beam_fem

Upload: sina-mohammadi-zadeh

Post on 02-Jun-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/10/2019 beam_FEM

    1/45

    1

    TRANSVERSE VIBRATION OF A BEAM VIA THE FINITE ELEMENT METHOD

    Revision E

    By Tom Irvine

    Email: [email protected]

    November 18, 2008

    _______________________________________________________________________

    Introduction

    Many structures are too complex for analysis via classical method. Closed-form solutionsare thus unavailable for these structures.

    For example, a structure may be composed of several different materials. Some of thematerials may be anisotropic. Furthermore, the structure may be an assembly of plates,

    beams, and other components.

    Consider three examples:

    1. A circuit board has numerous chips, crystal oscillators, diodes, connectors,capacitors, jump wires, and other piece parts.

    2. A large aircraft consisting of a fuselage, wing sections, tail section, engines, etc.3. A building has plies, foundation, beams, floor sections, and load-bearing walls.

    The finite element method is a numerical method that can be used to analyze complexstructures, such as the three examples.

    The purpose of this tutorial is to derive for a method for analyzing beam vibration usingthe finite element method. The method is based on Reference 1.

    Theory

    Consider a beam, such as the cantilever beam in Figure 1.

    Figure 1.

    where

    E is the modulus of elasticity.

    I is the area moment of inertia.

    EI,

    L

  • 8/10/2019 beam_FEM

    2/45

    2

    L is the length.

    is mass per length.

    The product EI is the bending stiffness.

    The vibration modes of the cantilever beam can be found by classical methods.Specifically, the fundamental frequency is

    1

    187510 2=

    .

    L

    EI (1)

    This problem presents a good opportunity to compare the accuracy of the finite element

    method to the classical solution.

    Let y(x,t) represent the displacement of the beam as a function of space and time.

    The free, transverse vibration of the beam is governed by the equation:

    ( ) ( )2

    2

    2

    2

    2

    2

    t

    )t,x(yx)t,x(y

    x

    dxEI

    x

    =

    (2)

    Equation (2) neglects rotary inertia and shear deformation. Note that it is also independentof the boundary conditions, which are applied as constraint equations.

    Assume that the solution of equation (1) is separable in time and space.

    )t(f)x(Y)t,x(y = (3)

    ( ) ( )2

    2

    2

    2

    2

    2

    t

    )t(f)x(Yx)t(f)x(Y

    xxEI

    x

    =

    (4a)

    ( ) ( )2

    2

    2

    2

    2

    2

    t

    )t(fx)x(Y)x(Y

    xxEI

    x)t(f

    =

    (4b)

    The partial derivatives change to ordinary derivatives.

    ( )2

    2

    2

    2

    2

    2

    td

    )t(fdx)x(Y)x(Y

    dx

    dEI

    dx

    d)t(f =

    (5)

  • 8/10/2019 beam_FEM

    3/45

    3

    ( ) 2

    2

    2

    2

    2

    2

    td

    )t(fd

    )t(f

    1)x(Y

    dx

    dEI

    dx

    d

    x)x(Y

    1=

    (6)

    The left-hand side of equation (6) depends on x only. The right hand side depends on t

    only. Both x and t are independent variables. Thus equation (6) only has a solution if both

    sides are constant. Let 2 be the constant.

    ( )2

    2

    2

    2

    2

    2

    2

    td

    )t(fd

    )t(f

    1)x(Y

    dx

    dEI

    dx

    d

    x)x(Y

    1==

    (7)

    Equation (7) yields two independent equations.

    0)x(Y)x()x(Ydxd)x(EI

    dxd 22

    2

    2

    2

    =

    (8)

    0)t(f)t(ftd

    d 22

    2

    =+ (9)

    Equation (8) is a homogeneous, forth order, ordinary differential equation.

    The weighted residual method is applied to equation (8). This method is suitable forboundary value problems. An alternative method would be the energy method. The

    energy method is introduced in Appendix A.

    There are numerous techniques for applying the weighted residual method. Specifically,

    the Galerkin approach is used in this tutorial.

    The differential equation (8) is multiplied by a test function )x( . Note that the testfunction )x( must satisfy the homogeneous essential boundary conditions. The essentialboundary conditions are the prescribed values of Y and its first derivative.

