bhadauriaijma17-20-2009

13
Int. Journal of Math. Analysis, Vol. 3, 2009, no. 17, 815 - 827 Finite Difference Formulae for Unequal Sub- Intervals Using Lagrange’s Interpolation Formula Ashok K. Singh a and B. S. Bhadauria b Department of Mathematics, Faculty of Science, Banaras Hindu University, Varanasi-221005, India a [email protected], b [email protected] Abstract General finite difference formulae and the corresponding error terms have been derived considering unequally spaced grid points, and using Lagrange’s interpolation formula. Further the finite difference formulae and the error terms for equally spaced sub-intervals have also been obtained as special cases of the present study. Mathematics Subject Classification: Primary 65D30, Secondary 65D05 Keywords: Finite difference formulae, Lagrange’s interpolation formula, Error terms, Clamped Simpson’s rule 1. Introduction Finite difference method is one of the very effective methods used for solving the differential equations (ordinary or partial) numerically. It involves replacing the derivatives appearing in the differential equation and boundary conditions by suitable finite difference approximations. The accuracy of the solution depends upon the number of grid points, chosen. By increasing the number of grid points one can increase the accuracy of the solution to a desire degree, however it involves increasingly tedious mathematical analysis. Based on Tayor’s series, Khan and Ohba [2-8] presented some new difference schemes for finite difference approximation. They obtained closed-

Upload: kush-dewangan

Post on 20-Oct-2015

11 views

Category:

Documents


0 download

DESCRIPTION

fhdfhdf

TRANSCRIPT

Page 1: bhadauriaIJMA17-20-2009

Int. Journal of Math. Analysis, Vol. 3, 2009, no. 17, 815 - 827

Finite Difference Formulae for Unequal Sub-

Intervals Using Lagrange’s Interpolation Formula

Ashok K. Singh a and B. S. Bhadauria b

Department of Mathematics, Faculty of Science, Banaras Hindu University, Varanasi-221005, India

[email protected], [email protected]

Abstract

General finite difference formulae and the corresponding error terms have been derived considering unequally spaced grid points, and using Lagrange’s interpolation formula. Further the finite difference formulae and the error terms for equally spaced sub-intervals have also been obtained as special cases of the present study.

Mathematics Subject Classification: Primary 65D30, Secondary 65D05 Keywords: Finite difference formulae, Lagrange’s interpolation formula, Error terms, Clamped Simpson’s rule

1. Introduction

Finite difference method is one of the very effective methods used for solving the differential equations (ordinary or partial) numerically. It involves replacing the derivatives appearing in the differential equation and boundary conditions by suitable finite difference approximations. The accuracy of the solution depends upon the number of grid points, chosen. By increasing the number of grid points one can increase the accuracy of the solution to a desire degree, however it involves increasingly tedious mathematical analysis.

Based on Tayor’s series, Khan and Ohba [2-8] presented some new difference schemes for finite difference approximation. They obtained closed-

Page 2: bhadauriaIJMA17-20-2009

816 Ashok K. Singh and B. S. Bhadauria

forms expressions of these new difference formulae, which can give approximations of arbitrary order. Recently, using Lagrange’s interpolation formula, Singh and Thorpe [9] have given a general method from which various types of finite difference formulae can be obtained by assigning the suitable values to the parameters. Further the method also facilitates the generation of finite difference formulae for higher derivatives by differentiation. However the applicability of the above methods appears to be limited as their method holds only when the grid points are equally spaced.

Another class of problem concerned with the finite difference formulae in the numerical analysis is to find them in case of unequal subintervals. This situation specially arises in the mathematical modelling when the function has been obtained experimentally and the independent variable is not under the control of the experimenter, thus one need to find the finite difference formulae for the observational data. To tackle this situation, by introducing generalized Vandermonde determinant, Li [2] presented general explicit difference formulae with arbitrary order accuracy for approximating first and higher order derivatives, which can be used for both equally and unequally spaced data. However, we use the available Lagrange’s interpolation formula to obtain the finite difference formulae for unequally spaced subintervals.

