

Page 114: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

107

Figure 34

Temperature vs hydrolysis rate constants for acid-catalyzed hydrolysis of ethyl benzoate

in 60% ethanol-water (diamonds) and ethyl isohexoate in 70% acetone-water (circles).

In addition, the big figures represent the observed values, while the small figures

represent the calculated values for the hydrolysis rate constants.

Page 115: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

-6-5-4-3-2-10

020

4060

8010

012

014

016

0te

mpe

ratu

re (d

egre

e C

elsi

us)

logk

ethy

l ben

zoat

e

ethy

l iso

hexo

ate

Page 116: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

109

Figure 35

Temperature vs hydrolysis rate constants for neutral hydrolysis of chloromethyl

dichloroacetate in 50% acetone-water (triangles) and ethyl trifluoroacetate in 70%

acetone-water (diamonds). In addition, the solid figures represent the observed values,

while the empty figures represent the calculated values for the hydrolysis rate constants.

Page 117: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

-7-6-5-4-3-2-10 -10

010

2030

4050

60te

mpe

ratu

re (d

egre

e C

elsi

us)

logk

chlo

rom

ethy

l dic

hlor

oace

tate

ethy

l trif

luor

oace

tate

Page 118: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

111

and triple bond show consistent values for observed and calculated hydrolysis rate

constants. 2-fluorenyl benzoate and diphenylmethyl benzoate, on the other hand, may be

showing a steric effect problem. The former is showing smaller steric effect, while the

latter is showing huge steric effect. Similarly bulky molecules seem to be well handled

by our steric models and we have no explanation as to why these would show such large

deviations. The methyl o-(tertiary)butylbenzoate is an outlier by virtue of its anomalous

temperature behavior. Our calculation is showing a 0.2 to 0.3 log-unit increase in

hydrolysis rate constant per 10 C increase in temperature; however, the literature data for

this particular set is showing around a 0.6 log-unit increase per 10 C rise in

temperature.11 As a result, when the calculation is made at higher temperature, the

difference in increase between the calculated and observed hydrolysis rate constants

adds up quickly in the calculated hydrolysis rate constant to give a significant error.

Again the bulk of the observed hydrolysis rates do not show such a steep slope and are

more consistent with our calculated values.

Similarly, we have observed two outliers for acid catalyzed hydrolysis of esters. The

major contribution to the rate differences is steric and our models do not reproduce the

observed values. In addition, we have excluded the chloro-esters from Tim and

Hinselwood’s data set because they are showing a huge field effect. That is, the field

effect due to the chlorine atoms is increasing the hydrolysis rate constants of chloro-

esters. This trend contradicts our SPARC model based on R. W. Taft (Jr.) and

Newman’s theory, which states that the field has negligible effect on the hydrolysis rate

constant of acid catalyzed hydrolysis of esters.12, 13 We have calculated the hydrolysis

Page 119: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

112

rate constants for these chloro-esters in table 4. The mono- and dichloro- esters are

showing acceptable values, but the trichloro-esters differ by 1.5 to 2 log-unit.

Water catalyzed trichloroethyl acetate in 50% dioxane-water is the only outlier in our

training set for general base hydrolysis of esters. It is an outlier because it shows small

field effects. In addition, we have removed a data set by E.K. Euranto because the

observed values for similar compounds did not make sense. To illustrate, the observed

values for water-catalyzed chloromethyl acetate in 40% acetone, alphachloro-

betatrichloroethyl acetate in 50% acetone-water and alphachloroethyl acetate in 50%

acetone-water are –7.47, -8.4 and –4.96 log-units respectively.3, 14 However, we

believe that alphachloro-betatrichloroethyl acetate should have the largest positive

hydrolysis rate constant value among the above esters and then chloromethyl acetate

followed by alphachloroethyl acetate. Further, we have been selective while collecting

data from Koehler and et al.. 14 The reason for selecting the data, which fitted our

training set, is that the authors specifically state that the undergoing reactions in the

literature are nucleophilic. 14 However, we believe that the selected esters, which give

good measurements, are undergoing the general base-catalyzed hydrolysis. The ones,

which stand as outliers are definitely undergoing the nucleophilic reaction.

Page 120: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

113

Table 4

Excluded chloro-esters from Tim and Hinselwood’s data set. The observed and

calculated hydrolysis rate constants are measured in 60% ethanol-water solvent.

Page 121: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

Nam

eS

MIL

ES

Obs

erve

d lo

gkC

alcu

late

d lo

gkD

iffer

ence

Tem

pera

ture

Eth

yl c

hlor

oace

tate

ClC

C(=

O)O

CC

-4.4

-4.8

70.

4724

.86

-3.8

7-4

.27

0.4

39.7

9-3

.21

-3.5

50.

3460

.04

-2.6

5-2

.91

0.26

80.1

Eth

yl d

ichl

oroa

ceta

teC

lC(C

l)C(=

O)O

CC

-4.6

7-5

.39

0.72

24.8

6-4

.18

-4.7

80.

639

.79

-3.5

7-4

.04

0.47

60.0

4-3

.03

-3.3

80.

3580

.1E

thyl

tric

hlor

oace

tate

ClC

(Cl)(

Cl)C

(=O

)OC

C-4

.08

-6.1

62.

0824

.84

-3.6

2-5

.53

1.91

39.9

7-3

.11

-4.7

71.

6660

.34

-2.6

6-4

.11

1.45

80.1

5

Page 122: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

115

CHAPTER 6

RESULT AND DISCUSSION FOR HYDRATION

Tables 8 and 9 show observed versus calculated values for hydration equilibrium

constants of aldehydes/ketones and quinazolines respectively. These sets represent 37

aldehydes and ketones and 27 quinazolines. The RMS values obtained are 0.356 and

0.43 pK(hyd)-units respectively. To show how the SPARC calculates each compound’s

hydration equilibrium constant, we have provided sample calculations for the hydration

equilibrium constants for p-nitrobenzaldehyde and 5-nitroquinazoline. The calculations

are described below.

Sample Calculation

Figures 36 and 37 show the sample calculations of hydration equilibrium constant

for p-nitrobenzaldehyde and 5-nitroquinazoline in pure water and at room temperature.

The hydration equilibrium constant is a summation of contributions from the Base,

Henry difference and perturbations. The Base is a data-fitted parameter and it is

calculated based on the observed pK(hyd) for the base compound and the calculated

Henry difference of the base and its diol or hydrated form. The base compounds are

formaldehyde and unsubstituted quinazoline for the hydration of aldehydes and

quinazoline compounds respectively. The Henry difference is simply a difference of

Henry constant values between the aldehydes/ketones or quinazolines and their

respective hydrated forms. The perturbations represent various interactions, such as

Page 123: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

116

Figure 36

A sample calculation for determination of hydration equilibrium constant of p-

nitrobenzaldehyde in water at 25C.

Page 124: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

NO

2N

O2

CH

CH

H2O

inw

ate r

at25

C

OO

H

OH

Pertu

rbat

ions

= R

eson

ance

+ F

ield

+ M

F +

Tota

l r_p

i + S

teric

=

0.5

+ (-

0.75

) + (-

0.5)

+ 2

.6 +

1.4

2

=

3.2

7B

ase

= 2.

97

Hen

ry D

iffer

ence

= -(

Hen

ry c

onst

ant o

f ald

ehyd

e/ke

otne

- H

enry

con

stan

t of d

iol)

= -(

-3.7

0 - (

-9.2

0) )

=

-5.5

0

Cal

cula

ted

Hyd

ratio

n C

onst

ant

= B

ase

+ Pe

rturb

atio

ns +

Hen

ry D

iffer

ence

=

2.97

+ 3

.27

+ (-

5.5)

=

0.7

4

Obs

erve

d H

ydra

tion

Con

stan

t =

0.77

Page 125: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

118

Figure 37

A sample calculation for determination of hydration equilibrium constant of 5-

nitroquinazoline in water at 25C

Page 126: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

N

N

NO

2

N

N

NO

2O

H

HpK

(hyd

.)1

2.7

(2.6

obs

erve

d)

Pertu

rbat

ions

= R

eson

ance

+ F

ield

+ M

F +

Tota

l r_p

i + S

teric

=

0.0

1+ (-

1.2

2) +

(- 0

.31)

+ 0

+ 0

=

-1.5

3

Bas

e =

6.98

Hen

ry D

iffer

ence

= -(

Hen

ry c

onst

ant o

f 5-n

itroq

uina

zolin

e -

Hen

ry c

onst

ant o

f hyd

rate

d 5-

nitro

quin

azol

ine)

= -2

.83

Cal

cula

ted

Hyd

ratio

n C

onst

ant

= B

ase

+ Pe

rturb

atio

ns +

Hen

ry D

iffer

ence

=

2.6

0

Obs

erve

d H

ydra

tion

Con

stan

t =

2.7

Page 127: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

120

resonance, direct field, indirect field (MF), r_pi, steric, etc. between the substituents and

the base compound. They are described below.

Perturbations

The perturbations are summation of interactions such as resonance, direct field, MF,

r_pi, steric, and so on. The perturbations for p-nitrobenzaldehyde and 5-nitroquinazoline

are 3.27 and -1.54 pK(hyd)-units respectively. The analyses of various interactions,

which contribute to the total perturbation, are described below.

Resonance Effect

The total forward resonance effects are 0.5 and 0.01 pK(hyd)-units for hydration of

p-nitrobenzaldehyde and 5-nitroquinazoline respectively. That is, the resonance is

decreasing the hydration equilibrium constant of p-nitrobenzaldehyde because the pi-

electrons from the phenyl ring can easily delocalize to the positive carbonyl carbon

reaction center. This phenomenon increases the activation energy for hydration reaction

and lowers the hydration equilibrium constant. Similar trend is observed for hydration of

quinazolines and the pi-electrons are delocalized to the positive carbon reaction center at

the 4th position. Since the 5-nitroquinazoline shows a negligible resonance interaction

with respect to the unsubstituted quinazoline, we observe minimal resonance

contribution of 0.01 pK(hyd)-unit from it.

Direct Field

The direct fields are –0.75 and -1.22 pK(hyd)-units for hydration of p-

nitrobenzaldehyde and 5-nitroquinazoline respectively. That is, the field is increasing the

Page 128: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

121

hydration equilibrium constant for both aldehydes and quinazolines. The field creates a

strong dipole between the field substituent and the positive reaction center resulting in

increase reactivity of the reaction center. This phenomenon lowers the activation energy

for hydration reaction and increases the hydration equilibrium constant.

Indirect Field (MF)

The indirect fields (MFs) are -0.5 and -0.31 pK(hyd)-units for hydration of p-

nitrobenzaldehyde and 5-nitroquinazoline respectively. The MF is increasing the

hydration equilibrium constant for both aldehydes/ketones and quinazolines. The

induced positive charges generated by electron-withdrawing nitro group neutralizes any

negative charges present in the reaction center. This phenomenon lowers the activation

energy for hydration of aldehydes/ketones and quinazolines and increases the hydration

equilibrium constant. In contrast, the electron-donating groups should decrease the

hydration equilibrium constant.

r_pi Effect

The r_pi effects are 2.6 and 0 pK(hyd)-units for hydration of p-nitrobenzaldehyde

and 5-nitroquinazoline respectively. The r_pi effect is decreasing the hydration

equilibrium constant of p-nitrobenzaldehyde, while it is showing no effect for 5-

nitroquinazoline. The r_pi effect induces negative charges to the positive carbonyl

carbon reaction center of the p-nitrobenzaldehyde and reduces the reactivity of the

reaction center. This phenomenon increases the activation energy for hydration reaction

of p-nitrobenzaldehyde and lowers the hydration equilibrium constant. Similar trend is

observed for hydration of quinazolines if the r_pi interaction should exist. However, 5-

Page 129: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

122

nitroquinazoline shows negligible r_pi interaction with respect to the unsubstituted

quinazoline.

Steric Effect

The steric effects are 1.42 and 0 pK(hyd)-units for hydration of p-nitrobenzaldehyde

and 5-nitroquinazoline respectively. The rule of thumb is that the steric effect always

decreases the hydration equilibrium constant. As a result, we see 1.42 pK(hyd)-unit

decrease in hydration equilibrium constant from hydration of p-nitrobenzaldehyde

because a bulky p-nitrophenyl substituent is attached to the base compound,

formaldehyde. On the other hand, the nitro substituent has no effect upon the base

compound, the unsubstituted quinazoline. In addition, the steric effects are most

effective at 2nd , 4th and 5th position of quinazoline for hydration of quinazolines.

Graphical Representation

Using a similar method described in the sample calculation, we have calculated the

hydration equilibrium constants for 37 aldehydes/ketones and 27 quinazolines in water at

room temperature. The figures 38 and 39 show the observed and calculated values of

hydration equilibrium constants for aldehydes/ketones and quinazolines respectively.

The R2 and RMS values are 0.927 and 0.356 for aldehydes/ketones, while 0.74 and 0.43

for quinazolines. The higher R2 and RMS value for quinazoline set is due to four

trifluoro-quinazolines, which show larger difference between the observed and

calculated values.

Page 130: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

123

Figure 38

Observed vs calculated hydration equilibrium constants for hydration of 36

aldehydes/ketones in water at 25C.

Page 131: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

-5-4-3-2-10123

-5-4

-3-2

-10

12

34

56

78

910

1112

1314

1516

17ob

serve

d pK(

hyd.)

calculated pK(hyd.)

RMS =

0.30

R2 =

0.95

36 un

ique a

ldehy

des/k

etone

s36

calcu

lation

s

Page 132: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

125

Figure 39

Observed Vs calculated hydration equilibrium constant for 27 unique quinazolines in

water at 25C.

Page 133: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

1.5

2.5

3.5

4.5

5.5 1.

52.

53.

54.

55.

56.

57.

58.

5

obse

rved

val

ue (p

K(hy

d.))

calculated value (pK(hyd.))

RMS

= 0

.43

R2

= 0

.744

327

uni

que

quin

azol

ines

27 c

alcu

latio

ns

Page 134: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

127

Outliers

There were no outliers for hydration of aldehydes/ketones and quinazolines. For

hydration of aldehydes/ketones, however, we have removed 1,2-cyclohexanedione and

methyl glyoxal from M. R. Montoya and J. M. Rodriguez Mellado’s data set. 16 1,2-

Cyclohexanedione’s observed value is –2.06 pK(hyd) 15, but we believe that its observed

value should be same as or close to the observed value of 3,4-hexanedione, which is –0.31

pK(hyd). 16 Similarly, we expect the observed value of methyl glyoxal, which observed

value is -3.1 pK(hyd)-unit 15 , to be close to diacetyl’s observed value, –0.28 pK(hyd.)-unit.

16 In addition, we have selected the observed values of 9-acridinium-CHO and 2, 3, and 4-

pyridinium-aldehydes instead of the observed values of 9-acridine-CHO and 2, 3, and 4-

pyridine-aldehydes 17, 18 because the values obtained under acidic condition fit better in our

training set than the values obtained under the neutral condition.

Page 135: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

128

CHAPTER 7

CONCLUSION

The SPARC calculator uses the chemical reactivity and physical interaction models

to predict the chemical reactivity parameters and physical constants of organic

compounds respectively. It has been successful in measuring the pKa, electron affinity

and various physical constants, such as molecular polarizability, molecular volume,

solute/solvent interaction, dispersion interaction, activity coefficient, vapor pressure,

Henry’s constant, unified retention index, and so on. Using the same SPARC chemical

reactivity and physical interaction models, we have been successful in calculating the

hydrolysis rate constant for esters in various solvents and at different temperatures. In

addition, we have also successfully calculated the hydration equilibrium constants for

aldehydes/ketones and quinazolines in water at room temperature.

Page 136: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

129

TA

BLE

5: A

LKAL

INE

HYDR

OLY

SIS

OF

ESTE

RS IN

WAT

ER A

T VA

RIO

US T

EMPE

RATU

RE.

Obs

erve

dC

alcu

late

dEs

ters

SMILE

Slo

gklo

gkD

iffer

ence

Tem

pera

ture

Solv

ents

Ref

eren

ces

1M

ethy

l for

mat

eC

(=O

)OC

1.4

1.1

0.2

25w

ater

192

Ethy

l for

mat

eC(

=O)O

CC1.

41.

10.

325

wat

er19

3Pr

opyl

form

ate

C(=O

)OCC

C1.

21.

10.

125

wat

er19

4Bu

tyl f

orm

ate

C(=O

)OCC

CC1.

31.

10.

225

wat

er19

5M

ethy

l dic

hlor

oace

tate

ClC

(Cl)C

(=O

)OC

3.2

3.1

0.1

25w

ater

196

Ethy

l difl

uoro

acet

ate

FC(F

)C(=

O)O

CC

3.7

3.8

-0.2

25w

ater

197

CS(

=O)C

C(=

O)O

CC

CS(

=O)C

C(=

O)O

CC

0.6

0.5

0.1

25w

ater

198

CS(

=O)(=

O)C

C(=

O)O

CC

CS(

=O)(=

O)C

C(=

O)O

CC

1.1

2.2

-1.1

25w

ater

199

Met

hyl a

ceta

teCC

(=O

)OC

-0.7

-0.4

-0.3

25w

ater

2010

Ethy

l ace

tate

CC(=

O)O

CC-1

-0.6

-0.4

25w

ater

1111

Prop

yl a

ceta

teCC

(=O

)OCC

C-1

.1-0

.7-0

.425

wat

er11

12Bu

tyl a

ceta

teCC

(=O

)OCC

CC-1

.1-0

.7-0

.425

wat

er11

13Is

opro

pyl a

ceta

teC

C(=

O)O

C(C

)C-1

.5-0

.9-0

.625

wat

er11

14C

yclo

prop

yl a

ceta

teCC

(=O

)OC1

CC1

-0.6

-0.5

-0.2

25w

ater

1115

Cyc

lope

ntyl

ace

tate

CC(=

O)O

C1CC

CC1

-1.4

-0.9

-0.5

25w

ater

1116

b-M

etho

xyet

hyl a

ceta

teCC

(=O

)OCC

OC

-0.7

-0.4

-0.3

25w

ater

1117

b-C

hlor

oeth

yl a

ceta

teCC

(=O

)OCC

Cl-0

.4-0

.2-0

.225

wat

er11

18C

hlor

omet

hyl a

ceta

teCC

(=O

)OCC

l1.

81.

80

25w

ater

1119

Dic

hlor

omet

hyl a

ceta

teC

C(=

O)O

C(C

l)Cl

3.2

3.4

-0.2

25w

ater

1120

Tric

hlor

omet

hyl a

ceta

teC

C(=

O)O

C(C

l)(C

l)Cl

4.1

3.9

0.2

25w

ater

1121

Brom

omet

hyl a

ceta

eCC

(=O

)OCB

r2

1.7

0.3

25w

ater

1122

Dim

ethy

l-am

ino-

ethy

l ace

tate

CC

(=O

)OC

CN

(C)C

-1-0

.4-0

.625

wat

er11

23Et

hyl p

ropi

onat

eCC

C(=O

)OCC

-1-1

025

wat

er11

24Et

hyl b

utyr

ate

CCCC

(=O

)OCC

-1.3

-1.2

-0.1

25w

ater

1125

Ethy

l sec

-but

yrat

eCC

(C)C

(=O

)OCC

-1.5

-1.4

-0.1

25w

ater

1126

Ethy

l neo

pent

ate

CC

(C)(C

)C(=

O)O

CC

-2.8

-2-0

.825

wat

er11

27Et

hyl f

luor

oace

tate

FCC(

=O)O

CC1.

11.

9-0

.825

wat

er11

28Et

hyl c

hlor

oace

tate

ClCC

(=O

)OCC

1.5

1.5

025

wat

er11

29M

ethy

l chl

oroa

ceta

teCl

CC(=

O)O

C1.

81.

60.

125

wat

er11

30Et

hyl d

ichl

oroa

ceta

teC

lC(C

l)C(=

O)O

CC

2.8

3-0

.125

wat

er11

31Et

hyl t

richl

oroa

ceta

teC

lC(C

l)(C

l)C(=

O)O

CC

3.4

3.5

-0.1

25w

ater

1132

Isop

ropy

l tric

hlor

oace

tate

ClC

(Cl)(

Cl)C

(=O

)OC

(C)C

2.6

3.2

-0.7

25w

ater

1133

Ethy

l bro

moa

ceta

teBr

CC

(=O

)OC

C1.

71.

30.

425

wat

er11

34M

ethy

l bro

moa

ceta

teBr

CC

(=O

)OC

21.

50.

525

wat

er11

35Et

hyl d

ibro

moa

ceta

teBr

C(B

r)C(=

O)O

CC

2.3

2.4

-0.1

25w

ater

1136

Ethy

l bro

mop

ropi

onat

eC

C(B

r)C(=

O)O

CC

10.

80.

225

wat

er11

37Et

hyl i

odoa

ceta

teIC

C(=O

)OCC

1.2

1.1

0.1

25w

ater

11

Page 137: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

130

TA

BLE

5: A

LKAL

INE

HYDR

OLY

SIS

OF

ESTE

RS IN

WAT

ER A

T VA

RIO

US T

EMPE

RATU

RE.

Obs

erve

dC

alcu

late

dEs

ters

SMILE

Slo

gklo

gkD

iffer

ence

Tem

pera

ture

Solv

ents

Ref

eren

ces

38Et

hyl m

etho

xyac

etat

eCO

CC(=

O)O

CC0.

10.

2-0

.125

wat

er11

39Et

hyl o

xyac

etat

eO

CC(=

O)O

CC0

-0.1

0.1

25w

ater

1140

CSCC

(=O

)OCC

CSCC

(=O

)OCC

00.

2-0

.225

wat

er11

41Et

hyl a

min

oace

tate

NCC(

=O)O

CC-0

.2-0

.30.

125

wat

er11

42C

C(=

O)O

C(C

)(CC

)C=C

CC

(=O

)OC

(C)(C

C)C

=C-2

.4-1

.1-1

.325

wat

er11

43Vi

nyl a

ceta

teC

C(=

O)O

C=C

0.6

1-0

.325

wat

er11

44C=

CC(=

O)O

CCC=

CC(=

O)O

CC-1

.1-0

.7-0

.425

wat

er11

45CC

=CC(

=O)O

CCCC

=CC(

=O)O

CC-1

.9-2

.10.

225

wat

er11

46CC

#CC(

=O)O

CCCC

#CC(

=O)O

CC-0

.3-1

.21

25w

ater

1147

C#CC

(=O

)OCC

C#CC

(=O

)OCC

0.7

0.6

0.1

25w

ater

1148

p-N

itrop

heny

l chl

oroa

ceta

teC

lCC

(=O

)Oc1

ccc(

N(=

O)=

O)c

c13.

83.

20.

625

wat

er11

49Ph

enyl

dic

hlor

oace

tate

ClC

(Cl)C

(=O

)Oc1

cccc

c14.

14

0.1

25w

ater

1150

Ethy

l ben

zoat

eC

CO

C(=

O)c

1ccc

cc1

-1.5

-1.3

-0.2

25w

ater

1151

Ethy

l p-a

min

oben

zoat

eC

CO

C(=

O)c

1ccc

(N)c

c1-2

.6-2

.80.

225

wat

er11

52Et

hyl p

-nitr

oben

zoat

eC

CO

C(=

O)c

1ccc

(N(=

O)=

O)c

c1-0

.1-0

.30.

225

wat

er11

53Et

hyl p

-fluo

robe

nzoa

teC

CO

C(=

O)c

1ccc

(F)c

c1-1

.4-1

.3-0

.125

wat

er11

54Et

hyl m

-am

inob

enzo

ate

CC

OC

(=O

)c1c

c(N

)ccc

1-1

.6-1

.80.

125

wat

er11

55M

ethy

l ben

zoat

eC

OC

(=O

)c1c

cccc

1-1

.1-1

.10

25w

ater

1156

Isop

ropy

l ben

zoat

eC

C(C

)OC

(=O

)c1c

cccc

1-2

.2-1

.5-0

.725

wat

er11

57p-

Toly

l ben

zoat

eC

c1cc

c(O

C(=

O)c

2ccc

cc2)

cc1

-0.5

-0.3

-0.2

25w

ater

1158

m-c

yano

phen

yl b

enzo

ate

c1cc

c(O

C(=

O)c

2ccc

cc2)

cc1C

#N0.

30.

4-0

.125

wat

er11

59p-

Nitr

ophe

nyl b

enzo

ate

O=N

(=O

)c1c

cc(O

C(=

O)c

2ccc

cc2)

cc1

0.4

0.5

-0.1

25w

ater

1160

2,4-

dini

troph

enyl

ben

zoat

eO

=N(=

O)c

1ccc

(OC

(=O

)c2c

cccc

2)c(

N(=

O)=

O)c

11.

21.

7-0

.525

wat

er11

61Ph

enyl

ace

tate

CC

(=O

)Oc1

cccc

c1-0

.30.

5-0

.825

wat

er11

62Ph

enyl

pro

pion

ate

CC

C(=

O)O

c1cc

ccc1

0.1

00.

125

wat

er11

63Ph

enyl

but

yrat

eC

CC

C(=

O)O

c1cc

ccc1

-0.1

-0.1

025

wat

er11

64Ph

enyl

sec

-but

yrat

eC

C(C

)C(=

O)O

c1cc

ccc1

-0.2

-0.4

0.2

25w

ater

1165

Phen

yl p

enta

teC

CC

CC

(=O

)Oc1

cccc

c1-0

.2-0

.20.

125

wat

er11

66Ph

enyl

sec

-pen

tate

CC

C(C

)C(=

O)O

c1cc

ccc1

-0.6

-0.9

0.4

25w

ater

1167

Phen

yl n

eope

ntat

eC

C(C

)(C)C

(=O

)Oc1

cccc

c1-0

.9-1

0.1

25w

ater

1168

Phen

yl (t

-but

yl)a

ceta

teC

C(C

)(C)C

C(=

O)O

c1cc

ccc1

-0.3

-0.9

0.6

25w

ater

1169

p-M

etho

xyph

enyl

ace

tate

CC

(=O

)Oc1

ccc(

OC

)cc1

00.

2-0

.225

wat

er11

70p-

Met

hoxy

phen

yl p

ropi

onat

eC

CC

(=O

)Oc1

ccc(

OC

)cc1

-0.1

-0.2

025

wat

er11

71p-

Met

hoxy

phen

yl b

utyr

ate

CC

CC

(=O

)Oc1

ccc(

OC

)cc1

-0.1

-0.4

0.2

25w

ater

1172

p-M

etho

xyph

enyl

sec

-but

yrat

eC

C(C

)C(=

O)O

c1cc

c(O

C)c

c1-0

.3-0

.60.

325

wat

er11

73p-

Met

hoxy

phen

yl p

enta

teC

CC

CC

(=O

)Oc1

ccc(

OC

)cc1

-0.2

-0.4

0.3

25w

ater

1174

p-M

etho

xyph

enyl

sec

-pen

tate

CC

C(C

)C(=

O)O

c1cc

c(O

C)c

c1-0

.6-1

.10.

625

wat

er11

Page 138: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

131

TA

BLE

5: A

LKAL

INE

HYDR

OLY

SIS

OF

ESTE

RS IN

WAT

ER A

T VA

RIO

US T

EMPE

RATU

RE.

Obs

erve

dC

alcu

late

dEs

ters

SMILE

Slo

gklo

gkD

iffer

ence

Tem

pera

ture

Solv

ents

Ref

eren

ces

75p-

Met

hoxy

phen

yl n

eope

ntat

eC

C(C

)(C)C

(=O

)Oc1

ccc(

OC

)cc1

-0.9

-1.2

0.3

25w

ater

1176

o-N

itrop

heny

l ace

tate

CC

(=O

)Oc1

cc(N

(=O

)=O

)ccc

11.

31.

10.

225

wat

er20

77p-

Nitr

ophe

nyl a

ceta

teC

C(=

O)O

c1cc

c(N

(=O

)=O

)cc1

1.5

1.2

0.3

25w

ater

2078

p-N

itrop

heny

l pro

pion

ate

CC

C(=

O)O

c1cc

c(N

(=O

)=O

)cc1

0.9

0.7

0.2

25w

ater

2079

p-N

itrop

heny

l but

yrat

eC

CC

C(=

O)O

c1cc

c(N

(=O

)=O

)cc1

0.8

0.5

0.2

25w

ater

2080

p-N

itrop

heny

l sec

-but

yrat

eC

C(C

)C(=

O)O

c1cc

c(N

(=O

)=O

)cc1

0.7

0.3

0.4

25w

ater

2081

p-N

itrop

heny

l pen

tate

CC

CC

C(=

O)O

c1cc

c(N

(=O

)=O

)cc1

0.7

0.5

0.2

25w

ater

2082

p-N

itrop

heny

l sec

-pen

tate

CC

C(C

)C(=

O)O

c1cc

c(N

(=O

)=O

)cc1

0.5

-0.2

0.7

25w

ater

2083

p-N

itrop

heny

l neo

pent

ate

CC

(C)(C

)C(=

O)O

c1cc

c(N

(=O

)=O

)cc1

0.1

-0.3

0.4

25w

ater

2084

o-Fl

uoro

phen

yl a

ceta

teC

C(=

O)O

c1cc

ccc1

F0.

90.

90

25w

ater

2085

o-C

hlor

ophe

nyl a

ceta

teC

C(=

O)O

c1cc

ccc1

Cl

0.7

1-0

.225

wat

er20

86o-

Brom

ophe

nyl a

ceta

teC

C(=

O)O

c1cc

ccc1

Br0.

80.

9-0

.125

wat

er20

87o-

Iodo

phen

yl a

ceta

teC

C(=

O)O

c1cc

ccc1

I0.

70.

9-0

.125

wat

er20

88o-

Met

hylp

heny

l ace

tate

CC

(=O

)Oc1

cccc

c1C

0.1

00.

125

wat

er20

89o-

Ethy

lphe

nyl a

ceta

teC

C(=

O)O

c1cc

ccc1

CC

0.1

-0.2

0.3

25w

ater

2090

o-Is

opro

pylp

heny

l ace

tate

CC

(=O

)Oc1

cccc

c1C

(C)C

0-0

.50.

525

wat

er20

91o-

(t-Bu

tyl)p

heny

l ace

tate

CC

(=O

)Oc1

cccc

c1C

(C)(C

)C-0

.3-0

.80.

525

wat

er20

92o-

Met

hoxy

phen

yl a

ceta

teC

C(=

O)O

c1cc

ccc1

OC

0.3

0.3

025

wat

er20

93o-

Nitr

ophe

nyl a

ceta

teC

C(=

O)O

c1cc

ccc1

N(=

O)=

O1.

31.

6-0

.325

wat

er20

94o-

Cya

noph

enyl

ace

tate

CC

(=O

)Oc1

cccc

c1C

#N1.

51.

6-0

.125

wat

er20

95m

-Flu

orop

heny

l ace

tate

CC

(=O

)Oc1

cc(F

)ccc

10.

90.

70.

225

wat

er20

96m

-Bro

mop

heny

l ace

tate

CC

(=O

)Oc1

cc(B

r)cc

c10.

90.

80.

125

wat

er20

97m

-Met

hylp

heny

l ace

tate

CC

(=O

)Oc1

cc(C

)ccc

10.

40.

40

25w

ater

2098

m-E

thyl

phen

yl a

ceta

teC

C(=

O)O

c1cc

(CC

)ccc

10.

40.

40

25w

ater

2099

m-M

etho

xyph

enyl

ace

tate

CC

(=O

)Oc1

cc(O

C)c

cc1

0.6

0.5

0.1

25w

ater

2010

0m

-Nitr

ophe

nyl a

ceta

teC

C(=

O)O

c1cc

(N(=

O)=

O)c

cc1

11.

1-0

.125

wat

er20

101

m-C

yano

phen

yl a

ceta

teC

C(=

O)O

c1cc

(C#N

)ccc

11.

21

0.2

25w

ater

2010

2p-

Fluo

roph

enyl

ace

tate

CC

(=O

)Oc1

ccc(

F)cc

10.

60.

60

25w

ater

2010

3p-

Chl

orop

heny

l ace

tate

CC

(=O

)Oc1

ccc(

Cl)c

c10.

80.

60.

225

wat

er20

104

p-Br

omop

heny

l ace

tate

CC

(=O

)Oc1

ccc(

Br)c

c10.

70.

60.

125

wat

er20

105

p-Et

hylp

heny

l ace

tate

CC

(=O

)Oc1

ccc(

CC

)cc1

0.3

0.3

025

wat

er20

106

p-(t-

Buty

l)phe

nyl a

ceta

teC

C(=

O)O

c1cc

c(C

(C)(C

)C)c

c10.

30.

30

25w

ater

2010

7p-

Cya

noph

enyl

ace

tate

CC

(=O

)Oc1

ccc(

C#N

)cc1

1.3

1.1

0.2

25w

ater

2010

8(p

-Eth

anal

)phe

nyl a

ceta

teC

C(=

O)O

c1cc

c(C

(=O

)C)c

c11

0.7

0.3

25w

ater

2010

9Is

opro

pyl a

ceta

teCC

(=O

)OC1

CC1

-0.8

-0.6

-0.2

20w

ater

2111

0C

yclo

prop

yl a

ceta

teCC

(=O

)OC1

CC1

-0.1

-0.2

040

wat

er21

111

Viny

lic a

ceta

teC

C(=

O)O

C=C

-0.2

0.5

-0.8

0.2

wat

er21

Page 139: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

132

TA

BLE

5: A

LKAL

INE

HYDR

OLY

SIS

OF

ESTE

RS IN

WAT

ER A

T VA

RIO

US T

EMPE

RATU

RE.

Obs

erve

dC

alcu

late

dEs

ters

SMILE

Slo

gklo

gkD

iffer

ence

Tem

pera

ture

Solv

ents

Ref

eren

ces

112

Viny

lic a

ceta

teC

C(=

O)O

C=C

0.5

0.9

-0.4

20w

ater

2111

3Is

opro

peny

l ace

tate

CC

(=O

)OC

(=C

)C-1

.20.

3-1

.50.

2w

ater

2111

4Is

opro

peny

l ace

tate

CC

(=O

)OC

(=C

)C-0

.50.

6-1

.220

wat

er21

115

Cyc

lope

nten

yl a

ceta

teCC

(=O

)OC1

=CCC

C1-0

.10

-0.1

0.2

wat

er21

116

Cyc

lope

nten

yl a

ceta

teCC

(=O

)OC1

=CCC

C10.

40.

30.

120

wat

er21

117

Cyc

lohe

xyl a

ceta

teCC

(=O

)OC1

CCCC

C1-0

.8-1

.20.

420

wat

er21

118

Cyc

lohe

xyl a

ceta

teCC

(=O

)OC1

CCCC

C1-0

.3-0

.80.

540

wat

er21

119

Cyc

lope

ntyl

ace

tate

CC(=

O)O

C1CC

CC1

-1.6

-1.1

-0.5

20w

ater

2112

0C

yclo

pent

yl a

ceta

teCC

(=O

)OC1

CCCC

1-1

-0.7

-0.4

40w

ater

2112

1Bu

tyl a

ceta

teCC

(=O

)OCC

CC-1

.2-0

.8-0

.420

wat

er21

122

Ethy

l chl

oroa

ceta

teCl

CC(=

O)O

CC1.

31.

4-0

.115

wat

er22

123

Ethy

l chl

oroa

ceta

teCl

CC(=

O)O

CC1.

71.

60.

135

wat

er22

124

Ethy

l dic

hlor

oace

tate

ClC

(Cl)C

(=O

)OC

C2.

72.

9-0

.215

wat

er22

125

Ethy

l dic

hlor

oace

tate

ClC

(Cl)C

(=O

)OC

C3

30

35w

ater

2212

6Et

hyl t

richl

oroa

ceta

teC

lC(C

l)(C

l)C(=

O)O

CC

3.3

3.5

-0.2

15w

ater

2212

7Et

hyl t

richl

oroa

ceta

teC

lC(C

l)(C

l)C(=

O)O

CC

3.5

3.5

035

wat

er22

128

Ethy

l bro

moa

ceta

teBr

CC

(=O

)OC

C1.

51.

20.

315

wat

er22

129

Ethy

l bro

moa

ceta

teBr

CC

(=O

)OC

C1.

81.

40.

435

wat

er22

130

Ethy

l iod

oace

tate

ICC(

=O)O

CC1.

11

0.1

15w

ater

2213

1Et

hyl i

odoa

ceta

teIC

C(=O

)OCC

1.4

1.2

0.2

35w

ater

2213

2Et

hyl d

ibro

moa

ceta

teBr

C(B

r)C(=

O)O

CC

2.5

2.4

035

wat

er22

133

Met

hyl c

hlor

oace

tate

ClCC

(=O

)OC

1.5

1.5

015

wat

er22

134

Met

hyl c

hlor

oace

tate

ClCC

(=O

)OC

21.

80.

235

wat

er22

135

Meh

tyl b

rom

oace

tate

BrC

C(=

O)O

C1.

81.

30.

415

wat

er22

136

Meh

tyl b

rom

oace

tate

BrC

C(=

O)O

C2.

21.

60.

535

wat

er22

137

Met

hyl d

ichl

oroa

ceta

teC

lC(C

l)C(=

O)O

C3

3.1

-0.1

15w

ater

2213

8M

ethy

l dic

hlor

oace

tate

ClC

(Cl)C

(=O

)OC

3.3

3.2

0.1

35w

ater

2213

9Et

hyl t

riflu

oroa

ceta

teFC

(F)(F

)C(=

O)O

CC

5.2

4.7

0.5

15w

ater

2214

0Is

opro

pyl t

richl

oroa

ceta

teC

lC(C

l)(C

l)C(=

O)O

C(C

)C2.

73.

3-0

.635

wat

er22

141

Chl

orom

ethy

l ace

tate

CC(=

O)O

CCl

0.8

1.7

-0.9

15w

ater

2214

2Et

hyl 2

-pyr

idin

e-ca

rbox

ylat

en1

cccc

c1C

(=O

)OC

C-0

.30.

3-0

.525

wat

er19

Page 140: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

133

TA

BLE

5: A

LKAL

INE

HYDR

OLY

SIS

OF

ESTE

RS IN

ACE

TONE

-WAT

ER M

IXED

SO

LVEN

TS A

T VA

RIO

US T

EMPE

RATU

RE.

Obs

erve

dC

alcu

late

dEs

ters

SMILE

Slo

gklo

gkD

iffer

ence

Tem

pera

ture

Solv

ents

Ref

eren

ces

1M

ethy

l for

mat

eC

(=O

)OC

1.2

0.8

0.5

2537

% A

ceto

ne23

2Et

hyl f

orm

ate

C(=O

)OCC

10.

80.

225

37%

Ace

tone

233

Prop

yl fo

rmat

eC(

=O)O

CCC

0.9

0.8

0.1

2537

% A

ceto

ne23

4Is

opro

pyl f

orm

ate

C(=

O)O

C(C

)C0.

50.

8-0

.225

37%

Ace

tone

235

Buty

l for

mat

eC(

=O)O

CCCC

0.8

0.8

0.1

2537

% A

ceto

ne23

6se

c-Bu

tyl f

orm

ate

C(=

O)O

C(C

)CC

0.3

0.8

-0.5

2537

% A

ceto

ne23

7Is

obut

yl fo

rmat

eC

(=O

)OC

C(C

)C0.

80.

80

2537

% A

ceto

ne23

8Pe

ntyl

form

ate

C(=O

)OCC

CCC

0.7

0.8

025

37%

Ace

tone

239

Isop

enty

l for

mat

eC(

=O)O

CC(C

)CC

0.7

0.8

-0.1

2537

% A

ceto

ne23

10M

ethy

l ace

tate

CC(=

O)O

C-0

.8-0

.80

2537

% A

ceto

ne23

11M

ethy

l pro

pion

ate

CCC(

=O)O

C-1

-1.3

0.3

2537

% A

ceto

ne23

12M

ethy

l but

yrat

eCC

CC(=

O)O

C-1

.3-1

.50.

225

37%

Ace

tone

2313

Met

hyl i

sobu

tyra

teC

(C)C

C(=

O)O

C-1

.4-1

.50.

125

37%

Ace

tone

2314

Ethy

l ace

tate

CC(=

O)O

CC-1

.2-1

-0.2

2537

% A

ceto

ne23

15pr

opyl

ace

tate

CC(=

O)O

CCC

-1.3

-1-0

.325

37%

Ace

tone

2316

Buty

l ace

tate

CC(=

O)O

CCCC

-1.4

-1.1

-0.3

2537

% A

ceto

ne23

17se

c-Bu

tyl a

ceta

teCC

(=O

)OC(

C)CC

-2.2

-1.9

-0.3

2537

% A

ceto

ne23

18Is

obut

yl a

ceta

teC

C(=

O)O

CC

(C)C

-1.5

-1.1

-0.4

2537

% A

ceto

ne23

19Pe

ntyl

ace

tate

CC(=

O)O

CCCC

C-1

.5-1

.1-0

.425

37%

Ace

tone

2320

Isop

enty

l ace

tate

CC(=

O)O

CC(C

)CC

-1.5

-1.6

0.2

2537

% A

ceto

ne23

21H

exyl

ace

tate

CC(=

O)O

CCCC

CC-1

.5-1

.1-0

.425

37%

Ace

tone

2322

Ethy

l pro

pion

ate

CCC(

=O)O

CC-1

.3-1

.50.