    The test function is not required to satisfy the differential equation, however.

    The product of the test function and the differential equation is integrated over the domain.

    The integral is set equation to zero.

    0dx)x(Y)x()x(Ydx

    d)x(EI

    dx

    d)x(

    22

    2

    2

    2

    =

    (10)

  • 8/10/2019 beam_FEM

    4/45

    4

    The test function )x( can be regarded as a virtual displacement. The differential equationin the brackets represents an internal force. This term is also regarded as the residual.

    Thus, the integral represents virtual work, which should vanish at the equilibrium

    condition.

    Define the domain over the limits from a to b. These limits represent the boundary pointsof the entire beam.

    0dx)x(Y)x()x(Ydx

    d)x(EI

    dx

    d)x(

    b

    a

    22

    2

    2

    2

    =

    (11)

    { } 0dx)x(Y)x()x(dx)x(Ydx

    d)x(EI

    dx

    d)x(

    b

    a

    2b

    a 2

    2

    2

    2

    =

    (12)

    Integrate the first integral by parts.

    { } 0dx)x(Y)x()x(

    dx)x(Ydx

    d)x(EI

    dx

    d)x(

    dx

    ddx)x(Y

    dx

    d)x(EI

    dx

    d)x(

    dx

    d

    ba

    2

    b

    a 2

    2b

    a 2

    2

    =

    (13)

    { } 0dx)x(Y)x()x(

    dx)x(Ydx

    d)x(EI

    dx

    d)x(

    dx

    d)x(Y

    dx

    d)x(EI

    dx

    d)x(

    b

    a

    2

    b

    a 2

    2b

    a

    2

    2

    =

    (14)

  • 8/10/2019 beam_FEM

    5/45

    5

    { } 0dx)x(Y)x()x(

    dx)x(Ydx

    d)x(EI

    dx

    d)x(

    dx

    d)x(Y

    dx

    d)x(EI

    dx

    d)x(

    b

    a

    2

    b

    a 2

    2b

    a

    2

    2

    =

    (15)

    Integrate by parts again.

    { } 0dx)x(Y)x()x(dx)x(Ydx

    d)x(EI)x(

    dx

    d

    dx)x(Ydx

    d)x(EI)x(

    dx

    d

    dx

    d)x(Y

    dx

    d)x(EI

    dx

    d)x(

    b

    a

    2b

    a 2

    2

    2

    2

    b

    a 2

    2b

    a

    2

    2

    =

    +

    (16)

    { } 0dx)x(Y)x()x(dx)x(Ydx

    d)x(EI)x(

    dx

    d

    )x(Y

    dx

    d)x(EI)x(

    dx

    d)x(Y

    dx

    d)x(EI

    dx

    d)x(

    b

    a

    2b

    a 2

    2

    2

    2

    b

    a

    2

    2b

    a

    2

    2

    =

    +

    (17)

    The essential boundary conditions for a cantilever beam are

    0)a(Y = (18)

    0dx

    dY

    ax

    ==

    (19)

  • 8/10/2019 beam_FEM

    6/45

    6

    Thus, the test functions must satisfy

    0)a( = (20)

    0dx

    d

    ax

    =

    = (21)

    The natural boundary conditions are

    0)x(Ydx

    d)x(EI

    dx

    d

    bx2

    2

    =

    =

    (22)

    0)x(Ydx

    d)x(EI

    bx2

    2

    =

    = (23)

    Equation (23) requires

    0)x(dx

    d)x(EI

    bx2

    2

    =

    =

    (24)

    Apply equations (20), (21), and (24) to equation (17). The result is

    { } 0dx)x(Y)x()x(dx)x(Ydx

    d)x(EI)x(

    dx

    d b

    a

    2b

    a 2

    2

    2

    2

    =

    (25)

    Note that equation (25) would also be obtained for other simple boundary condition cases.

    Now consider that the beam consists of number of segments, or elements. The elementsare arranged geometrically in series form.

    Furthermore, the endpoints of each element are called nodes.

  • 8/10/2019 beam_FEM

    7/45

  • 8/10/2019 beam_FEM

    8/45

    8

    Figure 2.

    Represent each L coefficient in terms of a cubic polynomial.