2. Analysis

Using the Lagrange’s interpolation formula, function ( )xf can be

expressed as[1]

( ) ( ) jj

n

j

fxlxf ∑=

=0

(1)

where jf stands for ( )jxf , while ( )xl j is as given below

( )( )

( ) ( )l xx

x x xj

j j

=− ′

π

π. (2)

In the above equation (2), prime denotes differentiation with respect to x and

( ) ( )( ) ( )nxxxxxxx −−−= .... 10π . (3)

The truncation error, in the evaluation of ( )xf is as given below:

Page 3: bhadauriaIJMA17-20-2009

Finite difference formulae 817

( ) ( )( ) ( )E x

xn

fnn=

++πξ

11

! (4)

where ( )ξ1+nf denotes ( )thn 1+ derivative of ( )ξf , while ξ lies between the interval [ ]nxx ,0 . The interval [ ]nxx ,0 be divided into n subintervals of unequal

widths ,1h ,2h ,3h nh.,.. such that .1

0 ∑=

+=n

iin hxx

(a) Three Point Finite difference formulae: For this case 2=n , and hence

setting

( ) 2121110 and,1 hshxxshxxhsxx −=−=−+=− (5)

in equation (1) we have expression for ( )xf as

( )( ) ( ) ( )( ) ( ) ( )

( ) ( )2212

21

12

210

21

21 11)( xfhhhhssxf

hhshsxf

hhhshsxf

++

+−+

−+−

= . (6)

Differentiating equation (6) with respect to x , we get

( )( )

( ) ( )( ) 2

212

11

21

210

211

21 12122)( fhhhhsf

hhhhsf

hhhhshxf

++

+−+

−+−

=′ . (7)

Then by putting respectively, 0,1−=s and 12 / hh , the formulae for the first order derivatives of ( )xf at the points 210 ,, xxx can be obtained as

( )( ) ( ) 2

221

11

21

210

211

210

2)( f

hhhh

fhh

hhf

hhhhh

xf+

−+

+++

−=′ , (8a)

( ) ( ) 2212

11

21

210

211

21 )( f

hhhhf

hhhhf

hhhhxf

++

−−

+−=′ , (8b)

and ( ) ( ) 2212

211

21

210

211

22

2)( f

hhhhh

fhh

hhf

hhhh

xf+

++

+−

+=′ . (8c)

Page 4: bhadauriaIJMA17-20-2009

818 Ashok K. Singh and B. S. Bhadauria

Using (5) in equation (4), the error terms have been calculated as follows

( )ξfhhshssE ′′′−+=

6))(1( 2

2212 (9)

and ( )ξfhhshshhsE ′′′−+−=′

6)223( 12121

2

2 . (10)

The corresponding error terms in the formulae (8a, b, c) for 0,1−=s and 12 / hh ,

result in respectively as ( )ξfhhh ′′′+

6)( 211 , ( )ξf

hh ′′′−6

21 and ( ) ( )ξf

hhh ′′′+6

221 .

Differentiation of equation (7) produces difference formula for second derivative as

( )[ ]( )2121

21121022)(

hhhhfhfhhfh

xf+

++−=′′ , (11)

and the corresponding error term can be obtained by differentiating equation (10). For 21 hhh == , we obtain the finite difference formulae and the corresponding truncation errors for equal sub-intervals as obtained by Singh and Thorpe [9]. (b) Four point finite difference formulae: In this case 3=n , and substituting

(Singh and Thorpe[10])

( ) ( )32132121110 and,,1 hhshxxhshxxshxxhsxx +−=−−=−=−+=− (12)

in the corresponding equation of (1), we get

( )( )

( )( )( )( )

( ) 1322

321210

121

13221 1)( f

hhhhhshhshs

fHhh

shhhhshsxf

+−−−+

++

−+−=

( ) ( )

( )( ) ( )

( ) 33321

212

12

3221

1322

1 11f

hhhHhshhssf

hhhhshhhhss

+−+

++

−+++ (13)

where .3211 hhhH ++= Differentiation of (13) produces

Page 5: bhadauriaIJMA17-20-2009

Finite difference formulae 819

( )( ) ( )