225

37%

Ace

tone

2323

Ethy

l but

yrat

eCC

CC(=

O)O

CC-1

.7-1

.70

2537

% A

ceto

ne23

24M

ethy

l ace

tate

CC(=

O)O

C-1

-1.1

0.1

2570

% A

ceto

ne24

25Et

hyl a

ceta

teCC

(=O

)OCC

-1.3

-1.3

025

70%

Ace

tone

2426

prop

yl a

ceta

teCC

(=O

)OCC

C-1

.6-1

.4-0

.125

70%

Ace

tone

2427

Isop

ropy

l ace

tate

CC

(=O

)OC

(C)C

-2.2

-1.8

-0.4

2570

% A

ceto

ne24

28se

c-Bu

tyl a

ceta

teC

C(=

O)O

CC

(C)C

-1.7

-1.5

-0.2

2570

% A

ceto

ne24

29Bu

tyl a

ceta

teCC

(=O

)OCC

CC-1

.6-1

.5-0

.125

70%

Ace

tone

2430

sec-

Buty

l ace

tate

CC(=

O)O

C(C)

CC-2

.5-2

.60.

125

70%

Ace

tone

2431

t-But

yl a

ceta

teC

C(=

O)O

C(C

)(C)C

-3.6

-2.7

-0.9

2570

% A

ceto

ne24

32C

yclo

hexy

l ace

tate

CC(=

O)O

C1CC

CCC1

-2.3

-2.1

-0.2

2570

% A

ceto

ne24

33M

ethy

l pro

pion

ate

CCC(

=O)O

C-1

.2-1

.70.

525

70%

Ace

tone

2434

Ethy

l pro

pion

ate

CCC(

=O)O

CC-1

.7-2

0.3

2570

% A

ceto

ne24

35Is

opro

pyl p

ropi

onat

eC

CC

(=O

)OC

(C)C

-2.5

-2.4

-0.1

2570

% A

ceto

ne24

36Bu

tyl p

ropi

onat

eCC

C(=O

)OCC

CC-2

-2.1

0.1

2570

% A

ceto

ne24

37Be

nzyl

ben

zoat

ec1

cccc

c1C

(=O

)OC

c2cc

ccc2

-2.2

-1.9

-0.3

2570

% A

ceto

ne24

Page 141: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

134

TA

BLE

5: A

LKAL

INE

HYDR

OLY

SIS

OF

ESTE

RS IN

ACE

TONE

-WAT

ER M

IXED

SO

LVEN

TS A

T VA

RIO

US T

EMPE

RATU

RE.

Obs

erve

dC

alcu

late

dEs

ters

SMILE

Slo

gklo

gkD

iffer

ence

Tem

pera

ture

Solv

ents

Ref

eren

ces

38p-

Met

hylb

enzy

l ben

zoat

ec1

cccc

c1C

(=O

)OC

c2cc

c(C

)cc2

-2.3

-2-0

.325

70%

Ace

tone

2439

m-M

ethy

lben

zyl b

enzo

ate

c1cc

ccc1

C(=

O)O

Cc2

cc(C

)ccc

2-2

.2-2

-0.3

2570

% A

ceto

ne24

40p-

Ethy

lben

zyl b

enzo

ate

c1cc

ccc1

C(=

O)O

Cc2

ccc(

CC

)cc2

-2.3

-2-0

.325

70%

Ace

tone

2441

p-Is

opro

pylb

enzy

l ben

zoat

ec1

cccc

c1C

(=O

)OC

c2cc

c(C

(C)C

)cc2

-2.3

-2-0

.325

70%

Ace

tone

2442

p-(t-

Buty

l)ben

zyl b

enzo

ate

c1cc

ccc1

C(=

O)O

Cc2

ccc(

C(C

)(C)C

)cc2

-2.3

-2-0

.325

70%

Ace

tone

2443

p-M

etho

xylb

enzy

l ben

zoat

ec1

cccc

c1C

(=O

)OC

c2cc

c(O

C)c

c2-2

.3-2

.1-0

.225

70%

Ace

tone

2444

p-Ph

enox

yben

zyl b

enzo

ate

c1cc

ccc1

C(=

O)O

Cc2

ccc(

Oc3

cccc

c3)c

c2-2

.1-1

.9-0

.225

70%

Ace

tone

2445

(p-M

ethi

ol)b

enzy

l ben

zoat

ec1

cccc

c1C

(=O

)OC

c2cc

c(C

S)cc

2-2

.1-1

.9-0

.225

70%

Ace

tone

2446

(m-M

ethi

ol)b

enzy

l ben

zoat

ec1

cccc

c1C

(=O

)OC

c2cc

(CS)

ccc2

-2-1

.8-0

.225

70%

Ace

tone

2447

p-Ph

enyl

benz

yl b

enzo

ate

c1cc

ccc1

C(=

O)O

Cc2

ccc(

c3cc

ccc3

)cc2

-2.1

-1.8

-0.3

2570

% A

ceto

ne24

482-

Nap

hthy

lcar

biny

l ben

zoat

ec1

cccc

c1C

(=O

)OC

c3cc

4ccc

cc4c

c3-2

.1-1

.8-0

.325

70%

Ace

tone

2449

p-Fl

uoro

benz

yl b

enzo

ate

c1cc

ccc1

C(=

O)O

Cc2

ccc(

F)cc

2-2

-1.8

-0.2

2570

% A

ceto

ne24

50p-

Chl

orob

enzy

l ben

zoat

ec1

cccc

c1C

(=O

)OC

c2cc

c(C

l)cc2

-1.9

-1.7

-0.2

2570

% A

ceto

ne24

51m

-Chl

orob

enzy

l ben

zoat

ec1

cccc

c1C

(=O

)OC

c2cc

(Cl)c

cc2

-1.8

-1.6

-0.2

2570

% A

ceto

ne24

52p-

Brom

oben

zyl b

enzo

ate

c1cc

ccc1

C(=

O)O

Cc2

ccc(

Br)

cc2

-1.9

-1.7

-0.2

2570

% A

ceto

ne24

53m

-Bro

mob

enzy

l ben

zoat

ec1

cccc

c1C

(=O

)OC

c2cc

(Br)

ccc2

-1.8

-1.6

-0.2

2570

% A

ceto

ne24

54p-

Nitr

oben

zyl b

enzo

ate

c1cc

ccc1

C(=

O)O

Cc2

ccc(

N(=

O)=

O)c

c2-1

.4-1

.2-0

.225

70%

Ace

tone

2455

m-N

itrob

enzy

l ben

zoat

ec1

cccc

c1C

(=O

)OC

c2cc

(N(=

O)=

O)c

cc2

-1.5

-1.3

-0.2

2570

% A

ceto

ne24

56p-

Cya

nobe

nzyl

ben

zoat

ec1

cccc

c1C

(=O

)OC

c2cc

c(C

#N)c

c2-1

.5-1

.2-0

.225

70%

Ace

tone

2457

m-C

yano

benz

yl b

enzo

ate

c1cc

ccc1

C(=

O)O

Cc2

cc(C

#N)c

cc2

-1.5

-1.3

-0.2

2570

% A

ceto

ne24

58(p

-S(=

O)C

)ben

zyl b

enzo

ate

c1cc

ccc1

C(=

O)O

Cc2

ccc(

S(=O

)C)c

c2-1

.6-1

.4-0

.225

70%

Ace

tone

2459

(p-S

(=O

)(=O

)C)b

enzy

l ben

zoat

ec1

cccc

c1C

(=O

)OC

c2cc

c(S(

=O)(=

O)C

)cc2

-1.4

-1.3

-0.1

2570

% A

ceto

ne24

60(m

-S(=

O)(=

O)C

)ben

zyl b

enzo

ate

c1cc

ccc1

C(=

O)O

Cc2

cc(S

(=O

)(=O

)C)c

cc2

-1.5

-1.3

-0.2

2570

% A

ceto

ne24

612-

Fluo

reny

lcar

biny

l ben

zoat

ec1

c2C

c3cc

(CO

C(=

O)C

c4cc

ccc4

)ccc

3c2c

cc1

-2.2

-1-1

.225

70%

Ace

tone

2462

1-N

apht

hylc

arbi

nyl b

enzo

ate

c1cc

ccc1

C(=

O)O

Cc2

c3cc

ccc3

ccc2

-2.1

-1.9

-0.2

2570

% A

ceto

ne24

632-

Phen

anth

rylc

abin

yl b

enzo

ate

c1(C

OC

(=O

)c4c

cccc

4)cc

2ccc

3ccc

cc3c

2cc1

-2-1

.8-0

.225

70%

Ace

tone

2464

3-Ph

enan

thry

lcar

biny

l ben

zoat

ec1

cc2c

cc3c

cccc

3c2c

c1(C

OC

(=O

)c4c

cccc

4)-2

.1-1

.7-0

.425

70%

Ace

tone

2465

9-Ph

enan

thry

lcar

biny

l ben

zoat

ec1

cc2c

c(C

OC

(=O

)c4c

cccc

4)c3

cccc

c3c2

cc1

-2-1

.9-0

.225

70%

Ace

tone

2466

9-An

thry

lcar

biny

l ben

zoat

ec1

ccc2

c(C

OC

(=O

)c4c

cccc

4)c3

cccc

c3cc

2c1

-2.2

-1.7

-0.5

2570

% A

ceto

ne24

67Et

hyl p

heny

lace

tate

c1cc

ccc1

CC

(=O

)OC

C-1

.4-1

.40.

125

60%

Ace

tone

2568

Ethy

l o-fl

uoro

phen

ylac

etat

eFc

1ccc

cc1C

C(=

O)O

CC

-1.5

-1.8

0.4

2560

% A

ceto

ne25

69Et

hyl o

-chl

orop

heny

lace

tate

Clc

1ccc

cc1C

C(=

O)O

CC

-1.8

-1.9

0.1

2560

% A

ceto

ne25

70Et

hyl o

-bro

mop

heny

lace

tate

Brc1

cccc

c1C

C(=

O)O

CC

-1.9

-20.

125

60%

Ace

tone

2571

Ethy

l o-io

doph

enyl

acet

ate

Ic1c

cccc

1CC

(=O

)OC

C-1

.9-2

.10.

125

60%

Ace

tone

2572

Ethy

l m-io

doph

enyl

acet

ate

c1c(

I)ccc

c1C

C(=

O)O

CC

-1.1

-1.3

0.2

2560

% A

ceto

ne25

73Et

hyl o

-met

hylp

heny

lace

tate

Cc1

cccc

c1C

C(=

O)O

CC

-2-2

.10.

225

60%

Ace

tone

2574

Ethy

l o-b

utyl

phen

ylac

etat

eC

CC

Cc1

cccc

c1C

C(=

O)O

CC

-2.8

-2.5

-0.4

2560

% A

ceto

ne25

Page 142: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

135

TA

BLE

5: A

LKAL

INE

HYDR

OLY

SIS

OF

ESTE

RS IN

ACE

TONE

-WAT

ER M

IXED

SO

LVEN

TS A

T VA

RIO

US T

EMPE

RATU

RE.

Obs

erve

dC

alcu

late

dEs

ters

SMILE

Slo

gklo

gkD

iffer

ence

Tem

pera

ture

Solv

ents

Ref

eren

ces

75Et

hyl 1

,6-d

ichl

orop

heny

lace

tate

Clc

1ccc

c(C

l)c1C

C(=

O)O

CC

-2.9

-2.4

-0.4

2560

% A

ceto

ne25

76Et

hyl p

-(t-b

utyl

)phe

nyla

ceta

tec1

cc(C

(C)(C

)C)c

cc1C

C(=

O)O

CC

-1.7

-1.6

-0.1

2560

% A

ceto

ne26

77Et

hyl p

-dim

ethy

lam

inop

heny

lace

tate

c1cc

(N(C

)C)c

cc1C

C(=

O)O

CC

-1.6

-1.9

0.3

2560

% A

ceto

ne26

78Et

hyl o

-nitr

ophe

nyla

ceta

teO

=N(=

O)c

1ccc

cc1C

C(=

O)O

CC

-1.6

-20.

425

60%

Ace

tone

2679

Ethy

l p-a

min

ophe

nyla

ceta

tec1

cc(N

)ccc

1CC

(=O

)OC

C-1

.5-1

.90.

325

60%

Ace

tone

2680

Ethy

l m-m

etho

xyph

enyl

acet

ate

c1c(

OC

)ccc

c1C

C(=

O)O

CC

-1.3

-1.5

0.2

2560

% A

ceto

ne26

81Et

hyl (

3,4-

biph

enyl

)phe

nyla

ceta

tec1

c(c2

cccc

c2)c

(c3c

cccc

3)cc

c1C

C(=

O)O

CC

-1.3

-1.4

0.1

2560

% A

ceto

ne26

82Et

hyl (

p-ph

enyl

)phe

nyla

ceta

tec1

cc(c

2ccc

cc2)

ccc1

CC

(=O

)OC

C-1

.5-1

.4-0

.125

60%

Ace

tone

2683

Ethy

l p-io

doph

enyl

acet

ate

c1cc

(I)cc

c1C

C(=

O)O

CC

-1.2

-1.3

0.2

2560

% A

ceto

ne26

84Et

hyl m

-chl

orop

heny

lace

tate

c1c(

Cl)c

ccc1

CC

(=O

)OC

C-1

-1.4

0.3

2560

% A

ceto

ne26

85Et

hyl m

-fluo

roph

enyl

acet

ate

c1c(

F)cc

cc1C

C(=

O)O

CC

-1-1

.40.

425

60%

Ace

tone

2686

Ethy

l p-c

yano

phen

ylac

etat

ec1

cc(C

#N)c

cc1C

C(=

O)O

CC

-0.7

-1.1

0.4

2560

% A

ceto

ne26

87Et

hyl p

-nitr

ophe

nyla

ceta

tec1

cc(N

(=O

)=O

)ccc

1CC

(=O

)OC

C-0

.6-1

.10.

525

60%

Ace

tone

2688

Ethy

l m-n

itrop

heny

lace

tate

c1c(

N(=

O)=

O)c

ccc1

CC

(=O

)OC

C-0

.8-1

.20.

425

60%

Ace

tone

2689

Ethy

l p-b

rom

ophe

nyla

ceta

tec1

cc(B

r)ccc

1CC

(=O

)OC

C-1

-1.4

0.4

2560

% A

ceto

ne26

90Et

hyl p

-chl

orop

heny

lace

tate

c1cc

(Cl)c

cc1C

C(=

O)O

CC

-1-1

.40.

425

60%

Ace

tone

2691

Ethy

l p-fl

uoro

phen

ylac

etat

ec1

cc(F

)ccc

1CC

(=O

)OC

C-1

.2-1

.40.

225

60%

Ace

tone

2692

Ethy

l p-m

etho

xyph

enyl

acet

ate

c1cc

(OC

)ccc

1CC

(=O

)OC

C-1

.4-1

.70.

325

60%

Ace

tone

2693

Ethy

l p-m

ethy

lphe

nyla

ceta

tec1

cc(C

)ccc

1CC

(=O

)OC

C-1

.6-1

.60

2560

% A

ceto

ne26

94M

ethy

l phe

nyla

ceta

tec1

cccc

c1C

C(=

O)O

C-0

.9-1

.50.

625

75%

Ace

tone

2795

Met

hyl 9

-ant

hryl

acet

ate

c1cc

c2cc

3ccc

cc3c

(CC

(=O

)OC

)c2c

1-1

.8-2

.30.

525

75%

Ace

tone

2796

Met

hyl 9

-phe

nant

hryl

acet

ate

c1cc

2cc(

CC

(=O

)OC

)c3c

cccc

3c2c

c1-1

.4-1

.70.

325

75%

Ace

tone

2797

Met

hyl 1

-nap

hthy

lace

tate

c1cc

2c(C

C(=

O)O

C)c

ccc2

cc1

-1.3

-1.7

0.4

2575

% A

ceto

ne27

98M

ethy

l p-m

ethy

lben

zoat

ec1

cc(C

)ccc

1CC

(=O

)OC

-1-1

.70.

725

75%

Ace

tone

2799

Met

hyl 2

-nap

hthy

lace

tate

c1cc

2cc(

CC

(=O

)OC

)ccc

2cc1

-0.8

-1.4

0.6

2575

% A

ceto

ne27

100

Met

hyl 4

-bip

heny

lace

tate

CO

C(=

O)C

c1cc

c(c2

cccc

c2)c

c1-0

.8-1

.40.

625

75%

Ace

tone

2710

1M

ethy

l 2-a

nthr

ylac

etat

eC

OC

(=O

)Cc1

ccc2

cc3c

cccc

3cc2

c1-0

.8-1

.40.

625

75%

Ace

tone

2710

2M

ethy

l 3-p

hena

nthr

ylac

etat

ec1

cc2c

cc3c

cccc

3c2c

c1C

C(=

O)O

C-0

.8-1

.40.

625

75%

Ace

tone

2710

3M

ethy

l 2-p

hena

nthr

ylac

etat

ec1

(CC

(=O

)OC

)cc2

ccc3

cccc

c3c2

cc1

-0.8

-1.5

0.7

2575

% A

ceto

ne27

104

Met

hyl a

ceta

teCC

(=O

)OC

-1-1

.20.

220

70%

Ace

tone

2410

5Et

hyl a

ceta

teCC

(=O

)OCC

-1.5

-1.4

020

70%

Ace

tone

2410

6Et

hyl a

ceta

teCC

(=O

)OCC

-1.3

-1.1

-0.2

3570

% A

ceto

ne24

107

Ethy

l ace

tate

CC(=

O)O

CC-0

.9-0

.90.

144

.770

% A

ceto

ne24

108

Prop

yl a

ceta

teCC

(=O

)OCC

C-1

.7-1

.5-0

.220

70%

Ace

tone

2410

9Pr

opyl

ace

tate

CC(=

O)O

CCC

-1.3

-1.2

-0.1

3570

% A

ceto

ne24

110

Prop

yl a

ceta

teCC

(=O

)OCC

C-1

-10

44.7

70%

Ace

tone

2411

1Is

opro

pyl a

ceta

teC

C(=

O)O

C(C

)C-2

.3-1

.9-0

.420

70%

Ace

tone

24

Page 143: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

136

TA

BLE

5: A

LKAL

INE

HYDR

OLY

SIS

OF

ESTE

RS IN

ACE

TONE

-WAT

ER M

IXED

SO

LVEN

TS A

T VA

RIO

US T

EMPE

RATU

RE.

Obs

erve

dC

alcu

late

dEs

ters

SMILE

Slo

gklo

gkD

iffer

ence

Tem

pera

ture

Solv

ents

Ref

eren

ces

112

Isop

ropy

l ace

tate

CC

(=O

)OC

(C)C

-1.9

-1.6

-0.3

3570

% A

ceto

ne24

113

Isop

ropy

l ace

tate

CC

(=O

)OC

(C)C

-1.6

-1.4

-0.2

44.7

70%

Ace

tone

2411

4Is

obut

yl a

ceta

teC

C(=

O)O

CC

(C)C

-1.9

-1.6

-0.2

2070

% A

ceto

ne24

115

Isob

utyl

ace

tate

CC

(=O

)OC

C(C

)C-1

.4-1

.3-0

.135

70%

Ace

tone

2411

6Is

obut

yl a

ceta

teC

C(=

O)O

CC

(C)C

-1.2

-1.1

-0.1

44.7

70%

Ace

tone

2411

7n-

Buty

l ace

tate

CC(=

O)O

CCCC

-1.8

-1.6

-0.2

2070

% A

ceto

ne24

118

n-Bu

tyl a

ceta

teCC

(=O

)OCC

CC-1

.6-1

.3-0

.435

70%

Ace

tone

2411

9n-

Buty

l ace

tate

CC(=

O)O

CCCC

-1.1

-1.1

044

.770

% A

ceto

ne24

120

sec-

Buty

l ace

tate

CC(=

O)O

C(C)

CC-2

.6-2

.70.

120

70%

Ace

tone

2412

1se

c-Bu

tyl a

ceta

teCC

(=O

)OC(

C)CC

-2.2

-2.3

0.2

3570

% A

ceto

ne24

122

sec-

Buty

l ace

tate

CC(=

O)O

C(C)

CC-1

.9-2

.20.

344

.770

% A

ceto

ne24

123

t-But

yl a

ceta

teC

C(=

O)O

C(C

)(C)C

-3.2

-2.5

-0.7

3570

% A

ceto

ne24

124

t-But

yl a

ceta

teC

C(=

O)O

C(C

)(C)C

-3-2

.3-0

.744

.770

% A

ceto

ne24

125

Cyc

lohe

xyl a

ceta

teCC

(=O

)OC1

CCCC

C1-2

-1.9

-0.2

3570

% A

ceto

ne24

126

Cyc

lohe

xyl a

ceta

teCC

(=O

)OC1

CCCC

C1-1

.8-1

.7-0

.144

.770

% A

ceto

ne24

127

Met

hyl p

ropi

onat

eCC

C(=O

)OC

-1.3

-1.8

0.5

2070

% A

ceto

ne24

128

Met

hyl p

ropi

onat

eCC

C(=O

)OC

-1-1

.50.

635

70%

Ace

tone

2412

9M

ethy

l pro

pion

ate

CCC(

=O)O

C-0

.8-1

.30.

644

.770

% A

ceto

ne24

130

Ethy

l pro

pion

ate

CCC(

=O)O

CC-1

.8-2

.10.

320

70%

Ace

tone

2413

1Et

hyl p

ropi

onat

eCC

C(=O

)OCC

-1.4

-1.8

0.4

3570

% A

ceto

ne24

132

Ethy

l pro

pion

ate

CCC(

=O)O

CC-1

.2-1

.60.

444

.770

% A

ceto

ne24

133

Isop

ropy

l pro

pion

ate

CC

C(=

O)O

C(C

)C-2

.7-2

.6-0

.120

70%

Ace

tone

2413

4Is

opro

pyl p

ropi

onat

eC

CC

(=O

)OC

(C)C

-2.2

-2.2

035

70%

Ace

tone

2413

5Is

opro

pyl p

ropi

onat

eC

CC

(=O

)OC

(C)C

-1.9

-20.

144

.770

% A

ceto

ne24

136

n-Bu

tyl p

ropi

onat

eCC

C(=O

)OCC

CC-2

.1-2

.20.

120

70%

Ace

tone

2413

7n-

Buty

l pro

pion

ate

CCC(

=O)O

CCCC

-1.7

-1.9

0.2

3570

% A

ceto

ne24

138

n-Bu

tyl p

ropi

onat

eCC

C(=O

)OCC

CC-1

.5-1

.70.

344

.770

% A

ceto

ne24

139

Ethy

l pic

olin

ate

n1cc

ccc1

C(=

O)O

CC

-0.7

-0.9

0.2

2560

% a

ceto

ne19

140

Ethy

l iso

nico

tinat

ec1

nccc

c1C

(=O

)OC

C-0

.2-1

.10.

925

60%

ace

tone

1914

1Et

hyl n

icot

inat

ec1

cncc

cC(=

O)O

CC

-0.9

-1.2

0.3

2560

% a

ceto

ne19

Page 144: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

137

TA

BLE

5: A

LKAL

INE

HYDR

OLY

SIS

OF

ESTE

RS IN

ETH

ANO

L-W

ATER

MIX

ED S

OLV

ENTS

AT

VARI

OUS

TEM

PERA

TURE

.

Obs

erve

dC

alcu

late

dEs

ters

SMILE

Slo

gklo

gkD

iffer

ence

Tem

pera

ture

Solv

ents

Ref

eren

ces

1Et

hyl 1

-nap

htho

ate

c1cc

c2cc

ccc2

c1C

(=O

)OC

C-3

.6-3

-0.6

2585

% E

than

ol28

2Et

hyl 3

-chl

oro-

1-na

ptho

ate

c1c(

Cl)c

c2cc

ccc2

c1C

(=O

)OC

C-2

.7-2

.70

2585

% E

than

ol28

3Et

hyl 3

-bro

mo-

1-na

phth

oate

c1c(

Br)c

c2cc

ccc2

c1C

(=O

)OC

C-2

.7-2

.70

2585

% E

than

ol28

4Et

hyl 4

-bro

mo-

1-na

phth

oate

c1cc

(Br)c

2ccc

cc2c

1C(=

O)O

CC

-3-2

.90

2585

% E

than

ol28

5Et

hyl 5

-bro

mo-

1-na

phth

oate

c1cc

c2c(

Br)c

ccc2

c1C

(=O

)OC

C-3

-2.9

-0.1

2585

% E

than

ol28

6Et

hyl 4

'-met

hoxy

-p-b

iphe

nyl c

arbo

xyla

teC

CO

C(=

O)c

1ccc

(c2c

cc(O

C)c

c2)c

c1-3

.5-2

.9-0

.525

91%

Eth

anol

297

Ethy

l 4'-m

ethy

l-p-b

iphe

nyl c

arbo

xyla

teC

CO

C(=

O)c

1ccc

(c2c

cc(C

)cc2

)cc1

-3.4

-2.8

-0.5

2591

% E

than

ol29

8Et

hyl p

-bip

heny

l car

boxy

late

CC

OC

(=O

)c1c

cc(c

2ccc

cc2)

cc1

-3.3

-2.7

-0.6

2591

% E

than

ol29

9Et

hyl 4

'-chl

oro-

p-bi

phen

yl c

arbo

xyla

teC

CO

C(=

O)c

1ccc

(c2c

cc(C

l)cc2

)cc1

-3.1

-2.7

-0.4

2591

% E

than

ol29

10Et

hyl 4

'-bro

mo-

p-bi

phen

yl c

arbo

xyla

teC

CO

C(=

O)c

1ccc

(c2c

cc(B

r)cc

2)cc

1-3

.1-2

.7-0

.425

91%

Eth

anol

2911

Ethy

l 3'-b

rom

o-p-

biph

enyl

car

boxy

late

CC

OC

(=O

)c1c

cc(c

2cc(

Br)c

cc2)

cc1

-3-2

.7-0

.425

91%

Eth

anol

2912

Ethy

l 4'-n

itro-

p-bi

phen

yl c

arbo

xyla

teC

CO

C(=

O)c

1ccc

(c2c

cc(N

(=O

)=O

)cc2

)cc1

-2.8

-2.5

-0.3

2591

% E

than

ol29

13Et

hyl b

enzo

ate

c1cc

ccc1

C(=

O)O

CC

-3-2

.5-0

.525

75%

Eth

anol

3014

Ethy

l phe

nyla

ceta

teC

CO

C(=

O)C

c1cc

ccc1

-1.9

-1.7

-0.2

2585

% E

than

ol25

15Et

hyl o

-iodo

phen

yl a

ceta

teC

CO

C(=

O)C

c1c(

I)ccc

c1-2

.3-2

.50.

125

85%

Eth

anol

2516

Ethy

l p-io

doph

enyl

acet

ate

CC

OC

(=O

)Cc1

ccc(

I)cc1

-1.5

-1.6

0.1

2585

% E

than

ol25

17Et

hyl p

-nitr

ophe

nyla

ceta

teC

CO

C(=

O)C

c1cc

c(N

(=O

)=O

)cc1

-1-1

.30.

325

85%

Eth

anol

2518

Ethy

l o-m

ethy

lphe

nyla

ceta

teC

CO

C(=

O)C

c1c(

C)c

ccc1

-2.4

-2.5

025

85%

Eth

anol

2519

Ethy

l p-m

ethy

lphe

nyla

ceta

teC

CO

C(=

O)C

c1cc

c(C

)cc1

-2-1

.8-0

.225

85%

Eth

anol

2520

Ethy

l phe

nyla

ceta

teC

CO

C(=

O)C

c1cc

ccc1

-1.8

-1.6

-0.2

2575

% E

than

ol25

21Et

hyl o

-iodo

phen

ylac

etat

eC

CO

C(=

O)C

c1c(

I)ccc

c1-2

.2-2

.30

2575

% E

than

ol25

22Et

hyl p

-iodo

phen

ylac

etat

eC

CO

C(=

O)C

c1cc

c(I)c

c1-1

.4-1

.40

2575

% E

than

ol25

23Et

hyl p

-nitr

ophe

nyla

ceta

teC

CO

C(=

O)C

c1cc

c(N

(=O

)=O

)cc1

-0.9

-1.2

0.3

2575

% E

than

ol25

24Et

hyl o

-met

hylp

heny

lace

tate

CC

OC

(=O

)Cc1

c(C

)ccc

c1-2

.3-2

.30

2575

% E

than

ol25

25Et

hyl p

-met

hylp

heny

lace

tate

CC

OC

(=O

)Cc1

ccc(

C)c

c1-1

.9-1

.7-0

.225

75%

Eth

anol

2526

Ethy

l phe

nyla

ceta

teC

CO

C(=

O)C

c1cc

ccc1

-1.7

-1.4

-0.3

2565

% E

than

ol25

27Et

hyl o

-chl

orop

heny

lace

tate

CC

OC

(=O

)Cc1

c(C

l)ccc

c1-2

.1-1

.8-0

.225

65%

Eth

anol

2528

Ethy

l o-c

hlor

ophe

nyla

ceta

teC

CO

C(=

O)C

c1cc

c(C

l)cc1

-1.3

-1.3

025

65%

Eth

anol

2529

Ethy

l o-b

rom

ophe

nyla

ceta

teC

CO

C(=

O)C

c1c(

Br)c

ccc1

-2.1

-2-0

.225

65%

Eth

anol

2530

Ethy

l o-io

doph

enyl

acet

ate

CC

OC

(=O

)Cc1

c(I)c

ccc1

-2.2

-2-0

.125

65%

Eth

anol

2531

Ethy

l p-io

doph

enyl

acet

ate

CC

OC

(=O

)Cc1

ccc(

I)cc1

-1.3

-1.3

025

65%

Eth

anol

2532

Ethy

l o-n

itrop

heny

lace

tate

CC

OC

(=O

)Cc1

c(N

(=O

)=O

)ccc

c1-1

.9-1

.90

2565

% E

than

ol25

33Et

hyl m

-nitr

ophe

nyla

ceta

teC

CO

C(=

O)C

c1cc

(N(=

O)=

O)c

cc1

-0.9

-1.1

0.2

2565

% E

than

ol25

34Et

hyl p

-nitr

ophe

nyla

ceta

teC

CO

C(=

O)C

c1cc

c(N

(=O

)=O

)cc1

-0.8

-10.

225

65%

Eth

anol

2535

Ethy

l o-m

ethy

lphe

nyla

ceta

teC

CO

C(=

O)C

c1c(

C)c

ccc1

-2.2

-2.1

-0.2

2565

% E

than

ol25

36Et

hyl p

-met

hylp

heny

lace

tate

CC

OC

(=O

)Cc1

ccc(

C)c

c1-1

.8-1

.5-0

.225

65%

Eth

anol

2537

Ethy

l p-(t

-but

yl)p

heny

lace

tate

CC

OC

(=O

)Cc1

ccc(

C(C

)(C)C

)cc1

-1.8

-1.5

-0.2

2565

% E

than

ol25

Page 145: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

138

TA

BLE

5: A

LKAL

INE

HYDR

OLY

SIS

OF

ESTE

RS IN

ETH

ANO

L-W

ATER

MIX

ED S

OLV

ENTS

AT

VARI

OUS

TEM

PERA

TURE

.

Obs

erve

dC

alcu

late

dEs

ters

SMILE

Slo

gklo

gkD

iffer

ence

Tem

pera

ture

Solv

ents

Ref

eren

ces

38Et

hyl p

heny

lace

tate

CC

OC

(=O

)Cc1

cccc

c1-2

-1.7

-0.3

2590

% E

than

ol25

39Et

hyl o

-fluo

roph

enyl

acet

ate

CC

OC

(=O

)Cc1

c(F)

cccc

1-2

.1-2

.20.

125

90%

Eth

anol

2540

Ethy

l p-fl

uoro

phen

ylac

etat

eC

CO

C(=

O)C

c1cc

c(F)

cc1

-1.8

-1.7

-0.1

2590

% E

than

ol25

41Et

hyl o

-chl

orop

heny

lace

tate

CC

OC

(=O

)Cc1

c(C

l)ccc

c1-2

.3-2

.3-0

.125

90%

Eth

anol

2542

Ethy

l m-c

hlor

ophe

nyla

ceta

teC

CO

C(=

O)C

c1cc

(Cl)c

cc1

-1.6

-1.6

025

90%

Eth

anol

2543

Ethy

l p-c

hlor

ophe

nyla

ceta

teC

CO

C(=

O)C

c1cc

c(C

l)cc1

-1.6

-1.6

025

90%

Eth

anol

2544

Ethy

l o-b

rom

ophe

nyla

ceta

teC

CO

C(=

O)C

c1c(

Br)c

ccc1

-2.4

-2.4

0.1

2590

% E

than

ol25

45Et

hyl p

-bro

mop

heny

lace

tate

CC

OC

(=O

)Cc1

ccc(

Br)c

c1-1

.6-1

.60

2590

% E

than

ol25

46Et

hyl o

-iodo

phen

ylac

etat

eC

CO

C(=

O)C

c1c(

I)ccc

c1-2

.4-2

.50.

125

90%

Eth

anol

2547

Ethy

l m-io

doph

enyl

acet

ate

CC

OC

(=O

)Cc1

cc(I)

ccc1

-1.6

-1.6

025

90%

Eth

anol

2548

Ethy

l p-io

doph

enyl

acet

ate

CC

OC

(=O

)Cc1

ccc(

I)cc1

-1.6

-1.6

025

90%

Eth

anol

2549

Ethy

l o-n

itrop

heny

lace

tate

CC

OC

(=O

)Cc1

c(N

(=O

)=O

)ccc

c1-2

.1-2

.40.

325

90%

Eth

anol

2550

Ethy

l m-n

itrop

heny

lace

tate

CC

OC

(=O

)Cc1

cc(N

(=O

)=O

)ccc

1-1

.1-1

.40.

325

90%

Eth

anol

2551

Ethy

l p-n

itrop

heny

lace

tate

CC

OC

(=O

)Cc1

ccc(

N(=

O)=

O)c

c1-1

.1-1

.30.

225

90%

Eth

anol

2552

Ethy

l o-m

ethy

lphe

nyla

ceta

teC

CO

C(=

O)C

c1c(

C)c

ccc1

-2.5

-2.5

025

90%

Eth

anol

2553

Ethy

l p-m

ethy

lphe

nyla

ceta

teC

CO

C(=

O)C

c1cc

c(C

)cc1

-2.1

-1.9

-0.3

2590

% E

than

ol25

54Et

hyl o

-(t-b

utyl

)phe

nyla

ceta

teC

CO

C(=

O)C

c1c(

C(C

)(C)C

)ccc

c1-3

.3-3

.40.

125

90%

Eth

anol

2555

Ethy

l p-(t

-but

yl)p

heny

lace

tate

CC

OC

(=O

)Cc1

ccc(

C(C

)(C)C

)cc1

-2.1

-1.9

-0.2

2590

% E

than

ol25

56Et

hyl o

-met

hoxy

phen

ylac

etat

eC

CO

C(=

O)C

c1c(

OC

)ccc

c1-2

.8-2

.8-0

.125

90%

Eth

anol

2557

Ethy

l m-m

etho

xyph

enyl

acet

ate

CC

OC

(=O

)Cc1

cc(O

C)c

cc1

-2-1

.8-0

.225

90%

Eth

anol

2558

Ethy

l p-m

etho

xyph

enyl

acet

ate

CC

OC

(=O

)Cc1

ccc(

OC

)cc1

-2.1

-2-0

.125

90%

Eth

anol

2559

Ethy

l p-n

itrop

heny

lace

tate

CC

OC

(=O

)Cc1

ccc(

N)c

c1-2

.3-2

.1-0

.225

90%

Eth

anol

2560

Ethy

l 1,6

-dic

hlor

ophe

nyla

ceta

teC

CO

C(=

O)C

c1c(

Cl)c

ccc1

Cl

-3.4

-2.9

-0.5

2590

% E

than

ol25

61Et

hyl 3

,4-d

imet

hoxy

phen

ylac

etat

eC

CO

C(=

O)C

c1cc

(OC

)c(O

C)c

c1-2

-2.1

0.1

2590

% E

than

ol25

62Et

hyl 1

-nap

htho

ate

c1cc

c2cc

ccc2

c1C

(=O

)OC

C-3

.1-2

.8-0

.335

85%

Eth

anol

2863

Ethy

l 1-n

apht

hoat

ec1

ccc2

cccc

c2c1

C(=

O)O

CC

-2.8

-2.6

-0.1

4585

% E

than

ol28

64Et

hyl 1

-nap

htho

ate

c1cc

c2cc

ccc2

c1C

(=O

)OC

C-2

.5-2

.40

5585

% E

than

ol28

65Et

hyl 1

-nap

htho

ate

c1cc

c2cc

ccc2

c1C

(=O

)OC

C-2

.1-2

.30.

265

85%

Eth

anol

2866

Ethy

l 3-c

hlor

o-1-

naph

thoa

tec1

c(C

l)cc2

cccc

c2c1

C(=

O)O

CC

-2.7

-2.5

-0.1

3585

% E

than

ol28

67Et

hyl 3

-chl

oro-

1-na

phth

oate

c1c(

Cl)c

c2cc

ccc2

c1C

(=O

)OC

C-2

-2.3

0.4

4585

% E

than

ol28

68Et

hyl 3

-chl

oro-

1-na

phth

oate

c1c(

Cl)c

c2cc

ccc2

c1C

(=O

)OC

C-1

.6-2

.20.

655

85%

Eth

anol

2869

Ethy

l 4-c

hlor

o-1-

naph

thoa

tec1

cc(C

l)c2c

cccc

2c1C

(=O

)OC

C-2

.6-2

.80.

235

85%

Eth

anol

2870

Ethy

l 4-c

hlor

o-1-

naph

thoa

tec1

cc(C

l)c2c

cccc

2c1C

(=O

)OC

C-2

.2-2

.60.

445

85%

Eth

anol

2871

Ethy

l 4-c

hlor

o-1-

naph

thoa

tec1

cc(C

l)c2c

cccc

2c1C

(=O

)OC

C-1

.9-2

.40.

555

85%

Eth

anol

2872

Ethy

l 4-c

hlor

o-1-

naph

thoa

tec1

cc(C

l)c2c

cccc

2c1C

(=O

)OC

C-2

.5-2

.2-0

.365

85%

Eth

anol

2873

Ethy

l 3-b

rom

o-1-

naph

thoa

tec1

c(Br

)cc2

cccc

c2c1

C(=

O)O

CC

-2-2

.30.

445

85%

Eth

anol

2874

Ethy

l 3-b

rom

o-1-

naph

thoa

tec1

c(Br

)cc2

cccc

c2c1

C(=

O)O

CC

-1.3

-20.

765

85%

Eth

anol

28

Page 146: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

139

TA

BLE

5: A

LKAL

INE

HYDR

OLY

SIS

OF

ESTE

RS IN

ETH

ANO

L-W

ATER

MIX

ED S

OLV

ENTS

AT

VARI

OUS

TEM

PERA

TURE

.

Obs

erve

dC

alcu

late

dEs

ters

SMILE

Slo

gklo

gkD

iffer

ence

Tem

pera

ture

Solv

ents

Ref

eren

ces

75Et

hyl 4

-bro

mo-

1-na

phth

oate

c1cc

(Br)c

2ccc

cc2c

1C(=

O)O

CC

-2.6

-2.7

0.2

3585

% E

than

ol28

76Et

hyl 4

-bro

mo-

1-na

phth

oate

c1cc

(Br)c

2ccc

cc2c

1C(=

O)O

CC

-1.9

-2.4

0.5

5585

% E

than

ol28

77Et

hyl 4

-bro

mo-

1-na

phth

oate

c1cc

(Br)c

2ccc

cc2c

1C(=

O)O

CC

-1.5

-2.2

0.7

6585

% E

than

ol28

78Et

hyl 5

-bro

mo-

1-na

phth

oate

c1cc

c2c(

Br)c

ccc2

c1C

(=O

)OC

C-2

.3-2

.50.

245

85%

Eth

anol

2879

Ethy

l 5-b

rom

o-1-

naph

thoa

tec1

ccc2

c(Br

)ccc

c2c1

C(=

O)O

CC

-1.9

-2.3

0.4

5585

% E

than

ol28

80Et

hyl 5

-bro

mo-

1-na

phth

oate

c1cc

c2c(

Br)c

ccc2

c1C

(=O

)OC

C-1

.6-2

.10.

565

85%

Eth

anol

2881

Ethy

l 4-m

ethy

l-1-n

apht

hoat

ec1

cc(C

)c2c

cccc

2c1C

(=O

)OC

C-3

.1-3

.20.

145

85%

Eth

anol

2882

Ethy

l 4-m

ethy

l-1-n

apht

hoat

ec1

cc(C

)c2c

cccc

2c1C

(=O

)OC

C-2

.8-3

0.2

5585

% E

than

ol28

83Et

hyl 4

-met

hyl-1

-nap

htho

ate

c1cc

(C)c

2ccc

cc2c

1C(=

O)O

CC

-2.4

-2.8

0.4

6585

% E

than

ol28

84Et

hyl 4

-met

hyl-1

-nap

htho

ate

c1cc

(C)c

2ccc

cc2c

1C(=

O)O

CC

-2-2

.60.