    3

    4i

    2

    3i2i1ii ccccL +++= , i =1, 2, 3, 4

    (32)

    { }{ }{ } 10,hcccc

    ycccc

    hcccc

    ycccc)(Y

    j3

    442

    342414

    j3

    432

    332313

    1j3

    422

    232212

    1j3

    412

    312111

  • 8/10/2019 beam_FEM

    9/45

    9

    { }{ }

    { } 10,hc3c2cyc3c2c

    hc3c2c

    yc3c2c)('Y

    j2

    443424

    j2

    433323

    1j2

    422322

    1j2

    413121

  • 8/10/2019 beam_FEM

    10/45

    10

    The displacement equations becomes

    { }

    { }{ } 10,hccc

    yccc1

    hccc

    yccc)(Y

    j3

    442

    3424

    j34323323

    1j3

    422

    2322

    1j3

    412

    3121

  • 8/10/2019 beam_FEM

    11/45

    11

    The displacement equations becomes

    { }{ }{ } 10,hcc

    ycc1

    hcc

    ycc)(Y

    j3

    442

    34

    j3

    432

    33

    1j

    3

    42

    2

    23

    1j3

    412

    31

  • 8/10/2019 beam_FEM

    12/45

    12

    0cc1 4333 =++ (60)

    4333 c1c = (61)

    0cc1 4434 =++ (62)

    4434 c1c = (63)

    The displacement equation becomes

    [ ]

    [ ]{ }[ ]{ }

    [ ]{ } 10,hcc1ycc11

    hcc

    ycc1)(Y

    j3

    442

    44

    j3

    432

    43

    1j3

    422

    42

    1j3

    412

    41

  • 8/10/2019 beam_FEM

    13/45

    13

    The slope equation becomes

    { }

    [ ]{ }[ ]{ } j4444j4343

    1j4242

    1j4141

    hc3c121yc3c12

    hc3c2

    yc3c12)1('Y

    +++++

    ++

    ++=

    (66)

    Boundary condition (38) requires

    { }

    [ ]{ }[ ]{ } 1jj4444j4343

    1j4242

    1j4141

    hhc3c121

    yc3c12

    hc3c2

    yc3c12

    =+++++

    ++

    ++

    (67)

    { }[ ]{ }

    [ ]{ } 1jj4444j4343

    1j4242

    1j4141

    hhc3c221

    yc3c22

    hc3c2

    yc3c22

    =+++

    ++

    ++

    ++

    (68)

    0c2 41 =+ (69)

    2c 41 = (70)

    1c 42 = (71)

    0c2 43 =+ (72)

    2c 43 = (73)

  • 8/10/2019 beam_FEM

    14/45

    14

    0c1 44=+ (74)

    1c44 = (75)

    The displacement equation becomes

    ( )[ ]

    ( )[ ]{ }[ ]{ }

    ( )[ ] ( ){ } 10,h111y2211

    h11

    y221)(Y

    j32

    j32

    1j32

    1j32

  • 8/10/2019 beam_FEM

    15/45

    15

    { } { }

    10,h/xj,jhxh)1j(

    ,h2y231

    hy23)x(Y

    j32

    j32

    1j32

    1j32

  • 8/10/2019 beam_FEM

    16/45

    16

    [ ]Tjj1j1j hyhya = (90)

    The derivative terms are

    h/xj,jhxh)1j(,a'Lh

    1)x(Y

    dx

    d T =

    = (91)

    h/xj,jhxh)1j(,a"Lh

    1)x(Y

    dx

    d T22

    2

    =

    = (92)

    Note that primes indicate derivatives with respect to .

    In summary.

    +

    +

    =

    32

    32

    32

    32

    2

    231

    23

    L

    (90)

    +

    +

    =

    2

    2

    2

    2

    341

    66

    3266

    'L

    (91)

    +

    =

    64

    126

    62

    126

    "L

    (92)

  • 8/10/2019 beam_FEM

    17/45

    17

    Recall

    0dx)x(Y)x(dx)x(Ydx

    d)x(

    dx

    dEI 2

    2

    2

    2

    2

    =

    (93)

    The essence of the Galerkin method is that the test function is chosen as

    )x(Y)x( = (94)

    Thus

    [ ] 0dx)x(Ydx)x(Ydx

    d)x(Y

    dx

    dEI

    22

    2

    2

    2

    2

    =

    (95)

    Change the integration variable using equation (79b). Also, apply the integration limits.