( ) 01211

1123221 322)( f

Hhhhshshhhhhsh

xf+

−++−=′

( )( ) ( )( ) 1

3121

31321121 123f

hhhhhhshhhshhsh

++−−−+−

+

( ) ( ) ( )( ) 2

3221

21321 2312 f

hhhhhsshhhs

++−++

+( ) ( )

( ) 33321

212

1 1223 fhhhH

hhsshs+

+−++ . (14)

For 12 /,0,1 hhs −= and ( ) 132 / hhh + , the respective finite difference formulae are obtained from (14) as follows:

( ) ( )

( )( )

( ) 13121

1210

1211

2111210

2)( f

hhhhHhh

fHhhh

hhhHhhxf

++

++

+++−=′

( )( )( ) 3

3321

2112

3221

11 fhhhH

hhhf

hhhhHh

++

++

− , (15a)

( )

( )( ) ( )

( ) 13121

3213220

1211

3221

2)( f

hhhhhhhhhh

fHhhh

hhhxf

++−+

+++

−=′

( )

( ) ( ) 33321

212

3221

321 fhhhH

hhf

hhhhhhh

+−

++

− , (15b)

( )( )

( ) 13121

3210

1211

322 )( f

hhhhhhh

fHhhh

hhxf

++

−+

=′

( ) ( )

( )( )( ) 3

3321

2212

3221

212213 2f

hhhHhhhf

hhhhhhhhhh

++

++

+−++ , (15c)

( )( ) ( ) 1

3121

310

1211

3323 )( f

hhhhhH

fHhhh

hhhxf

++

++

−=′

( )

( )( )

( ) .3

33321

213112

3221

321 fhhhH

hHhhHf

hhhhhhH

++−

++

+− (15d)

The associated error term for four point formula is obtained from equation (4) as

Page 6: bhadauriaIJMA17-20-2009

820 Ashok K. Singh and B. S. Bhadauria

( ) ( ){ }( ) ( )( )[ ] ( )ξivfhshsshhhshhshsshE 212

13212121

3 122324

−++−−+−+=′ . (16)

The truncation errors corresponding to equations (15a, b, c, d) are derived respectively, from equation (16) as

( ) ( ) ( )[ ,,, 213232212111 hhhhhhhhhhhH +−++− ( )]3231 hhhH + ( ) 24/ξivf . Differentiation of equation (14) gives difference formulae corresponding to the second derivatives as

( )

( )( )

( ) 13121

32110

1211

132 232624)( f

hhhhhhhsh

fHhhh

shhhxf

+−−+

++

−+=′′

( )( )

( )( ) 3

3321

2112

3221

1132 3232f

hhhHhhsh

fhhhh

shhhh+

−++

+−−+

+ . (17)

For 12 /,0,1 hhs −= and ( ) 132 / hhh + , expression (17) results in

( )( )

( )( ) 1

3121

3210

1211

3210

222232)( f

hhhhhhh

fHhhh

hhhxf

+++

−+

++=′′

( )

( )( )( ) 3

3321

212

3221

11 222 fhhhH

hhfhhhh

Hh++

−++

+ , (18a)

( )( )

( )( ) 1

3121

3210

1211

321

2222)( f

hhhhhhh

fHhhh

hhxf

+−−

+++

=′′

( )

( )( )( ) 3

3321

212

3221

11 222f

hhhHhh

fhhhh

hH+−

++

−+ , (18b)

( )( )

( )( ) 1

3121

310

1211

232

222)( f

hhhhhH

fHhhh

hhxf

+−

++−

=′′

( )( )

( )( ) 3

3321

212

3221

123 2222f

hhhHhh

fhhhhhhh

++

++

−−+ , (18c)

and ( )( )

( )( ) 1

3121

310

1211

323

222)( f

hhhhhH

fHhhhhh

xf++

+++−

=′′

Page 7: bhadauriaIJMA17-20-2009

Finite difference formulae 821

( )

( )( )