675

85%

Eth

anol

2885

Ethy

l 3-m

ethy

l-1-n

apht

hoat

ec1

c(C

)cc2

cccc

c2c1

C(=

O)O

CC

-2.9

-2.7

-0.2

4585

% E

than

ol28

86Et

hyl 3

-met

hyl-1

-nap

htho

ate

c1c(

C)c

c2cc

ccc2

c1C

(=O

)OC

C-2

.6-2

.50

5585

% E

than

ol28

87Et

hyl 3

-met

hyl-1

-nap

htho

ate

c1c(

C)c

c2cc

ccc2

c1C

(=O

)OC

C-2

.2-2

.40.

165

85%

Eth

anol

2888

Ethy

l 3-m

ethy

l-1-n

apht

hoat

ec1

c(C

)cc2

cccc

c2c1

C(=

O)O

CC

-1.9

-2.2

0.3

7585

% E

than

ol28

89Et

hyl 4

'-met

hoxy

-p-b

iphe

nyl c

arbo

xyla

teC

CO

C(=

O)c

1ccc

(c2c

cc(O

C)c

c2)c

c1-2

.8-2

.6-0

.240

91%

Eth

anol

2990

Ethy

l 4'-m

ethy

l-p-b

iphe

nyl c

arbo

xyla

teC

CO

C(=

O)c

1ccc

(c2c

cc(C

)cc2

)cc1

-2.7

-2.5

-0.2

4091

% E

than

ol29

91Et

hyl p

-bip

heny

l car

boxy

late

CC

OC

(=O

)c1c

cc(c

2ccc

cc2)

cc1

-2.6

-2.4

-0.2

4091

% E

than

ol29

92Et

hyl 4

'-chl

oro-

p-bi

phen

yl c

arbo

xyla

teC

CO

C(=

O)c

1ccc

(c2c

cc(C

l)cc2

)cc1

-2.5

-2.4

-0.1

4091

% E

than

ol29

93Et

hyl 4

'-bro

mo-

p-bi

phen

yl c

arbo

xyla

teC

CO

C(=

O)c

1ccc

(c2c

cc(B

r)cc

2)cc

1-2

.5-2

.4-0

.140

91%

Eth

anol

2994

Ethy

l 3'-b

rom

o-p-

biph

enyl

car

boxy

late

CC

OC

(=O

)c1c

cc(c

2cc(

Br)c

cc2)

cc1

-2.4

-2.4

-0.1

4091

% E

than

ol29

95Et

hyl 3

'-nitr

o-p-

biph

enyl

car

boxy

late

CC

OC

(=O

)c1c

cc(c

2cc(

N(=

O)=

O)c

cc2)

cc1

-2.2

-2.3

0.1

4091

% E

than

ol29

96Et

hyl 4

'-nitr

o-p-

biph

enyl

car

boxy

late

CC

OC

(=O

)c1c

cc(c

2ccc

(N(=

O)=

O)c

c2)c

c1-2

.2-2

.20

4091

% E

than

ol29

97Et

hyl p

icol

inat

en1

cccc

c1C

(=O

)OC

C-1

.5-1

.1-0

.317

75%

Eth

anol

3098

Ethy

l nic

otin

ate

c1nc

ccc1

C(=

O)O

CC

-1.7

-1.5

-0.2

1775

% E

than

ol30

99Et

hyl i

soni

cotin

ate

c1cn

cccC

(=O

)OC

C-0

.9-1

.40.

417

75%

Eth

anol

3010

0Et

hyl p

icol

inat

en1

cccc

c1C

(=O

)OC

C-1

.2-1

-0.2

2575

% E

than

ol30

101

Ethy

l nic

otin

ate

c1nc

ccc1

C(=

O)O

CC

-1.4

-1.3

-0.1

2575

% E

than

ol30

102

Ethy

l iso

nico

tinat

ec1

cncc

cC(=

O)O

CC

-0.7

-1.2

0.5

2575

% E

than

ol30

103

Ethy

l pic

olin

ate

n1cc

ccc1

C(=

O)O

CC

-0.9

-0.8

035

75%

Eth

anol

3010

4Et

hyl n

icot

inat

ec1

nccc

c1C

(=O

)OC

C-1

.1-1

.10

3575

% E

than

ol30

105

Ethy

l iso

nico

tinat

ec1

cncc

cC(=

O)O

CC

-0.4

-10.

635

75%

Eth

anol

30

Page 147: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

140

TA

BLE

5: A

LKAL

INE

HYDR

OLY

SIS

OF

ESTE

RS IN

MET

HANO

L-W

ATER

MIX

ED S

OLV

ENTS

AT

VARI

OUS

TEM

PERA

TURE

.

Obs

erve

d C

alcu

late

dEs

ters

SMILE

Slo

gk

logk

Diff

eren

ceTe

mpe

ratu

reSo

lven

tsR

efer

ence

s1

Met

hyl o

-fluo

robe

nzoa

teFc

1ccc

cc1C

(=O

)OC

-2.6

-2.7

0.1

2580

% M

etha

nol

312

Met

hyl m

-nitr

oben

zoat

ec1

c(N

(=O

)=O

)ccc

c1C

(=O

)OC

-1.6

-2.2

0.5

2580

% M

etha

nol

313

Met

hyl m

-chl

orob

enzo

ate

c1c(

Cl)c

ccc1

C(=

O)O

C-2

.4-2

.70.

325

80%

Met

hano

l31

4M

ethy

l ben

zoat

ec1

cccc

c1C

(=O

)OC

-2.7

-2.2

-0.5

2560

% M

etha

nol

315

Met

hyl p

-bro

mob

enzo

ate

c1cc

(Br)c

cc1C

(=O

)OC

-2.3

-2.2

025

60%

Met

hano

l31

6M

ethy

l p-n

itrob

enzo

ate

c1cc

(N(=

O)=

O)c

cc1C

(=O

)OC

-1.1

-1.4

0.2

2560

% M

etha

nol

317

Met

hyl m

-bro

mob

enzo

ate

c1c(

Br)c

ccc1

C(=

O)O

C-2

-20.

125

60%

Met

hano

l31

8M

ethy

l m-n

itrob

enzo

ate

c1c(

N(=

O)=

O)c

ccc1

C(=

O)O

C-1

.3-1

.60.

325

60%

Met

hano

l31

9M

ehty

l 9-a

nthr

ylac

etat

ec1

ccc2

cc3c

cccc

3c(C

C(=

O)O

C)c

2c1

-3.3

-2.9

-0.3

2585

% M

etha

nol

2710

Met

hyl 6

-chr

ysla

ceta

tec1

c2cc

ccc2

c3cc

c4cc

ccc4

c3c1

CC

(=O

)OC

-2.9

-2.4

-0.5

2585

% M

etha

nol

2711

Meh

tyl 9

-phe

nant

hryl

acet

ate

c1cc

2cc(

CC

(=O

)OC

)c3c

cccc

3c2c

c1-2

.9-2

.4-0

.625

85%

Met

hano

l27

12M

ethy

l 1-n

apht

hyla

ceta

tec1

cc2c

ccc(

CC

(=O

)OC

)c2c

c1-2

.9-2

.4-0

.625

85%

Met

hano

l27

13M

ethy

l 1-p

yren

ylac

etat

ec(

c(c(

cc1(

CC

(=O

)OC

))cc

c2)c

2cc3

)(c1

ccc4

)c34

-2.7

-2.3

-0.4

2585

% M

etha

nol

2714

Met

hyl p

-met

hylp

heny

lace

tate

c1cc

(C)c

cc1C

C(=

O)O

C-2

.6-2

.3-0

.325

85%

Met

hano

l27

15M

ethu

l 2-fl

uore

nyla

ceta

tec1

c2C

c3cc

(OC

(=O

)Cc4

cccc

c4)c

cc3c

2ccc

1-2

.6-1

.7-0

.925

85%

Met

hano

l27

16M

ethy

l phe

nyla

ceta

tec1

cccc

c1C

C(=

O)O

C-2

.5-2

.1-0

.425

85%

Met

hano

l27

17M

ethy

l 2-n

apht

hyla

ceta

teC

OC

(=O

)Cc1

ccc2

cccc

c2c1

-2.4

-2.1

-0.4

2585

% M

etha

nol

2718

Met

hyl 4

-bip

heny

lace

tate

CO

C(=

O)C

c1cc

c(c2

cccc

c2)c

c1-2

.4-2

.1-0

.325

85%

Met

hano

l27

19M

ethy

l 2-a

nthr

ylac

etat

eC

OC

(=O

)Cc1

ccc2

cc3c

cccc

3cc2

c1-2

.4-2

-0.4

2585

% M

etha

nol

2720

Met

hyl 3

-phe

nant

hryl

acet

ate

c1cc

2ccc

3ccc

cc3c

2c(C

C(=

O)O

C)c

1-2

.4-2

.40

2585

% M

etha

nol

2721

Met

hyl 2

-phe

nant

hryl

acet

ate

c1(C

C(=

O)O

C)c

c2cc

c3cc

ccc3

c2cc

1-2

.4-2

.1-0

.325

85%

Met

hano

l27

22M

ethy

l ben

zoat

eC

OC

(=O

)c1c

cccc

1-2

.3-2

.1-0

.325

50%

Met

hano

l33

23M

ehty

l p-n

itrob

enzo

ate

c1cc

(N(=

O)=

O)c

cc1C

(=O

)OC

-1.9

-2.3

0.3

2588

% M

etha

nol

34,3

524

Met

hyl m

-nitr

oben

zoat

ec1

c(N

(=O

)=O

)ccc

c1C

(=O

)OC

-2.1

-2.5

0.3

2588

% M

etha

nol

34,3

525

Met

hyl m

-bro

mob

enzo

ate

c1c(

Br)c

ccc1

C(=

O)O

C-2

.9-2

.90.

125

88%

Met

hano

l34

,35

26M

ethy

l p-b

rom

oben

zoat

ec1

cc(B

r)ccc

1C(=

O)O

C-3

.2-3

.10

2588

% M

etha

nol

34,3

527

Met

hyl m

-met

hoxy

benz

oate

c1c(

OC

)ccc

c1C

(=O

)OC

-3.6

-3.5

-0.1

2588

% M

etha

nol

34,3

528

Met

hyl b

enzo

ate

c1cc

ccc1

C(=

O)O

C-3

.7-3

.2-0

.525

88%

Met

hano

l34

,35

29M

ethy

l m-m

ethy

lben

zoat

ec1

c(C

)ccc

c1C

(=O

)OC

-3.9

-3.5

-0.4

2588

% M

etha

nol

34,3

530

Met

hyl m

-dim

ethy

lam

inob

enzo

ate

c1c(

N(C

)C)c

ccc1

C(=

O)O

C-4

-3.7

-0.3

2588

% M

etha

nol

34,3

531

Met

hyl p

-met

hylb

enzo

ate

c1cc

(C)c

cc1C

(=O

)OC

-4-3

.8-0

.225

88%

Met

hano

l34

,35

32M

ethy

l p-m

etho

xybe

nzoa

tec1

cc(O

C)c

cc1C

(=O

)OC

-4.3

-4.3

-0.1

2588

% M

etha

nol

34,3

533

Met

hyl b

enzo

ate

c1cc

ccc1

C(=

O)O

C-2

.8-2

.7-0

.134

.880

% M

etha

nol

3134

Met

hyl b

enzo

ate

c1cc

ccc1

C(=

O)O

C-2

.4-2

.50.

144

.880

% M

etha

nol

3135

Met

hyl b

enzo

ate

c1cc

ccc1

C(=

O)O

C-2

.3-2

.40.

249

.880

% M

etha

nol

3136

Met

hyl b

enzo

ate

c1cc

ccc1

C(=

O)O

C-2

-2.3

0.3

55.2

80%

Met

hano

l31

37M

ethy

l o-m

ethy

lben

zoat

eC

c1cc

ccc1

C(=

O)O

C-3

.7-3

.5-0

.235

80%

Met

hano

l31

Page 148: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

141

TA

BLE

5: A

LKAL

INE

HYDR

OLY

SIS

OF

ESTE

RS IN

MET

HANO

L-W

ATER

MIX

ED S

OLV

ENTS

AT

VARI

OUS

TEM

PERA

TURE

.

Obs

erve

d C

alcu

late

dEs

ters

SMILE

Slo

gk

logk

Diff

eren

ceTe

mpe

ratu

reSo

lven

tsR

efer

ence

s38

Met

hyl o

-met

hylb

enzo

ate

Cc1

cccc

c1C

(=O

)OC

-3.3

-3.3

0.1

4580

% M

etha

nol

3139

Met

hyl o

-met

hylb

enzo

ate

Cc1

cccc

c1C

(=O

)OC

-2.9

-3.1

0.2

5580

% M

etha

nol

3140

Met

hyl o

-met

hylb

enzo

ate

Cc1

cccc

c1C

(=O

)OC

-2.3

-2.8

0.6

70.2

80%

Met

hano

l31

41M

ethy

l o-e

thyl

benz

oate

CC

c1cc

ccc1

C(=

O)O

C-3

.6-3

.50

4580

% M

etha

nol

3142

Met

hyl o

-eth

ylbe

nzoa

teC

Cc1

cccc

c1C

(=O

)OC

-3.2

-3.3

0.2

5580

% M

etha

nol

3143

Met

hyl o

-eth

ylbe

nzoa

teC

Cc1

cccc

c1C

(=O

)OC

-2.5

-30.

570

.280

% M

etha

nol

3144

Met

hyl o

-eth

ylbe

nzoa

teC

Cc1

cccc

c1C

(=O

)OC

-2.1

-2.9

0.7

80.4

80%

Met

hano

l31

45M

ethy

l o-is

opro

pylb

enzo

ate

C(C

)Cc1

cccc

c1C

(=O

)OC

-2.6

-3.1

0.5

71.6

80%

Met

hano

l31

46M

ethy

l o-is

opro

pylb

enzo

ate

C(C

)Cc1

cccc

c1C

(=O

)OC

-2.4

-30.

678

.480

% M

etha

nol

3147

Met

hyl o

-isop

ropy

lben

zoat

eC

(C)C

c1cc

ccc1

C(=

O)O

C-2

-2.8

0.8

89.9

80%

Met

hano

l31

48M

ethy

l o-is

opro

pylb

enzo

ate

C(C

)Cc1

cccc

c1C

(=O

)OC

-1.7

-2.6

0.9

100.

280

% M

etha

nol

3149

Met

hyl o

-(t-b

utyl

)ben

zoat

eC

(C)(C

)Cc1

cccc

c1C

(=O

)OC

-3.5

-2.4

-1.1

119.

880

% M

etha

nol

3150

Met

hyl o

-(t-b

utyl

)ben

zoat

eC

(C)(C

)Cc1

cccc

c1C

(=O

)OC

-3.2

-2.2

-0.9

129.

880

% M

etha

nol

3151

Met

hyl o

-(t-b

utyl

)ben

zoat

eC

(C)(C

)Cc1

cccc

c1C

(=O

)OC

-3-2

.2-0

.813

480

% M

etha

nol

3152

Met

hyl o

-(t-b

utyl

)ben

zoat

eC

(C)(C

)Cc1

cccc

c1C

(=O

)OC

-1.8

-2.1

0.3

140

80%

Met

hano

l31

53M

ethy

l o-fl

uoro

benz

oate

Fc1c

cccc

1C(=

O)O

C-3

-2.9

-0.1

15.4

80%

Met

hano

l31

54M

ethy

l o-fl

uoro

benz

oate

Fc1c

cccc

1C(=

O)O

C-2

.2-2

.50.

335

80%

Met

hano

l31

55M

ethy

l o-fl

uoro

benz

oate

Fc1c

cccc

1C(=

O)O

C-1

.8-2

.30.

544

.880

% M

etha

nol

3156

Met

hyl o

-chl

orob

enzo

ate

Clc

1ccc

cc1C

(=O

)OC

-2.5

-2.4

-0.2

3580

% M

etha

nol

3157

Met

hyl o

-chl

orob

enzo

ate

Clc

1ccc

cc1C

(=O

)OC

-2.2

-2.2

044

.880

% M

etha

nol

3158

Met

hyl o

-chl

orob

enzo

ate

Clc

1ccc

cc1C

(=O

)OC

-2-2

.10.

150

80%

Met

hano

l31

59M

ethy

l o-c

hlor

oben

zoat

eC

lc1c

cccc

1C(=

O)O

C-1

.8-2

0.2

5580

% M

etha

nol

3160

Met

hyl o

-bro

mob

enzo

ate

c1(B

r)ccc

cc1C

(=O

)OC

-2.7

-2.5

-0.2

3580

% M

etha

nol

3161

Met

hyl o

-bro

mob

enzo

ate

c1(B

r)ccc

cc1C

(=O

)OC

-2.3

-2.3

045

80%

Met

hano

l31

62M

ethy

l o-b

rom

oben

zoat

ec1

(Br)c

cccc

1C(=

O)O

C-2

.1-2

.20.

150

80%

Met

hano

l31

63M

ethy

l o-b

rom

oben

zoat

ec1

(Br)c

cccc

1C(=

O)O

C-2

-2.1

0.2

5580

% M

etha

nol

3164

Met

hyl o

-iodo

benz

oate

c1(I)

cccc

c1C

(=O

)OC

-2.9

-2.5

-0.4

34.8

80%

Met

hano

l31

65M

ethy

l o-io

dobe

nzoa

tec1

(I)cc

ccc1

C(=

O)O

C-2

.5-2

.3-0

.244

.880

% M

etha

nol

3166

Met

hyl o

-iodo

benz

oate

c1(I)

cccc

c1C

(=O

)OC

-2.3

-2.2

-0.1

4980

% M

etha

nol

3167

Met

hyl o

-iodo

benz

oate

c1(I)

cccc

c1C

(=O

)OC

-2.1

-2.1

054

.980

% M

etha

nol

3168

Met

hyl m

-nitr

oben

zoat

ec1

c(N

(=O

)=O

)ccc

c1C

(=O

)OC

-2.6

-2.6

04.

680

% M

etha

nol

3169

Met

hyl m

-nitr

oben

zoat

ec1

c(N

(=O

)=O

)ccc

c1C

(=O

)OC

-2.1

-2.4

0.3

1580

% M

etha

nol

3170

Met

hyl m

-nitr

oben

zoat

ec1

c(N

(=O

)=O

)ccc

c1C

(=O

)OC

-1.3

-20.

734

.580

% M

etha

nol

3171

Met

hyl m

-chl

orob

enzo

ate

c1c(

Cl)c

ccc1

C(=

O)O

C-2

.9-2

.90

1580

% M

etha

nol

3172

Met

hyl m

-chl

orob

enzo

ate

c1c(

Cl)c

ccc1

C(=

O)O

C-2

-2.5

0.4

34.5

80%

Met

hano

l31

73M

ethy

l m-c

hlor

oben

zoat

ec1

c(C

l)ccc

c1C

(=O

)OC

-1.6

-2.3

0.6

45.2

80%

Met

hano

l31

74M

ethy

l m-m

ethy

lben

zoat

ec1

c(C

)ccc

c1C

(=O

)OC

-3.1

-3.1

-0.1

30.1

80%

Met

hano

l31

Page 149: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

142

TA

BLE

5: A

LKAL

INE

HYDR

OLY

SIS

OF

ESTE

RS IN

MET

HANO

L-W

ATER

MIX

ED S

OLV

ENTS

AT

VARI

OUS

TEM

PERA

TURE

.

Obs

erve

d C

alcu

late

dEs

ters

SMILE

Slo

gk

logk

Diff

eren

ceTe

mpe

ratu

reSo

lven

tsR

efer

ence

s75

Met

hyl m

-met

hylb

enzo

ate

c1c(

C)c

ccc1

C(=

O)O

C-2

.7-2

.80.

140

.780

% M

etha

nol

3176

Met

hyl m

-met

hylb

enzo

ate

c1c(

C)c

ccc1

C(=

O)O

C-2

.3-2

.60.

350

80%

Met

hano

l31

77M

ethy

l m-m

ethy

lben

zoat

ec1

c(C

)ccc

c1C

(=O

)OC

-2-2

.40.

559

.880

% M

etha

nol

3178

Met

hyl 9

-ant

hryl

acet

ate

c1cc

c2cc

3ccc

cc3c

(CC

(=O

)OC

)c2c

1-2

.9-2

.8-0

.132

.585

% M

etha

nol

2779

Met

hyl 9

-phe

nant

hryl

acet

ate

c1cc

2cc(

CC

(=O

)OC

)c3c

cccc

3c2c

c1-2

.6-2

.2-0

.432

.585

% M

etha

nol

2780

Met

hyl 1

-nap

hthy

lace

tate

c1cc

2ccc

c(C

C(=

O)O

C)c

2cc1

-2.6

-2.2

-0.4

32.5

85%

Met

hano

l27

81M

ethy

l 6-c

hrys

ylac

etat

ec(

c(c(

cc1(

CC

(=O

)OC

))cc

c2)c

2cc3

)(c1

ccc4

)c34

-2.4

-2.2

-0.2

32.5

85%

Met

hano

l27

82M

ethy

l p-m

ethy

lphe

nyla

ceta

tec1

cc(C

)ccc

1CC

(=O

)OC

-2.3

-2.2

-0.2

32.5

85%

Met

hano

l27

832-

Fluo

reny

l phe

nyla

ceta

tec1

c2C

c3cc

(OC

(=O

)Cc4

cccc

c4)c

cc3c

2ccc

1-2

.2-1

.6-0

.632

.585

% M

etha

nol

2784

Met

hyl p

heny

lace

tate

c1cc

ccc1

CC

(=O

)OC

-2.2

-2-0

.232

.585

% M

etha

nol

2785

Met

hyl 2

-nap

hthy

lace

tate

CO

C(=

O)C

c1cc

c2cc

ccc2

c1-2

.1-1

.9-0

.232

.585

% M

etha

nol

2786

Met

hyl p

-bip

heny

lace

tate

CO

C(=

O)C

c1cc

c(c2

cccc

c2)c

c1-2

.1-1

.9-0

.232

.585

% M

etha

nol

2787

Met

hyl 3

-phe

nant

hryl

acet

ate

c1cc

2ccc

3ccc

cc3c

2cc1

(CC

(=O

)OC

)-2

-1.9

-0.2

32.5

85%

Met

hano

l27

88M

ethy

l 2-p

hena

nthr

ylac

etat

ec1

(CC

(=O

)OC

)cc2

ccc3

cccc

c3c2

cc1

-2.1

-1.9

-0.1

32.5

85%

Met

hano

l27

89M

ethy

l phe

nyla

ceta

tec1

cccc

c1C

C(=

O)O

C-2

-1.9

-0.1

4085

% M

etha

nol

2790

Met

hyl 2

-nap

hthy

lace

tate

CO

C(=

O)C

c1cc

c2cc

ccc2

c1-1

.9-1

.8-0

.140

85%

Met

hano

l27

91M

ethy

l p-b

iphe

nyla

ceta

teC

OC

(=O

)Cc1

ccc(

c2cc

ccc2

)cc1

-1.9

-1.8

-0.1

4085

% M

etha

nol

2792

Met

hyl 2

-phe

nant

hryl

acet

ate

c1(C

C(=

O)O

C)c

c2cc

c3cc

ccc3

c2cc

1-1

.8-1

.80

4085

% M

etha

nol

2793

Met

hyl 9

-ant

hryl

acet

ate

c1cc

c2cc

3ccc

cc3c

(CC

(=O

)OC

)c2c

1-2

.3-2

.40.

250

85%

Met

hano

l27

94M

ethy

l 9-p

hena

nthr

ylac

etat

ec1

cc2c

c(C

C(=

O)O

C)c

3ccc

cc3c

2cc1

-2-1

.9-0

.150

85%

Met

hano

l27

95M

ethy

l 1-n

apht

hyla

ceta

tec1

cc2c

ccc(

CC

(=O

)OC

)c2c

c1-2

-1.9

-0.1

5085

% M

etha

nol

2796

Met

hyl 6

-chr

ysyl

acet

ate

c(c(

c(cc

1(C

C(=

O)O

C))

ccc2

)c2c

c3)(

c1cc

c4)c

34-1

.8-1

.90.

150

85%

Met

hano

l27

97M

ethy

l p-m

ethy

lphe

nyla

ceta

tec1

cc(C

)ccc

1CC

(=O

)OC

-1.7

-1.8

0.1

5085

% M

etha

nol

2798

2-Fl

uore

nyl p

heny

lace

tate

c1c2

Cc3

cc(O

C(=

O)C

c4cc

ccc4

)ccc

3c2c

cc1

-1.6

-1.3

-0.3

5085

% M

etha

nol

2799

Met

hyl p

heny

lace

tate

c1cc

ccc1

CC

(=O

)OC

-1.6

-1.7

0.1

5085

% M

etha

nol

2710

0M

ethy

l 2-n

apht

hyla

ceta

teC

OC

(=O

)Cc1

ccc2

cccc

c2c1

-1.5

-1.6

0.1

5085

% M

etha

nol

2710

1M

ethy

l p-b

iphe

nyla

ceta

teC

OC

(=O

)Cc1

ccc(

c2cc

ccc2

)cc1

-1.5

-1.6

0.1

5085

% M

etha

nol

2710

2M

ethy

l 3-p

hena

nthr

ylac

etat

ec1

cc2c

cc3c

cccc

3c2c

c1(C

C(=

O)O

C)

-1.5

-1.6

0.1

5085

% M

etha

nol

2710

3M

ethy

l 2-p

hena

nthr

ylac

etat

ec1

(CC

(=O

)OC

)cc2

ccc3

cccc

c3c2

cc1

-1.5

-1.6

0.2

5085

% M

etha

nol

2710

4M

ethy

l 9-a

nthr

ylac

etat

ec1

ccc2

cc3c

cccc

3c(C

C(=

O)O

C)c

2c1

-1.9

-2.2

0.3

60.2

85%

Met

hano

l27

105

Met

hyl 9

-phe

nant

hryl

acet

ate

c1cc

2cc(

CC

(=O

)OC

)c3c

cccc

3c2c

c1-1

.6-1

.70.

160

.285

% M

etha

nol

2710

6M

ethy

l 2-n

apht

hyla

ceta

tec1

cc2c

ccc(

CC

(=O

)OC

)c2c

c1-1

.6-1

.70.

160

.285

% M

etha

nol

2710

7M

ethy

l 6-c

hrys

ylac

etat

ec(

c(c(

cc1(

CC

(=O

)OC

))cc

c2)c

2cc3

)(c1

ccc4

)c34

-1.4

-1.7

0.3

60.2

85%

Met

hano

l27

108

Met

hyl p

-met

hylp

heny

lace

tate

c1cc

(C)c

cc1C

C(=

O)O

C-1

.4-1

.60.

360

.285

% M

etha

nol

2710

92-

Fluo

reny

l phe

nyla

ceta

tec1

c2C

c3cc

(OC

(=O

)Cc4

cccc

c4)c

cc3c

2ccc

1-1

.3-1

.2-0

.160

.285

% M

etha

nol

2711

0M

ethy

l 3-p

hena

nthr

ylac

etat

ec1

cc2c

cc3c

cccc

3c2c

c1(C

C(=

O)O

C)

-1.1

-1.4

0.3

60.2

85%

Met

hano

l27

111

2-C

arbo

met

hoxy

quin

olin

ec1

cc2n

c(C

(=O

)OC

)ccc

2cc1

'-0

.5-0

.60.

125

50%

Met

hano

l33

Page 150: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

143

TA

BLE

5: A

LKAL

INE

HYDR

OLY

SIS

OF

ESTE

RS IN

MET

HANO

L-W

ATER

MIX

ED S

OLV

ENTS

AT

VARI

OUS

TEM

PERA

TURE

.O

bser

ved

Cal

cula

ted

Este

rsSM

ILES

logk

lo

gkD

iffer

ence

Tem

pera

ture

Solv

ents

Ref

eren

ces

112

Met

hyl 2

-nitr

opic

olin

ate

n1c(

N(=

O)=

O)c

ccc1

C(=

O)O

C',

-0.6

-10.

425

88%

Met

hano

l32

113

Met

hyl 2

-bro

mop

icol

inat

e 'n

1c(B

r)ccc

c1C

(=O

)OC

',

-1

.5-1

.50

2588

% M

etha

nol

3211

4M

ethy

l 2-m

ethy

lpic

olin

ates

'n1c

(C)c

ccc1

C(=

O)O

C',

-2.3

-2-0

.325

88%

Met

hano

l32

115

Met

hyl 2

-dim

ethy

lnitr

opic

olin

ate

'n1c

(N(C

)C)c

ccc1

C(=

O)O

C',

-2

.9-2

.3-0

.625

88%

Met

hano

l32

116

Met

hyl n

icot

inat

e 'c

1ncc

cc1C

(=O

)OC

',

-1

.4-1

.2-0

.225

88%

Met

hano

l19

117

Met

hyl p

icol

inat

e 'c

1ccc

nc1C

(=O

)OC

',

-1

.2-0

.9-0

.325

88%

Met

hano

l19

118

Met

hyl i

soni

cotin

ate

'c1c

nccc

1C(=

O)O

C',

-0.7

-1.1

0.4

2588

% M

etha

nol

1911

9M

ethy

l 5-n

itrop

icol

inat

e 'n

1cc(

N(=

O)=

O)c

cc1C

(=O

)OC

',

-0.4

-0.8

0.4

2588

% M

etha

nol

3212

0M

ethy

l 5-b

rom

opic

olin

ate

'n1c

c(Br

)ccc

1C(=

O)O

C',

-1

.5-1

.70.

125

88%

Met

hano

l32

121

Met

hyl p

icol

inat

e 'n

1ccc

cc1C

(=O

)OC

',

-2-1

.8-0

.325

88%

Met

hano

l32

122

Met

hyl 5

-met

hylp

icol

inat

e 'n

1cc(

C)c

cc1C

(=O

)OC

',

-2.4

-2.3

-0.1

2588

% M

etha

nol

3212

3M

ethy

l 5-m

etho

xylp

icol

inat

e 'n

1cc(

OC

)ccc

1C(=

O)O

C',

-2

.8-2

.80

2588

% M

etha

nol

3212

4M

ethy

l 5-d

imet

hyln

itrop

icol

inat

e 'n

1cc(

N(C

)C)c

cc1C

(=O

)OC

',

-3.7

-3.3

-0.4

2588

% M

etha

nol

3212

5M

ethy

l 4-n

itrop

icol

inat

e 'n

1ccc

(N(=

O)=

O)c

c1C

(=O

)OC

',

-0

.7-1

0.3

2588

% M

etha

nol

3212

6M

ethy

l 4-b

rom

opic

olin

ate

n1cc

c(Br

)cc1

C(=

O)O

C',

-1.3

-1.5

0.2

2588

% M

etha

nol

3212

7M

ethy

l 4-m

ethy

lpic

olin

ate

n1cc

c(C

)cc1

C(=

O)O

C',

-2

.2-2

-0.2

2588

% M

etha

nol

3212

8M

ethy

l 4-m

etho

xylp

icol

inat

en1

ccc(

OC

)cc1

C(=

O)O

C',

-2-2

.10.

125

88%

Met

hano

l32

129

Met

hyl 5

-bro

mon

icot

inat

ec1

ncc(

Br)c

c1C

(=O

)OC

',

-1.5

-1.8

0.4

2588

% M

etha

nol

3213

0M

ethy

l nic

otin

ate

c1nc

ccc1

C(=

O)O

C',

-2

.3-2

.1-0

.225

88%

Met

hano

l32

131

Met

hyl 5

-met

hyln

icot

inat

ec1

ncc(

C)c

c1C

(=O

)OC

',

-2

.3-2

.30

2588

% M

etha

nol

3213

2M

ethy

l 5-m

etho

xyni

cotin

ate

c1nc

c(O

C)c

c1C

(=O

)OC

',

-2

.1-2

.40.

225

88%

Met

hano

l32

133

Met

hyl 5

-dim

ethy

lnitr

onic

otin

ate

c1nc

c(N

(C)C

)cc1

C(=

O)O

C',

-2.7

-2.6

-0.1

2588

% M

etha

nol

3213

4M

ethy

l 2-b

rom

onic

otin

ate

n1c(

Br)c

cc(C

(=O

)OC

)c1'

,

-1

.8-2

0.2

2588

% M

etha

nol

3213

5M

ethy

l 2-m

ethy

lnic

otin

ate

'n1c

(C)c

cc(C

(=O

)OC

)c1'

,

-2

.6-2

.70.

125

88%

Met

hano

l32

136

Met

hyl 2

-met

hoxy

nico

tinat

en1

c(O

C)c

cc(C

(=O

)OC

)c1'

,

-3

.2-3

.20

2588

% M

etha

nol

3213

7M

ethy

l 2-d

imet

hyln

itron

icot

inat

en1

c(N

(C)C

)ccc

(C(=

O)O

C)c

1',

-4.3

-3.8

-0.6

2588

% M

etha

nol

3213

8M

ethy

l 2-n

itroi

soni

cotin

ate

n1c(

N(=

O)=

O)c

c(C

(=O

)OC

)cc1

',

0.2

-1.2

125

88%

Met

hano

l32

139

Met

hyl 2

-bro

moi

soni

cotin

ate

'n1c

(Br)c

c(C

(=O

)OC

)cc1

',

-0

.9-1

.70.

825

88%

Met

hano

l32

140

Met

hyl i

soni

cotin

ate

'n1c

cc(C

(=O

)OC

)cc1

',

-1

.5-2

0.4

2588

% M

etha

nol

3214

1M

ethy

l 2-m

ethy

lison

icot

inat

e 'n

1c(C

)cc(

C(=

O)O

C)c

c1',

-1

.7-2

.20.

525

88%

Met

hano

l32

142

Met

hyl 2

-met

hoxy

ison

icot

inat

en1

c(O

C)c

c(C

(=O

)OC

)cc1

',

-1

.8-2

.20.

525

88%

Met

hano

l32

143

Met

hyl 2

-dim

ethy

lnitr

oiso

nico

tinat

e 'n

1c(N

(C)C

)cc(

C(=

O)O

C)c

c1',

-2

.3-2

.50.

225

88%

Met

hano

l32

144

3-C

arbo

met

hoxy

quin

olin

e 'c

1cc2

ncc(

C(=

O)O

C)c

c2cc

1',

-1

.1-0

.9-0

.225

50%

Met

hano

l33

145

4-C

arbo

met

hoxy

quin

olin

e 'c

1cc2

nccc

(C(=

O)O

C)c

2cc1

',

-0

.8-1

.10.

325

50%

Met

hano

l33

146

5-C

arbo

met

hoxy

quin

olin

e

'c1c

c2nc

ccc2

c(C

(=O

)OC

)c1'

,

-1

.7-1

.4-0

.325

50%

Met

hano

l33

147

6-C

arbo

met

hoxy

quin

olin

e 'c

1cc2

nccc

c2cc

1(C

(=O

)OC

)',

-1.6

-1.2

-0.4

2550

% M

etha

nol

3314

87-

Car

bom

etho

xyqu

inol

ine

'CO

C(=

O)c

1cc2

nccc

c2cc

1',

-1

.5-1

.2-0

.425

50%

Met

hano

l33

149

8-C

arbo

met

hoxy

quin

olin

e 'c

1c(C

(=O

)OC

)c2n

cccc

2cc1

',

-2

.4-1

.4-1

2550

% M

etha

nol

33

Page 151: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

144

TA

BLE

5: A

LKAL

INE

HYDR

OLY

SIS

OF

ESTE

RS IN

MET

HANO

L-W

ATER

MIX

ED S

OLV

ENTS

AT

VARI

OUS

TEM

PERA

TURE

.

Obs

erve

dC

alcu

late

dEs

ters

SMILE

Slo

gklo

gkD

iff.

Tem

pera

ture

Solv

ents

Ref

eren

ces

1Et

hyl b

enzo

ate

c1cc

ccc1

C(=

O)O

CC

-2.1

-1.6

-0.5

3033

% d

ioxa

ne19

2p-

Nitr

oben

zyl b

enzo

ate

c1cc

ccc1

C(=

O)O

Cc1

ccc(

N(=

O)=

O)c

c1-1

.5-1

.2-0

.325

67%

dio

xane

383

p-C

hlor

oben

zyl b

enzo

ate

c1cc

ccc1

C(=

O)O

Cc1

ccc(

Cl)c

c1-2

-1.4

-0.6

2567

% d

ioxa

ne38

4p-

Chl

orob

enzy

l ben

zoat

ec1

cccc

c1C

(=O

)OC

c1cc

c(C

l)cc1

-1.7

-1-0

.825

67%

dio

xane

385

Benz

yl b

enzo

ate

c1cc

ccc1

C(=

O)O

Cc1

cccc

c1-2

.3-1

.5-0

.825

67%

dio

xane

386

p-M

etho

xybe

nzyl

ben

zoat

ec1

cccc

c1C

(=O

)OC

c1cc

c(O

C)c

c1-2

.4-1

.5-0

.925

67%

dio

xane

387

Met

hyl b

enzo

ate

c1cc

ccc1

C(=

O)O

C-1

.6-1

.5-0

.225

33%

dio

xane

398

Met

hyl p

-am

inob

enzo

ate

c1cc

(N)c

cc1C

(=O

)OC

-2.9

-30.

125

33%

dio

xane

399

Met

hyl p

-met

hylb

enzo

ate

c1cc

(C)c

cc1C

(=O

)OC

-2-2

0.1

2533

% d

ioxa

ne39

10M

ethy

l p-c

hlor

oben

zoat

ec1

cc(C

l)ccc

1C(=

O)O

C-1

.2-1

.40.

225

33%

dio

xane

3911

Met

hyl p

-nitr

oben

zoat

ec1

cc(N

(=O

)=O

)ccc

1C(=

O)O

C-0

.2-0

.50.

325

33%

dio

xane

3912

Met

hyl a

ceta

teCC

(=O

)OC

-0.5

-0.3

-0.2

3540

% d

ioxa

ne36

13M

ethy

l pro

pion

ate

CCC(

=O)O

C-0

.6-0

.90.

235

40%

dio

xane

3614

Met

hyl i

sobu

tyra

teC

(C)C

C(=

O)O

C-1

.1-1

.10

3540

% d

ioxa

ne36

15M

ethy

l n-b

utyr

ate

CCCC

(=O

)OC

-0.9

-1.1

0.2

3540

% d

ioxa

ne36

16M

ehty

l n-p

enta

teCC

CCC(

=O)O

C-1

-1.2

0.2

3540

% d

ioxa

ne36

17M

ethy

l iso

pent

ate

C(C)

CCC(

=O)O

C-1

.5-1

.2-0

.335

40%

dio

xane

3618

Met

hyl s

ec-p

enta

teCC

C(C)

C(=O

)OC

-1.6

-2.1

0.5

3540

% d

ioxa

ne36

19M

ethy

l neo

pent

ate

C(C

)(C)C

C(=

O)O

C-2

-1.4

-0.6

3540

% d

ioxa

ne36

20M

ethy

l phe

nyla

ceta

tec1

ccc(

CC

(=O

)OC

)cc1

-0.4

-0.4

0.1

3540

% d

ioxa

ne36

21M

ethy

l ben

zoat

ec1

ccc(

C(=

O)O

C)c

c1-1

.5-1

.70.

135

60%

dio

xane

3722

Met

hyl p

-met

hylb

enzo

ate

Cc1

ccc(

C(=

O)O

C)c

c1-1

.9-2

.20.

335

60%

dio

xane

3723

Met

hyl m

-met

hylb

enzo

ate

c1c(

C)c

c(C

(=O

)OC

)cc1

-1.8

-1.9

0.1

3560

% d

ioxa

ne37

24M

ethy

l p-m

etho

xybe

nzoa

teC

Oc1

ccc(

C(=

O)O

C)c

c1-2

.2-2

.70.

535

60%

dio

xane

3725

Met

hyl p

-am

inob

enzo

ate

Nc1

ccc(

C(=

O)O

C)c

c1-3

-3.2

0.2

3560

% d

ioxa

ne37

26M

ethy

l p-b

rom

oben

zoat

eBr

c1cc

c(C

(=O

)OC

)cc1

-1-1

.60.

635

60%

dio

xane

3727

Met

hyl m

-iodo

benz

oate

c1c(

I)cc(

C(=

O)O

C)c

c1-0

.9-1

.30.

435

60%

dio

xane

3728

Met

hyl m

-chl

orob

enzo

ate

c1c(

Cl)c

c(C

(=O

)OC

)cc1

-0.8

-1.4

0.6

3560

% d

ioxa

ne37

29M

ethy

l m-b

rom

oben

zoat

ec1

c(Br

)cc(

C(=

O)O

C)c

c1-0

.8-1

.40.

535

60%

dio

xane

3730

Met

hyl m

-nitr

oben

zoat

ec1

c(N

(=O

)=O

)cc(

C(=

O)O

C)c

c10

-0.9

0.9

3560

% d

ioxa

ne37

31M

ethy

l p-n

itrob

enzo

ate

O=N

(=O

)c1c

cc(C

(=O

)OC

)cc1

0.2

-0.7

135

60%

dio

xane

3732

Ethy

l ben

zoat

ec1

ccc(

C(=

O)O

CC

)cc1

-2-1

.9-0

.135

60%

dio

xane

3733

Prop

yl b

enzo

ate

c1cc

c(C

(=O

)OC

CC

)cc1

-2.2

-2-0

.235

60%

dio

xane

3734

Prop

yl p

-chl

orob

enzo

ate

Clc

1ccc

(C(=

O)O

CC

C)c

c1-1

.6-2

0.3

3560

% d

ioxa

ne37

35Is

opro

pyl b

enzo

ate

c1cc

c(C

(=O

)OC

(C)C

)cc1

-2.8

-2.4

-0.4

3560

% d

ioxa

ne37

36Is

opro

pyl p

-met

hoxy

benz

oate

CO

c1cc

c(C

(=O

)OC

(C)C

)cc1

-3.4

-3.4

035

60%

dio

xane

3737

Isop

ropy

l p-n

itrob

enzo

ate

O=N

(=O

)c1c

cc(C

(=O

)OC

(C)C

)cc1

-0.9

-1.5

0.6

3560

% d

ioxa

ne37

Page 152: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

145

TA

BLE

5: A

LKAL

INE

HYDR

OLY

SIS

OF

ESTE

RS IN

MET

HANO

L-W

ATER

MIX

ED S

OLV

ENTS

AT

VARI

OUS

TEM

PERA

TURE

.

Obs

erve

dC

alcu

late

dEs

ters

SMILE

Slo

gklo

gkD

iff.

Tem

pera

ture

Solv

ents

Ref

eren

ces

38Bu

tyl b

enzo

ate

c1cc

c(C

(=O

)OC

CC

C)c

c1-2

.3-2

.1-0

.335

60%

dio

xane

3739

Buty

l p-a

min

oben

zoat

eN

c1cc

c(C

(=O

)OC

CC

C)c

c1-3

.8-3

.6-0

.235

60%

dio

xane

3740

Isob

utyl

ben

zoat

ec1

ccc(

C(=

O)O

CC

(C)C

)cc1

-2.4

-2.1

-0.3

3560

% d

ioxa

ne37

41Is

obut

yl p

-am

inob

enzo

ate

Nc1

ccc(

C(=

O)O

CC

(C)C

)cc1

-3.8

-3.6

-0.2

3560

% d

ioxa

ne37

42se

c-Bu

tyl b

enzo

ate

c1cc

c(C

(=O

)OC

(C)C

C)c

c1-3

.1-3

.20.

135

60%

dio

xane

3743

sec-

Buty

l m-m

ethy

lben

zoat

ec1

c(C

)cc(

C(=

O)O

C(C

)CC

)cc1

-3.3

-3.4

0.1

3560

% d

ioxa

ne37

44Is

open

tyl b

enzo

ate

c1cc

c(C

(=O

)OC

CC

(C)C

)cc1

-2.4

-1.8

-0.6

3560

% d

ioxa

ne37

45Is

open

tyl p

-chl

orob

enzo

ate

Clc

1ccc

(C(=

O)O

CC

C(C

)C)c

c1-1

.8-1

.7-0

.135

60%

dio

xane

3746

Benz

yl b

enzo

ate

c1cc

c(C

(=O

)OC

c2cc

ccc2

)cc1

-1.8

-1.1

-0.7

3560

% d

ioxa

ne37

47Be

nzyl

p-m

ethy

lben

zoat

eC

c1cc

c(C

(=O

)OC

c2cc

ccc2

)cc1

-2.2

-1.7

-0.5

3560

% d

ioxa

ne37

481-

Phen

yl-e

thyl

ben

zoat

ec1

ccc(

C(=

O)O

C(C

)c2c

cccc

2)cc

1-2

.1-2

.80.

735

60%

dio

xane

3749

1,1-

Biph

enyl

-met

hyl b

enzo

ate

c1cc

c(C

(=O

)OC

(c2c

cccc

2)c3

cccc

c3)c

c1-3

.6-4

.71.

135

60%

dio

xane

3750

Ethy

l p-m

etho

xybe

nzoa

teC

Oc1

ccc(

C(=

O)O

CC

)cc1

-2.7

-2.9

0.3

3560

% d

ioxa

ne37

51Et

hyl p

-fluo

robe

nzoa

teFc

1ccc

(C(=

O)O

CC

)cc1

-1.8

-1.9

0.2

3560

% d

ioxa

ne37

52Et

hyl m

-nitr

oben

zoat

ec1

c(N

(=O

)=O

)ccc

c1(C

(=O

)OC

C)

-0.5

-1.2

0.7

3560

% d

ioxa

ne37

53Et

hyl p

-nitr

oben

zoat

eO

=N(=

O)c

1ccc

(C(=

O)O

CC

)cc1

-0.3

-10.

735

60%

dio

xane

3754

Ethy

l 3,4

-din

itrob

enzo

ate

c1c(

N(=

O)=

O)c

c(C

(=O

)OC

C)c

c1N

(=O

)=O

-1.2

-0.4

-0.8

3560

% d

ioxa

ne37

55Et

hyl p

-am

inob

enzo

ate

Nc1

ccc(

C(=

O)O

CC

)cc1

-3.5

-3.5

035

60%

dio

xane

3756

Met

hyl b

enzo

ate

c1cc

ccc1

C(=

O)O

C-2

.4-2

.40

1060

% d

ioxa

ne32

57M

ethy

l m-b

rom

oben

zoat

ec1

c(Br

)ccc

c1C

(=O

)OC

-1.7

-2.1

0.4

1060

% d

ioxa

ne32

58M

ethy

l p-b

rom

oben

zoat

ec1

cc(B

r)ccc

1C(=

O)O

C-1

.8-2

.30.

510

60%

dio

xane

3259

Met

hyl p

-met

hoxy

benz

oate

c1cc

(OC

)ccc

1C(=

O)O

C-3

.1-3

.50.

410

60%

dio

xane

3260

Met

hyl m

-met

hoxy

benz

oate

c1c(

OC

)ccc

c1C

(=O

)OC

-2.3

-2.7

0.4

1060

% d

ioxa

ne32

61M

ethy

l p-m

ethy

lben

zoat

ec1

cc(C

)ccc

1C(=

O)O

C-2

.8-3

0.2

1060

% d

ioxa

ne32

62M

ethy

l m-m

ethy

lben

zoat

ec1

c(C

)ccc

c1C

(=O

)OC

-2.6

-2.7

010

60%

dio

xane

3263

Met

hyl p

-nitr

oben

zoat

ec1

cc(N

(=O

)=O

)ccc

1C(=

O)O

C-0

.5-1

.40.

910

60%

dio

xane

3264

Met

hyl m

-nitr

oben

zoat

ec1

c(N

(=O

)=O

)ccc

c1C

(=O

)OC

-0.8

-1.6

0.8

1060

% d

ioxa

ne32

65M

ethy

l p-tr

ifluo

rom

ethy

lben

zoat

ec1

cc(C

(F)(F

)F)c

cc1C

(=O

)OC

-1.2

-2.7

1.5

1060

% d

ioxa

ne32

66M

ethy

l ben

zoat

ec1

cccc

c1C

(=O

)OC

-2.5

-2.2

-0.3

1060

% d

ioxa

ne31

67M

ethy

l ben

zoat

ec1

cccc

c1C

(=O

)OC

-1.9

-1.9

-0.1

2560

% d

ioxa

ne31

68M

ethy

l o-m

ethy

lben

zoat

eC

c1cc

ccc1

C(=

O)O

C-2

.8-2

.8-0

.125

60%

dio

xane

3169

Met

hyl o

-met

hylb

enzo

ate

Cc1

cccc

c1C

(=O

)OC

-2.3

-2.5

0.1

40.2

60%

dio

xane

3170

Met

hyl o

-met

hylb

enzo

ate

Cc1

cccc

c1C

(=O

)OC

-2-2

.30.

350

.460

% d

ioxa

ne31

71M

ethy

l o-e

thyl

benz

oate

CC

c1cc

ccc1

C(=

O)O

C-3

.1-2

.9-0

.230

60%

dio

xane

3172

Met

hyl o

-eth

ylbe

nzoa

teC

Cc1

cccc

c1C

(=O

)OC

-2.7

-2.7

040

60%

dio

xane

3173

Met

hyl o

-eth

ylbe

nzoa

teC

Cc1

cccc

c1C

(=O

)OC

-2.4

-2.5

0.1

5060

% d

ioxa

ne31

74M

ethy

l o-is

opro

pylb

enzo

ate

C(C

)Cc1

cccc

c1C

(=O

)OC

-2.9

-2.8

-0.1

40.9

60%

dio

xane

31

Page 153: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

146

TA

BLE

5: B

740

ALKA

LINE

HYD

ROLY

SIS

OF

ESTE

RS IN

MET

HANO

L-W

ATER

MIX

ED S

OLV

ENTS

AT

VARI

OUS

TEM

PERA

TURE

.

Obs

erve

dC

alcu

late

dEs

ters

SMILE

Slo

gklo

gkD

iff.

Tem

pera

ture

Solv

ents

Ref

eren

ces

75M

ethy

l o-is

opro

pylb

enzo

ate

C(C

)Cc1

cccc

c1C

(=O

)OC

-2.5

-2.6

0.1

49.9

60%

dio

xane

3176

Met

hyl o

-isop

ropy

lben

zoat

eC

(C)C

c1cc

ccc1

C(=

O)O

C-2

.3-2

.40.

160

60%

dio

xane

3177

Met

hyl o

-isop

ropy

lben

zoat

eC

(C)C

c1cc

ccc1

C(=

O)O

C-2

-2.3

0.3

7060

% d

ioxa

ne31

78M

ethy

l o-(t

-but

yl)b

enzo

ate

C(C

)(C)C

c1cc

ccc1

C(=

O)O

C-3

.1-1

.7-1

.411

4.6

60%

dio

xane

3179

Met

hyl o

-(t-b

utyl

)ben

zoat

eC

(C)(C

)Cc1

cccc

c1C

(=O

)OC

-2.7

-1.6

-1.1

124.

160

% d

ioxa

ne31

80M

ethy

l o-(t

-but

yl)b

enzo

ate

C(C

)(C)C

c1cc

ccc1

C(=

O)O

C-2

.5-1

.5-1

133.

760

% d

ioxa

ne31

81M

ethy

l o-(t

-but

yl)b

enzo

ate

C(C

)(C)C

c1cc

ccc1

C(=

O)O

C-2

.2-1

.4-0

.814

4.3

60%

dio

xane

3182

Ethy

l ben

zoat

ec1

cccc

c1C

(=O

)OC

C-2

-1.7

-0.3

3060

% d

ioxa

ne19

83Et

hyl b

enzo

ate

c1cc

ccc1

C(=

O)O

CC

-2.3

-2.2

-0.1

3070

% d

ioxa

ne19

84Et

hyl p

-nitr

oben

zoat

ec1

cc(N

(=O

)=O

)ccc

1C(=

O)O

CC

-1.2

-1.1

-0.2

3060

% d

ioxa

ne19

85Et

hyl p

-nitr

oben

zoat

ec1

cc(N

(=O

)=O

)ccc

1C(=

O)O

CC

-1.3

-1.2

-0.1

3070

% d

ioxa

ne19

86Be

nzyl

ben

zoat

ec1

cccc

c1C

(=O

)OC

c2cc

ccc2

-1.9

-1-0

.930

50%

dio

xane

1987

Benz

yl b

enzo

ate

c1cc

ccc1

C(=

O)O

Cc2

cccc

c2-2

.1-1

.5-0

.630

70%

dio

xane

1988

Met

hyl n

icot

inat

ec1

nccc

c1C

(=O

)OC

-0.9

-10.

110

65%

dio

xane

1989

Met

hyl p

icol

inat

en1

cccc

c1C

(=O

)OC

-0.7

-0.7

010

65%

dio

xane

1990

Met

hyl i

soni

cotin

ate

c1cn

ccc1

C(=

O)O

C-0

.1-0

.90.

810

65%

dio

xane

19

Page 154: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

147

TA

BLE

5: A

LKAL

INE

HYDR

OLY

SIS

OF

ESTE

RS IN

ACE

TONI

TRIL

E-W

ATER

MIX

ED S

OLV

ENTS

AT

VARI

OUS

TEM

PERA

TURE

.

Obs

erve

dC

alcu

late

dEs

ters

SMILE

Slo

gklo

gkD

iff.

Tem

pera

ture

Solv

ents

Ref

eren

ces

1p-

Toly

l p-d

imet

hyla

min

oben

zoat

ec1

cc(N

(C)C

)ccc

1C(=

O)O

c2cc

c(C

)cc2

-3.1

-2.6

-0.5

2533

% A

ceto

nitri

le40

2p-

Toly

l p-m

ethy

lben

zoat

ec1

cc(C

)ccc

1C(=

O)O

c2cc

c(C

)cc2

-1.9

-1.6

-0.2

2533

% A

ceto

nitri

le40

3p-

Toly

l ben

zoat

ec1

cccc

c1C

(=O

)Oc2

ccc(

C)c

c2-1

.5-1

-0.4

2533

% A

ceto

nitri

le40

4p-

Toly

l p-c

hlor

oben

zoat

ec1

cc(C

l)ccc

1C(=

O)O

c2cc

c(C

)cc2

-1-1

025

33%

Ace

toni

trile

405

p-To

lyl p

-nitr

oben

zoat

ec1

cc(N

(=O

)=O

)ccc

1C(=

O)O

c2cc

c(C

)cc2

0.2

-0.1

0.2

2533

% A

ceto

nitri

le40

6Ph

enyl

p-d

imet

hyla

min

oben

zoat

ec1

cc(N

(C)C

)ccc

1C(=

O)O

c2cc

ccc2

-2.9

-2.5

-0.5

2533

% A

ceto

nitri

le40

7Ph

enyl

p-m

ethy

lben

zoat

ec1

cc(C

)ccc

1C(=

O)O

c2cc

ccc2

-1.6

-1.5

-0.2

2533

% A

ceto

nitri

le40

8Ph

enyl

ben

zoat

ec1

cccc

c1C

(=O

)Oc2

cccc

c2-1

.3-0

.9-0

.325

33%

Ace

toni

trile

409

Phen

yl p

-chl

orob

enzo

ate

c1cc

(Cl)c

cc1C

(=O

)Oc2

cccc

c2-0

.8-0

.80.

125

33%

Ace

toni

trile

4010

Phen

yl p

-nitr

oben

zoat

ec1

cc(N

(=O

)=O

)ccc

1C(=

O)O

c2cc

ccc2

0.3

0.1

0.2

2533

% A

ceto

nitri

le40

11p-

Chl

orop

heny

l p-m

ethy

lben

zoat

ec1

cc(C

)ccc

1C(=

O)O

c2cc

c(C

l)cc2

-1.3

-1.3

025

33%

Ace

toni

trile

4012

p-C

hlor

ophe

nyl b

enzo

ate

c1cc

ccc1

C(=

O)O

c2cc

c(C

l)cc2

-0.9

-0.8

-0.2

2533

% A

ceto

nitri

le40

13p-

Chl

orop

heny

l p-c

hlor

oben

zoat

ec1

cc(C

l)ccc

1C(=

O)O

c2cc

c(C

l)cc2

-0.5

-0.7

0.2

2533

% A

ceto

nitri

le40

14p-

Chl

orop

heny

l p-n

itrob

enzo

ate

c1cc

(N(=

O)=

O)c

cc1C

(=O

)Oc2

ccc(

Cl)c

c20.

70.

20.

425

33%

Ace

toni

trile

4015

m-N

itrop

heny

l p-d

imet

hyla

min

oben

zoat

ec1

cc(N

(C)C

)ccc

1C(=

O)O

c2cc

(N(=

O)=

O)c

cc2

-2.1

-1.9

-0.2

2533

% A

ceto

nitri

le40

16m

-Nitr

ophe

nyl p

-met

hylb

enzo

ate

c1cc

(C)c

cc1C

(=O

)Oc2

cc(N

(=O

)=O

)ccc

2-0

.7-0

.90.

125

33%

Ace

toni

trile

4017

m-N

itrop

heny

l ben

zoat

ec1

cccc

c1C

(=O

)Oc2

cc(N

(=O

)=O

)ccc

2-0

.3-0

.30

2533

% A

ceto

nitri

le40

18m

-Nitr

ophe

nyl p

-chl

orob

enzo

ate

c1cc

(Cl)c

cc1C

(=O

)Oc2

cc(N

(=O

)=O

)ccc

20.

1-0

.20.

325

33%

Ace

toni

trile

4019

m-N

itrop

heny

l p-n

itrob

enzo

ate

c1cc

(N(=

O)=

O)c

cc1C

(=O

)Oc2

cc(N

(=O

)=O

)ccc

21.

20.

70.

525

33%

Ace

toni

trile

4020

p-N

itrop

heny

l p-d

imet

hyla

min

oben

zoat

ec1

cc(N

(C)C

)ccc

1C(=

O)O

c2cc

c(N

(=O

)=O

)cc2

-1.8

-1.8

-0.1

2533

% A

ceto

nitri

le40

21p-

Nitr

ophe

nyl p

-met

hylb

enzo

ate

c1cc

(C)c

cc1C

(=O

)Oc2

ccc(

N(=

O)=

O)c

c2-0

.5-0

.80.

325

33%

Ace

toni

trile

4022

p-N

itrop

heny

l ben

zoat

ec1

cccc

c1C

(=O

)Oc2

ccc(

N(=

O)=

O)c

c2-0

.1-0

.20.

125

33%

Ace

toni

trile

4023

p-N

itrop

heny

l p-c

hlor

oben

zoat

ec1

cc(C

l)ccc

1C(=

O)O

c2cc

c(N

(=O

)=O

)cc2

0.3

-0.1

0.4

2533

% A

ceto

nitri

le40

24p-

Nitr

ophe

nyl p

-nitr

oben

zoat

ec1

cc(N

(=O

)=O

)ccc

1C(=

O)O

c2cc

c(N

(=O

)=O

)cc2

1.4

0.8

0.7

2533

% A

ceto

nitri

le40

Page 155: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

148

TAB

LE 6

: ACI

D-CA

TALY

ZED

HYDR

OLY

SIS

OF

ESTE

RS IN

WAT

ER

obse

rved

ca

lcul

ated

Este

rsSM

ILES

stri

nglo

gklo

gkD

iffer

ence

Tem

pera

ture

Solv

ents

Ref

eren

ces

1Et

hyl a

ceta

te'C

C(=

O)O

CC

',-4

-3.9

-0.1

25w

ater

3, 1

2, 1

3, 4

12

Ethy

l pro

pion

ate

'CCC

(=O

)OCC

',-4

-4.3

0.2

25w

ater

3, 1

2, 1

3, 4

13

Ethy

l cyc

lo-b

utyl

car

boxy

late

'C1C

CC1C

(=O

)OCC

',-4

-4.7

0.7

25w

ater

3, 1

2, 1

3, 4

14

Ethy

l but

yrat

e'C

CCC(

=O)O

CC',

-4.3

-4.4

0.1

25w

ater

3, 1

2, 1

3, 4

15

Ethy

l pen

tate

'CCC

CC(=

O)O

CC',

-4.4

-4.5

0.1

25w

ater

3, 1

2, 1

3, 4

16

Ethy

l hex

anoa

te'C

CCCC

C(=O

)OCC

',-4

.4-4

.50.

125

wat

er3,

12,

13,

41

7Et

hyl i

so-h

exan

oate

'CC

(C)C

CC

(=O

)OC

C',

-4.3

-4.4

0.1

25w

ater

3, 1

2, 1

3, 4

18

Ethy

l (he

ptyl

)ace

tate

'CCC

CCCC

CC(=

O)O

CC',

-4.3

-4.5

0.2

25w

ater

3, 1

2, 1

3, 4

19

Ethy

l (t-b

utyl

)pro

pion

ate

'CC

(C)(C

)CC

C(=

O)O

CC

',-4

.3-4

.90.

625

wat

er3,

12,

13,

41

10Et

hyl s

ec-b

utyr

ate

'CC

(C)C

(=O

)OC

C',

-4.4

-4.6

0.2

25w

ater

3, 1

2, 1

3, 4

111

Ethy

l cyc

lope

ntat

e'C

1CCC

C1C(

=O)O

CC',

-4.5

-50.

525

wat

er3,

12,

13,

41

12Et

hyl c

yclo

hexa

noat

e'C

1CCC

CC1C

(=O

)OCC

',-4

.8-5

.10.

325

wat

er3,

12,

13,

41

13Et

hyl i

so-p

enta

te'C

C(C

)CC

(=O

)OC

C',

-4.9

-4.6

-0.3

25w

ater

3, 1

2, 1

3, 4

114

Ethy

l cyc

lohe

xyl-a

ceta

te'C

1CCC

CC1C

C(=O

)OCC

',-4

.9-4

.8-0

.125

wat

er3,

12,

13,

41

15Et

hyl s

ec-p

enta

te'C

CC

(C)C

(=O

)OC

C',

-5.1

-5.1

025

wat

er3,

12,

13,

41

16Et

hyl c

yclo

hept

yl-c

arbo

xyla

te'C

1CCC

CCC1

C(=O

)OCC

',-5

-5.1

0.1

25w

ater

3, 1

2, 1

3, 4

117

Ethy

l neo

pent

ate

'CC

(C)(C

)C(=

O)O

CC

',-5

.5-5

.2-0

.325

wat

er3,

12,

13,

41

18Et

hyl (

t-but

yl)a

ceta

te'C

C(C

)(C)C

C(=

O)O

CC

',-5

.7-5

.4-0

.325

wat

er3,

12,

13,

41

19Et

hyl (

t-but

yl)-s

ec-b

utyr

ate

'CC

(C)(C

)CC

(C)C

(=O

)OC

C',

-5.8

-5.7

-0.1

25w

ater

3, 1

2, 1

3, 4

120

Ethy

l (2-

ethy

l)but

yrat

e'C

CC

(CC

)C(=

O)O

CC

',-5

.9-5

.9-0

.125

wat

er3,

12,

13,

41

21Et

hyl (

2-pr

opyl

)pen

tate

'CCC

C(CC

C)C(

=O)O

CC',

-6.1

-6.2

0.2

25w

ater

3, 1

2, 1

3, 4

122

Ethy

l (2-

isob

utyl

-4-m

ethy

l)pen

tate

'CC

(C)C

C(C

C(C

)C)C

(=O

)OC

C',

-6.4

-6.7

0.2

25w

ater

3, 1

2, 1

3, 4

123

Ethy

l (t-b

utyl

)neo

pent

ate

'CC

(C)(C

)CC

(C)(C

)C(=

O)O

CC

',-6

.5-6

.5-0

.125

wat

er3,

12,

13,

41

24Et

hyl (

2-ne

open

tyl-4

,4-d

imet

hyl)p

enta

te'C

C(C

)(C)C

C(C

C(C

)(C)C

)C(=

O)O

CC

',-7

.2-7

.10

25w

ater

3, 1

2, 1

3, 4

125

Ethy

l (t-b

utyl

)isop

ropi

onat

e'C

C(C

)(C)C

(C)C

(=O

)OC

C',

-7.3

-6.6

-0.7

25w

ater

3, 1

2, 1

3, 4

126

Ethy

l (t-b

utyl

)t-bu

tyra

te'C

C(C

)(C)C

(C)(C

)C(=

O)O

CC

',-7

.9-7

.1-0

.825

wat

er3,

12,

13,

41

27Et

hyl (

2,2-

diet

hyl)b

utyr

ate

'CC

C(C

C)(C

C)C

(=O

)OC

C',

-7.8

-6.8

-125

wat

er3,

12,

13,

41

28(m

ethy

l) (n

eope

ntyl

) (t-b

utyl

)CC

(=O

)OC

C'C

C(C

)(C)C

C(C

)(C(C

)(C)C

)C(=

O)O

CC

',-8

-8.4

0.4

25w

ater

3, 1

2, 1

3, 4

129

Isop

ropy

l for

mat

e'C

(=O

)OC

(C)C

',-3

-3.5

0.5

25w

ater

3, 1

2, 1

3, 4

130

Isop

ropy

l ace

tate

'CC

(=O

)OC

(C)C

',-4

.2-4

.2-0

.125

wat

er3,

12,

13,

41

31Is

opro

pyl p

ropi

onat

e'C

CC

(=O

)OC

(C)C

',-4

.3-4

.50.

325

wat

er3,

12,

13,

41

32Is

opro

pyl c

hlor

oace

tate

'ClC

C(=

O)O

C(C

)C',

-4.4

-4.8

0.4

25w

ater

3, 1

2, 1

3, 4

133

Isop

ropy

l but

yrat

e'C

CC

C(=

O)O

C(C

)C',

-4.6

-4.7

0.1

25w

ater

3, 1

2, 1

3, 4

134

Isop

ropy

l pen

tate

'CC

CC

C(=

O)O

C(C

)C',

-4.6

-4.7

0.1

25w

ater

3, 1

2, 1

3, 4

135

Isop

ropy

l hex

anoa

te'C

CCCC

C(=O

)OC(

C)C'

,-4

.6-4

.80.

125

wat

er3,

12,

13,

41

36Is

opro

pyl i

so-h

exan

oate

'CC

(C)C

CC

(=O

)OC

(C)C

',-4

.6-4

.70.

125

wat

er3,

12,

13,

41

37Is

opro

pyl p

heny

lace

tate

'c1cc

ccc1

CC

(=O

)OC

(C)C

',-4

.6-4

.80.

225

wat

er3,

12,

13,

41

Page 156: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

149

TAB

LE 6

: ACI

D-CA

TALY

ZED

HYDR

OLY

SIS

OF

ESTE

RS IN

WAT

ER

obse

rved

ca

lcul

ated

Este

rsSM

ILES

stri

nglo

gklo

gkD

iffer

ence

Tem

pera

ture

Solv

ents

Ref

eren

ces

38Is

opro

pyl p

heny

lpro

pion

ate

'c1cc

ccc1

CC

C(=

O)O

C(C

)C',

-4.6

-4.8

0.2

25w

ater

3, 1

2, 1

3, 4

139

Isop

ropy

l phe

nylb

utyr

ate

'c1cc

ccc1

CC

CC

(=O

)OC

(C)C

',-4

.7-4

.70

25w

ater

3, 1

2, 1

3, 4

140

Isop

ropy

l iso

buty

rate

'CC

(C)C

(=O

)OC

(C)C

',-4

.7-4

.90.

225

wat

er3,

12,

13,

41

41Is

opro

pyl c

yclo

hexy

l-car

boxy

late

'C1C

CCCC

1C(=

O)O

C(C)

C',

-5-5

.30.

325

wat

er3,

12,

13,

41

42Is

opro

pyl i

sope

ntat

e'C

C(C

)CC

(=O

)OC

(C)C

',-5

.1-4

.9-0

.325

wat

er3,

12,

13,

41

43Is

opro

pyl c

yclo

hexy

lace

tate

'C1C

CCCC

1CC(

=O)O

C(C)

C',

-5.2

-5-0

.225

wat

er3,

12,

13,

41

44Is

opro

pyl (

2-et

hyl)p

ropi

onat

e'C

C(C

C)C

(=O

)OC

(C)C

',-5

.3-5

.40

25w

ater

3, 1

2, 1

3, 4

145

Isop

ropy

l (2,

2-m

ethy

l-phe

nyl)a

ceta

te'c1

cccc

c1C

(C)C

(=O

)OC

(C)C

',-5

.4-5

.60.

225

wat

er3,

12,

13,

41

46Is

opro

pyl (

2,2-

ethy

l-phe

nyl)a

ceta

te'c1

cccc

c1C

(CC

)C(=

O)O

C(C

)C',

-5.7

-6.1

0.4

25w

ater

3, 1

2, 1

3, 4

147

Isop

ropy

l neo

pent

ate

'CC

(C)(C

)C(=

O)O

C(C

)C',

-5.8

-5.4

-0.3

25w

ater

3, 1

2, 1

3, 4

148

Isop

ropy

l (2,

2-di

phen

yl)a

ceta

te'c

1ccc

cc1C

(c1c

cccc

1)C

(=O

)OC

(C)C

',-6

-6.7

0.7

25w

ater

3, 1

2, 1

3, 4

149

Isop

ropy

l (2-

ethy

l)but

yrat

e'C

CC

(CC

)C(=

O)O

C(C

)C',

-6.2

-6.1

-0.1

25w

ater

3, 1

2, 1

3, 4

150

Isop

ropy

l (3-

phen

yl)2

-pro

peno

ate

'c1cc

ccc1

C=C

C(=

O)O

C(C

)C',

-6.2

-5.9

-0.3

25w

ater

3, 1

2, 1

3, 4

151

Isop

ropy

l tric

hlor

oace

tate

'ClC

(Cl)(

Cl)C

(=O

)OC

(C)C

',-6

.3-5

.8-0

.525

wat

er3,

12,

13,

41

52Is

opro

pyl b

enzo

ate

'c1cc

ccc1

C(=

O)O

C(C

)C',

-6.8

-6.2

-0.6

25w

ater

3, 1

2, 1

3, 4

153

Isop

ropy

l cyc

lobu

tyl-c

arbo

xyla

te'C

1CC

C1C

(=O

)OC

(C)C

',-4

.3-5

0.7

25w

ater

3, 1

2, 1

3, 4

154

Isop

ropy

l met

hoxy

acet

ate

'CO

CC

(=O

)OC

(C)C

',-4

.4-4

.90.

525

wat

er3,

12,

13,

41

55Is

opro

pyl b

rom

oace

tate

'BrC

C(=

O)O

C(C

)C',

-4.5

-4.9

0.4

25w

ater

3, 1

2, 1

3, 4

156

Isop

ropy

l thi

olpr

opio

nate

'CSC

C(=

O)O

C(C

)C',

-4.6

-4.9

0.3

25w

ater

3, 1

2, 1

3, 4

157

Isop

ropy

l iod

oace

tate

'ICC

(=O

)OC

(C)C

',-4

.6-4

.90.

325

wat

er3,

12,

13,

41

58CC

CCCC

CCC(

=O)O

C(C)

C'C

CCCC

CCCC

(=O

)OC(

C)C'

,-4

.5-4

.80.

225

wat

er3,

12,

13,

41

59Is

opro

pyl (

4,4-

dim

ethy

l)pen

tate

'CC

(C)(C

)CC

C(=

O)O

C(C

)C',

-4.6

-5.1

0.6

25w

ater

3, 1

2, 1

3, 4

160

Isop

ropy

l phe

noxy

-ace

tate

'c1cc

ccc1

OC

C(=

O)O

C(C

)C',

-4.5

-4.9

0.4

25w

ater

3, 1

2, 1

3, 4

161

Isop

ropy

l cyc

lope

ntyl

-car

boxy

late

'C1C

CC

C1C

(=O

)OC

(C)C

',-4

.7-5

.20.

525

wat

er3,

12,

13,

41

62Is

opro

pyl d

ifluo

roac

etat

e'F

C(F

)C(=

O)O

C(C

)C',

-4.9

-5.1

0.2

25w

ater

3, 1

2, 1

3, 4

163

Isop

ropy

l met

hoxy

prop

iona

te'C

OC

CC

(=O

)OC

(C)C

',-5

-4.8

-0.2

25w

ater

3, 1

2, 1

3, 4

164

Isop

ropy

l chl

orop

ropi

onat

e'C

lCC

C(=

O)O

C(C

)C',

-5.1

-4.7

-0.4

25w

ater

3, 1

2, 1

3, 4

165

Isop

ropy

l trif

luor

oace

tate

'FC

(F)(F

)C(=

O)O

C(C

)C',

-5.4

-5.6

0.2

25w

ater

3, 1

2, 1

3, 4

166

Isop

ropy

l cyc

lohe

ptyl

-car

boxy

late

'C1C

CCCC

C1C(

=O)O

C(C)

C',

-5.3

-5.3

025

wat

er3,

12,

13,

41

67Is

opro

pyl d

ichl

orac

etat

e'C

lC(C

l)C(=

O)O

C(C

)C',

-5.8

-5.2

-0.5

25w

ater

3, 1

2, 1

3, 4

168

Isop

ropy

l neo

pent

ate

'CC

(C)(C

)C(=

O)O

C(C

)C',

-5.9

-5.4

-0.5

25w

ater

3, 1

2, 1

3, 4

169

Isop

ropy

l (2-

neop

enty

l)pro

pion

ate

'CC

(CC

(C)(C

)C)C

(=O

)OC

(C)C

',-6

.1-5

.9-0

.125

wat

er3,

12,

13,

41

70Is

opro

pyl d

ibro

moa

ceta

te'B

rC(B

r)C(=

O)O

C(C

)C',

-6.1

-5.6

-0.5

25w

ater

3, 1

2, 1

3, 4

171

Isop

ropy

l (2-

prop

yl)p

enta

te'C

CC

C(C

CC

)C(=

O)O

C(C

)C',

-6.3

-6.5

0.2

25w

ater

3, 1

2, 1

3, 4

172

Isop

ropy

l trib

rom

oace

tate

'BrC

(Br)(

Br)C

(=O

)OC

(C)C

',-6

.6-6

.4-0

.325

wat

er3,

12,

13,

41

73Is

opro

pyl (

3,3-

met

hyl-n

eope

ntyl

)ace

tate

'CC

(C)(C

C(C

)(C)C

)C(=

O)O

C(C

)C',

-6.8

-6.7

-0.1

25w

ater

3, 1

2, 1

3, 4

174

Isop

ropy

l (3-

neop

enty

l-4,4

-dim

ethy

l)pen

tate

'CC

(C)(C

)CC

(CC

(C)(C

)C)C

(=O

)OC

(C)C

',-7

.4-7

.40

25w

ater

3, 1

2, 1

3, 4

1

Page 157: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

150

TAB

LE 6

: ACI

D-CA

TALY

ZED

HYDR

OLY

SIS

OF

ESTE

RS IN

WAT

ER

obse

rved

ca

lcul

ated

Este

rsSM

ILES

stri

nglo

gklo

gkD

iffer

ence

Tem

pera

ture

Solv

ents

Ref

eren

ces

75Is

opro

pyl (

2-t-b

utyl

)pro

pion

ate

'CC

(C(C

)(C)C

)C(=

O)O

C(C

)C',

-7.5

-6.8

-0.7

25w

ater

3, 1

2, 1

3, 4

176

Isop

ropy

l (2,

2-m

ethy

l-t-b

utyl

)pro

pion

ate

'CC

(C)(C

(C)(C

)C)C

(=O

)OC

(C)C

',-8

.1-7

.4-0

.725

wat

er3,

12,

13,

41

77Is

opro

pyl (

2,2-

diet

hyl)b

utyr

ate

'CC

C(C

C)(C

C)C

(=O

)OC

(C)C

',-8

-7.1

-0.9

25w

ater

3, 1

2, 1

3, 4

178

(met

hyl)

(neo

pent

yl) (

t-but

yl)C

C(=

O)O

C(C

)C'C

C(C

)(C)C

C(C

)(C(C

)(C)C

)C(=

O)O

C(C

)C',

-8.2

-8.6

0.4

25w

ater

3, 1

2, 1

3, 4

179

n-Bu

tyl f

orm

ate

'C(=

O)O

CCCC

',-2

.8-3

.50.

725

wat

er3,

12,

13,

41

80n-

Buty

l ace

tate

'CC(

=O)O

CCCC

',-4

-4-0

.125

wat

er3,

12,

13,

41

81n-

Buty

l pro

pion

ate

'CCC

(=O

)OCC

CC',

-4.1

-4.3

0.2

25w

ater

3, 1

2, 1

3, 4

182

n-Bu

tyl c

hlor

oace

tate

'ClC

C(=O

)OCC

CC',

-4.2

-4.6

0.4

25w

ater

3, 1

2, 1

3, 4

183

n-Bu

tyl b

utyr

ate

'CCC

C(=O

)OCC

CC',

-4.4

-4.5

0.1

25w

ater

3, 1

2, 1

3, 4

184

n-Bu

tyl p

enta

te'C

CCCC

(=O

)OCC

CC',

-4.4

-4.5

0.1

25w

ater

3, 1

2, 1

3, 4

185

n-Bu

tyl h

exan

oate

'CCC

CCC(

=O)O

CCCC

',-4

.4-4

.60.

125

wat

er3,

12,

13,

41

86n-

Buty

l iso

-hex

anoa

te'C

C(C)

CCC(

=O)O

CCCC

',-4

.4-4

.50.

125

wat

er3,

12,

13,

41

87n-

Buty

l phe

nyla

ceta

te'c1

cccc

c1C

C(=

O)O

CC

CC

',-4

.4-4

.60.

225

wat

er3,

12,

13,

41

88n-

Buty

l phe

nylp

ropi

onat

e'c1

cccc

c1C

CC

(=O

)OC

CC

C',

-4.5

-4.6

0.2

25w

ater

3, 1

2, 1

3, 4

189

n-Bu

tyl p

heny

lbut

yrat

e'c1

cccc

c1C

CC

C(=

O)O

CC

CC

',-4

.5-4

.50

25w

ater

3, 1

2, 1

3, 4

190

n-Bu

tyl i

sobu

tyra

te'C

C(C

)C(=

O)O

CC

CC

',-4

.5-4

.70.

225

wat

er3,

12,

13,

41

91n-

Buty

l cyc

lohe

xyl-c

arbo

xyla

te'C

1CCC

CC1C

(=O

)OCC

CC',

-4.8

-5.1

0.3

25w

ater

3, 1

2, 1

3, 4

192

n-Bu

tyl i

sope

ntat

e'C

C(C)

CC(=

O)O

CCCC

',-5

-4.7

-0.3

25w

ater

3, 1

2, 1

3, 4

193

n-Bu

tyl c

yclo

hexy

lace

tate

'C1C

CCCC

1CC(

=O)O

CCCC

',-5

-4.8

-0.2

25w

ater

3, 1

2, 1

3, 4

194

n-Bu

tyl (

2-et

hyl)p

ropi

onat

e'C

C(CC

)C(=

O)O

CCCC

',-5

.2-5

.20

25w

ater

3, 1

2, 1

3, 4

195

n-Bu

tyl (

2,2-

met

hyl-p

heny

l)ace

tate

'c1cc

ccc1

C(C

)C(=

O)O

CC

CC

',-5

.2-5

.40.

225

wat

er3,

12,

13,

41

96n-

Buty

l (2,

2-et

hyl-p

heny

l)ace

tate

'c1cc

ccc1

C(C

C)C

(=O

)OC

CC

C',

-5.5

-5.9

0.4

25w

ater

3, 1

2, 1

3, 4

197

n-Bu

tyl n

eope

ntat

e'C

C(C

)(C)C

(=O

)OC

CC

C',

-5.6

-5.2

-0.3

25w

ater

3, 1

2, 1

3, 4

198

n-Bu

tyl (

2,2-

diph

enyl

)ace

tate

'c1c

cccc

1C(c

1ccc

cc1)

C(=

O)O

CC

CC

',-5

.8-6

.50.

725

wat

er3,

12,

13,

41

99n-

Buty

l (2-

ethy

l)but

yrat

e'C

CC(C

C)C(

=O)O

CCCC

',-6

-5.9

-0.1

25w

ater

3, 1

2, 1

3, 4

110

0n-

Buty

l (3-

phen

yl)2

-pro

peno

ate

'c1cc

ccc1

C=C

C(=

O)O

CC

CC

',-6

-5.7

-0.3

25w

ater

3, 1

2, 1

3, 4

110

1n-

Buty

l tric

hlor

oace

tate

'ClC

(Cl)(

Cl)C

(=O

)OC

CC

C',

-6.1

-5.6

-0.5

25w

ater

3, 1

2, 1

3, 4

110

2n-

Buty

l ben

zoat

e'c1

cccc

c1C

(=O

)OC

CC

C',

-6.6

-6-0

.625

wat

er3,

12,

13,

41

103

n-Bu

tyl c

yclo

buty

l-car

boxy

late

'C1C

CC1C

(=O

)OCC

CC',

-4.1

-4.8

0.7

25w

ater

3, 1

2, 1

3, 4

110

4n-

Buty

l met

hoxy

acet

ate

'CO

CC(=

O)O

CCCC

',-4

.2-4

.70.

525

wat

er3,

12,

13,

41

105

n-Bu

tyl b

rom

oace

tate

'BrC

C(=

O)O

CC

CC

',-4

.3-4

.70.

425

wat

er3,

12,

13,

41

106

n-Bu

tyl t

hiol

prop

iona

te'C

SCC(

=O)O

CCCC

',-4

.4-4

.70.

325

wat

er3,

12,

13,

41

107

n-Bu

tyl i

odoa

ceta

te'IC

C(=O

)OCC

CC',

-4.4

-4.7

0.3

25w

ater

3, 1

2, 1

3, 4

110

8CC

CCCC

CCC(

=O)O

CCCC

'CCC

CCCC

CC(=

O)O

CCCC

',-4

.4-4

.60.