( ) 33321

3212

3221

11 32222f

hhhHhhh

fhhhh

hH+++

++

−− , (18d)

respectively. Truncation error concerned with equation (17) is obtained from differentiation of equation (16) as

( )( ) ( ) ( ){ }[ ] ( )ξivfhshsshhhhshhshE 312

13211213 1225121

+−++−−+−=′′ , (19)

from which respective truncation errors corresponding to equations (18) can be derived. Differentiation of equation (17) gives

( ) ( )⎢⎣

⎡+

++

−=′′′ 13121

012111

116)( fhhhh

fHhhhh

xf

( ) ( ) ⎥⎦

⎤+

++

− 33321

23221

11 fhhhH

fhhhh

(20)

which is the difference formula for the third derivative in terms of the function at the four points situated at unequal intervals. The corresponding truncation error can be obtained by differentiating equation (19). Putting 321 hhhh === in above expressions, we obtained the results for equal sub-intervals as obtained by Singh and Thorpe [9]. (c) Five point finite difference formulae: The value of n is four for five point difference formulae. Substituting ( ) ,,,1 2121110 hshxxshxxhsxx −=−=−+=− ( ) ( )432143213 , hhhshxxhhshxx ++−=−+−=− (21)

in the corresponding equation obtained from (1), and then differentiating the resulting equation, we get

( )( )( ) ( )( )( )( )( ) 0

4321321211

432121112132121 2222)( f

hhhhhhhhhhhhhshhshshhHshhhshhsh

xf++++++

−−−−++−−−−=′

( )( )( ) ( )( )( )( )( ) 1

4323121

4321211121321211 22212f

hhhhhhhhhhshhshshhHshhhshhhsh

+++−−−−+++−−−−+

( )( )( ) ( )( )( ) ( ) 2

433221

432122

112132111 2222f

hhhhhhhhhshsshhHshhhshhsh

++−−−+++−−−+

+

Page 8: bhadauriaIJMA17-20-2009

822 Ashok K. Singh and B. S. Bhadauria

( )( )( ) ( )( )( )( ) 3

4332321

432122

11212111 222f

hhhhhhhhhhshsshhHshhshhsh

+++−−−+++−−+

( ) ( )( ) ( )( )( )( )( ) 4

4434324321

32122

1321211 2212f

hhhhhhhhhhhhshsshhhshhshhs

++++++−−++−−−+

+ (22)

The expressions for the above derivative at 420 and, xxxx = are obtained by setting respectively, 12 /,1 hhs −= and ( ) 1432 / hhhh ++ :

( ) ( )( )( ) 0

21211

4221121210

22)( f

HHhhhhHhhhHHhh

xf+

−+++−=′ ( )

( )( ) 1123121

2121 fhHhhhh

HHhh−+

++

( ) ( ) 2433221

211 fhhhhhh

HHh++

−( )( ) 3

43321

2211 fhhhhH

Hhhh++

+( )

( )( ) 4443122

1211 fhhhhHH

Hhhh+−

+− (23)

( )( ) 0

21211

43322 )( f

HHhhhhhhh

xf+

+=′

( ) ( )( )( ) 1

123121

43321 fhHhhhh

hhhhh−+

++−

( ) ( ) ( ) ( )( ) ( ) 2

433221

4322143321 22f

hhhhhhhhhhhhhhhh

++++−++

+

( ) ( )( ) 3

43321

43221 fhhhhHhhhhh

+++

+( )

( )( ) 4443122

1211 fhhhhHH

Hhhh+−

+− (24)

and

( )( )( ) 0

21211

443124 )( f

HHhhhhhhhH

xf+

+−=′

( )( )( ) 1

123121

4432 fhHhhhh

hhhH−+

+−

( )( ) ( ) 2

433221

4122 fhhhhhh

hhHH++

−+

( )( )( ) 3

43321

43122 fhhhhH

hhhHH+

+−−

( )( ) ( )( )

( )( ) 4443122

4312244312 22f

hhhhHHhhhHHhhhhH

+−+−++−

+ , (25)

Page 9: bhadauriaIJMA17-20-2009

Finite difference formulae 823

where .43212 hhhhH +++= Also the truncation errors corresponding to (23)-(25) are as given below:

( ) ( ) ( )ξvfHHhhh

xE120

2121104

+=′ (26)

( ) ( ) ( ) ( )ξvfhhhhhh

xE120

43322124

++=′ (27)

and ( ) ( )( ) ( )ξvfhhhhHH

xE120

43212244

+−=′ (28)

The second and third order derivatives of the function ( )xf at ,0xx = 42 and xx

are

( )( ) ( )( )( ) 0

2321211

43212142210

3242223)( f

HhhhhhhhhHhHHhHhh

xf+++

−−++−+=′′

( )( )( )( ) 1

4323121

214221 222f

hhhhhhhHHhHhh

++++−+

−( )

( ) ( ) 2433221

21421 222f

hhhhhhHHhHh

+++−

+

( ) ( )( )( ) 3

4332321

2212211 22 fhhhhhhh

HhhHhhh+++

++++−

( ) ( )( )( ) 4

4434322

121311 222f

hhhhhhHHhhhHh

+++++−

+ , (29)

( ) ( )( )( ) 0

2321211

4334322

222)( f

Hhhhhhhhhhhhh

xf+++

+++−=′′ ( )( ) ( )

( )( ) 14323121

4334321 222f

hhhhhhhhhhhhhh

++++−++

+

( ) ( )( ) ( )( ) ( ) 2

433221

4334321212 22222f

hhhhhhhhhhhhhhhh

++++++−+

+

( )( ) ( )( )( ) 3

4332321

2124321 222f

hhhhhhhhhhhhhh

++++−++

+( ) ( )( )( ) 4

4434322

321221 222f

hhhhhhHhhhhhh

++++−+

+ (30)

( ) ( )( )( )( ) 0

2321211

431244324

3233)( f

HhhhhhhhhhHhhhh

xf+++

+−+++=′′

Page 10: bhadauriaIJMA17-20-2009

824 Ashok K. Singh and B. S. Bhadauria

( ) ( ) ( )

( )( ) 14323121

4434324432 32f

hhhhhhhhhhhhHhhhH

+++++++++

( ) ( )( ) ( ) 2

433221

212412 222 fhhhhhh

HhHhhH++−+−

+( )( ) ( )

( )( ) 34332321

1224312 222f

hhhhhhhhHHhhhH

+++−++−

( )( ) ( ) ( )

( )( ) 44434322

1224434312 22222f

hhhhhhHhHHhhhhhhH

+++−++++−

+ , (31)

( )( ) 0

21211

43210

2346)( f

HHhhhhhhh

xf+

+++−=′′′ ( )

( )( ) 1123121

4321 2336f

hHhhhhhhhh

−++++

+

( )( ) ( ) 2

433221

4321 2236f

hhhhhhhhhh

+++++

−( )

( ) 343321

4321 236f

hhhhHhhhh

++++

+

( )( )( ) 4

443122

321 236f

hhhhHHhhh+−++

− , (32)

( )( ) 0

21211

4322

26)( f

HHhhhhhh

xf+

−−=′′′ ( )

( )( ) 1123121

4321 26f

hHhhhhhhhh−+−−+

( )( ) ( ) 2

433221

4321 226f

hhhhhhhhhh

++−−+

+( )

( ) 343321

4321 26f

hhhhHhhhh

+−−+

( )

( )( ) 4443122

321 26f

hhhhHHhhh+−

−++ , (33)

( )( ) 0

21211

4324

326)( f

HHhhhhhh

xf+

++=′′′ ( )

( )( ) 1123121

4321 326f

hHhhhhhhhh

−++++

( )( ) ( ) 2

433221

4321 3226f

hhhhhhhhhh

+++++

+( )

( ) 343321

4321 3326f

hhhhHhhhh

++++

( )( )( ) 4

443122

4321 4326f

hhhhHHhhhh

+−+++

+ . (34)

Page 11: bhadauriaIJMA17-20-2009

Finite difference formulae 825 Equations (29)-(34) represent the forward, central and backward difference formulae which are widely used to approximate the derivatives in practice. Also the fourth order derivative is given by