225

wat

er3,

12,

13,

41

109

n-Bu

tyl (

4,4-

dim

ethy

l)pen

tate

'CC

(C)(C

)CC

C(=

O)O

CC

CC

',-4

.4-5

0.6

25w

ater

3, 1

2, 1

3, 4

111

0n-

Buty

l phe

noxy

-ace

tate

'c1cc

ccc1

OC

C(=

O)O

CC

CC

',-4

.4-4

.70.

425

wat

er3,

12,

13,

41

111

n-Bu

tyl c

yclo

pent

yl-c

arbo

xyla

te'C

1CCC

C1C(

=O)O

CCCC

',-4

.5-5

0.5

25w

ater

3, 1

2, 1

3, 4

1

Page 158: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

151

TAB

LE 6

: ACI

D-CA

TALY

ZED

HYDR

OLY

SIS

OF

ESTE

RS IN

WAT

ER

obse

rved

ca

lcul

ated

Este

rsSM

ILES

stri

nglo

gklo

gkD

iffer

ence

Tem

pera

ture

Solv

ents

Ref

eren

ces

112

n-Bu

tyl d

ifluo

roac

etat

e'F

C(F

)C(=

O)O

CC

CC

',-4

.7-4

.90.

225

wat

er3,

12,

13,

41

113

n-Bu

tyl m

etho

xypr

opio

nate

'CO

CCC(

=O)O

CCCC

',-4

.8-4

.6-0

.225

wat

er3,

12,

13,

41

114

n-Bu

tyl c

hlor

opro

pion

ate

'ClC

CC(=

O)O

CCCC

',-4

.9-4

.5-0

.425

wat

er3,

12,

13,

41

115

n-Bu

tyl t

riflu

oroa

ceta

te'F

C(F

)(F)C

(=O

)OC

CC

C',

-5.2

-5.4

0.2

25w

ater

3, 1

2, 1

3, 4

111

6n-

Buty

l cyc

lohe

ptyl

-car

boxy

late

'C1C

CCCC

C1C(

=O)O

CCCC

',-5

.1-5

.10

25w

ater

3, 1

2, 1

3, 4

111

7n-

Buty

l dic

hlor

acet

ate

'ClC

(Cl)C

(=O

)OC

CC

C',

-5.6

-5-0

.525

wat

er3,

12,

13,

41

118

n-Bu

tyl n

eope

ntat

e'C

C(C

)(C)C

(=O

)OC

CC

C',

-5.8

-5.2

-0.5

25w

ater

3, 1

2, 1

3, 4

111

9n-

Buty

l (2-

neop

enty

l)pro

pion

ate

'CC

(CC

(C)(C

)C)C

(=O

)OC

CC

C',

-5.9

-5.7

-0.1

25w

ater

3, 1

2, 1

3, 4

112

0n-

Buty

l dib

rom

oace

tate

'BrC

(Br)C

(=O

)OC

CC

C',

-5.9

-5.4

-0.5

25w

ater

3, 1

2, 1

3, 4

112

1n-

Buty

l (2-

prop

yl)p

enta

te'C

CCC(

CCC)

C(=O

)OCC

CC',

-6.1

-6.3

0.2

25w

ater

3, 1

2, 1

3, 4

112

2n-

Buty

l trib

rom

oace

tate

'BrC

(Br)(

Br)C

(=O

)OC

CC

C',

-6.5

-6.2

-0.3

25w

ater

3, 1

2, 1

3, 4

112

3n-

Buty

l (3,

3-m

ethy

l-neo

pent

yl)a

ceta

te'C

C(C

)(CC

(C)(C

)C)C

(=O

)OC

CC

C',

-6.6

-6.5

-0.1

25w

ater

3, 1

2, 1

3, 4

112

4n-

Buty

l (3-

neop

enty

l-4,4

-dim

ethy

l)pen

tate

'CC

(C)(C

)CC

(CC

(C)(C

)C)C

(=O

)OC

CC

C',

-7.2

-7.2

025

wat

er3,

12,

13,

41

125

n-Bu

tyl (

2-t-b

utyl

)pro

pion

ate

'CC

(C(C

)(C)C

)C(=

O)O

CC

CC

',-7

.4-6

.7-0

.725

wat

er3,

12,

13,

41

126

n-Bu

tyl (

2,2-

met

hyl-t

-but

yl)p

ropi

onat

e'C

C(C

)(C(C

)(C)C

)C(=

O)O

CC

CC

',-7

.9-7

.2-0

.725

wat

er3,

12,

13,

41

127

n-Bu

tyl (

2,2-

diet

hyl)b

utyr

ate

'CCC

(CC)

(CC)

C(=O

)OCC

CC',

-7.8

-6.9

-0.9

25w

ater

3, 1

2, 1

3, 4

112

8(m

ethy

l) (n

eope

ntyl

) (t-b

utyl

)CC

(=O

)OC

CC

C'C

C(C

)(C)C

C(C

)(C(C

)(C)C

)C(=

O)O

CC

CC

',-8

-8.4

0.4

25w

ater

3, 1

2, 1

3, 4

112

9Pr

opyl

form

ate

'C(=

O)O

CC

C',

-2.8

-3.5

0.7

25w

ater

3, 1

2, 1

3, 4

113

0Pr

opyl

ace

tate

'CC(

=O)O

CCC'

,-4

-4-0

.125

wat

er3,

12,

13,

41

131

Prop

yl p

ropi

onat

e'C

CC(=

O)O

CCC'

,-4

.1-4

.30.

225

wat

er3,

12,

13,

41

132

Prop

yl c

hlor

oace

tate

'ClC

C(=O

)OCC

C',

-4.2

-4.6

0.4

25w

ater

3, 1

2, 1

3, 4

113

3Pr

opyl

but

yrat

e'C

CCC(

=O)O

CCC'

,-4

.4-4

.50.

125

wat

er3,

12,

13,

41

134

Prop

yl p

enta

te'C

CCCC

(=O

)OCC

C',

-4.4

-4.5

0.1

25w

ater

3, 1

2, 1

3, 4

113

5Pr

opyl

hex

anoa

te'C

CCCC

C(=O

)OCC

C',

-4.4

-4.5

0.1

25w

ater

3, 1

2, 1

3, 4

113

6Pr

opyl

iso-

hexa

noat

e'C

C(C)

CCC(

=O)O

CCC'

,-4

.4-4

.50.

125

wat

er3,

12,

13,

41

137

Prop

yl p

heny

lace

tate

'c1cc

ccc1

CC

(=O

)OC

CC

',-4

.4-4

.60.

225

wat

er3,

12,

13,

41

138

Prop

yl p

heny

lpro

pion

ate

'c1cc

ccc1

CC

C(=

O)O

CC

C',

-4.5

-4.6

0.2

25w

ater

3, 1

2, 1

3, 4

113

9Pr

opyl

phe

nylb

utyr

ate

'c1cc

ccc1

CC

CC

(=O

)OC

CC

',-4

.5-4

.50

25w

ater

3, 1

2, 1

3, 4

114

0Pr

opyl

isob

utyr

ate

'CC

(C)C

(=O

)OC

CC

',-4

.5-4

.70.

225

wat

er3,

12,

13,

41

141

Prop

yl c

yclo

hexy

l-car

boxy

late

'C1C

CCCC

1C(=

O)O

CCC'

,-4

.8-5

.10.

325

wat

er3,

12,

13,

41

142

Prop

yl is

open

tate

'CC

(C)C

C(=

O)O

CC

C',

-5-4

.7-0

.325

wat

er3,

12,

13,

41

143

Prop

yl c

yclo

hexy

lace

tate

'C1C

CCCC

1CC(

=O)O

CCC'

,-5

-4.8

-0.2

25w

ater

3, 1

2, 1

3, 4

114

4Pr

opyl

(2-e

thyl

)pro

pion

ate

'CC

(CC

)C(=

O)O

CC

C',

-5.2

-5.2

025

wat

er3,

12,

13,

41

145

Prop

yl (2

,2-m

ethy

l-phe

nyl)a

ceta

te'c1

cccc

c1C

(C)C

(=O

)OC

CC

',-5

.2-5

.40.

225

wat

er3,

12,

13,

41

146

Prop

yl (2

,2-e

thyl

-phe

nyl)a

ceta

te'c1

cccc

c1C

(CC

)C(=

O)O

CC

C',

-5.5

-5.9

0.4

25w

ater

3, 1

2, 1

3, 4

114

7Pr

opyl

neo

pent

ate

'CC

(C)(C

)C(=

O)O

CC

C',

-5.6

-5.2

-0.3

25w

ater

3, 1

2, 1

3, 4

1

Page 159: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

152

TAB

LE 6

: ACI

D-CA

TALY

ZED

HYDR

OLY

SIS

OF

ESTE

RS IN

WAT

ER

obse

rved

ca

lcul

ated

Este

rsSM

ILES

stri

nglo

gklo

gkD

iffer

ence

Tem

pera

ture

Solv

ents

Ref

eren

ces

148

Prop

yl (2

,2-d

iphe

nyl)a

ceta

te'c

1ccc

cc1C

(c1c

cccc

1)C

(=O

)OC

CC

',-5

.8-6

.50.

725

wat

er3,

12,

13,

41

149

Prop

yl (2

-eth

yl)b

utyr

ate

'CCC

(CC)

C(=O

)OCC

C',

-6-5

.9-0

.125

wat

er3,

12,

13,

41

150

Prop

yl (3

-phe

nyl)2

-pro

peno

ate

'c1cc

ccc1

C=C

C(=

O)O

CC

C',

-6-5

.7-0

.325

wat

er3,

12,

13,

41

151

Prop

yl tr

ichl

oroa

ceta

te'C

lC(C

l)(C

l)C(=

O)O

CC

C',

-6.1

-5.6

-0.5

25w

ater

3, 1

2, 1

3, 4

115

2Pr

opyl

ben

zoat

e'c1

cccc

c1C

(=O

)OC

CC

',-6

.6-6

-0.6

25w

ater

3, 1

2, 1

3, 4

115

3Pr

opyl

cyc

lobu

tyl-c

arbo

xyla

te'C

1CCC

1C(=

O)O

CCC'

,-4

.1-4

.80.

725

wat

er3,

12,

13,

41

154

Prop

yl m

etho

xyac

etat

e'C

OCC

(=O

)OCC

C',

-4.2

-4.7

0.4

25w

ater

3, 1

2, 1

3, 4

115

5Pr

opyl

bro

moa

ceta

te'B

rCC

(=O

)OC

CC

',-4

.3-4

.70.

425

wat

er3,

12,

13,

41

156

Prop

yl th

iolp

ropi

onat

e'C

SCC(

=O)O

CCC'

,-4

.4-4

.70.

325

wat

er3,

12,

13,

41

157

Prop

yl io

doac

etat

e'IC

C(=O

)OCC

C',

-4.4

-4.7

0.3

25w

ater

3, 1

2, 1

3, 4

115

8CC

CCCC

CCC(

=O)O

CCC

'CCC

CCCC

CC(=

O)O

CCC'

,-4

.4-4

.60.

225

wat

er3,

12,

13,

41

159

Prop

yl (4

,4-d

imet

hyl)p

enta

te'C

C(C

)(C)C

CC

(=O

)OC

CC

',-4

.4-4

.90.

625

wat

er3,

12,

13,

41

160

Prop

yl p

heno

xy-a

ceta

te'c1

cccc

c1O

CC

(=O

)OC

CC

',-4

.4-4

.70.

325

wat

er3,

12,

13,

41

161

Prop

yl c

yclo

pent

yl-c

arbo

xyla

te'C

1CCC

C1C(

=O)O

CCC'

,-4

.5-5

0.5

25w

ater

3, 1

2, 1

3, 4

116

2Pr

opyl

difl

uoro

acet

ate

'FC

(F)C

(=O

)OC

CC

',-4

.7-4

.90.

225

wat

er3,

12,

13,

41

163

Prop

yl m

etho

xypr

opio

nate

'CO

CCC(

=O)O

CCC'

,-4

.8-4

.6-0

.225

wat

er3,

12,

13,

41

164

Prop

yl c

hlor

opro

pion

ate

'ClC

CC(=

O)O

CCC'

,-4

.9-4

.5-0

.425

wat

er3,

12,

13,

41

165

Prop

yl tr

ifluo

roac

etat

e'F

C(F

)(F)C

(=O

)OC

CC

',-5

.2-5

.40.

225

wat

er3,

12,

13,

41

166

Prop

yl c

yclo

hept

yl-c

arbo

xyla

te'C

1CCC

CCC1

C(=O

)OCC

C',

-5.1

-5.1

025

wat

er3,

12,

13,

41

167

Prop

yl d

ichl

orac

etat

e'C

lC(C

l)C(=

O)O

CC

C',

-5.6

-5-0

.625

wat

er3,

12,

13,

41

168

Prop

yl n

eope

ntat

e'C

C(C

)(C)C

(=O

)OC

CC

',-5

.8-5

.2-0

.525

wat

er3,

12,

13,

41

169

Prop

yl (2

-neo

pent

yl)p

ropi

onat

e'C

C(C

C(C

)(C)C

)C(=

O)O

CC

C',

-5.9

-5.7

-0.2

25w

ater

3, 1

2, 1

3, 4

117

0Pr

opyl

dib

rom

oace

tate

'BrC

(Br)C

(=O

)OC

CC

',-5

.9-5

.4-0

.525

wat

er3,

12,

13,

41

171

Prop

yl (2

-pro

pyl)p

enta

te'C

CCC(

CCC)

C(=O

)OCC

C',

-6.1

-6.3

0.2

25w

ater

3, 1

2, 1

3, 4

117

2Pr

opyl

trib

rom

oace

tate

'BrC

(Br)(

Br)C

(=O

)OC

CC

',-6

.5-6

.2-0

.325

wat

er3,

12,

13,

41

173

Prop

yl (3

,3-m

ethy

l-neo

pent

yl)a

ceta

te'C

C(C

)(CC

(C)(C

)C)C

(=O

)OC

CC

',-6

.6-6

.5-0

.125

wat

er3,

12,

13,

41

174

Prop

yl (3

-neo

pent

yl-4

,4-d

imet

hyl)p

enta

te'C

C(C

)(C)C

C(C

C(C

)(C)C

)C(=

O)O

CC

C',

-7.2

-7.2

025

wat

er3,

12,

13,

41

175

Prop

yl (2

-t-bu

tyl)p

ropi

onat

e'C

C(C

(C)(C

)C)C

(=O

)OC

CC

',-7

.4-6

.6-0

.725

wat

er3,

12,

13,

41

176

Prop

yl (2

,2-m

ethy

l-t-b

utyl

)pro

pion

ate

'CC

(C)(C

(C)(C

)C)C

(=O

)OC

CC

',-7

.9-7

.2-0

.825

wat

er3,

12,

13,

41

177

Prop

yl (2

,2-d

ieth

yl)b

utyr

ate

'CC

C(C

C)(C

C)C

(=O

)OC

CC

',-7

.8-6

.9-1

25w

ater

3, 1

2, 1

3, 4

117

8(m

ethy

l) (n

eope

ntyl

) (t-b

utyl

)CC

(=O

)OC

CC

'CC

(C)(C

)CC

(C)(C

(C)(C

)C)C

(=O

)OC

C',

-8-8

.40.

325

wat

er3,

12,

13,

41

179

Met

hyl f

orm

ate

'C(=

O)O

C',

-2.7

-3.5

0.8

25w

ater

3, 1

2, 1

3, 4

118

0M

ethy

l ace

tate

'CC

(=O

)OC

',-4

-3.8

-0.2

25w

ater

3, 1

2, 1

3, 4

118

1M

ethy

l pro

pion

ate

'CC

C(=

O)O

C',

-4-4

.10.

125

wat

er3,

12,

13,

41

182

Met

hyl c

hlor

oace

tate

'ClC

C(=

O)O

C',

-4.2

-4.4

0.3

25w

ater

3, 1

2, 1

3, 4

118

3M

ethy

l but

yrat

e'C

CCC(

=O)O

C',

-4.3

-4.3

025

wat

er3,

12,

13,

41

184

Met

hyl p

enta

te'C

CCCC

(=O

)OC'

,-4

.3-4

.30

25w

ater

3, 1

2, 1

3, 4

1

Page 160: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

153

TAB

LE 6

: ACI

D-CA

TALY

ZED

HYDR

OLY

SIS

OF

ESTE

RS IN

WAT

ER

obse

rved

ca

lcul

ated

Este

rsSM

ILES

stri

nglo

gklo

gkD

iffer

ence

Tem

pera

ture

Solv

ents

Ref

eren

ces

185

Met

hyl h

exan

oate

'CCC

CCC(

=O)O

C',

-4.4

-4.4

025

wat

er3,

12,

13,

41

186

Met

hyl i

so-h

exan

oate

'CC

(C)C

CC

(=O

)OC

',-4

.3-4

.30

25w

ater

3, 1

2, 1

3, 4

118

7M

ethy

l phe

nyla

ceta

te'c1

cccc

c1C

C(=

O)O

C',

-4.3

-4.4

0.1

25w

ater

3, 1

2, 1

3, 4

118

8M

ethy

l phe

nylp

ropi

onat

e'c1

cccc

c1C

CC

(=O

)OC

',-4

.4-4

.40

25w

ater

3, 1

2, 1

3, 4

118

9M

ethy

l phe

nylb

utyr

ate

'c1cc

ccc1

CC

CC

(=O

)OC

',-4

.4-4

.3-0

.225

wat

er3,

12,

13,

41

190

Met

hyl i

sobu

tyra

te'C

C(C

)C(=

O)O

C',

-4.4

-4.5

0.1

25w

ater

3, 1

2, 1

3, 4

119

1M

ethy

l cyc

lohe

xyl-c

arbo

xyla

te'C

1CCC

CC1C

(=O

)OC'

,-4

.8-4

.90.

225

wat

er3,

12,

13,

41

192

Met

hyl i

sope

ntat

e'C

C(C

)CC

(=O

)OC

',-4

.9-4

.5-0

.425

wat

er3,

12,

13,

41

193

Met

hyl c

yclo

hexy

lace

tate

'C1C

CCCC

1CC(

=O)O

C',

-4.9

-4.6

-0.3

25w

ater

3, 1

2, 1

3, 4

119

4M

ethy

l (2-

ethy

l)pro

pion

ate

'CC

(CC

)C(=

O)O

C',

-5.1

-5-0

.125

wat

er3,

12,

13,

41

195

Met

hyl (

2,2-

met

hyl-p

heny

l)ace

tate

'c1cc

ccc1

C(C

)C(=

O)O

C',

-5.2

-5.2

025

wat

er3,

12,

13,

41

196

Met

hyl (

2,2-

ethy

l-phe

nyl)a

ceta

te'c1

cccc

c1C

(CC

)C(=

O)O

C',

-5.5

-5.7

0.3

25w

ater

3, 1

2, 1

3, 4

119

7M

ethy

l neo

pent

ate

'CC

(C)(C

)C(=

O)O

C',

-5.5

-5-0

.525

wat

er3,

12,

13,

41

198

Met

hyl (

2,2-

diph

enyl

)ace

tate

'c1c

cccc

1C(c

1ccc

cc1)

C(=

O)O

C',

-5.7

-6.3

0.6

25w

ater

3, 1

2, 1

3, 4

119

9M

ethy

l (2-

ethy

l)but

yrat

e'C

CC

(CC

)C(=

O)O

C',

-5.9

-5.7

-0.2

25w

ater

3, 1

2, 1

3, 4

120

0M

ethy

l (3-

phen

yl)2

-pro

peno

ate

'c1cc

ccc1

C=C

C(=

O)O

C',

-5.9

-5.5

-0.4

25w

ater

3, 1

2, 1

3, 4

120

1M

ethy

l tric

hlor

oace

tate

'ClC

(Cl)(

Cl)C

(=O

)OC

',-6

-5.4

-0.6

25w

ater

3, 1

2, 1

3, 4

120

2M

ethy

l ben

zoat

e'c

1ccc

cc1C

(=O

)OC

',-6

.5-5

.8-0

.725

wat

er3,

12,

13,

41

203

Met

hyl c

yclo

buty

l-car

boxy

late

'C1C

CC

1C(=

O)O

C',

-4-4

.60.

625

wat

er3,

12,

13,

41

204

Met

hyl m

etho

xyac

etat

e'C

OC

C(=

O)O

C',

-4.2

-4.5

0.3

25w

ater

3, 1

2, 1

3, 4

120

5M

ethy

l bro

moa

ceta

te'B

rCC

(=O

)OC

',-4

.2-4

.50.

225

wat

er3,

12,

13,

41

206

Met

hyl t

hiol

prop

iona

te'C

SCC

(=O

)OC

',-4

.3-4

.50.

225

wat

er3,

12,

13,

41

207

Met

hyl i

odoa

ceta

te'IC

C(=

O)O

C',

-4.3

-4.5

0.2

25w

ater

3, 1

2, 1

3, 4

120

8CC

CCCC

CCC(

=O)O

C'C

CCCC

CCCC

(=O

)OC'

,-4

.3-4

.40.

125

wat

er3,

12,

13,

41

209

Met

hyl (

4,4-

dim

ethy

l)pen

tate

'CC

(C)(C

)CC

C(=

O)O

C',

-4.3

-4.7

0.4

25w

ater

3, 1

2, 1

3, 4

121

0M

ethy

l phe

noxy

-ace

tate

'c1cc

ccc1

OC

C(=

O)O

C',

-4.3

-4.5

0.2

25w

ater

3, 1

2, 1

3, 4

121

1M

ethy

l cyc

lope

ntyl

-car

boxy

late

'C1C

CCC1

C(=O

)OCC

C',

-4.5

-50.

525

wat

er3,

12,

13,

41

212

Met

hyl d

ifluo

roac

etat

e'F

C(F

)C(=

O)O

C',

-4.6

-4.7

0.1

25w

ater

3, 1

2, 1

3, 4

121

3M

ethy

l met

hoxy

prop

iona

te'C

OCC

C(=O

)OC'

,-4

.7-4

.4-0

.425

wat

er3,

12,

13,

41

214

Met

hyl c

hlor

opro

pion

ate

'ClC

CC

(=O

)OC

',-4

.9-4

.3-0

.525

wat

er3,

12,

13,

41

215

Met

hyl t

riflu

oroa

ceta

te'F

C(F

)(F)C

(=O

)OC

',-5

.1-5

.20.

125

wat

er3,

12,

13,

41

216

Met

hyl c

yclo

hept

yl-c

arbo

xyla

te'C

1CCC

CCC1

C(=O

)OC'

,-5

.1-4

.9-0

.125

wat

er3,

12,

13,

41

217

Met

hyl d

ichl

orac

etat

e'C

lC(C

l)C(=

O)O

C',

-5.5

-4.8

-0.7

25w

ater

3, 1

2, 1

3, 4

121

8M

ethy

l neo

pent

ate

'CC

(C)(C

)C(=

O)O

C',

-5.7

-5-0

.725

wat

er3,

12,

13,

41

219

Met

hyl (

2-ne

open

tyl)p

ropi

onat

e'C

C(C

C(C

)(C)C

)C(=

O)O

C',

-5.8

-5.5

-0.3

25w

ater

3, 1

2, 1

3, 4

122

0M

ethy

l dib

rom

oace

tate

'BrC

(Br)C

(=O

)OC

',-5

.8-5

.2-0

.625

wat

er3,

12,

13,

41

221

Met

hyl (

2-pr

opyl

)pen

tate

'CCC

C(CC

C)C(

=O)O

C',

-6.1

-6.1

025

wat

er3,

12,

13,

41

Page 161: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

154

TAB

LE 6

: ACI

D-CA

TALY

ZED

HYDR

OLY

SIS

OF

ESTE

RS IN

WAT

ER

obse

rved

ca

lcul

ated

Este

rsSM

ILES

stri

nglo

gklo

gkD

iffer

ence

Tem

pera

ture

Solv

ents

Ref

eren

ces

222

Met

hyl t

ribro

moa

ceta

te'B

rC(B

r)(Br

)C(=

O)O

C',

-6.4

-6-0

.425

wat

er3,

12,

13,

41

223

Met

hyl (

3,3-

met

hyl-n

eope

ntyl

)ace

tate

'CC

(C)(C

C(C

)(C)C

)C(=

O)O

C',

-6.5

-6.3

-0.2

25w

ater

3, 1

2, 1

3, 4

122

4M

ethy

l (3-

neop

enty

l-4,4

-dim

ethy

l)pen

tate

'CC

(C)(C

)CC

(CC

(C)(C

)C)C

(=O

)OC

',-7

.1-7

-0.2

25w

ater

3, 1

2, 1

3, 4

122

5M

ethy

l (2-

t-but

yl)p

ropi

onat

e'C

C(C

(C)(C

)C)C

(=O

)OC

',-7

.3-6

.4-0

.925

wat

er3,

12,

13,

41

226

Met

hyl (

2,2-

met

hyl-t

-but

yl)p

ropi

onat

e'C

C(C

)(C(C

)(C)C

)C(=

O)O

C',

-7.9

-7-0

.925

wat

er3,

12,

13,

41

227

Met

hyl (

2,2-

diet

hyl)b

utyr

ate

'CC

C(C

C)(C

C)C

(=O

)OC

',-7

.8-6

.7-1

.125

wat

er3,

12,

13,

41

228

(met

hyl)

(neo

pent

yl) (

t-but

yl)C

C(=

O)O

C'C

C(C

)(C)C

C(C

)(C(C

)(C)C

)C(=

O)O

C',

-8-8

.20.

325

wat

er3,

12,

13,

41

229

Chl

oroe

thyl

form

ate

'C(=

O)O

CC

Cl',

-2.8

-3.6

0.8

25w

ater

3, 1

2, 1

3, 4

123

0C

hlor

oeth

yl a

ceta

te'C

C(=

O)O

CC

Cl',

-4.1

-4.1

025

wat

er3,

12,

13,

41

231

Chl

oroe

thyl

pro

pion

ate

'CCC

(=O

)OCC

Cl',

-4.2

-4.5

0.3

25w

ater

3, 1

2, 1

3, 4

123

2C

hlor

oeth

yl c

hlor

oace

tate

'ClC

C(=O

)OCC

Cl',

-4.3

-4.7

0.5

25w

ater

3, 1

2, 1

3, 4

123

3C

hlor

oeth

yl b

utyr

ate

'CCC

C(=O

)OCC

Cl',

-4.4

-4.6

0.2

25w

ater

3, 1

2, 1

3, 4

123

4C

hlor

oeth

yl p

enta

te'C

CCCC

(=O

)OCC

Cl',

-4.5

-4.7

0.2

25w

ater

3, 1

2, 1

3, 4

123

5C

hlor

oeth

yl h

exan

oate

'CCC

CCC(

=O)O

CCCl

',-4

.5-4

.70.

225

wat

er3,

12,

13,

41

236

Chl

oroe

thyl

iso-

hexa

noat

e'C

C(C)

CCC(

=O)O

CCCl

',-4

.4-4

.60.

225

wat

er3,

12,

13,

41

237

Chl

oroe

thyl

phe

nyla

ceta

te'c1

cccc

c1C

C(=

O)O

CC

Cl',

-4.5

-4.7

0.3

25w

ater

3, 1

2, 1

3, 4

123

8C

hlor

oeth

yl p

heny

lpro

pion

ate

'c1cc

ccc1

CC

C(=

O)O

CC

Cl',

-4.5

-4.7

0.2

25w

ater

3, 1

2, 1

3, 4

123

9C

hlor

oeth

yl p

heny

lbut

yrat

e'c1

cccc

c1C

CC

C(=

O)O

CC

Cl',

-4.5

-4.6

025

wat

er3,

12,

13,

41

240

Chl

oroe

thyl

isob

utyr

ate

'CC

(C)C

(=O

)OC

CC

l',-4

.6-4

.80.

325

wat

er3,

12,

13,

41

241

Chl

oroe

thyl

cyc

lohe

xyl-c

arbo

xyla

te'C

1CCC

CC1C

(=O

)OCC

Cl',

-4.9

-5.3

0.4

25w

ater

3, 1

2, 1

3, 4

124

2C

hlor

oeth

yl is

open

tate

'CC

(C)C

C(=

O)O

CC

Cl',

-5-4

.8-0

.225

wat

er3,

12,

13,

41

243

Chl

oroe

thyl

cyc

lohe

xyla

ceta

te'C

1CCC

CC1C

C(=O

)OCC

Cl',

-5.1

-4.9

-0.1

25w

ater

3, 1

2, 1

3, 4

124

4C

hlor

oeth

yl (2

-eth

yl)p

ropi

onat

e'C

C(C

C)C

(=O

)OC

CC

l',-5

.2-5

.30.

125

wat

er3,

12,

13,

41

245

Chl

oroe

thyl

(2,2

-met

hyl-p

heny

l)ace

tate

'c1cc

ccc1

C(C

)C(=

O)O

CC

Cl',

-5.3

-5.5

0.2

25w

ater

3, 1

2, 1

3, 4

124

6C

hlor

oeth

yl (2

,2-e

thyl

-phe

nyl)a

ceta

te'c1

cccc

c1C

(CC

)C(=

O)O

CC

Cl',

-5.6

-60.

525

wat

er3,

12,

13,

41

247

Chl

oroe

thyl

neo

pent

ate

'CC

(C)(C

)C(=

O)O

CC

Cl',

-5.6

-5.4

-0.3

25w

ater

3, 1

2, 1

3, 4

124

8C

hlor

oeth

yl (2

,2-d

iphe

nyl)a

ceta

te'c

1ccc

cc1C

(c1c

cccc

1)C

(=O

)OC

CC

l',-5

.8-6

.60.

825

wat

er3,

12,

13,

41

249

Chl

oroe

thyl

(2-e

thyl

)but

yrat

e'C

CC(C

C)C(

=O)O

CCCl

',-6

.1-6

025

wat

er3,

12,

13,

41

250

Chl

oroe

thyl

(3-p

heny

l)2-p

rope

noat

e'c1

cccc

c1C

=CC

(=O

)OC

CC

l',-6

.1-5

.8-0

.225

wat

er3,

12,

13,

41

251

Chl

oroe

thyl

tric

hlor

oace

tate

'ClC

(Cl)(

Cl)C

(=O

)OC

CC

l',-6

.1-5

.7-0

.425

wat

er3,

12,

13,

41

252

Chl

oroe

thyl

ben

zoat

e'c1

cccc

c1C

(=O

)OC

CC

l',-6

.6-6

.1-0

.525

wat

er3,

12,

13,

41

253

Chl

oroe

thyl

cyc

lobu

tyl-c

arbo

xyla

te'C

1CCC

1C(=

O)O

CCCl

',-4

.1-4

.90.

825

wat

er3,

12,

13,

41

254

Chl

oroe

thyl

met

hoxy

acet

ate

'CO

CC(=

O)O

CCCl

',-4

.3-4

.80.

525

wat

er3,

12,

13,

41

255

Chl

oroe

thyl

bro

moa

ceta

te'B

rCC

(=O

)OC

CC

l',-4

.3-4

.80.

425

wat

er3,

12,

13,

41

256

Chl

oroe

thyl

thio

lpro

pion

ate

'CSC

C(=O

)OCC

Cl',

-4.4

-4.8

0.4

25w

ater

3, 1

2, 1

3, 4

125

7C

hlor

oeth

yl io

doac

etat

e'IC

C(=O

)OCC

Cl',

-4.4

-4.8

0.4

25w

ater

3, 1

2, 1

3, 4

125

8CC

CCCC

CCC(

=O)O

CCCl

'CCC

CCCC

CC(=

O)O

CCCl

',-4

.4-4

.70.

325

wat

er3,

12,

13,

41

Page 162: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

155

TAB

LE 6

: ACI

D-CA

TALY

ZED

HYDR

OLY

SIS

OF

ESTE

RS IN

WAT

ER

obse

rved

ca

lcul

ated

Este

rsSM

ILES

stri

nglo

gklo

gkD

iffer

ence

Tem

pera

ture

Solv

ents

Ref

eren

ces

259

Chl

oroe

thyl

(4,4

-dim

ethy

l)pen

tate

'CC

(C)(C

)CC

C(=

O)O

CC

Cl',

-4.4

-5.1

0.6

25w

ater

3, 1

2, 1

3, 4

126

0C

hlor

oeth

yl p

heno

xy-a

ceta

te'c1

cccc

c1O

CC

(=O

)OC

CC

l',-4

.4-4

.80.

425

wat

er3,

12,

13,

41

261

Chl

oroe

thyl

cyc

lope

ntyl

-car

boxy

late

'C1C

CCC1

C(=O

)OCC

Cl',

-4.6

-5.1

0.6

25w

ater

3, 1

2, 1

3, 4

126

2C

hlor

oeth

yl d

ifluo

roac

etat

e'F

C(F

)C(=

O)O

CC

Cl',

-4.8

-50.

325

wat

er3,

12,

13,

41

263

Chl

oroe

thyl

met

hoxy

prop

iona

te'C

OCC

C(=O

)OCC

Cl',

-4.8

-4.7

-0.2

25w

ater

3, 1

2, 1

3, 4

126

4C

hlor

oeth

yl c

hlor

opro

pion

ate

'ClC

CC(=

O)O

CCCl

',-5

-4.7

-0.3

25w

ater

3, 1

2, 1

3, 4

126

5C

hlor

oeth

yl tr

ifluo

roac

etat

e'F

C(F

)(F)C

(=O

)OC

CC

l',-5

.2-5

.50.

325

wat

er3,

12,

13,

41

266

Chl

oroe

thyl

cyc

lohe

ptyl

-car

boxy

late

'C1C

CCCC

C1C(

=O)O

CCCl

',-5

.2-5

.30.

125

wat

er3,

12,

13,

41

267

Chl

oroe

thyl

dic

hlor

acet

ate

'ClC

(Cl)C

(=O

)OC

CC

l',-5

.6-5

.1-0

.525

wat

er3,

12,

13,

41

268

Chl

oroe

thyl

neo

pent

ate

'CC

(C)(C

)C(=

O)O

CC

Cl',

-5.8

-5.4

-0.5

25w

ater

3, 1

2, 1

3, 4

126

9C

hlor

oeth

yl (2

-neo

pent

yl)p

ropi

onat

e'C

C(C

C(C

)(C)C

)C(=

O)O

CC

Cl',

-5.9

-5.9

-0.1

25w

ater

3, 1

2, 1

3, 4

127

0C

hlor

oeth

yl d

ibro

moa

ceta

te'B

rC(B

r)C(=

O)O

CC

Cl',

-5.9

-5.5

-0.4

25w

ater

3, 1

2, 1

3, 4

127

1C

hlor

oeth

yl (2

-pro

pyl)p

enta

te'C

CCC(

CCC)

C(=O

)OCC

Cl',

-6.2

-6.4

0.2

25w

ater

3, 1

2, 1

3, 4

127

2C

hlor

oeth

yl tr

ibro

moa

ceta

te'B

rC(B

r)(Br

)C(=

O)O

CC

Cl',

-6.5

-6.3

-0.2

25w

ater

3, 1

2, 1

3, 4

127

3C

hlor

oeth

yl (3

,3-m

ethy

l-neo

pent

yl)a

ceta

te'C

C(C

)(CC

(C)(C

)C)C

(=O

)OC

CC

l',-6

.7-6

.60

25w

ater

3, 1

2, 1

3, 4

127

4C

hlor

oeth

yl (3

-neo

pent

yl-4

,4-d

imet

hyl)p

enta

te'C

C(C

)(C)C

C(C

C(C

)(C)C

)C(=

O)O

CC

Cl',

-7.3

-7.3

025

wat

er3,

12,

13,

41

275

Chl

oroe

thyl

(2-t-

buty

l)pro

pion

ate

'CC

(C(C

)(C)C

)C(=

O)O

CC

Cl',

-7.4

-6.8

-0.6

25w

ater

3, 1

2, 1

3, 4

127

6C

hlor

oeth

yl (2

,2-m

ethy

l-t-b

utyl

)pro

pion

ate

'CC

(C)(C

(C)(C

)C)C

(=O

)OC

CC

l',-8

-7.3

-0.7

25w

ater

3, 1

2, 1

3, 4

127

7C

hlor

oeth

yl (2

,2-d

ieth

yl)b

utyr

ate

'CC

C(C

C)(C

C)C

(=O

)OC

CC

l',-7

.9-7

-0.9

25w

ater

3, 1

2, 1

3, 4

127

8(m

ethy

l) (n

eope

ntyl

) (t-b

utyl

)CC

(=O

)OC

CC

l'C

C(C

)(C)C

C(C

)(C(C

)(C)C

)C(=

O)O

CC

Cl',

-8.1

-8.6

0.5

25w

ater

3, 1

2, 1

3, 4

127

9M

etho

xym

ethy

l for

mat

e'C

(=O

)OC

OC

',-3

.2-3

.80.

525

wat

er3,

12,

13,

41

280

Met

hoxy

met

hyl a

ceta

te'C

C(=

O)O

CO

C',

-4.5

-4.3

-0.2

25w

ater

3, 1

2, 1

3, 4

128

1M

etho

xym

ethy

l pro

pion

ate

'CCC

(=O

)OCO

C',

-4.5

-4.6

0.1

25w

ater

3, 1

2, 1

3, 4

128

2M

etho

xym

ethy

l chl

oroa

ceta

te'C

lCC(

=O)O

COC'

,-4

.7-4

.90.

225

wat

er3,

12,

13,

41

283

Met

hoxy

met

hyl b

utyr

ate

'CCC

C(=O

)OCO

C',

-4.8

-4.8

-0.1

25w

ater

3, 1

2, 1

3, 4

128

4M

etho

xym

ethy

l pen

tate

'CCC

CC(=

O)O

COC'

,-4

.9-4

.80

25w

ater

3, 1

2, 1

3, 4

128

5M

etho

xym

ethy

l hex

anoa

te'C

CCCC

C(=O

)OCO

C',

-4.9

-4.8

025

wat

er3,

12,

13,

41

286

Met

hoxy

met

hyl i

so-h

exan

oate

'CC(

C)CC

C(=O

)OCO

C',

-4.8

-4.8

025

wat

er3,

12,

13,

41

287

Met

hoxy

met

hyl p

heny

lace

tate

'c1cc

ccc1

CC

(=O

)OC

OC

',-4

.8-4

.90

25w

ater

3, 1

2, 1

3, 4

128

8M

etho

xym

ethy

l phe

nylp

ropi

onat

e'c1

cccc

c1C

CC

(=O

)OC

OC

',-4

.9-4

.90

25w

ater

3, 1

2, 1

3, 4

128

9M

etho

xym

ethy

l phe

nylb

utyr

ate

'c1cc

ccc1

CC

CC

(=O

)OC

OC

',-4

.9-4

.7-0

.225

wat

er3,

12,

13,

41

290

Met

hoxy

met

hyl i

sobu

tyra

te'C

C(C

)C(=

O)O

CO

C',

-4.9

-50.

125

wat

er3,

12,

13,

41

291

Met

hoxy

met

hyl c

yclo

hexy

l-car

boxy

late

'C1C

CCCC

1C(=

O)O

COC'

,-5

.3-5

.40.

225

wat

er3,

12,

13,

41

292

Met

hoxy

met

hyl i

sope

ntat

e'C

C(C

)CC

(=O

)OC

OC

',-5

.4-4

.9-0

.525

wat

er3,

12,

13,

41

293

Met

hoxy

met

hyl c

yclo

hexy

lace

tate

'C1C

CCCC

1CC(

=O)O

COC'

,-5

.4-5

.1-0

.325

wat

er3,

12,

13,

41

294

Met

hoxy

met

hyl (

2-et

hyl)p

ropi

onat

e'C

C(C

C)C

(=O

)OC

OC

',-5

.6-5

.5-0

.125

wat

er3,

12,

13,

41

295

Met

hoxy

met

hyl (

2,2-

met

hyl-p

heny

l)ace

tate

'c1cc

ccc1

C(C

)C(=

O)O

CO

C',

-5.7

-5.7

025

wat

er3,

12,

13,

41

Page 163: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

156

TAB

LE 6

: ACI

D-CA

TALY

ZED

HYDR

OLY

SIS

OF

ESTE

RS IN

WAT

ER

obse

rved

ca

lcul

ated

Este

rsSM

ILES

stri

nglo

gklo

gkD

iffer

ence

Tem

pera

ture

Solv

ents

Ref

eren

ces

296

Met

hoxy

met

hyl (

2,2-

ethy

l-phe

nyl)a

ceta

te'c1

cccc

c1C

(CC

)C(=

O)O

CO

C',

-6-6

.20.

225

wat

er3,

12,

13,

41

297

Met

hoxy

met

hyl n

eope

ntat

e'C

C(C

)(C)C

(=O

)OC

OC

',-6

-5.5

-0.5

25w

ater

3, 1

2, 1

3, 4

129

8M

etho

xym

ethy

l (2,

2-di

phen

yl)a

ceta

te'c

1ccc

cc1C

(c1c

cccc

1)C

(=O

)OC

OC

',-6

.2-6

.80.

625

wat

er3,

12,

13,

41

299

Met

hoxy

met

hyl (

2-et

hyl)b

utyr

ate

'CCC

(CC)

C(=O

)OCO

C',

-6.4

-6.2

-0.2

25w

ater

3, 1

2, 1

3, 4

130

0M

etho

xym

ethy

l (3-

phen

yl)2

-pro

peno

ate

'c1cc

ccc1

C=C

C(=

O)O

CO

C',

-6.5

-6-0

.425

wat

er3,

12,

13,

41

301

Met

hoxy

met

hyl t

richl

oroa

ceta

te'C

lC(C

l)(C

l)C(=

O)O

CO

C',

-6.5

-5.9

-0.7

25w

ater

3, 1

2, 1

3, 4

130

2M

etho

xym

ethy

l ben

zoat

e'c1

cccc

c1C

(=O

)OC

OC

',-7

-6.3

-0.8

25w

ater

3, 1

2, 1

3, 4

130

3M

etho

xym

ethy

l cyc

lobu

tyl-c

arbo

xyla

te *

'C1C

CC1C

(=O

)OCO

C',

-4.5

-5.1

0.6

25w

ater

3, 1

2, 1

3, 4

130

4M

etho

xym

ethy

l met

hoxy

acet

ate

'CO

CC(=

O)O

COC'

,-4

.7-5

0.3

25w

ater

3, 1

2, 1

3, 4

130

5M

etho

xym

ethy

l bro

moa

ceta

te'B

rCC

(=O

)OC

OC

',-4

.7-5

0.2

25w

ater

3, 1

2, 1

3, 4

130

6M

etho

xym

ethy

l thi

olpr

opio

nate

'CSC

C(=

O)O

CO

C',

-4.8

-4.9

0.1

25w

ater

3, 1

2, 1

3, 4

130

7M

etho

xym

ethy

l iod

oace

tate

'ICC(

=O)O

COC'

,-4

.8-5

0.2

25w

ater

3, 1

2, 1

3, 4

130

8CC

CCCC

CCC(

=O)O

COC

'CCC

CCCC

CC(=

O)O

COC'

,-4

.8-4

.90.

125

wat

er3,

12,

13,

41

309

Met

hoxy

met

hyl (

4,4-

dim

ethy

l)pen

tate

'CC

(C)(C

)CC

C(=

O)O

CO

C',

-4.8

-5.2

0.4

25w

ater

3, 1

2, 1

3, 4

131

0M

etho

xym

ethy

l phe

noxy

-ace

tate

'c1cc

ccc1

OC

C(=

O)O

CO

C',

-4.8

-50.

225

wat

er3,

12,

13,

41

311

Met

hoxy

met

hyl c

yclo

pent

yl-c

arbo

xyla

te'C

1CCC

C1C(

=O)O

COC'

,-5

-5.3

0.3

25w

ater

3, 1

2, 1

3, 4

131

2M

etho

xym

ethy

l difl

uoro

acet

ate

'FC

(F)C

(=O

)OC

OC

',-5

.1-5

.20

25w

ater

3, 1

2, 1

3, 4

131

3M

etho

xym

ethy

l met

hoxy

prop

iona

te'C

OCC

C(=O

)OCO

C',

-5.2

-4.9

-0.4

25w

ater

3, 1

2, 1

3, 4

131

4M

etho

xym

ethy

l chl

orop

ropi

onat

e'C

lCCC

(=O

)OCO

C',

-5.4

-4.8

-0.5

25w

ater

3, 1

2, 1

3, 4

131

5M

etho

xym

ethy

l trif

luor

oace

tate

'FC

(F)(F

)C(=

O)O

CO

C',

-5.6

-5.7

0.1

25w

ater

3, 1

2, 1

3, 4

131

6M

etho

xym

ethy

l cyc

lohe

ptyl

-car

boxy

late

'C1C

CCCC

C1C(

=O)O

COC'

,-5

.6-5

.4-0

.125

wat

er3,

12,

13,

41

317

Met

hoxy

met

hyl d

ichl

orac

etat

e'C

lC(C

l)C(=

O)O

CO

C',

-6-5

.3-0

.725

wat

er3,

12,

13,

41

318

Met

hoxy

met

hyl n

eope

ntat

e'C

C(C

)(C)C

(=O

)OC

OC

',-6

.2-5

.5-0

.725

wat

er3,

12,

13,

41

319

Met

hoxy

met

hyl (

2-ne

open

tyl)p

ropi

onat

e'C

C(C

C(C

)(C)C

)C(=

O)O

CO

C',

-6.3

-6-0

.325

wat

er3,

12,

13,

41

320

Met

hoxy

met

hyl d

ibro

moa

ceta

te'B

rC(B

r)C(=

O)O

CO

C',

-6.3

-5.7

-0.6

25w

ater

3, 1

2, 1

3, 4

132

1M

etho

xym

ethy

l (2-

prop

yl)p

enta

te'C

CCC(

CCC)

C(=O

)OCO

C',

-6.6

-6.6

025

wat

er3,

12,

13,

41

322

Met

hoxy

met

hyl t

ribro

moa

ceta

te'B

rC(B

r)(Br

)C(=

O)O

CO

C',

-6.9

-6.4

-0.5

25w

ater

3, 1

2, 1

3, 4

132

3M

etho

xym

ethy

l (3,

3-m

ethy

l-neo

pent

yl)a

ceta

te'C

C(C

)(CC

(C)(C

)C)C

(=O

)OC

OC

',-7

-6.8

-0.2

25w

ater

3, 1

2, 1

3, 4

132

4C

C(C

)(C)C

C(C

C(C

)(C)C

)C(=

O)O

CO

C'C

C(C

)(C)C

C(C

C(C

)(C)C

)C(=

O)O

CO

C',

-7.7

-7.5

-0.2

25w

ater

3, 1

2, 1

3, 4

132

5M

etho

xym

ethy

l (2-

t-but

yl)p

ropi

onat

e'C

C(C

(C)(C

)C)C

(=O

)OC

OC

',-7

.8-6

.9-0

.925

wat

er3,

12,

13,

41

326

Met

hoxy

met

hyl (

2,2-

met

hyl-t

-but

yl)p

ropi

onat

e'C

C(C

)(C(C

)(C)C

)C(=

O)O

CO

C',

-8.4

-7.5

-0.9

25w

ater

3, 1

2, 1

3, 4

132

7M

etho

xym

ethy

l (2,

2-di

ethy

l)but

yrat

e'C

CC

(CC

)(CC

)C(=

O)O

CO

C',

-8.3

-7.2

-1.1

25w

ater

3, 1

2, 1

3, 4

132

8(m

ethy

l) (n

eope

ntyl

) (t-b

utyl

)CC

(=O

)OC

OC

CC

(C)(C

)CC

(C)(C

(C)(C

)C)C

(=O

)OC

OC

',-8

.4-8

.90.

425

wat

er3,

12,

13,

41

329

Chl

orom

ethy

l for

mat

e'C

(=O

)OC

Cl',

-3.2

-40.

825

wat

er3,

12,

13,

41

330

Chl

orom

ethy

l ace

tate

'CC

(=O

)OC

Cl',

-4.4

-4.4

025

wat

er3,

12,

13,

41

331

Chl

orom

ethy

l pro

pion

ate

'CC

C(=

O)O

CC

l',-4

.5-4

.80.

325

wat

er3,

12,

13,

41

332

Chl

orom

ethy

l chl

oroa

ceta

te'C

lCC

(=O

)OC

Cl',

-4.6

-5.1

0.4

25w

ater

3, 1

2, 1

3, 4

1

Page 164: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

157

TAB

LE 6

: ACI

D-CA

TALY

ZED

HYDR

OLY

SIS

OF

ESTE

RS IN

WAT

ER

obse

rved

ca

lcul

ated

Este

rsSM

ILES

stri

nglo

gklo

gkD

iffer

ence

Tem

pera

ture

Solv

ents

Ref

eren

ces

333

Chl

orom

ethy

l but

yrat

e'C

CCC(

=O)O

CCl',

-4.8

-4.9

0.1

25w

ater

3, 1

2, 1

3, 4

133

4C

hlor

omet

hyl p

enta

te'C

CCCC

(=O

)OCC

l',-4

.8-5

0.1

25w

ater

3, 1

2, 1

3, 4

133

5C

hlor

omet

hyl h

exan

oate

'CCC

CCC(

=O)O

CCl',

-4.8

-50.

225

wat

er3,

12,

13,

41

336

Chl

orom

ethy

l iso

-hex

anoa

te'C

C(C

)CC

C(=

O)O

CC

l',-4

.8-4

.90.

125

wat

er3,

12,

13,

41

337

Chl

orom

ethy

l phe

nyla

ceta

te'c1

cccc

c1C

C(=

O)O

CC

l',-4

.8-5

.10.

225

wat

er3,

12,

13,

41

338

Chl

orom

ethy

l phe

nylp

ropi

onat

e'c1

cccc

c1C

CC

(=O

)OC

Cl',

-4.9

-5.1

0.2

25w

ater

3, 1

2, 1

3, 4

133

9C

hlor

omet

hyl p

heny

lbut

yrat

e'c1

cccc

c1C

CC

C(=

O)O

CC

l',-4

.9-4

.90

25w

ater

3, 1

2, 1

3, 4

134

0C

hlor

omet

hyl i

sobu

tyra

te'C

C(C

)C(=

O)O

CC

l',-4

.9-5

.20.

225

wat

er3,

12,

13,

41

341

Chl

orom

ethy

l cyc

lohe

xyl-c

arbo

xyla

te'C

1CCC

CC1C

(=O

)OCC

l',-5

.2-5

.60.

325

wat

er3,

12,

13,

41

342

Chl

orom

ethy

l iso

pent

ate

'CC

(C)C

C(=

O)O

CC

l',-5

.4-5

.1-0

.325

wat

er3,

12,

13,

41

343

Chl

orom

ethy

l cyc

lohe

xyla

ceta

te'C

1CCC

CC1C

C(=O

)OCC

l',-5

.4-5

.3-0

.225

wat

er3,

12,

13,

41

344

Chl

orom

ethy

l (2-

ethy

l)pro

pion

ate

'CC

(CC

)C(=

O)O

CC

l',-5

.6-5

.60

25w

ater

3, 1

2, 1

3, 4

134

5C

hlor

omet

hyl (

2,2-

met

hyl-p

heny

l)ace

tate

'c1cc

ccc1

C(C

)C(=

O)O

CC

l',-5

.6-5

.80.

225

wat

er3,

12,

13,

41

346

Chl

orom

ethy

l (2,

2-et

hyl-p

heny

l)ace

tate

'c1cc

ccc1

C(C

C)C

(=O

)OC

Cl',

-5.9

-6.4

0.4

25w

ater

3, 1

2, 1

3, 4

134

7C

hlor

omet

hyl n

eope

ntat

e'C

C(C

)(C)C

(=O

)OC

Cl',

-6-5

.7-0

.325

wat

er3,

12,

13,

41

348

Chl

orom

ethy

l (2,

2-di

phen

yl)a

ceta

te'c

1ccc

cc1C

(c1c

cccc

1)C

(=O

)OC

Cl',

-6.2

-6.9

0.7

25w

ater

3, 1

2, 1

3, 4

134

9C

hlor

omet

hyl (

2-et

hyl)b

utyr

ate

'CC

C(C

C)C

(=O

)OC

Cl',

-6.4

-6.4

-0.1

25w

ater

3, 1

2, 1

3, 4

135

0C

hlor

omet

hyl (

3-ph

enyl

)2-p

rope

noat

e'c1

cccc

c1C

=CC

(=O

)OC

Cl',

-6.4

-6.2

-0.3

25w

ater

3, 1

2, 1

3, 4

135

1C

hlor

omet

hyl t

richl

oroa

ceta

te'C

lC(C

l)(C

l)C(=

O)O

CC

l',-6

.5-6

-0.5

25w

ater

3, 1

2, 1

3, 4

135

2C

hlor

omet

hyl b

enzo

ate

'c1cc

ccc1

C(=

O)O

CC

l',-7

-6.4

-0.6

25w

ater

3, 1

2, 1

3, 4

135

3C

hlor

omet

hyl c

yclo

buty

l-car

boxy

late

*'C

1CCC

1C(=

O)O

CCl',

-4.5

-5.2

0.7

25w

ater

3, 1

2, 1

3, 4

135

4C

hlor

omet

hyl m

etho

xyac

etat

e'C

OCC

(=O

)OCC

l',-4

.6-5

.10.

525

wat

er3,

12,

13,

41

355

Chl

orom

ethy

l bro

moa

ceta

te'B

rCC

(=O

)OC

Cl',

-4.7

-5.1

0.4

25w

ater

3, 1

2, 1

3, 4

135

6C

hlor

omet

hyl t

hiol

prop

iona

te'C

SCC

(=O

)OC

Cl',

-4.8

-5.1

0.3

25w

ater

3, 1

2, 1

3, 4

135

7C

hlor

omet

hyl i

odoa

ceta

te'IC

C(=O

)OCC

l',-4

.8-5

.20.

325

wat

er3,

12,

13,

41

358

CCCC

CCCC

C(=O

)OCC

l'C

CCCC

CCCC

(=O

)OCC

l',-4

.8-5

0.2

25w

ater

3, 1

2, 1

3, 4

135

9C

hlor

omet

hyl (

4,4-

dim

ethy

l)pen

tate

'CC

(C)(C

)CC

C(=

O)O

CC

l',-4

.8-5

.40.

625

wat

er3,

12,

13,

41

360

Chl

orom

ethy

l phe

noxy

-ace

tate

'c1cc

ccc1

OC

C(=

O)O

CC

l',-4

.8-5

.10.

425

wat

er3,

12,

13,

41

361

Chl

orom

ethy

l cyc

lope

ntyl

-car

boxy

late

'C1C

CCC1

C(=O

)OCC

l',-5

-5.5

0.5

25w

ater

3, 1

2, 1

3, 4

136

2C

hlor

omet

hyl d

ifluo

roac

etat

e'F

C(F

)C(=

O)O

CC

l',-5

.1-5

.30.

225

wat

er3,

12,

13,

41

363

Chl

orom

ethy

l met

hoxy

prop

iona

te'C

OCC

C(=O

)OCC

l',-5

.2-5

-0.2

25w

ater

3, 1

2, 1

3, 4

136

4C

hlor

omet

hyl c

hlor

opro

pion

ate

'ClC

CC(=

O)O

CCl',

-5.3

-5-0

.425

wat

er3,

12,

13,

41

365

Chl

orom

ethy

l trif

luor

oace

tate

'FC

(F)(F

)C(=

O)O

CC

l',-5

.6-5

.90.

225

wat

er3,

12,

13,

41

366

Chl

orom

ethy

l cyc

lohe

ptyl

-car

boxy

late

'C1C

CCCC

C1C(

=O)O

CCl',

-5.6

-5.6

025

wat

er3,

12,

13,

41

367

Chl

orom

ethy

l dic

hlor

acet

ate

'ClC

(Cl)C

(=O

)OC

Cl',

-6-5

.5-0

.525

wat

er3,

12,

13,

41

368

Chl

orom

ethy

l neo

pent

ate

'CC

(C)(C

)C(=

O)O

CC

l',-6

.2-5

.7-0

.525

wat

er3,

12,

13,

41

369

Chl

orom

ethy

l (2-

neop

enty

l)pro

pion

ate

'CC

(CC

(C)(C

)C)C

(=O

)OC

Cl',

-6.3

-6.2

-0.1

25w

ater

3, 1

2, 1

3, 4

1

Page 165: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

158

TAB

LE 6

: ACI

D-CA

TALY

ZED

HYDR

OLY

SIS

OF

ESTE

RS IN

WAT

ER

obse

rved

ca

lcul

ated

Este

rsSM

ILES

stri

nglo

gklo

gkD

iffer

ence

Tem

pera

ture

Solv

ents

Ref

eren

ces

370

Chl

orom

ethy

l dib

rom

oace

tate

'BrC

(Br)C

(=O

)OC

Cl',

-6.3

-5.9

-0.4

25w

ater

3, 1

2, 1

3, 4

137

1C

hlor

omet

hyl (

2-pr

opyl

)pen

tate

'CCC

C(CC

C)C(

=O)O

CCl',

-6.6

-6.8

0.2

25w

ater

3, 1

2, 1

3, 4

137

2C

hlor

omet

hyl t

ribro

moa

ceta

te'B

rC(B

r)(Br

)C(=

O)O

CC

l',-6

.9-6

.6-0

.325

wat

er3,

12,

13,

41

373

Chl

orom

ethy

l (3,

3-m

ethy

l-neo

pent

yl)a

ceta

te'C

C(C

)(CC

(C)(C

)C)C

(=O

)OC

Cl',

-7-7

025

wat

er3,

12,

13,

41

374

Chl

orom

ethy

l (3-

neop

enty

l-4,4

-dim

ethy

l)pen

tate'C

C(C

)(C)C

C(C

C(C

)(C)C

)C(=

O)O

CC

l',-7

.6-7

.60

25w

ater

3, 1

2, 1

3, 4

137

5C

hlor

omet

hyl (

2-t-b

utyl

)pro

pion

ate

'CC

(C(C

)(C)C

)C(=

O)O

CC

l',-7

.8-7

.1-0

.725

wat

er3,

12,

13,

41

376

Chl

orom

ethy

l (2,

2-m

ethy

l-t-b

utyl

)pro

pion

ate

'CC

(C)(C

(C)(C

)C)C

(=O

)OC

Cl',

-8.4

-7.6

-0.7

25w

ater

3, 1

2, 1

3, 4

137

7C

hlor

omet

hyl (

2,2-

diet

hyl)b

utyr

ate

'CC

C(C

C)(C

C)C

(=O

)OC

Cl',

-8.3

-7.3

-0.9

25w

ater

3, 1

2, 1

3, 4

137

8(m

ethy

l) (n

eope

ntyl

) (t-b

utyl

)CC

(=O

)OC

Cl

'CC

(C)(C

)CC

(C)(C

(C)(C

)C)C

(=O

)OC

Cl',

-8.4

-8.9

0.4

25w

ater

3, 1

2, 1

3, 4

137

9p-

Nitr

ophe

nyl a

ceta

te'c1

cc(N

(=O

)=O

)ccc

1OC

(=O

)C',

-3.9

-3.9

030

wat

er42

380

p-N

itrop

heny

l pro

pion

ate

'c1cc

(N(=

O)=

O)c

cc1O

C(=

O)C

C',

-3.9

-4.3

0.4

30w

ater

4238

1p-

Nitr

ophe

nyl b

utyr

ate

'c1cc

(N(=

O)=

O)c

cc1O

C(=

O)C

CC

',-4

.1-4

.40.

330

wat

er42

382

p-N

itrop

heny

l iso

buty

rate

'c1cc

(N(=

O)=

O)c

cc1O

C(=

O)C

(C)C

',-4

.1-4

.60.

530

wat

er42

383

p-N

itrop

heny

l 3,3

-dim

ethy

lbut

yrat

e'c1

cc(N

(=O

)=O

)ccc

1OC

(=O

)CC

(C)(C

)C',

-4.8

-5.4

0.5

30w

ater

42

Page 166: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

159

TAB

LE 6

: ACI

D-CA

TALY

ZED

HYDR

OLY

SIS

OF

ESTE

RS IN

ACE

TONE

-WAT

ER M

IXED

SO

LVEN

TS A

ND A

T VA

RIO

US T

EMPE

RATU

RE.

obse

rved

ca

lcul

ated

Este

rsSM

ILES

stri

nglo

gklo

gkD

iffer

ence

Tem

pera

ture

Solv

ents

Ref

eren

ces

1Et

hyl m

-nitr

oben

zoat

e'c1

c(N

(=O

)=O

)ccc

c1C

(=O

)OC

C',

-7-6

.4-0

.625

60%

ace

tone

432

Ethy

l ben

zoat

e'c1

cccc

c1C

(=O

)OC

C',

-6.9

-6.3

-0.5

2560

% a

ceto

ne43

3Et

hyl d

ichl

oroa

ceta

te'C

lC(C

l)C(=

O)O

CC

',-4

.9-5

.20.

325

60%

ace

tone

434

Ethy

l iso

-but

yrat

e'C

C(C

)C(=

O)O

CC

',-4

.7-4

.90.

325

60%

ace

tone

435

Ethy

l chl

oroa

ceta

te'C

lCC

(=O

)OC

C',

-4.4

-4.7

0.3

2560

% a

ceto

ne43

6M

ethy

l ace

tate

'CC

(=O

)OC

',-4

.3-3

.7-0

.625

60%

ace

tone

437

Ethy

l phe

nyla

ceta

te'C

CO

C(=

O)C

c1cc

ccc1

',-4

.8-5

0.2

2570

% a

ceto

ne44

8Et

hyl p

heny

lpro

pion

ate

'CC

OC

(=O

)CC

c1cc

ccc1

',-4

.9-4

.90.

125

70%

ace

tone

449

Ethy

l phe

nylb

utyr

ate

'CC

OC

(=O

)CC

Cc1

cccc

c1',

-4.9

-4.6

-0.2

2570

% a

ceto

ne44

10Et

hyl p

heny

lpen

tate

'CC

OC

(=O

)CC

CC

c1cc

ccc1

',-4

.8-4

.7-0

.225

70%

ace

tone

4411

Ethy

l phe

nylis

opro

pion

ate

'CC

OC

(=O

)C(C

)c1c

cccc

1',

-6.6

-6.3

-0.3

2570

% a

ceto

ne44

12Et

hyl (

2-et

hyl)p

heny

lace

tate

'CC

OC

(=O

)C(C

C)c

1ccc

cc1'

,-6

.9-7

.10.

225

70%

ace

tone

4413

Ethy

l (2,

2-di

phen

yl)a

ceta

te'C

CO

C(=

O)C

(c1c

cccc

1)c2

cccc

c2',

-7.3

-80.

725

70%

ace

tone

4414

Ethy

l cyc

lohe

xyla

ceta

te'C

COC(

=O)C

C1CC

CCC1

',-5

.3-5

.2-0

.125

70%

ace

tone

4415

Chl

orom

ethy

l ace

tate

'CC

(=O

)OC

Cl',

-4.5

-4.4

-0.1

2570

% a

ceto

ne44

16C

hlor

omet

hyl a

ceta

te'C

C(=

O)O

CC

l',-4

.6-4

.4-0

.225

70%

ace

tone

4417

Chl

orom

ethy

l ace

tate

'CC

(=O

)OC

Cl',

-4.7

-4.4

-0.3

2570

% a

ceto

ne44

18C

hlor

omet

hyl p

ropi

onat

e'C

CC

(=O

)OC

Cl',

-4.7

-4.9

0.1

2570

% a

ceto

ne44

19C

hlor

omet

hyl b

utyr

ate

'CCC

C(=O

)OCC

l',-5

-5.1

0.1

2570

% a

ceto

ne44

20Et

hyl a

ceta

te'C

C(=

O)O

CC

',-4

.3-3

.8-0

.525

70%

ace

tone

4421

Ethy

l pro

pion

ate

'CCC

(=O

)OCC

',-4

.4-4

.40

2570

% a

ceto

ne44

22Et

hyl b

utyr

ate

'CCC

C(=O

)OCC

',-4

.7-4

.7-0

.125

70%

ace

tone

4423

Ethy

l pen

tate

'CCC

CC(=

O)O

CC',

-4.7

-4.8

025

70%

ace

tone

4424

Ethy

l hex

anoa

te'C

CCCC

C(=O

)OCC

',-4

.8-4

.80

2570

% a

ceto

ne44

25Et

hyl h

epta

noat

e'C

CCCC

CC(=

O)O

CC',

-4.8

-4.8

025

70%

ace

tone

4426

Ethy

l oct

anoa

te'C

CCCC

CCC(

=O)O

CC',

-4.8

-4.8

025

70%

ace

tone

4427

Ethy

l iso

buty

rate

'CC

(C)C

(=O

)OC

C',

-4.9

-50.

125

70%

ace

tone

4428

Ethy

l iso

pent

ate

'CC

(C)C

C(=

O)O

CC

',-5

.2-4

.9-0

.325

70%

ace

tone

4429

Ethy

l hex

anoa

te'C

C(C

)CC

C(=

O)O

CC

',-4

.8-4

.7-0

.125

70%

ace

tone

4430

Ethy

l sec

-hex

anoa

te'C

CC

C(C

)C(=

O)O

CC

',-5

.4-6

0.6

2570

% a

ceto

ne44

31Et

hyl n

eope

ntat

e'C

C(C

)(C)C

(=O

)OC

C',

-5.9

-5.9

025

70%

ace

tone

4432

Ethy

l (2-

ethy

l)but

yrat

e'C

CC

(CC

)C(=

O)O

CC

',-5

.9-6

.80.

925

70%

ace

tone

4433

Ethy

l flu

oroa

ceta

te'F

CC

(=O

)OC

C',

-4.6

-4.7

0.1

2570

% a

ceto

ne45

34Et

hyl f

luor

oace

tate

'FC

C(=

O)O

CC

',-4

.1-4

.30.

235

70%

ace

tone

4535

Ethy

l flu

oroa

ceta

te'F

CC

(=O

)OC

C',

-3.6

-3.8

0.2

5070

% a

ceto

ne45

36Et

hyl d

ifluo

roac

etat

e'F

C(F

)C(=

O)O

CC

',-4

-50.

925

70%

ace

tone

4537

Ethy

l p-m

etho

xybe

nzoa

te'c1

cc(O

C)c

cc1C

(=O

)OC

C',

-5.7

-5.3

-0.4

6060

% a

ceto

ne46

Page 167: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

160

TAB

LE 6

: ACI

D-CA

TALY

ZED

HYDR

OLY

SIS

OF

ESTE

RS IN

ACE

TONE

-WAT

ER M

IXED

SO

LVEN

TS A

ND A

T VA

RIO

US T

EMPE

RATU

RE.

obse

rved

ca

lcul

ated

Este

rsSM

ILES

stri

nglo

gklo

gkD

iffer

ence

Tem

pera

ture

Solv

ents

Ref

eren

ces

38Et

hyl p

-met

hoxy

benz

oate

'c1cc

(OC

)ccc

1C(=

O)O

CC

',-4

.9-4

.7-0

.280

.260

% a

ceto

ne46

39Et

hyl p

-met

hoxy

benz

oate

'c1cc

(OC

)ccc

1C(=

O)O

CC

',-4

.2-4

.2-0

.199

.260

% a

ceto

ne46

40Et

hyl p

-met

hoxy

benz

oate

'c1cc

(OC

)ccc

1C(=

O)O

CC

',-3

.6-3

.60

119.

960

% a

ceto

ne46

41Et

hyl p

-met

hoxy

benz

oate

'c1cc

(OC

)ccc

1C(=

O)O

CC

',-3

-3.2

0.1

138.

560

% a

ceto

ne46

42Et

hyl p

-hyd

roxy

benz

oate

'c1c

c(O

)ccc

1C(=

O)O

CC

',-5

-4.7

-0.3

80.2

60%

ace

tone

4643

Ethy

l p-h

ydro

xybe

nzoa

te'c

1cc(

O)c

cc1C

(=O

)OC

C',

-4.3

-4.1

-0.2

99.8

60%

ace

tone

4644

Ethy

l p-h

ydro

xybe

nzoa

te'c

1cc(

O)c

cc1C

(=O

)OC

C',

-3.7

-3.6

-0.1

120.

260

% a

ceto

ne46

45Et

hyl p

-hyd

roxy

benz

oate

'c1c

c(O

)ccc

1C(=

O)O

CC

',-3

.2-3

.20

138.

960

% a

ceto

ne46

46Et

hyl p

-met

hylb

enzo

ate

'c1cc

(C)c

cc1C

(=O

)OC

C',

-4.8

-4.5

-0.2

80.3

60%

ace

tone

4647

Ethy

l p-m

ethy

lben

zoat

e'c1

cc(C

)ccc

1C(=

O)O

CC

',-4

.1-4

-0.1

100.

0560

% a

ceto

ne46

48Et

hyl p

-met

hylb

enzo

ate

'c1cc

(C)c

cc1C

(=O

)OC

C',

-3.5

-3.5

012

0.5

60%

ace

tone

4649

Ethy

l p-m

ethy

lben

zoat

e'c1

cc(C

)ccc

1C(=

O)O

CC

',-3

-30.

113

8.9

60%

ace

tone

4650

Ethy

l ben

zoat

e'c1

cccc

c1C

(=O

)OC

C',

-4.7

-4.4

-0.2

80.3

60%

ace

tone

4651

Ethy

l ben

zoat

e 'c1

cccc

c1C

(=O

)OC

C',

-4-3

.9-0

.110

0.2

60%

ace

tone

4652

Ethy

l ben

zoat

e'c1

cccc

c1C

(=O

)OC

C',

-3.4

-3.4

012

0.9

60%

ace

tone

4653

Ethy

l ben

zoat

e'c1

cccc

c1C

(=O

)OC

C',

-2.9

-2.9

0.1

139.

360

% a

ceto

ne46

54Et

hyl p

-chl

orob

enzo

ate

'c1cc

(Cl)c

cc1C

(=O

)OC

C',

-4.7

-4.5

-0.2

80.3

60%

ace

tone

4655

Ethy

l p-c

hlor

oben

zoat

e'c1

cc(C

l)ccc

1C(=

O)O

CC

',-4

.1-3

.9-0

.199

.85

60%

ace

tone

4656

Ethy

l p-c

hlor

oben

zoat

e'c1

cc(C

l)ccc

1C(=

O)O

CC

',-3

.4-3

.40

120.

260

% a

ceto

ne46

57Et

hyl p

-chl

orob

enzo

ate

'c1cc

(Cl)c

cc1C

(=O

)OC

C',

-2.9

-30.

113

9.4

60%

ace

tone

4658

Ethy

l p-b

rom

oben

zoat

e'c

1cc(

Br)c

cc1C

(=O

)OC

C',

-5.5

-5.1

-0.3

60.0

560

% a

ceto

ne46

59Et

hyl p

-bro

mob

enzo

ate

'c1c

c(Br

)ccc

1C(=

O)O

CC

',-4

.7-4

.5-0

.280

.260

% a

ceto

ne46

60Et

hyl p

-bro

mob

enzo

ate

'c1c

c(Br

)ccc

1C(=

O)O

CC

',-4

.1-4

-0.1

100.

1560

% a

ceto

ne46

61Et

hyl p

-bro

mob

enzo

ate

'c1c

c(Br

)ccc

1C(=

O)O

CC

',-3

.5-3

.50

120.

260

% a

ceto

ne46

62Et

hyl p

-bro

mob

enzo

ate

'c1c

c(Br

)ccc

1C(=

O)O

CC

',-3

-30.

113

9.2

60%

ace

tone

4663

Ethy

l p-n

itrob

enzo

ate

'c1cc

(N(=

O)=

O)c

cc1C

(=O

)OC

C',

-5.3

-5-0

.460

60%

ace

tone

4664

Ethy

l p-n

itrob

enzo

ate

'c1cc

(N(=

O)=

O)c

cc1C

(=O

)OC

C',

-4.6

-4.3

-0.2

80.2

60%

ace

tone

4665

Ethy

l p-n

itrob

enzo

ate

'c1cc

(N(=

O)=

O)c

cc1C

(=O

)OC

C',

-4-3

.8-0

.299

.460

% a

ceto

ne46

66Et

hyl p

-nitr

oben

zoat

e'c1

cc(N

(=O

)=O

)ccc

1C(=

O)O

CC

',-3

.4-3

.3-0

.112

060

% a

ceto

ne46

67Et

hyl p

-nitr

oben

zoat

e'c1

cc(N

(=O

)=O

)ccc

1C(=

O)O

CC

',-2

.8-2

.90

138.

560

% a

ceto

ne46

68Et

hyl m

-nitr

oben

zoat

e'c1

c(N

(=O

)=O

)ccc

c1C

(=O

)OC

C',

-5.4

-5.1

-0.4

6060

% a

ceto

ne46

69Et

hyl m

-nitr

oben

zoat

e'c1

c(N

(=O

)=O

)ccc

c1C

(=O

)OC

C',

-4.7

-4.4

-0.3

80.2

60%

ace

tone

4670

Ethy

l m-n

itrob

enzo

ate

'c1c(

N(=

O)=

O)c

ccc1

C(=

O)O

CC

',-4

.1-3

.9-0

.299

.960

% a

ceto

ne46

71Et

hyl m

-nitr

oben

zoat

e'c1

c(N

(=O

)=O

)ccc

c1C

(=O

)OC

C',

-3.4

-3.4

-0.1

120.

460

% a

ceto

ne46

72Et

hyl m

-nitr

oben

zoat

e'c1

c(N

(=O

)=O

)ccc

c1C

(=O

)OC

C',

-2.9

-30

139

60%

ace

tone

4673

Ethy

l o-n

itrob

enzo

ate

'c1(N

(=O

)=O

)ccc

cc1C

(=O

)OC

C',

-5.8

-5.2

-0.6

80.3

60%

ace

tone

4674

Ethy

l o-n

itrob

enzo

ate

'c1(N

(=O

)=O

)ccc

cc1C

(=O

)OC

C',

-5.2

-4.6

-0.5

99.8

560

% a

ceto

ne46

Page 168: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

161

TAB

LE 6

: ACI

D-CA

TALY

ZED

HYDR

OLY

SIS

OF

ESTE

RS IN

ACE

TONE

-WAT

ER M

IXED

SO

LVEN

TS A

ND A

T VA

RIO

US T

EMPE

RATU

RE.

obse

rved

ca

lcul

ated

Este

rsSM

ILES

stri

nglo

gklo

gkD

iffer

ence

Tem

pera

ture

Solv

ents

Ref

eren

ces

75Et

hyl o

-nitr

oben

zoat

e'c1

(N(=

O)=

O)c

cccc

1C(=

O)O

CC

',-4

.5-4

.1-0

.412

0.7

60%

ace

tone

4676

Ethy

l o-n

itrob

enzo

ate

'c1(N

(=O

)=O

)ccc

cc1C

(=O

)OC

C',

-4-3

.7-0

.313

9.2

60%

ace

tone

4677

Ethy

l but

yrat

e'C

CCC(

=O)O

CC',

-4.9

-4.9

-0.1

2070

% a

ceto

ne44

, 47,

48

78Et

hyl b

utyr

ate

'CCC

C(=O

)OCC

',-4

.5-4

.50

3070

% a

ceto

ne44

, 47,

48

79Et

hyl b

utyr

ate

'CCC

C(=O

)OCC

',-4

.2-4

.10

4070

% a

ceto

ne44

, 47,

48

80Et

hyl b

utyr

ate

'CCC

C(=O

)OCC

',-3

.8-3

.80

5070

% a

ceto

ne44

, 47,

48

81Et

hyl p

enta

te'C

CCCC

(=O

)OCC

',-4

.9-4

.90

2070

% a

ceto

ne44

, 47,

48

82Et

hyl p

enta

te'C

CCCC

(=O

)OCC

',-4

.6-4

.60

3070

% a

ceto

ne44

, 47,

48

83Et

hyl p

enta

te'C

CCCC

(=O

)OCC

',-4

.2-4

.20.

140

70%

ace

tone

44, 4

7, 4

884

Ethy

l pen

tate

'CCC

CC(=

O)O

CC',

-3.8

-3.9

0.1

5070

% a

ceto

ne44

, 47,

48

85Et

hyl i

sobu

tyra

te'C

C(C

)C(=

O)O

CC

',-5

.1-5

.20.

120

70%

ace

tone

44, 4

7, 4

886

Ethy

l iso

buty

rate

'CC

(C)C

(=O

)OC

C',

-4.7

-4.8

0.1

3070

% a

ceto

ne44

, 47,

48

87Et

hyl i

sobu

tyra

te'C

C(C

)C(=

O)O

CC

',-4

.3-4

.50.

240

70%

ace

tone

44, 4

7, 4

888

Ethy

l iso

buty

rate

'CC

(C)C

(=O

)OC

C',

-3.9

-4.1

0.2

5070

% a

ceto

ne44

, 47,

48

89Et

hyl s

ec-h

exan

oate

'CC

CC

(C)C

(=O

)OC

C',

-5.6

-6.2

0.6

2070

% a

ceto

ne44

, 47,

48

90Et

hyl s

ec-h

exan

oate

'CC

CC

(C)C

(=O

)OC

C',

-5.2

-5.8

0.6

3070

% a

ceto

ne44

, 47,

48

91Et

hyl s

ec-h

exan

oate

'CC

CC

(C)C

(=O

)OC

C',

-4.8

-5.5

0.7

4070

% a

ceto

ne44

, 47,

48

92Et

hyl s

ec-h

exan

oate

'CC

CC

(C)C

(=O

)OC

C',

-4.4

-5.1

0.7

5070

% a

ceto

ne44

, 47,

48

93Et

hyl i

so-h

exan

oate

'CC

(C)C

CC

(=O

)OC

C',

-5-4

.9-0

.120

70%

ace

tone

44, 4

7, 4

894

Ethy

l iso

-hex

anoa

te'C

C(C

)CC

C(=

O)O

CC

',-4

.6-4

.5-0

.130

70%

ace

tone

44, 4

7, 4

895

Ethy

l iso

-hex

anoa

te'C

C(C

)CC

C(=

O)O

CC

',-4

.2-4

.20

4070

% a

ceto

ne44

, 47,

48

96Et

hyl i

so-h

exan

oate

'CC

(C)C

CC

(=O

)OC

C',

-3.8

-3.8

050

70%

ace

tone

44, 4

7, 4

897

Ethy

l cyc

lohe

xyl-c

arbo

xyla

te'C

1CCC

CC1C

(=O

)OCC

',-5

.3-5

.70.

420

70%

ace

tone

44, 4

7, 4

898

Ethy

l cyc

lohe

xyl-c

arbo

xyla

te'C

1CCC

CC1C

(=O

)OCC

',-4

.9-5

.40.

430

70%

ace

tone

44, 4

7, 4

899

Ethy

l cyc

lohe

xyl-c

arbo

xyla

te'C

1CCC

CC1C

(=O

)OCC

',-4

.6-5

0.4

4070

% a

ceto

ne44

, 47,

48

100

Ethy

l cyc

lohe

xyl-c

arbo

xyla

te'C

1CCC

CC1C

(=O

)OCC

',-4

.2-4

.70.

550

70%

ace

tone

44, 4

7, 4

810

1Et

hyl a

ceta

te'C

CO

C(=

O)C

',-3

.6-3

.2-0

.444

.770

% a

ceto

ne44

102

Ethy

l pro

pion

ate

'CCO

C(=O

)CC'

,-3

.7-3

.70.

144

.770

% a

ceto

ne44

103

Ethy

l but

yrat

e'C

COC(

=O)C

CC',

-4-4

044

.770

% a

ceto

ne44

104

Ethy

l pen

tate

'CCO

C(=O

)CCC

C',

-4-4

.10.

144

.770

% a

ceto

ne44

105

Ethy

l hex

anoa

te'C

COC(

=O)C

CCCC

',-4

-4.1

0.1

44.7

70%

ace

tone

4410

6Et

hyl i

sobu

tyra

te'C

CO

C(=

O)C

(C)C

',-4

.1-4

.30.

244

.770

% a

ceto

ne44

107

Ethy

l iso

pent

ate

'CC

OC

(=O

)CC

(C)C

',-4

.5-4

.3-0

.244

.770

% a

ceto

ne44

108

Ethy

l t-b

utyr

ate

'CC

OC

(=O

)C(C

)(C)C

',-4

.9-5

.10.

244

.770

% a

ceto

ne44

109

Ethy

l phe

nyla

ceta

te'C

CO

C(=

O)C

c1cc

ccc1

',-4

-4.4

0.4

44.7

70%

ace

tone

4411

0Et

hyl a

ceta

te'C

CO

C(=

O)C

',-4

-3.5

-0.5

3570

% a

ceto

ne44

111

Ethy

l pro

pion

ate

'CCO

C(=O

)CC'

,-4

-4.1

035

70%

ace

tone

44

Page 169: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

162

TAB

LE 6

: ACI

D-CA

TALY

ZED

HYDR

OLY

SIS

OF

ESTE

RS IN

ACE

TONE

-WAT

ER M

IXED

SO

LVEN

TS A

ND A

T VA

RIO

US T

EMPE

RATU

RE.

obse

rved

ca

lcul

ated

Este

rsSM

ILES

stri

nglo

gklo

gkD

iffer

ence

Tem

pera

ture

Solv

ents

Ref

eren

ces

112

Ethy

l but

yrat

e'C

COC(

=O)C

CC',

-4.3

-4.3

035

70%

ace

tone

4411

3Et

hyl p

enta

te'C

COC(

=O)C

CCC'

,-4

.3-4

.40

3570

% a

ceto

ne44

114

Ethy

l hex

anoa

te'C

COC(

=O)C

CCCC

',-4

.4-4

.40.

135

70%

ace

tone

4411

5Et

hyl i

sobu

tyra

te'C

CO

C(=

O)C

(C)C

',-4

.5-4

.60.

235

70%

ace

tone

4411

6Et

hyl i

sope

ntat

e'C

CO

C(=

O)C

C(C

)C',

-4.8

-4.6

-0.2

3570

% a

ceto

ne44

117

Ethy

l t-b

utyr

ate

'CC

OC

(=O

)C(C

)(C)C

',-5

.4-5

.50

3570

% a

ceto

ne44

118

Ethy

l phe

nyla

ceta

te'C

CO

C(=

O)C

c1cc

ccc1

',-4

.1-4

.70.

635

70%

ace

tone

4411

9Et

hyl p

heny

lace

tate

'CC

OC

(=O

)Cc1

cccc

c1',

-5-5

.20.