( ) ( )( ) 1123121

021211

1616)( fhHhhhh

fHHhhh

xf iv

−+−

+=

( ) ( ) ( ) 343321

2433221

1616 fhhhhH

fhhhhhh +

−++

+

( )( ) 4443122

16 fhhhhHH +−

+ . (35)

The truncation errors corresponding to (29)-(35) can be obtained by differentiating (4), as obtained in (26)-(28) corresponding to (23)-(25). As particular cases, if we put 4321 hhhhh ==== in the above expressions (29)-(35), we obtained the results for equal sub-intervals as given below

243210

0 12115611410435

)(h

fffffxf

+−+−=′′ (36a)

243210

2 12163016

)(h

fffffxf

−+−+−=′′ (36b)

243210

4 12351041145611

)(h

fffffxf

+−+−=′′ (36c)

343210

0 231424185

)(h

fffffxf

−+−+−=′′′ (36d)

34310

2 222

)(h

ffffxf

+−+−=′′′ (36e)

343210

4 25182414

)(h

fffffxf

+−+−=′′′ (36f)

and 443210

2464

)(h

fffffxf iv +−+−

= , (36g)

Page 12: bhadauriaIJMA17-20-2009

826 Ashok K. Singh and B. S. Bhadauria which are exactly same as obtained by Singh and Thorpe [9]. Formulation of the above finite difference approximations clearly suggests that the finite difference formulae in terms of any number of points can be obtained with the help of equations (1) and (4). The mathematical expressions resulting due to further differentiation of equation (1) will give finite difference formulae for higher derivatives. 3. Conclusion

Here we have presented 3, 4, and 5 points explicit finite difference formulae along with the error terms, for approximating the first and higher order derivatives for unequally spaced data. By differentiating the equation (1), finite difference formulae for higher order derivatives can also be obtained. These formulae can be used directly to solve the ordinary and partial differential equations and will serve to approximate the derivatives at the unequally spaced grid points. A scientific program of the above formulae will facilitate the use of any finite difference formulae of desired derivatives.

Acknowledgment. Authors would like to thank the Centre for Interdisciplinary Mathematical Sciences, Banaras Hindu University, Varanasi-221005, for providing the financial assistance and other facilities.

References

[1] F. B. Hildebrand, Introduction to Numerical Analysis, Mc Graw Hill, Inc, New York,

1974. [2] Jianping Li, General explicit difference formulas for numerical differentiation, J. Comput. Appl. Math., 183 (2005), 29–52. [3] I. R. Khan and R. Ohba, Closed-form expressions for the finite difference approximations of first and higher derivatives based on Taylor series, J. Comput. Appl.Math., 107 (1999a), 179–193. [4] I. R. Khan and R. Ohba, Digital differentiators based on Taylor series, IEICE Trans. Fund. E82-A, 12 (1999b), 2822–2824.

Page 13: bhadauriaIJMA17-20-2009

Finite difference formulae 827 [5] I. R. Khan and R. Ohba, New finite difference formulas for numerical differentiation, J. Comput. Appl. Math.,126 (2000), 269–276. [6] I. R. Khan and R. Ohba, Mathematical proof of explicit formulas for tap-coefficients of Taylor series based FIR digital differentiators, IEICE Trans.Fund.E84-A, (6) (2001), 1581–1584. [7] I. R. Khan and R. Ohba, Taylor series based finite difference approximations of higher-degree derivatives, J. Comput. Appl. Math., 154 (2003a), 115–124. [8] I. R. Khan, R. Ohba and N. Hozumi, Mathematical proof of closed form expressions for finite difference approximations based on Taylor series, J. Comput. Appl. Math., 150 (2003b), 303-309. [9] A. K. Singh and G. R. Thorpe, Finite difference formulae from Lagrange’s interpolation formula, J. Scientific Research, 52 (2008), 263-270. [10] A. K. Singh and G. R. Thorpe, Simpson’s 1/3-rule of integration for unequal divisions of integration domain, J. Concrete Applicable Maths., 1(3) (2003), 247-252. Received: September, 2008