220

70%

ace

tone

4412

0Et

hyl p

heny

lpro

pion

ate

'CC

OC

(=O

)CC

c1cc

ccc1

',-5

.1-5

.10

2070

% a

ceto

ne44

121

Ethy

l phe

nylb

utyr

ate

'CC

OC

(=O

)CC

Cc1

cccc

c1',

-5.1

-4.8

-0.3

2070

% a

ceto

ne44

122

Ethy

l phe

nylp

enta

te'C

CO

C(=

O)C

CC

Cc1

cccc

c1',

-5.1

-4.9

-0.2

2070

% a

ceto

ne44

123

Ethy

l phe

nylis

opro

pion

ate

'CC

OC

(=O

)C(C

)c1c

cccc

1',

-6.8

-6.5

-0.3

2070

% a

ceto

ne44

124

Ethy

l 2-e

thyl

-2-p

heny

lace

tate

'CC

OC

(=O

)C(C

C)c

1ccc

cc1'

,-7

.2-7

.30.

120

70%

ace

tone

4412

5Et

hyl 2

,2-d

iphe

nyla

ceta

te'C

CO

C(=

O)C

(c1c

cccc

1)c2

cccc

c2',

-7.5

-8.2

0.7

2070

% a

ceto

ne44

126

Ethy

l cyc

lohe

xyl-a

ceta

te'C

COC(

=O)C

C1CC

CCC1

',-5

.5-5

.4-0

.120

70%

ace

tone

4412

7Et

hyl p

heny

lace

tate

'CC

OC

(=O

)Cc1

cccc

c1',

-4.6

-4.8

0.2

3070

% a

ceto

ne44

128

Ethy

l phe

nylp

ropi

onat

e'C

CO

C(=

O)C

Cc1

cccc

c1',

-4.7

-4.8

0.1

3070

% a

ceto

ne44

129

Ethy

l phe

nylb

utyr

ate

'CC

OC

(=O

)CC

Cc1

cccc

c1',

-4.7

-4.5

-0.2

3070

% a

ceto

ne44

130

Ethy

l phe

nylp

enta

te'C

CO

C(=

O)C

CC

Cc1

cccc

c1',

-4.6

-4.5

-0.2

3070

% a

ceto

ne44

131

Ethy

l phe

nylis

opro

pion

ate

'CC

OC

(=O

)C(C

)c1c

cccc

1',

-6.3

-6.1

-0.3

3070

% a

ceto

ne44

132

Ethy

l 2-e

thyl

-2-p

heny

lace

tate

'CC

OC

(=O

)C(C

C)c

1ccc

cc1'

,-6

.7-6

.90.

230

70%

ace

tone

4413

3Et

hyl 2

,2-d

iphe

nyla

ceta

te'C

CO

C(=

O)C

(c1c

cccc

1)c2

cccc

c2',

-7.1

-7.8

0.8

3070

% a

ceto

ne44

134

Ethy

l cyc

lohe

xyl-a

ceta

te'C

COC(

=O)C

C1CC

CCC1

',-5

.1-5

-0.1

3070

% a

ceto

ne44

135

Ethy

l phe

nyla

ceta

te'C

CO

C(=

O)C

c1cc

ccc1

',-4

.3-4

.50.

240

70%

ace

tone

4413

6Et

hyl p

heny

lpro

pion

ate

'CC

OC

(=O

)CC

c1cc

ccc1

',-4

.3-4

.40.

140

70%

ace

tone

4413

7Et

hyl p

heny

lbut

yrat

e'C

CO

C(=

O)C

CC

c1cc

ccc1

',-4

.3-4

.1-0

.240

70%

ace

tone

4413

8Et

hyl p

heny

lpen

tate

'CC

OC

(=O

)CC

CC

c1cc

ccc1

',-4

.3-4

.1-0

.140

70%

ace

tone

4413

9Et

hyl p

heny

lisop

ropi

onat

e'C

CO

C(=

O)C

(C)c

1ccc

cc1'

,-6

-5.7

-0.2

4070

% a

ceto

ne44

140

Ethy

l 2-e

thyl

-2-p

heny

lace

tate

'CC

OC

(=O

)C(C

C)c

1ccc

cc1'

,-6

.4-6

.60.

240

70%

ace

tone

4414

1Et

hyl 2

,2-d

iphe

nyla

ceta

te'C

CO

C(=

O)C

(c1c

cccc

1)c2

cccc

c2',

-6.7

-7.5

0.8

4070

% a

ceto

ne44

142

Ethy

l cyc

lohe

xyl-a

ceta

te'C

COC(

=O)C

C1CC

CCC1

',-4

.7-4

.7-0

.140

70%

ace

tone

4414

3Et

hyl p

heny

lace

tate

'CC

OC

(=O

)Cc1

cccc

c1',

-4.2

-4.2

050

70%

ace

tone

4414

4Et

hyl p

heny

lpro

pion

ate

'CC

OC

(=O

)CC

c1cc

ccc1

',-3

.9-4

.10.

250

70%

ace

tone

4414

5Et

hyl p

heny

lbut

yrat

e'C

CO

C(=

O)C

CC

c1cc

ccc1

',-4

-3.8

-0.2

5070

% a

ceto

ne44

146

Ethy

l phe

nylp

enta

te'C

CO

C(=

O)C

CC

Cc1

cccc

c1',

-3.9

-3.8

-0.1

5070

% a

ceto

ne44

147

Ethy

l phe

nylis

opro

pion

ate

'CC

OC

(=O

)C(C

)c1c

cccc

1',

-5.6

-5.4

-0.2

5070

% a

ceto

ne44

148

Ethy

l 2-e

thyl

-2-p

heny

lace

tate

'CC

OC

(=O

)C(C

C)c

1ccc

cc1'

,-6

-6.2

0.2

5070

% a

ceto

ne44

Page 170: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

163

TAB

LE 6

: ACI

D-CA

TALY

ZED

HYDR

OLY

SIS

OF

ESTE

RS IN

ACE

TONE

-WAT

ER M

IXED

SO

LVEN

TS A

ND A

T VA

RIO

US T

EMPE

RATU

RE.

obse

rved

ca

lcul

ated

Este

rsSM

ILES

stri

nglo

gklo

gkD

iffer

ence

Tem

pera

ture

Solv

ents

Ref

eren

ces

149

Ethy

l 2,2

-dip

heny

lace

tate

'CC

OC

(=O

)C(c

1ccc

cc1)

c2cc

ccc2

',-6

.3-7

.10.

850

70%

ace

tone

4415

0Et

hyl c

yclo

hexy

l-ace

tate

'CCO

C(=O

)CC1

CCCC

C1',

-4.3

-4.3

050

70%

ace

tone

4415

1Be

nzyl

ace

tate

'CC

(=O

)OC

c1cc

ccc1

',-4

.9-4

.4-0

.615

60%

ace

tone

4915

2Be

nzyl

ace

tate

'CC

(=O

)OC

c1cc

ccc1

',-4

.5-4

-0.5

2560

% a

ceto

ne49

153

Benz

yl a

ceta

te'C

C(=

O)O

Cc1

cccc

c1',

-3.9

-3.5

-0.4

4060

% a

ceto

ne49

154

Benz

yl a

ceta

te'C

C(=

O)O

Cc1

cccc

c1',

-3.2

-2.9

-0.3

6060

% a

ceto

ne49

155

Benz

yl a

ceta

te'C

C(=

O)O

Cc1

cccc

c1',

-2.6

-2.3

-0.3

8060

% a

ceto

ne49

156

m-M

ethy

lben

zyl a

ceta

te'C

C(=

O)O

Cc1

cccc

(C)c

1',

-5-4

.4-0

.615

60%

ace

tone

4915

7m

-Met

hylb

enzy

l ace

tate

'CC

(=O

)OC

c1cc

cc(C

)c1'

,-4

.5-4

-0.5

2560

% a

ceto

ne49

158

m-M

ethy

lben

zyl a

ceta

te'C

C(=

O)O

Cc1

cccc

(C)c

1',

-4-3

.5-0

.540

60%

ace

tone

4915

9m

-Met

hylb

enzy

l ace

tate

'CC

(=O

)OC

c1cc

cc(C

)c1'

,-3

.3-2

.9-0

.460

60%

ace

tone

4916

0m

-Met

hylb

enzy

l ace

tate

'CC

(=O

)OC

c1cc

cc(C

)c1'

,-2

.7-2

.3-0

.380

60%

ace

tone

4916

1p-

Met

hylb

enzy

l ace

tate

'CC

(=O

)OC

c1cc

c(C

)cc1

',-4

.5-4

-0.5

2560

% a

ceto

ne49

162

p-M

ethy

lben

zyl a

ceta

te'C

C(=

O)O

Cc1

ccc(

C)c

c1',

-3.9

-3.5

-0.4

4060

% a

ceto

ne49

163

p-M

ethy

lben

zyl a

ceta

te'C

C(=

O)O

Cc1

ccc(

C)c

c1',

-3.2

-2.9

-0.3

6060

% a

ceto

ne49

164

p-M

ethy

lben

zyl a

ceta

te'C

C(=

O)O

Cc1

ccc(

C)c

c1',

-2.6

-2.4

-0.3

8060

% a

ceto

ne49

165

m-N

itrob

enzy

l ace

tate

'CC

(=O

)OC

c1cc

cc(N

(=O

)=O

)c1'

,-5

-4.4

-0.6

1560

% a

ceto

ne49

166

m-N

itrob

enzy

l ace

tate

'CC

(=O

)OC

c1cc

cc(N

(=O

)=O

)c1'

,-4

.6-4

-0.5

2560

% a

ceto

ne49

167

m-N

itrob

enzy

l ace

tate

'CC

(=O

)OC

c1cc

cc(N

(=O

)=O

)c1'

,-4

-3.5

-0.5

4060

% a

ceto

ne49

168

m-N

itrob

enzy

l ace

tate

'CC

(=O

)OC

c1cc

cc(N

(=O

)=O

)c1'

,-3

.3-2

.9-0

.460

60%

ace

tone

4916

9m

-Nitr

oben

zyl a

ceta

te'C

C(=

O)O

Cc1

cccc

(N(=

O)=

O)c

1',

-2.7

-2.4

-0.4

8060

% a

ceto

ne49

170

p-N

itrob

enzy

l ace

tate

'CC

(=O

)OC

c1cc

c(N

(=O

)=O

)cc1

',-5

-4.4

-0.6

1560

% a

ceto

ne49

171

p-N

itrob

enzy

l ace

tate

'CC

(=O

)OC

c1cc

c(N

(=O

)=O

)cc1

',-4

.6-4

-0.5

2560

% a

ceto

ne49

172

p-N

itrob

enzy

l ace

tate

'CC

(=O

)OC

c1cc

c(N

(=O

)=O

)cc1

',-4

-3.5

-0.4

4060

% a

ceto

ne49

173

p-N

itrob

enzy

l ace

tate

'CC

(=O

)OC

c1cc

c(N

(=O

)=O

)cc1

',-3

.3-2

.9-0

.460

60%

ace

tone

4917

4p-

Nitr

oben

zyl a

ceta

te'C

C(=

O)O

Cc1

ccc(

N(=

O)=

O)c

c1',

-2.7

-2.4

-0.3

8060

% a

ceto

ne49

175

Phen

yl a

ceta

te'C

C(=

O)O

c1cc

ccc1

',-5

-4.6

-0.3

1560

% a

ceto

ne49

176

Phen

yl a

ceta

te'C

C(=

O)O

c1cc

ccc1

',-4

.6-4

.3-0

.325

60%

ace

tone

4917

7Ph

enyl

ace

tate

'CC

(=O

)Oc1

cccc

c1',

-3.9

-3.8

-0.2

4060

% a

ceto

ne49

178

Phen

yl a

ceta

te'C

C(=

O)O

c1cc

ccc1

',-3

.2-3

.1-0

.160

60%

ace

tone

4917

9Ph

enyl

ace

tate

'CC

(=O

)Oc1

cccc

c1',

-2.6

-2.6

080

60%

ace

tone

4918

0m

-Met

hylp

heny

l ace

tate

'CC

(=O

)Oc1

cccc

(C)c

1',

-5-4

.7-0

.315

60%

ace

tone

4918

1m

-Met

hylp

heny

l ace

tate

'CC

(=O

)Oc1

cccc

(C)c

1',

-4.6

-4.3

-0.3

2560

% a

ceto

ne49

182

m-M

ethy

lphe

nyl a

ceta

te'C

C(=

O)O

c1cc

cc(C

)c1'

,-4

-3.8

-0.2

4060

% a

ceto

ne49

183

m-M

ethy

lphe

nyl a

ceta

te'C

C(=

O)O

c1cc

cc(C

)c1'

,-3

.2-3

.2-0

.160

60%

ace

tone

4918

4m

-Met

hylp

heny

l ace

tate

'CC

(=O

)Oc1

cccc

(C)c

1',

-2.6

-2.6

080

60%

ace

tone

4918

5p-

Met

hylp

heny

l ace

tate

'CC

(=O

)Oc1

ccc(

C)c

c1',

-4.5

-4.3

-0.2

2560

% a

ceto

ne49

Page 171: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

164

TAB

LE 6

: ACI

D-CA

TALY

ZED

HYDR

OLY

SIS

OF

ESTE

RS IN

ACE

TONE

-WAT

ER M

IXED

SO

LVEN

TS A

ND A

T VA

RIO

US T

EMPE

RATU

RE.

obse

rved

ca

lcul

ated

Este

rsSM

ILES

stri

nglo

gklo

gkD

iffer

ence

Tem

pera

ture

Solv

ents

Ref

eren

ces

186

p-M

ethy

lphe

nyl a

ceta

te'C

C(=

O)O

c1cc

c(C

)cc1

',-3

.9-3

.8-0

.140

60%

ace

tone

4918

7p-

Met

hylp

heny

l ace

tate

'CC

(=O

)Oc1

ccc(

C)c

c1',

-3.2

-3.2

060

60%

ace

tone

4918

8p-

Met

hylp

heny

l ace

tate

'CC

(=O

)Oc1

ccc(

C)c

c1',

-2.5

-2.6

0.1

8060

% a

ceto

ne49

189

m-N

itrop

heny

l ace

tate

'CC

(=O

)Oc1

cccc

(N(=

O)=

O)c

1',

-5.2

-4.8

-0.4

1560

% a

ceto

ne49

190

m-N

itrop

heny

l ace

tate

'C

C(=

O)O

c1cc

cc(N

(=O

)=O

)c1'

,-4

.7-4

.4-0

.325

60%

ace

tone

4919

1m

-Nitr

ophe

nyl a

ceta

te'C

C(=

O)O

c1cc

cc(N

(=O

)=O

)c1'

,-4

.1-3

.9-0

.240

60%

ace

tone

4919

2m

-Nitr

ophe

nyl a

ceta

te'C

C(=

O)O

c1cc

cc(N

(=O

)=O

)c1'

,-3

.4-3

.2-0

.260

60%

ace

tone

4919

3m

-Nitr

ophe

nyl a

ceta

te'C

C(=

O)O

c1cc

cc(N

(=O

)=O

)c1'

,-2

.8-2

.7-0

.180

60%

ace

tone

4919

4Et

hyl d

ibro

moa

ceta

te'B

rC(B

r)C(=

O)O

CC

',-4

.7-5

.20.

535

35%

ace

tone

5019

5Et

hyl d

ibro

moa

ceta

te'B

rC(B

r)C(=

O)O

CC

',-4

.8-5

.20.

535

44%

ace

tone

5019

6Et

hyl d

ibro

moa

ceta

te'B

rC(B

r)C(=

O)O

CC

',-4

.9-5

.30.

435

51.5

% a

ceto

ne50

197

Ethy

l dib

rom

oace

tate

'BrC

(Br)C

(=O

)OC

C',

-5.1

-5.4

0.3

3562

% a

ceto

ne50

198

Ethy

l dib

rom

oace

tate

'BrC

(Br)C

(=O

)OC

C',

-5.3

-5.6

0.3

3582

.5%

ace

tone

5019

9Et

hyl d

ibro

moa

ceta

te'B

rC(B

r)C(=

O)O

CC

',-4

.3-4

.80.

545

35%

ace

tone

5020

0Et

hyl d

ibro

moa

ceta

te'B

rC(B

r)C(=

O)O

CC

',-4

.4-4

.90.

445

42.5

% a

ceto

ne50

201

Ethy

l dib

rom

oace

tate

'BrC

(Br)C

(=O

)OC

C',

-4.6

-4.9

0.4

4552

% a

ceto

ne50

202

Ethy

l dib

rom

oace

tate

'BrC

(Br)C

(=O

)OC

C',

-4.7

-50.

345

62%

ace

tone

5020

3Et

hyl d

ibro

moa

ceta

te'B

rC(B

r)C(=

O)O

CC

',-4

.9-5

.20.

345

82%

ace

tone

5020

4Et

hyl d

ibro

moa

ceta

te'B

rC(B

r)C(=

O)O

CC

',-4

.1-4

.60.

655

35%

ace

tone

5020

5Et

hyl d

ibro

moa

ceta

te'B

rC(B

r)C(=

O)O

CC

',-4

.2-4

.70.

555

42.5

% a

ceto

ne50

206

Ethy

l dib

rom

oace

tate

'BrC

(Br)C

(=O

)OC

C',

-4.3

-4.7

0.4

5552

% a

ceto

ne50

207

Ethy

l dib

rom

oace

tate

'BrC

(Br)C

(=O

)OC

C',

-4.2

-4.8

0.6

5562

% a

ceto

ne50

208

Ethy

l dib

rom

oace

tate

'BrC

(Br)C

(=O

)OC

C',

-4.6

-50.

455

81.5

% a

ceto

ne50

Page 172: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

165

TAB

LE 6

: ACI

D-CA

TALY

ZED

HYDR

OLY

SIS

OF

ESTE

RS IN

MET

HANO

L-W

ATER

MIX

ED S

OLV

ENTS

AND

AT

VARI

OUS

TEM

PERA

TURE

.

obse

rved

ca

lcul

ated

Este

rsSM

ILES

stri

nglo

gklo

gkD

iffer

ence

Tem

pera

ture

Solv

ents

Ref

eren

ces

1Et

hyl p

-met

hoxy

benz

oate

'c1cc

(OC

)ccc

1C(=

O)O

CC

',-4

-4.2

0.2

99.8

560

% m

etha

nol

462

Ethy

l p-m

etho

xybe

nzoa

te'c1

cc(O

C)c

cc1C

(=O

)OC

C',

-3.4

-3.6

0.2

120.

4560

% m

etha

nol

463

Ethy

l p-m

etho

xybe

nzoa

te'c1

cc(O

C)c

cc1C

(=O

)OC

C',

-3-3

.20.

213

8.5

60%

met

hano

l46

4Et

hyl p

-met

hoxy

benz

oate

'c1cc

(OC

)ccc

1C(=

O)O

CC

',-2

.6-2

.90.

315

3.9

60%

met

hano

l46

5Et

hyl b

enzo

ate

'c1cc

ccc1

C(=

O)O

CC

',-3

.8-3

.90.

110

0.2

60%

met

hano

l46

6Et

hyl b

enzo

ate

'c1cc

ccc1

C(=

O)O

CC

',-3

.3-3

.40.

112

1.2

60%

met

hano

l46

7Et

hyl b

enzo

ate

'c1cc

ccc1

C(=

O)O

CC

',-2

.8-3

0.2

139.

260

% m

etha

nol

468

Ethy

l ben

zoat

e'c1

cccc

c1C

(=O

)OC

C',

-2.5

-2.6

0.2

153.

960

% m

etha

nol

469

Ethy

l p-n

itrob

enzo

ate

'c1cc

(N(=

O)=

O)c

cc1C

(=O

)OC

C',

-3.8

-3.8

010

0.12

60%

met

hano

l46

10Et

hyl p

-nitr

oben

zoat

e'c1

cc(N

(=O

)=O

)ccc

1C(=

O)O

CC

',-3

.2-3

.30

120.

7560

% m

etha

nol

4611

Ethy

l p-n

itrob

enzo

ate

'c1cc

(N(=

O)=

O)c

cc1C

(=O

)OC

C',

-2.8

-2.9

0.1

138.

460

% m

etha

nol

4612

Ethy

l p-n

itrob

enzo

ate

'c1cc

(N(=

O)=

O)c

cc1C

(=O

)OC

C',

-2.5

-2.6

0.1

153

60%

met

hano

l46

13M

ethy

l ben

zoat

e'c

1ccc

cc1C

(=O

)OC

',-3

.7-3

.90.

110

0.8

80%

met

hano

l31

14M

ethy

l o-m

ethy

lben

zoat

e'C

c1cc

ccc1

C(=

O)O

C',

-4.4

-4.5

010

0.8

80%

met

hano

l31

15M

ethy

l o-e

thyl

benz

oate

'CC

c1cc

ccc1

C(=

O)O

C',

-4.7

-4.6

010

0.8

80%

met

hano

l31

16M

ethy

l o-fl

uoro

benz

oate

'Fc1

cccc

c1C

(=O

)OC

',-3

.7-4

.40.

710

0.8

80%

met

hano

l31

17M

ethy

l o-c

hlor

oben

zoat

e'C

lc1c

cccc

1C(=

O)O

C',

-4.2

-4.5

0.3

100.

880

% m

etha

nol

3118

Met

hyl o

-bro

mob

enzo

ate

'Brc

1ccc

cc1C

(=O

)OC

',-4

.3-4

.60.

310

0.8

80%

met

hano

l31

19M

ethy

l o-io

dobe

nzoa

te'Ic

1ccc

cc1C

(=O

)OC

',-4

.6-4

.70.

110

0.8

80%

met

hano

l31

20M

ethy

l m-m

ethy

lben

zoat

e'c

1c(C

)ccc

c1C

(=O

)OC

',-3

.8-3

.90

100.

880

% m

etha

nol

3121

Met

hyl m

-chl

orob

enzo

ate

'c1c

(Cl)c

ccc1

C(=

O)O

C',

-3.8

-3.9

0.1

100.

880

% m

etha

nol

3122

Met

hyl m

-nitr

oben

zoat

e'c1

c(N

(=O

)=O

)ccc

c1C

(=O

)OC

',-3

.9-3

.90

100.

880

% m

etha

nol

31

Page 173: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

166

TAB

LE 6

: ACI

D-CA

TALY

ZED

HYDR

OLY

SIS

OF

ESTE

RS IN

ETH

ANO

L-W

ATER

MIX

ED S

OLV

ENTS

AND

AT

VARI

OUS

TEM

PERA

TURE

.

obse

rved

ca

lcul

ated

Este

rsSM

ILES

stri

nglo

gklo

gkD

iffer

ence

Tem

pera

ture

Solv

ents

Ref

eren

ces

1Et

hyl p

-met

hoxy

benz

oate

'c1cc

(OC

)ccc

1C(=

O)O

CC

',-5

.7-5

.5-0

.260

60%

eth

anol

462

Ethy

l p-m

etho

xybe

nzoa

te'c1

cc(O

C)c

cc1C

(=O

)OC

C',

-4.8

-4.8

080

.260

% e

than

ol46

3Et

hyl p

-met

hoxy

benz

oate

'c1cc

(OC

)ccc

1C(=

O)O

CC

',-4

.2-4

.30

99.4

60%

eth

anol

464

Ethy

l p-m

etho

xybe

nzoa

te'c1

cc(O

C)c

cc1C

(=O

)OC

C',

-3.6

-3.7

0.1

119.

960

% e

than

ol46

5Et

hyl p

-met

hoxy

benz

oate

'c1cc

(OC

)ccc

1C(=

O)O

CC

',-3

.1-3

.30.

213

8.1

60%

eth

anol

466

Ethy

l p-h

ydro

xybe

nzoa

te'c

1cc(

O)c

cc1C

(=O

)OC

C',

-5-4

.8-0

.280

.260

% e

than

ol46

7Et

hyl p

-hyd

roxy

benz

oate

'c1c

c(O

)ccc

1C(=

O)O

CC

',-4

.4-4

.3-0

.199

.560

% e

than

ol46

8Et

hyl p

-hyd

roxy

benz

oate

'c1c

c(O

)ccc

1C(=

O)O

CC

',-3

.7-3

.70

120

60%

eth

anol

469

Ethy

l p-h

ydro

xybe

nzoa

te'c

1cc(

O)c

cc1C

(=O

)OC

C',

-3.2

-3.3

0.1

138.

560

% e

than

ol46

10Et

hyl p

-met

hylb

enzo

ate

'c1cc

(C)c

cc1C

(=O

)OC

C',

-5.5

-5.3

-0.2

60.0

560

% e

than

ol46

11Et

hyl p

-met

hylb

enzo

ate

'c1cc

(C)c

cc1C

(=O

)OC

C',

-4.8

-4.7

-0.1

80.2

560

% e

than

ol46

12Et

hyl p

-met

hylb

enzo

ate

'c1cc

(C)c

cc1C

(=O

)OC

C',

-4.1

-4.1

099

.960

% e

than

ol46

13Et

hyl p

-met

hylb

enzo

ate

'c1cc

(C)c

cc1C

(=O

)OC

C',

-3.5

-3.6

0.1

120.

360

% e

than

ol46

14Et

hyl p

-met

hylb

enzo

ate

'c1cc

(C)c

cc1C

(=O

)OC

C',

-3-3

.10.

113

9.7

60%

eth

anol

4615

Ethy

l ben

zoat

e'c1

cccc

c1C

(=O

)OC

C',

-5.4

-5.2

-0.2

6060

% e

than

ol46

16Et

hyl b

enzo

ate

'c1cc

ccc1

C(=

O)O

CC

',-4

.7-4

.5-0

.180

.260

% e

than

ol46

17Et

hyl b

enzo

ate

'c1cc

ccc1

C(=

O)O

CC

',-4

.1-4

-0.1

99.6

60%

eth

anol

4618

Ethy

l ben

zoat

e'c1

cccc

c1C

(=O

)OC

C',

-3.5

-3.5

012

0.2

60%

eth

anol

4619

Ethy

l ben

zoat

e'c1

cccc

c1C

(=O

)OC

C',

-2.9

-3.1

0.1

138.

660

% e

than

ol46

20Et

hyl p

-chl

orob

enzo

ate

'c1cc

(Cl)c

cc1C

(=O

)OC

C',

-4.7

-4.6

-0.1

80.3

60%

eth

anol

4621

Ethy

l p-c

hlor

oben

zoat

e'c1

cc(C

l)ccc

1C(=

O)O

CC

',-4

.1-4

.10

100

60%

eth

anol

4622

Ethy

l p-c

hlor

oben

zoat

e'c1

cc(C

l)ccc

1C(=

O)O

CC

',-3

.5-3

.50

120.

660

% e

than

ol46

23Et

hyl p

-chl

orob

enzo

ate

'c1cc

(Cl)c

cc1C

(=O

)OC

C',

-3.1

-3.1

013

9.3

60%

eth

anol

4624

Ethy

l p-b

rom

oben

zoat

e'c

1cc(

Br)c

cc1C

(=O

)OC

C',

-4.7

-4.6

-0.1

80.2

60%

eth

anol

4625

Ethy

l p-b

rom

oben

zoat

e'c

1cc(

Br)c

cc1C

(=O

)OC

C',

-4.1

-4.1

010

060

% e

than

ol46

26Et

hyl p

-bro

mob

enzo

ate

'c1c

c(Br

)ccc

1C(=

O)O

CC

',-3

.5-3

.60

120.

260

% e

than

ol46

27Et

hyl p

-bro

mob

enzo

ate

'c1c

c(Br

)ccc

1C(=

O)O

CC

',-3

-3.1

0.1

139.

460

% e

than

ol46

28Et

hyl p

-nitr

oben

zoat

e'c1

cc(N

(=O

)=O

)ccc

1C(=

O)O

CC

',-4

.5-4

.5-0

.180

.260

% e

than

ol46

29Et

hyl p

-nitr

oben

zoat

e'c1

cc(N

(=O

)=O

)ccc

1C(=

O)O

CC

',-4

-3.9

098

.960

% e

than

ol46

30Et

hyl p

-nitr

oben

zoat

e'c1

cc(N

(=O

)=O

)ccc

1C(=

O)O

CC

',-3

.5-3

.4-0

.111

9.3

60%

eth

anol

4631

Ethy

l p-n

itrob

enzo

ate

'c1cc

(N(=

O)=

O)c

cc1C

(=O

)OC

C',

-3-3

013

860

% e

than

ol46

32Et

hyl m

-nitr

oben

zoat

e'c1

c(N

(=O

)=O

)ccc

c1C

(=O

)OC

C',

-4.7

-4.6

-0.1

80.2

60%

eth

anol

4633

Ethy

l m-n

itrob

enzo

ate

'c1c(

N(=

O)=

O)c

ccc1

C(=

O)O

CC

',-4

.1-4

099

.45

60%

eth

anol

4634

Ethy

l m-n

itrob

enzo

ate

'c1c(

N(=

O)=

O)c

ccc1

C(=

O)O

CC

',-3

.5-3

.50

119.

960

% e

than

ol46

35Et

hyl m

-nitr

oben

zoat

e'c1

c(N

(=O

)=O

)ccc

c1C

(=O

)OC

C',

-3-3

.10

138.

360

% e

than

ol46

36Et

hyl o

-nitr

oben

zoat

e'c1

(N(=

O)=

O)c

cccc

1C(=

O)O

CC

',-5

.8-5

.3-0

.580

.360

% e

than

ol46

37Et

hyl o

-nitr

oben

zoat

e'c1

(N(=

O)=

O)c

cccc

1C(=

O)O

CC

',-5

.2-4

.7-0

.510

060

% e

than

ol46

Page 174: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

167

TAB

LE 6

: ACI

D-CA

TALY

ZED

HYDR

OLY

SIS

OF

ESTE

RS IN

ETH

ANO

L-W

ATER

MIX

ED S

OLV

ENTS

AND

AT

VARI

OUS

TEM

PERA

TURE

.

obse

rved

ca

lcul

ated

Este

rsSM

ILES

stri

nglo

gklo

gkD

iffer

ence

Tem

pera

ture

Solv

ents

Ref

eren

ces

38Et

hyl o

-nitr

oben

zoat

e'c1

(N(=

O)=

O)c

cccc

1C(=

O)O

CC

',-4

.6-4

.2-0

.412

0.6

60%

eth

anol

4639

Ethy

l o-n

itrob

enzo

ate

'c1(N

(=O

)=O

)ccc

cc1C

(=O

)OC

C',

-4.1

-3.8

-0.3

138.

960

% e

than

ol46

Page 175: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

168

TAB

LE 6

:B81

7 AC

ID-C

ATAL

YZED

HYD

ROLY

SIS

OF

ESTE

RS IN

DIO

XANE

-WAT

ER M

IXED

SO

LVEN

TS A

ND A

T VA

RIO

US T

EMPE

RATU

RE.

obse

rved

ca

lcul

ated

Este

rsSM

ILES

stri

nglo

gklo

gkD

iffer

ence

Tem

pera

ture

Solv

ents

Ref

eren

ces

1C

hlor

omet

hyl a

ceta

te'C

C(=

O)O

CC

l',-4

.4-4

.40

2510

% d

ioxa

ne18

2C

hlor

omet

hyl a

ceta

te'C

C(=

O)O

CC

l',-4

-4.1

035

10%

dio

xane

183

Chl

orom

ethy

l ace

tate

'CC

(=O

)OC

Cl',

-3.6

-3.7

0.1

4510

% d

ioxa

ne18

4C

hlor

omet

hyl a

ceta

te'C

C(=

O)O

CC

l',-4

.5-4

.50

2525

% d

ioxa

ne18

5C

hlor

omet

hyl a

ceta

te'C

C(=

O)O

CC

l',-4

.1-4

.10

3525

% d

ioxa

ne18

6C

hlor

omet

hyl a

ceta

te'C

C(=

O)O

CC

l',-3

.7-3

.80.

145

25%

dio

xane

187

Chl

orom

ethy

l ace

tate

'CC

(=O

)OC

Cl',

-4.7

-4.6

025

50%

dio

xane

188

Chl

orom

ethy

l ace

tate

'CC

(=O

)OC

Cl',

-4.3

-4.2

035

50%

dio

xane

189

Chl

orom

ethy

l ace

tate

'CC

(=O

)OC

Cl',

-3.9

-3.9

045

50%

dio

xane

1810

Chl

orom

ethy

l ace

tate

'CC

(=O

)OC

Cl',

-4.9

-4.8

-0.1

2575

% d

ioxa

ne18

11C

hlor

omet

hyl a

ceta

te'C

C(=

O)O

CC

l',-4

.5-4

.50

3575

% d

ioxa

ne18

12C

hlor

omet

hyl a

ceta

te'C

C(=

O)O

CC

l',-4

.1-4

.10

4575

% d

ioxa

ne18

13M

ethy

l ben

zoat

e'c

1ccc

cc1C

(=O

)OC

',-3

.8-4

.10.

310

060

% d

ioxa

ne17

14M

ethy

l o-m

ethy

lben

zoat

e'C

c1cc

ccc1

C(=

O)O

C',

-4.4

-4.8

0.4

100

60%

dio

xane

1715

Met

hyl o

-eth

ylbe

nzoa

te'C

Cc1

cccc

c1C

(=O

)OC

',-4

.7-5

0.3

100

60%

dio

xane

17

Page 176: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

169

T

ABLE

7: G

ENER

AL B

ASE

HYDR

OLY

SIS

OF

ESTE

RS IN

WAT

ER A

T VA

RIO

US T

EMPE

RATU

RE

obse

rved

ca

lcul

ated

Este

rsSM

ILES

stri

nglo

gklo

gkD

iffer

ence

Cat

alys

tsTe

mpe

ratu

reSo

lven

tsR

efer

ence

s1

Ethy

l ace

tate

'CC

(=O

)OC

C',

-11.

3-1

2.1

0.7

wat

er25

wat

er3,

14

2Vi

nyl a

ceta

te'C

C(=

O)O

C=C

',-8

.7-9

0.3

wat

er25

wat

er3,

14

3C

hlor

omet

hyl f

orm

ate

'C(=

O)O

CC

l',-5

.8-6

.50.

7w

ater

25w

ater

3, 1

4, 5

14

Met

hyl c

hlor

oace

tate

'ClC

C(=

O)O

C',

-8.4

-8.5

0.1

wat

er25

wat

er3,

14

5M

ethy

l dic

hlor

oace

tate

'ClC

(Cl)C

(=O

)OC

',-6

.6-6

.90.

4w

ater

25w

ater

3, 1

4, 5

16

Ethy

l dic

hlor

oace

tate

'ClC

(Cl)C

(=O

)OC

C',

-7-7

-0.1

wat

er25

wat

er14

7C

hlor

oeth

yl d

ichl

oroa

ceta

te'C

lC(C

l)C(=

O)O

CC

Cl',

-6.2

-6.4

0.3

wat

er25

wat

er14

8M

etho

xyet

hyl d

ichl

oroa

ceta

te'C

lC(C

l)C(=

O)O

CC

OC

',-6

.7-6

.70

wat

er25

wat

er14

9M

ethy

l tric

hlor

oace

tate

'ClC

(Cl)(

Cl)C

(=O

)OC

',-4

.8-5

.50.

7w

ater

25w

ater

3, 1

410

Met

hoxy

ethy

l tric

hlor

oace

tate

'ClC

(Cl)(

Cl)C

(=O

)OC

CO

C',

-5-5

.30.

3w

ater

25w

ater

1411

Ethy

l difl

uoro

acet

ate

'FC

(F)C

(=O

)OC

C',

-6-5

.9-0

.1w

ater

25w

ater

1912

Met

hyl t

riflu

oroa

ceta

te'F

C(F

)(F)C

(=O

)OC

',-4

.2-4

.1-0

.1w

ater

25w

ater

1913

Ethy

l trif

luor

oace

tate

'FC

(F)(F

)C(=

O)O

CC

',-4

.3-4

.2-0

.1w

ater

25w

ater

1914

Isop

ropy

l trif

luor

oace

tate

'FC

(F)(F

)C(=

O)O

C(C

)C',

-4.2

-4.2

0w

ater

25w

ater

1915

t-But

yl tr

ifluo

roac

etat

e'F

C(F

)(F)C

(=O

)OC

(C)(C

)C',

-4.6

-4.4

-0.2

wat

er25

wat

er19

16C

hlor

omet

hyl c

hlor

oace

tate

'ClC

C(=

O)O

CC

l',-5

.7-5

.6-0

.1w

ater

25w

ater

3, 1

417

Phen

yl a

ceta

te'C

C(=

O)O

c1cc

ccc1

',-9

-9.1

0.1

wat

er25

wat

er14

18p-

Met

hylp

heny

l ace

tate

'CC

(=O

)Oc1

ccc(

C)c

c1',

-9.1

-9.4

0.3

wat

er25

wat

er19

19p-

Chl

orop

heny

l ace

tate

'CC

(=O

)Oc1

ccc(

Cl)c

c1',

-8.9

-8.9

0w

ater

25w

ater

1920

p-N

itrop

heny

l ace

tate

'CC

(=O

)Oc1

ccc(

N(=

O)=

O)c

c1',

-7.8

-8.2

0.4

wat

er25

wat

er19

213,

4-D

initr

ophe

nyl a

ceta

te'C

C(=

O)O

c1cc

(N(=

O)=

O)c

(N(=

O)=

O)c

c1',

-7.1

-7.5

0.4

wat

er25

wat

er19

222,

4-D

initr

ophe

nyl a

ceta

te'C

C(=

O)O

c1c(

N(=

O)=

O)c

c(N

(=O

)=O

)cc1

',-6

.7-6

.5-0

.2w

ater

25w

ater

15, 5

123

2,6-

Din

itrop

heny

l ace

tate

'CC

(=O

)Oc1

c(N

(=O

)=O

)ccc

c1(N

(=O

)=O

)',-6

.6-5

.8-0

.8w

ater

25w

ater

1924

p-N

itrop

heny

l chl

oroa

ceta

te'C

lCC

(=O

)Oc1

ccc(

N(=

O)=

O)c

c1',

-5.2

-4.7

-0.5

wat

er25

wat

er15

, 51

25Ph

enyl

dic

hlor

oace

tate

'ClC

(Cl)C

(=O

)Oc1

cccc

c1',

-4.5

-4-0

.5w

ater

25w

ater

15, 5

126

Ethy

l trif

luor

oace

tate

'FC

(F)(F

)C(=

O)O

CC

',-4

.6-4

.4-0

.2w

ater

10w

ater

1927

Ethy

l difl

uoro

acet

ate

'FC

(F)C

(=O

)OC

C',

-3.8

-3.5

-0.3

anilin

e25

wat

er52

28Et

hyl d

ifluo

roac

etat

e'F

C(F

)C(=

O)O

CC

',-3

.2-3

-0.2

acet

ate

25w

ater

5229

Ethy

l difl

uoro

acet

ate

'FC

(F)C

(=O

)OC

C',

-2-2

0im

idaz

ole

25w

ater

5230

Ethy

l dic

hlor

oace

tate

'ClC

(Cl)C

(=O

)OC

C',

-4.5

-4.5

0.1

form

ate

25w

ater

5231

Ethy

l dic

hlor

oace

tate

'ClC

(Cl)C

(=O

)OC

C',

-4.8

-4.6

-0.2

anilin

e25

wat

er52

32Et

hyl d

ichl

oroa

ceta

te'C

lC(C

l)C(=

O)O

CC

',-3

.7-3

.90.

2py

ridin

e25

wat

er52

33Et

hyl d

ichl

oroa

ceta

te'C

lC(C

l)C(=

O)O

CC

',-3

.5-3

.50

pico

line4

25w

ater

5234

Ethy

l dic

hlor

oace

tate

'ClC

(Cl)C

(=O

)OC

C',

-4.3

-4.1

-0.2

acet

ate

25w

ater

5235

Ethy

l dic

hlor

oace

tate

'ClC

(Cl)C

(=O

)OC

C',

-3.6

-3.7

0.1

succ

inat

e25

wat

er52

36Et

hyl d

ichl

oroa

ceta

te'C

lC(C

l)C(=

O)O

CC

',-2

.9-3

.10.

2im

idaz

ole

25w

ater

5237

Ethy

l chl

oroa

ceta

te'C

lCC

(=O

)OC

C',

-6.1

-5.7

-0.4

acet

ate

25w

ater

52

Page 177: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

170

T

ABLE

7: G

ENER

AL B

ASE

HYDR

OLY

SIS

OF

ESTE

RS IN

WAT

ER A

T VA

RIO

US T

EMPE

RATU

RE

obse

rved

ca

lcul

ated

Este

rsSM

ILES

stri

nglo

gklo

gkD

iffer

ence

Cat

alys

tsTe

mpe

ratu

reSo

lven

tsR

efer

ence

s38

Ethy

l chl

oroa

ceta

te'C

lCC

(=O

)OC

C',

-4.4

-4.7

0.2

imid

azol

e25

wat

er52

39Et

hyl t

richl

oroa

ceta

te'C

lCC

(=O

)Oc1

ccc(

N(=

O)=

O)c

c1',

-2.8

-2.3

-0.5

anilin

e25

wat

er15

40p-

Nitr

ophe

nyl c

hlor

oace

tate

'ClC

C(=

O)O

c1cc

c(N

(=O

)=O

)cc1

',-1

.9-1

.6-0

.3py

ridin

e25

wat

er15

41p-

Nitr

ophe

nyl c

hlor

oace

tate

'ClC

(Cl)C

(=O

)Oc1

cccc

c1',

0.2

-0.1

0.3

imid

azol

e25

wat

er15

432,

6-di

nitro

phen

yl a

ceta

te'C

C(=

O)O

c1c(

N(=

O)=

O)c

ccc1

(N(=

O)=

O)',

-2.9

-2.9

0ac

etat

e25

wat

er53

442,

4-di

nitro

phen

yl a

ceta

te'C

C(=

O)O

c1c(

N(=

O)=

O)c

c(N

(=O

)=O

)cc1

',-3

.3-3

.60.

4ac

etat

e25

wat

er15

, 53

452,

3-di

nitro

phen

yl a

ceta

te'C

C(=

O)O

c1c(

N(=

O)=

O)c

(N(=

O)=

O)c

cc1'

,-3

.6-3

.80.

2ac

etat

e25

wat

er53

463,

4-di

nitro

phen

yl a

ceta

te'C

C(=

O)O

c1cc

(N(=

O)=

O)c

(N(=

O)=

O)c

c1',

-4-4

.60.

6ac

etat

e25

wat

er53

47p-

Nitr

ophe

nyl a

ceta

te'C

C(=

O)O

c1cc

c(N

(=O

)=O

)cc1

',-5

.2-5

.30.

1ac

etat

e25

wat

er53

48o-

Nitr

ophe

nyl a

ceta

te'C

C(=

O)O

c1cc

ccc1

(N(=

O)=

O)',

-5.3

-4.5

-0.8

acet

ate

25w

ater

5349

m-N

itrop

heny

l ace

tate

'CC

(=O

)Oc1

cc(N

(=O

)=O

)ccc

1',

-5.5

-5.4

0ac

etat

e25

wat

er53

50p-

Chl

orop

heny

l ace

tate

'CC

(=O

)Oc1

ccc(

Cl)c

c1',

-6-6

.10.

1ac

etat

e25

wat

er53

51p-

Met

hylp

heny

l ace

tate

'CC

(=O

)Oc1

ccc(

C)c

c1',

-6.6

-6.6

0ac

etat

e25

wat

er53

Page 178: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

171

TA

BLE

7: G

ENER

AL B

ASE

HYDR

OLY

SIS

OF

ESTE

RS IN

ACE

TONE

-WAT

ER M

IXED

SO

LVEN

TS A

T VA

RIO

US T

EMPE

RATU

RE

obse

rved

ca

lcul

ated

Este

rsSM

ILES

stri

nglo

gklo

gkD

iffer

ence

Cat

alys

tsTe

mpe

ratu

reSo

lven

tsR

efer

ence

s1

Chl

orom

ethy

l chl

oroa

ceta

te'C

lCC

(=O

)OC

Cl',

-7.2

-7-0

.2w

ater

2550

% a

ceto

ne-w

ater

3, 1

42

Chl

orom

ethy

l dic

hlor

oace

tate

'ClC

(Cl)C

(=O

)OC

Cl',

-5.3

-5.4

0.1

wat

er25

50%

ace

tone

-wat

er51

3M

ethy

l tri

fluor

oace

tate

'FC

(F)(F

)C(=

O)O

C',

-5.6

-6.4

0.8

wat

er25

70%

ace

tone

-wat

er14

, 54

4Et

hyl t

riflu

oroa

ceta

te'F

C(F

)(F)C

(=O

)OC

C',

-6.1

-6.5

0.3

wat

er25

70%

ace

tone

-wat

er54

, 55

5Pr

opyl

trifl

uoro

acet

ate

'FC

(F)(F

)C(=

O)O

CC

C',

-6.3

-6.5

0.2

wat

er25

70%

ace

tone

-wat

er54

, 55

6Bu

tyl

triflu

oroa

ceta

te

'FC

(F)(F

)C(=

O)O

CC

CC

',-6

.4-6

.50.

1w

ater

2570

% a

ceto

ne-w

ater

54, 5

57

Pent

yl tr

ifluo

roac

etat

e'F

C(F

)(F)C

(=O

)OC

CC

CC

',-6

.4-6

.50

wat

er25

70%

ace

tone

-wat

er54

, 55

8H

exyl

trifl

uoro

acet

ate

'FC

(F)(F

)C(=

O)O

CC

CC

CC

',-6

.5-6

.50

wat

er25

70%

ace

tone

-wat

er54

, 55

9Is

opro

pyl t

riflu

oroa

ceta

te'F

C(F

)(F)C

(=O

)OC

(C)C

',-7

-6.6

-0.4

wat

er25

70%

ace

tone

-wat

er56

10se

c-Bu

tyl t

riflu

oroa

ceta

te'F

C(F

)(F)C

(=O

)OC

(C)C

C',

-7.2

-6.8

-0.4

wat

er25

70%

ace

tone

-wat

er56

11se

c-Pe

ntyl

trifl

uoro

acet

ate

'FC

(F)(F

)C(=

O)O

C(C

)CC

C',

-7.3

-6.9

-0.4

wat

er25

70%

ace

tone

-wat

er56

12se

c-H

exyl

trifl

uoro

acet

ate

'FC

(F)(F

)C(=

O)O

C(C

)CC

CC

',-7

.3-7

-0.4

wat

er25

70%

ace

tone

-wat

er56

13Ph

enyl

trifl

uoro

acet

ate

'FC

(F)(F

)C(=

O)O

c1cc

ccc1

',-3

.5-3

.60

wat

er25

70%

ace

tone

-wat

er56

14m

-Met

hyl t

riflu

oroa

ceta

te'F

C(F

)(F)C

(=O

)Oc1

cc(C

)ccc

1',

-3.7

-3.7

0w

ater

2570

% a

ceto

ne-w

ater

5615

p-M

ethy

l trif

luor

oace

tate

'FC

(F)(F

)C(=

O)O

c1cc

c(C

)cc1

',-3

.8-3

.90.

1w

ater

2570

% a

ceto

ne-w

ater

5616

o-M

ethy

l trif

luor

oace

tate

'FC

(F)(F

)C(=

O)O

c1cc

ccc1

C',

-4.1

-3.7

-0.3

wat

er25

70%

ace

tone

-wat

er56

17Et

hyl p

enta

fluor

oace

tate

'FC

(F)(F

)C(F

)(F)C

(=O

)OC

C',

-7.3

-80.

7w

ater

2570

% a

ceto

ne-w

ater

54, 5

518

Ethy

l hep

taflu

orop

ropi

onat

e'F

C(F

)(F)C

(F)(F

)C(F

)(F)C

(=O

)OC

C',

-7.6

-8.3

0.7

wat

er25

70%

ace

tone

-wat

er54

, 55

19C

hlor

omet

hyl d

ichl

oroa

ceta

te'C

lC(C

l)C(=

O)O

CC

l',-6

.3-6

-0.3

wat

er-6

.23

50%

ace

tone

-wat

er51

20C

hlor

omet

hyl d

ichl

oroa

ceta

te'C

lC(C

l)C(=

O)O

CC

l',-6

.1-5

.9-0

.2w

ater

050

% a

ceto

ne-w

ater

5121

Chl

orom

ethy

l dic

hlor

oace

tate

'ClC

(Cl)C

(=O

)OC

Cl',

-5.9

-5.8

-0.1

wat

er5

50%

ace

tone

-wat

er51

22C

hlor

omet

hyl d

ichl

oroa

ceta

te'C

lC(C

l)C(=

O)O

CC

l',-5

.7-5

.70

wat

er12

50%

ace

tone

-wat

er51

23C

hlor

omet

hyl d

ichl

oroa

ceta

te'C

lC(C

l)C(=

O)O

CC

l',-5

.5-5

.50.

1w

ater

1850

% a

ceto

ne-w

ater

5124

Chl

orom

ethy

l dic

hlor

oace

tate

'ClC

(Cl)C

(=O

)OC

Cl',

-5-5

.30.

2w

ater

3550

% a

ceto

ne-w

ater

5125

Chl

orom

ethy

l dic

hlor

oace

tate

'ClC

(Cl)C

(=O

)OC

Cl',

-4.8

-5.1

0.3

wat

er45

50%

ace

tone

-wat

er51

26Et

hyl t

riflu

oroa

ceta

te'F

C(F

)(F)C

(=O

)OC

C',

-4.6

-4.4

-0.2

wat

er10

70%

ace

tone

-wat

er55

27Is

opro

pyl t

riflu

oroa

ceta

te'F

C(F

)(F)C

(=O

)OC

(C)C

',-6

.7-6

.4-0

.3w

ater

3570

% a

ceto

ne-w

ater

5628

Isop

ropy

l trif

luor

oace

tate

'FC

(F)(F

)C(=

O)O

C(C

)C',

-6.5

-6.2

-0.3

wat

er45

70%

ace

tone

-wat

er56

29se

c-Bu

tyl t

riflu

oroa

ceta

te'F

C(F

)(F)C

(=O

)OC

(C)C

C',

-6.9

-6.6

-0.3

wat

er35

70%

ace

tone

-wat

er56

30se

c-Bu

tyl t

riflu

oroa

ceta

te'F

C(F

)(F)C

(=O

)OC

(C)C

C',

-6.7

-6.5

-0.2

wat

er45

70%

ace

tone

-wat

er56

31se

c-Pe

ntyl

trifl

uoro

acet

ate

'FC

(F)(F

)C(=

O)O

C(C

)CC

C',

-7.1

-6.7

-0.4

wat

er35

70%

ace

tone

-wat

er56

32se

c-Pe

ntyl

trifl

uoro

acet

ate

'FC

(F)(F

)C(=

O)O

C(C

)CC

C',

-6.9

-6.5

-0.3

wat

er45

70%

ace

tone

-wat

er56

33se

c-H

exyl

trifl

uoro

acet

ate

'FC

(F)(F

)C(=

O)O

C(C

)CC

CC

',-7

.1-6

.8-0

.3w

ater

3570

% a

ceto

ne-w

ater

5634

sec-

Hex

yl tr

ifluo

roac

etat

e'F

C(F

)(F)C

(=O

)OC

(C)C

CC

C',

-6.8

-6.6

-0.3

wat

er45

70%

ace

tone

-wat

er56

35Ph

enyl

trif

luor

oace

tate

'FC

(F)(F

)C(=

O)O

c1cc

ccc1

',-3

.3-3

.50.

1w

ater

3570

% a

ceto

ne-w

ater

5636

Phen

yl t

riflu

oroa

ceta

t'F

C(F

)(F)C

(=O

)Oc1

cccc

c1',

-3.2

-3.4

0.2

wat

er45

70%

ace

tone

-wat

er56

37m

-Met

hylp

heny

l tri

fluor

oace

tate

'FC

(F)(F

)C(=

O)O

c1cc

(C)c

cc1'

,-3

.6-3

.60.

1w

ater

3570

% a

ceto

ne-w

ater

56

Page 179: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

172

TA

BLE

7: G

ENER

AL B

ASE

HYDR

OLY

SIS

OF

ESTE

RS IN

ACE

TONE

-WAT

ER M

IXED

SO

LVEN

TS A

T VA

RIO

US T

EMPE

RATU

RE

obse

rved

ca

lcul

ated

Este

rsSM

ILES

stri

nglo

gklo

gkD

iffer

ence

Cat

alys

tsTe

mpe

ratu

reSo

lven

tsR

efer

ence

s38

m-M

ethy

lphe

nyl

triflu

oroa

ceta

te'F

C(F

)(F)C

(=O

)Oc1

cc(C

)ccc

1',

-3.4

-3.6

0.1

wat

er45

70%

ace

tone

-wat

er56

39p-

Met

hylp

heny

l tri

fluor

oace

tate

'FC

(F)(F

)C(=

O)O

c1cc

c(C

)cc1

',-3

.7-3

.80.

1w

ater

3570

% a

ceto

ne-w

ater

5640

p-M

ethy

lphe

nyl

triflu

oroa

ceta

te'F

C(F

)(F)C

(=O

)Oc1

ccc(

C)c

c1',

-3.5

-3.7

0.2

wat

er45

70%

ace

tone

-wat

er56

41o-

Met

hylp

heny

l tri

fluor

oace

tate

'FC

(F)(F

)C(=

O)O

c1cc

ccc1

C',

-3.9

-3.7

-0.2

wat

er35

70%

ace

tone

-wat

er56

42o-

Met

hylp

heny

l tri

fluor

oace

tate

'FC

(F)(F

)C(=

O)O

c1cc

ccc1

C',

-3.7

-3.6

-0.2

wat

er45

70%

ace

tone

-wat

er56

43M

ethy

l tri

fluor

oace

tate

'FC

(F)(F

)C(=

O)O

C',

-5.4

-6.2

0.7

wat

er35

70%

ace

tone

-wat

er54

, 55

44M

ethy

l tri

fluor

oace

tate

'FC

(F)(F

)C(=

O)O

C',

-5.3

-60.

7w

ater

4570

% a

ceto

ne-w

ater

54, 5

545

Ethy

l tri

fluor

oace

tate

'FC

(F)(F

)C(=

O)O

CC

',-6

-6.3

0.3

wat

er35

70%

ace

tone

-wat

er54

, 55

46Et

hyl

triflu

oroa

ceta

te'F

C(F

)(F)C

(=O

)OC

C',

-5.8

-6.1

0.3

wat

er45

70%

ace

tone

-wat

er54

, 55

47Pr

opyl

trif

luor

oace

tate

'FC

(F)(F

)C(=

O)O

CC

C',

-6.1

-6.3

0.2

wat

er35

70%

ace

tone

-wat

er54

, 55

48Pr

opyl

trif

luor

oace

tate

'FC

(F)(F

)C(=

O)O

CC

C',

-5.9

-6.1

0.2

wat

er45

70%

ace

tone

-wat

er54

, 55

49Bu

tyl

triflu

oroa

ceta

te'F

C(F

)(F)C

(=O

)OC

CC

C',

-6.2

-6.3

0.1

wat

er35

70%

ace

tone

-wat

er54

, 55

50Bu

tyl

triflu

oroa

ceta

te'F

C(F

)(F)C

(=O

)OC

CC

C',

-6-6

.10.

1w

ater

4570

% a

ceto

ne-w

ater

54, 5

551

Pent

yl tr

ifluo

roac

etat

e'F

C(F

)(F)C

(=O

)OC

CC

CC

',-6

.3-6

.30

wat

er35

70%

ace

tone

-wat

er54

, 55

52Pe

ntyl

trifl

uoro

acet

ate

'FC

(F)(F

)C(=

O)O

CC

CC

C',

-6-6

.10.

1w

ater

4570

% a

ceto

ne-w

ater

54, 5

553

Hex

yl tr

ifluo

roac

etat

e'F

C(F

)(F)C

(=O

)OC

CC

CC

C',

-6.3

-6.3

0w

ater

3570

% a

ceto

ne-w

ater

54, 5

554

Hex

yl tr

ifluo

roac

etat

e'F

C(F

)(F)C

(=O

)OC

CC

CC

C',

-6.1

-6.1

0w

ater

4570

% a

ceto

ne-w

ater

54, 5

555

Ethy

l pen

taflu

oroa

ceta

te'F

C(F

)(F)C

(F)(F

)C(=

O)O

CC

',-7

.1-7

.80.

7w

ater

3570

% a

ceto

ne-w

ater

54, 5

556

Ethy

l pen

taflu

oroa

ceta

te'F

C(F

)(F)C

(F)(F

)C(=

O)O

CC

',-6

.8-7

.60.

8w

ater

4570

% a

ceto

ne-w

ater

54, 5

557

Ethy

l hep

taflu

oroa

ceta

te'F

C(F

)(F)C

(F)(F

)C(F

)(F)C

(=O

)OC

C',

-7.4

-8.1

0.7

wat

er35

70%

ace

tone

-wat

er54

, 55

58Et

hyl h

epta

fluor

oace

tate

'FC

(F)(F

)C(F

)(F)C

(F)(F

)C(=

O)O

CC

',-7

.1-7

.90.

8w

ater

4570

% a

ceto

ne-w

ater

54, 5

559

Ethy

l dib

rom

oace

tate

'BrC

(Br)C

(=O

)OC

C',

-8.4

-8-0

.4w

ater

3536

% a

ceto

ne-w

ater

5060

Ethy

l dib

rom

oace

tate

'BrC

(Br)C

(=O

)OC

C',

-8.8

-8.3

-0.5

wat

er35

44%

ace

tone

-wat

er50

61Et

hyl d

ibro

moa

ceta

te'B

rC(B

r)C(=

O)O

CC

',-9

.1-8

.7-0

.5w

ater

3553

% a

ceto

ne-w

ater

5062

Ethy

l dib

rom

oace

tate

BrC

(Br)C

(=O

)OC

C',

-10.

5-1

0-0

.5w

ater

3583

% a

ceto

ne-w

ater

5063

Ethy

l dib

rom

oace

tate

'BrC

(Br)C

(=O

)OC

C',

-9.6

-9.1

-0.5

wat

er35

63%

ace

tone

-wat

er50

64Et

hyl d

ibro

moa

ceta

te'B

rC(B

r)C(=

O)O

CC

',-8

.2-7

.8-0

.4w

ater

4536

% a

ceto

ne-w

ater

5065

Ethy

l dib

rom

oace

tate

'BrC

(Br)C

(=O

)OC

C',

-8.6

-8.1

-0.5

wat

er45

44%

ace

tone

-wat

er50

66Et

hyl d

ibro

moa

ceta

te'B

rC(B

r)C(=

O)O

CC

',-8

.9-8

.4-0

.5w

ater

4553

% a

ceto

ne-w

ater

5067

Ethy

l dib

rom

oace

tate

'BrC

(Br)C

(=O

)OC

C',

-9.2

-8.8

-0.4

wat

er45

63%

ace

tone

-wat

er50

68Et

hyl d

ibro

moa

ceta

teBr

C(B

r)C(=

O)O

CC

',

-1

0.2

-9.7

-0.5

wat

er45

83%

ace

tone

-wat

er50

69Et

hyl d

ibro

moa

ceta

te'B

rC(B

r)C(=

O)O

CC

',-8

.1-7

.7-0

.4w

ater

5136

% a

ceto

ne-w

ater

5070

Ethy

l dib

rom

oace

tate

'BrC

(Br)C

(=O

)OC

C',

-8.4

-7.9

-0.5

wat

er51

44%

ace

tone

-wat

er50

71Et

hyl d

ibro

moa

ceta

te'B

rC(B

r)C(=

O)O

CC

',-8

.7-8

.3-0

.5w

ater

5153

% a

ceto

ne-w

ater

5072

Ethy

l dib

rom

oace

tate

'BrC

(Br)C

(=O

)OC

C',

-9.1

-8.6

-0.5

wat

er51

63%

ace

tone

-wat

er50

73Et

hyl d

ibro

moa

ceta

teBr

C(B

r)C(=

O)O

CC

',

-1

0-9

.5-0

.5w

ater

5183

% a

ceto

ne-w

ater

50

Page 180: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

173

TA

BLE

7: G

ENER

AL B

ASE

HYDR

OLY

SIS

OF

ESTE

RS IN

ETH

ANO

L-W

ATER

MIX

ED S

OLV

ENTS

AT

VARI

OUS

TEM

PERA

TURE

obse

rved

ca

lcul

ated

Este

rsSM

ILES

stri

nglo

gklo

gkD

iffer

ence

Cat

alys

tsTe

mpe

ratu

reSo

lven

tsR

efer

ence

s1

Ethy

l tric

hlor

oace

tate

'ClC

(Cl)(

Cl)C

(=O

)OC

C',

-6.3

-6.3

0w

ater

2540

% e

than

ol-w

ater

522

Ethy

l difl

uoro

acet

ate

'FC

(F)C

(=O

)OC

C',

-5.8

-5.9

0.1

wat

er25

3% e

than

ol-w

ater

523

Ethy

l difl

uoro

acet

ate

'FC

(F)C

(=O

)OC

C',

-5.9

-60.

1w

ater

257

% e

than

ol-w

ater

524

Ethy

l difl

uoro

acet

ate

'FC

(F)C

(=O

)OC

C',

-6-6

.10.

1w

ater

2512

% e

than

ol-w

ater

525

Ethy

l difl

uoro

acet

ate

'FC

(F)C

(=O

)OC

C',

-6.3

-6.2

0w

ater

2522

% e

than

ol-w

ater

526

Ethy

l difl

uoro

acet

ate

'FC

(F)C

(=O

)OC

C',

-6.4

-6.4

0w

ater

2532

% e

than

ol-w

ater

527

Ethy

l difl

uoro

acet

ate

'FC

(F)C

(=O

)OC

C',

-6.8

-6.8

0w

ater

2552

% e

than

ol-w

ater

528

Ethy

l difl

uoro

acet

ate

'FC

(F)C

(=O

)OC

C',

-7.1

-7.1

0.1

wat

er25

72%

eth

anol

-wat

er52

9Et

hyl t

richl

oroa

ceta

te'C

lC(C

l)(C

l)C(=

O)O

CC

',-3

.7-3

.4-0

.2ac

etat

e25

40%

eth

anol

-wat

er52

Page 181: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

174

TA

BLE

7: G

ENER

AL B

ASE

HYDR

OLY

SIS

OF

ESTE

RS IN

DIO

XANE

-WAT

ER M

IXED

SO

LVEN

TS A

T VA

RIO

US T

EMPE

RATU

RE

obse

rved

calc

ulat

edEs

ters

SMILE

Slo

gklo

gkD

iffer

ence

Cat

alys

tsTe

mpe

ratu

reSo

lven

tsR

efer

ence

s1

Meh

tyl t

richl

oroa

ceta

te'C

lC(C

l)C(=

O)O

CC

(Cl)(

Cl)C

l',-6

.3-7

.71.

4w

ater

2550

% d

ioxa

ne-w

ater

3, 1

42

Tric

hlor

oeth

yl d

ichl

oroa

ceta

te'C

lC(C

l)(C

l)C(=

O)O

C',

-6.3

-6.6

0.3

wat

er25

50%

dio

xane

-wat

er3,

14

3M

ethy

l trif

luor

oace

tate

'FC

(F)(F

)C(=

O)O

C',

-5.3

-5.5

0.1

wat

er25

60%

dio

xane

-wat

er3,

14

4M

ethy

l trif

luor

oace

tate

'FC

(F)(F

)C(=

O)O

C',

-5.7

-5.8

0w

ater

1070

% d

ioxa

ne-w

ater

3, 1

45

Ethy

l tric

hlor

oace

tate

'ClC

(Cl)(

Cl)C

(=O

)OC

C',

-7-6

.7-0

.3w

ater

2550

% d

ioxa

ne-w

ater

146

Prop

yl tr

ichl

oroa

ceta

te'C

lC(C

l)(C

l)C(=

O)O

CC

C',

-7.2

-6.7

-0.5

wat

er25

50%

dio

xane

-wat

er14

7Bu

tyl

trich

loro

acet

ate

'ClC

(Cl)(

Cl)C

(=O

)OC

CC

C',

-7.2

-6.8

-0.4

wat

er25

50%

dio

xane

-wat

er14

8Is

opro

pyl

trich

loro

acet

ate

'ClC

(Cl)(

Cl)C

(=O

)OC

(C)C

',-7

.8-6

.9-1

wat

er25

50%

dio

xane

-wat

er14

9C

hlor

oeth

yl t

richl

oroa

ceta

te'C

lC(C

l)(C

l)C(=

O)O

CC

Cl',

-6.1

-6.2

0.1

wat

er25

50%

dio

xane

-wat

er14

10M

etho

xyet

hyl

trich

loro

acet

ate

'ClC

(Cl)(

Cl)C

(=O

)OC

CO

C',

-6.6

-6.4

-0.1

wat

er25

50%

dio

xane

-wat

er14

11M

ethy

l trif

luor

oace

tate

'FC

(F)(F

)C(=

O)O

C',

-5.3

-5.5

0.1

wat

er25

60%

dio

xane

-wat

er14

12M

ethy

l trif

luor

oace

tate

'FC

(F)(F

)C(=

O)O

C',

-5.7

-5.8

0w

ater

2570

% d

ioxa

ne-w

ater

1413

Met

hyl t

riflu

oroa

ceta

te'F

C(F

)(F)C

(=O

)OC

',-6

.5-6

.2-0

.2w

ater

070

% d

ioxa

ne-w

ater

5714

Met

hyl t

riflu

oroa

ceta

te'F

C(F

)(F)C

(=O

)OC

',-5

.4-5

.40.

1w

ater

44.6

70%

dio

xane

-wat

er57

15M

ethy

l trif

luor

oace

tate

'FC

(F)(F

)C(=

O)O

C',

-6-5

.9-0

.1w

ater

060

% d

ioxa

ne-w

ater

5716

Met

hyl t

riflu

oroa

ceta

te'F

C(F

)(F)C

(=O

)OC

',-5

.1-5

.30.

2w

ater

34.8

60%

dio

xane

-wat

er57

17M

ethy

l trif

luor

oace

tate

'FC

(F)(F

)C(=

O)O

C',

-4.9

-5.2

0.3

wat

er44

.660

% d

ioxa

ne-w

ater

57

Page 182: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

175

TABL

E 8:

HYD

RAT

ION

OF

ALD

EHYD

ES/K

ETO

NES

IN W

ATER

AT

RO

OM

TEM

PER

ATU

RE

Obs

erve

dC

alcu

late

dD

iffer

enc

Ref

eren

ces

Nam

es o

f Com

poun

dsSM

ILES

stri

ngpK

(hyd

.)pK

(hyd

.)1

Form

alde

hyde

'OZ=

C',

-3.3

-3.3

05,

62

Etha

nal

'OZ=

CC

',-0

.1-0

.20.

15,

63

Prop

anal

'OZ=

CC

C',

0.2

00.

25,

64

Isob

utan

al'O

Z=C

C(C

)C',

0.4

0.3

0.1

5,6

5Bu

tana

l'O

Z=C

CC

C',

0.3

0.1

0.2

5,6

6Pi

vald

ehyd

e'O

Z=C

C(C

)(C)C

',0.

60.

9-0

.35,

67

Chl

oroe

than

al'C

lCC

=OZ'

,-1

.6-1

.70.

15,

68

Tric

hlor

oeth

anal

'ClC

(Cl)(

Cl)C

=OZ'

,-4

.5-4

.2-0

.35,

69

acet

one

'CC

(=O

Z)C

',2.

72.

8-0

.15

10D

iace

tyl

'OZ=

C(C

)C(=

O)C

',-0

.3-0

.30

511

Met

hyl c

hlor

oeth

anon

e'C

lCC

(=O

Z)C

',1

1.1

-0.1

512

Met

hyl d

ichl

oroe

than

one

'ClC

(Cl)C

(=O

Z)C

',-0

.5-1

0.6

513

Chl

orom

ethy

l chl

oroe

than

one

'ClC

C(=

OZ)

CC

l',-1

-1.1

0.1

514

Met

hyl p

yruv

ate

'OZ=

C(C

)C(=

O)O

C',

-0.5

-0.5

05

15M

e2C

H2(

C=O

)CO

OH

'O=C

(O)C

(=O

Z)C

(C)C

',0

00

516

Benz

alde

hyde

'OZ=

Cc1

cccc

c1',

22.

1-0

.15

17m

-Chl

orro

benz

alde

hyde

'OZ=

Cc1

cc(C

l)ccc

1',

1.7

1.5

0.2

518

p-C

hlor

oben

zald

ehyd

e'O

Z=C

c1cc

c(C

l)cc1

',1.

81.

70.

15

19m

-Nitr

oben

zald

ehyd

e'O

Z=C

c1cc

(N(=

O)=

O)c

cc1'

,1

0.9

0.1

520

p-N

itrob

enza

ldeh

yde

'OZ=

Cc1

ccc(

N(=

O)=

O)c

c1',

0.8

0.7

05

213,

5-D

initr

oben

zald

ehyd

e'O

Z=C

c1cc

(N(=

O)=

O)c

c(N

(=O

)=O

)c1'

,-0

.3-0

.1-0

.35

223-

Nitr

o,4-

chlo

robe

nzal

dehy

de'O

Z=C

c1cc

(N(=

O)=

O)c

(Cl)c

c1',

0.8

0.5

0.2

523

p-Tr

ifluo

robe

nzal

dehy

de'O

Z=C

c1cc

c(C

(F)(F

)F)c

c1',

1.3

1.4

-0.2

524

2-C

hlor

o-is

obut

anal

'OZ=

CC

(Cl)(

C)C

',-0

.7-0

.4-0

.35

252-

Dib

rom

o-bu

tana

l'O

Z=C

C(B

r)(Br

)CC

',-1

-1.2

0.2

526

2-Br

omo-

hept

anal

'OZ=

CC

(Br)C

CC

CC

',-0

.5-0

.4-0

.15

272-

Chl

oro-

buta

nal

'OZ=

CC

(Cl)C

C',

-1.2

-1-0

.25

282-

Chl

oro-

hept

anal

'OZ=

CC

(Cl)C

CC

CC

',-0

.8-0

.80

529

2-Br

omo-

buta

nal

'OZ=

CC

(Br)C

C',

-0.6

-0.5

05

303,

4-he

xane

dion

e'C

CC

(=O

Z)C

(=O

)CC

',-0

.3-0

.2-0

.15

31ac

etyl

benz

oyl

'CC

(=O

Z)C

(=O

)c1c

cccc

1',

-0.2

0.3

-0.5

532

2-py

ridin

e-al

dehy

de'n

1c(C

=OZ)

cccc

1',

-1.9

-0.9

-0.9

17,1

833

3-py

ridin

e-al

dehy

de'n

1cc(

C=O

Z)cc

c1',

-0.7

-1.4

0.7

17,1

834

4-py

ridin

e-al

dehy

de'n

1ccc

(C=O

Z)cc

1',

-1.7

-1.7

017

,18

35Et

hyl p

yruv

ate

'CC

(=O

Z)C

(=O

)OC

C',

-0.4

-0.5

0.1

17,1

836

9-ac

ridin

e-al

dehy

de'c

1cc2

nc3c

cccc

3c(C

=OZ)

c2cc

1',

-0.4

-1.1

0.7

17,1

8

Page 183: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

176

TABL

E 9:

HYD

RAT

ION

OF

QU

INAZ

OLI

NES

IN

WAT

ER A

T R

OO

M T

EMPE

RAT

UR

E

Obs

erve

dC

alcu

late

dQ

uina

zolin

esSM

ILES

valu

eva

lue

Diff

eren

ceR

efer

ence

s1

Qui

nazo

line

(Uns

ubst

itute

d)'n

(cc1

cc2)

cnc1

cc2'

,4.

34

0.3

82

2-M

ethy

l qui

nazo

line

'n(c

c1cc

2)c(

C)n

c1cc

2',

3.8

4.3

-0.5

83

2-Et

hyl q

uina

zolin

e'n

(cc1

cc2)

c(C

C)n

c1cc

2',

3.9

4.1

-0.2

84

2-Is

opro

pyl q

uina

zolin

e'n

(cc1

cc2)

c(C

(C)C

)nc1

cc2'

,4.

13.

80.

38

52-

t-But

yl q

uina

zolin

e'n

(cc1

cc2)

c(C

(C)(C

)C)n

c1cc

2',

4.2

40.

28

65-

Met

hyl q

uina

zolin

e'n

(cc1

c(C

)c2)

cnc1

cc2'

,4.

34.

7-0

.48

77-

Met

hyl q

uina

zolin

e'n

(cc1

cc2)

cnc1

cc2C

',4.

84.

80

88

8-M

ethy

l qui

nazo

line

'n(c

c1cc

2)cn

c1c(

C)c

2',

4.7

4.4

0.3

89

5-M

etho

xy q

uina

zolin

e'n

(cc1

c(O

C)c

2)cn

c1cc

2',

4.3

4.6

-0.2

810

6-M

etho

xy q

uina

zolin

e'n

(cc1

cc2(

OC

))cnc

1cc2

',5.

34.

90.

48

117-

Met

hoxy

qui

nazo

line

'n(c

c1cc

2)cn

c1cc

2OC

',5.

75

0.7

812

8-M

etho

xy q

uina

zolin

e'n

(cc1

cc2)

cnc1

c(O

C)c

2',

4.3

4.2

0.1

813

5-C

hlor

o qu

inaz

olin

e'n

(cc1

c(C

l)c2)

cnc1

cc2'

,3.

23.

4-0

.28

146-

Chl

oro

quin

azol

ine

'n(c

c1cc

2(C

l))cn

c1cc

2',

3.6

3.6

08

157-

Chl

oro

quin

azol

ine

'n(c

c1cc

2)cn

c1cc

2Cl',

3.7

3.6

0.1

816

8-C

hlor

o qu

inaz

olin

e'n

(cc1

cc2)

cnc1

c(C

l)c2'

,3.

33.

20

817

5-Fl

uoro

qui

nazo

line

'n(c

c1c(

F)c2

)cnc

1cc2

',3

3.5

-0.5

818

6-Fl

uoro

qui

nazo

line

'n(c

c1cc

2(F)

)cnc

1cc2

',3.

83.

70.

18

197-

Fluo

ro q

uina

zolin

e'n

(cc1

cc2)

cnc1

cc2F

',4

3.7

0.3

820

5-N

itro

quin

azol

ine

'n(c

c1c(

N(=

O)=

O)c

2)cn

c1cc

2',

2.7

2.6

08

216-

Nitr

o qu

inaz

olin

e'n

(cc1

cc2(

N(=

O)=

O))c

nc1c

c2',

2.8

20.

88

227-

Nitr

o qu

inaz

olin

e'n

(cc1

cc2)

cnc1

cc2N

(=O

)=O

',2.

12.

3-0

.28

238-

Nitr

o qu

inaz

olin

e'n

(cc1

cc2)

cnc1

c(N

(=O

)=O

)c2'

,2

2.5

-0.5

824

5-Tr

ifluo

ro q

uina

zolin

e'n

(cc1

c(C

(F)(F

)F)c

2)cn

c1cc

2',

3.7

3.1

0.6

825

6-Tr

ifluo

ro q

uina

zolin

e'n

(cc1

cc2(

C(F

)(F)F

))cnc

1cc2

',2.

83.

7-0

.98

267-

Trifl

uoro

qui

nazo

line

n(cc

1cc2

)cnc

1cc2

C(F

)(F)F

',3

3.9

-0.9

827

8-Tr

ifluo

ro q

uina

zolin

e'n

(cc1

cc2)

cnc1

c(C

(F)(F

)F)c

2',

3.6

30.

68

Page 184: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

177

REFERENCES

1. S. H. Hilal and et al., Quantitative Treatments of Solute/Solvent Interactions,

Elsevier, NY, 1994. (p291-353).

2. C. K. Ingold, Structure and Mechanism in Organic Chemistry, Cornell University

Press, 1953 (p752-782).

3. S. Patai (editor), The Chemistry of Carboxylic Acids and Esters, John Wiley and

Sons Ltd., NY, 1969. (p505-588).

4. http://encarta.msn.com/index/conciseindex/50/050DD000.htm .

5. R. P. Bell, Adv. Phys. Org. Chem., 4, 1-29 (1966).

6. Y. Ogata and A. Kawasaki, The Chemistry of the Carbonyl Group, 2, 1-69 (1970).

7. http://www.lancastersynthesis-us.com/html/body_quinazolines.html .

8. W. L. F. Armarego (author), Fused Pyrimidines: Part I-Quinazolines, Interscience

Publishers, NY, 11-38 (1967).

9. Wisnu Susetyo, Development of Multimetal-Multiligand Equilibrium Model for the

Study of Metal-Humic Interaction by Lanthanide Ion Probe Spectrofluorometry

(Ph. D. Thesis), Department of Chemistry, UGA, 1989.

10. L. A. Carriera, Prediction of Chemical Parameters by Computer, Department of

Chemistry, UGA, 1994.

11. Theodore Mill and et al., Chromophore, 17 (vol.), 1509-1530 (1988).

12. R. W. Taft (Jr.), J. Am. Chem. Soc., 74, 2729 (1952).

Page 185: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

178

13. M. S. Newman, Steric Effects in Organic Chemistry, John Wiley and Sons, Inc., NY,

1956 (559-675).

14. E. Euranto, Suomen Kemistilehti, 35B, 18 (1962).

15. Karl Koehler and et al., J. Am. Chem. Soc., 88, 3577 (1966).

16. M. R. Montoya and J. M. Rodriguez Mellado, J. Electroanalytical Chem., 370, 183

(1994).

17. R. A. McCelland and et al., Can. J. Chem., 72, 2333 ( 1994).

18. S. Cabani and et al., J. Phys. Chem., 76, 2959 (1972).

19. T. Mill and W. Mabey, J. Phys. Chem. Ref. Data, 7, No.2, 383, 1978.

20. Takaaki Nishioka and et al., J. Org. Chem., 40, 2520 (1975).

21. C. H. DePuy and L.R. Mahoney, J. Am. Chem. Soc., 86, 2653 (1964).

22. E. K. Euranto and Anna-Liisa Moisio, Suomen Kemistilehti, 92, 37B (1964).

23. Sy-rong Sun and Kenneth A. Connors, Journal of Pharmaceutical Sciences, 58, 1150

(1961).

24. R.W.A. Jones and J.D.R. Thomas, J. Chem. Soc. (B), 661 (1966).

25. J.G. Watkinson and et al., J. Chem. Soc., 5437 (1966).

26. R.O.C. Norman and P. D. Ralph, J. Chem. Soc., 5431 (1966).

27. Nancy Acton and Ernst Berlinger, J. Am. Chem. Soc., 64, 3312 (1964).

28. A. Fischer, and et al., J. Chem. Soc., 1426 (1958).

29. Ernst Berlinger and Liang Huang Liu, J. Am. Chem. Soc., 75, 2417 (1953).

30. P.R. Falkner and D. Harrison, J. Chem. Soc., 1171 (1960).

31. N.B. Chapman and et al., J. Chem. Soc., 1291 (1963).

32. L. W. Deady and R. A. Shanks, Aust. J. Chem., 25, 2363 (1972).

33. R. C. Elderfield and Malcolm Siegel, J. Am. Chem. Soc., 73, 5622 (1951).

Page 186: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

179

34. A. D. Campbell and et al., Aust. J. Chem., 23, 203 (1970).

35. A. D. Campbell and et al, J. Chem. Soc. (B), 1063-1070 (1970).

36. C. K. Hancock and et al., J. Am. Chem. Soc., 83, 4211 (1961).

37. C. K. Hancock and C. P. Falls, J. Am. Chem. Soc., 83, 4214 (1961).

38. M. L. Bender and et al., J. Am. Chem. Soc., 83, 4193 (1961).

39. M. L. Bender and Robert J. Thomas, J. Am. Chem. Soc., 83, 4189 (1961).

40. J. F. Kirsch and et al., J. Org. Chem., 33, 127 (1968).

41. DeLos DeTar and Carl J. Tenpas, J. Am. Chem. Soc., 7903 (1976).

42. T. H. Fife and D. N. McMahon, J. Am. Chem. Soc., 91, 7481 (1969).

43. W. B. S. Newling and C. N. Hinselwood, J. Chem. Soc., 1357 (1936).

44. M. Charton, J. Am. Chem. Soc., 97, 1554 (1975).

45. G. Gorrin and et al., J. Am. Chem. Soc., 75, 5622 (1953).

46. E. W. Timm and C. N. Hinselwood, J. Chem. Soc., 862 (1938).

47. H. A. Smith and J. H. Steele, J. Am. Chem. Soc., 63, 3466 (1941).

48. H. A. Smith and R. R. Myers, J. Am. Chem. Soc., 64, 2362 (1942).

49. E. Tomilla and C. N. Hinselwood, J. Chem. Soc., 1801 (1938).

50. F. N. Hornyak and E. S. Amis, J. Am. Chem. Soc., 79, 2079 (1957).

51. N. J. Cleve and E. K. Euranto, Suomen Chemistilehti, 37, 126 (1964).

52. W. P. Jencks and J. Carriuolo, J. Am. Chem. Soc., 83, 1743 (1961).

53. V. Gold and et al., J. Chem. Soc. (B), 515 (1968).

54. Arlo Moffat and Herschel Hunt, J. Am. Chem. Soc., 79, 54 (1957).

55. J. G. winter and J.M.W. Scott, Can. J. Chem., 46, 2887 ( 1968).

56. Arlo Moffat and Herschel Hunt, J. Am. Chem. Soc., 81, 2082 (1958).

57. C. A. Bunton and T. Hadwick, J. Chem. Soc., 3248 (1958).

Page 187: BHAGVAD P. SHRESTHA Prediction of Hydrolysis Rate

180

58. P. Greenzaid and et al., J. Am. Chem. Soc., 89, 749 (1967).

59. L. C. Gruen and P. T. McTigue, J. Chem. Soc., 5217 (1963).

60. Y. Pocker and D. G. Dickerson, J. Phys. Chem., 73, 4005 (1969).

61. R. A. McCelland and M. Coe, J. Am. Chem. Soc., 105, 2718 (1983).