    [ ] 0d)x(Yhd)x(Ydx

    d)x(Y

    dx

    dEIh

    1

    0

    221

    0 2

    2

    2

    2

    =

    (96)

    [ ][ ] 0daLaLh

    da"Lh

    1a"L

    h

    1EIh

    1

    0

    TT2

    1

    0

    T2

    T2

    =

    (97)

  • 8/10/2019 beam_FEM

    18/45

    18

    [ ] [ ]{ }

    [ ][ ] 0daLaLh

    da"La"LEIh

    1

    1

    0TT2

    1

    0

    TT3

    =

    (98)

    [ ] [ ]{ }

    [ ][ ] 0daLLah

    da"L"LaEIh

    1

    1

    0

    TT2

    1

    0

    TT3

    =

    (99)

    { } { } 0daLLahda"L"LaEIh

    1 1

    0

    TT21

    0

    TT3

    =

    (100)

    { } { } 0adLLhd"L"LhEIa1

    0T2

    1

    0T

    3T =

    (101)

    { } { } 0dLLhd"L"Lh

    EI 1

    0

    T21

    0

    T3

    =

    (102)

    For a system of n elements,

    n,...,2,1j,0MK j2

    j == (103)

    where

    { }

    = d"L"L

    h

    EIK

    1

    0

    T3j

    (104)

  • 8/10/2019 beam_FEM

    19/45

  • 8/10/2019 beam_FEM

    20/45

    20

    ( )( ) ( )( ) ( )( ) ( )( )( )( ) ( )( ) ( )( )

    ( )( ) ( )( )( )( )

    +++

    +

    +

    =

    6464

    64126126126

    6462126626262

    6412612612662126126126

    "L"LT

    (109)

    +

    ++

    +++

    ++++

    =

    2

    22

    222

    2222

    T

    364816

    72842414414436

    3636872601236244

    7284241441443672601214414436

    "L"L

    (110)

    +

    ++

    +++

    ++++

    =

    d364816

    72842414414436

    3636872601236244

    7284241441443672601214414436

    h

    EI

    K

    1

    0

    2

    22

    222

    2222

    3

    j

    (111)

  • 8/10/2019 beam_FEM

    21/45

    21

    1

    032

    3232

    323232

    32323232

    3

    j

    122416

    244224487236

    1218824301212124244224487236243012487236

    h

    EI

    K

    +

    ++

    +++++++

    =

    (112)

    +

    ++

    +++

    ++++

    =

    122416

    244224487236

    1218824301212124

    244224487236243012487236

    h

    EI

    K

    3

    j

    (113)

    =

    4

    612

    264

    612612

    h

    EIK

    3j

    (114)

  • 8/10/2019 beam_FEM

    22/45

    22

    32323232

    32

    32

    32

    32

    T

    223123

    2

    231

    23

    LL

    ++

    +

    +

    =

    (115)

    ( ) ( )( ) ( )( ) ( )( )

    ( ) ( )( ) ( )( )( ) ( )( )( )

    +

    +++++

    ++

    =

    232

    3232232

    32323232232

    323232323232232

    T

    2

    22312312231

    223231232323

    LL

    (116)

    =

    44a

    34a33a

    24a23a22a

    14a13a12a11a

    LL T

    (117)

    654 412911a += (118)

    65425312a += (119)

    6543241292313a += (120)

  • 8/10/2019 beam_FEM

    23/45

    23

    6543278314a ++= (121)

    654 222a += (122)

    65432 25323a += (123)

    65433324a ++= (124)

    65432412946133a +++= (125)

    654322782234a +++= (126)

    65432 46444a ++= (127)

    Recall

    { } =1

    0

    Tj dLLhM

    (128)

    { } += d4129h,M1

    0

    65411j

    (129)

    1

    0

    76511j

    7

    42

    5

    9h,M

    += (130)

    +=7

    42

    5

    9h,M 11j

    (131)

    =

    3513h,M 11j (132)

    =420

    156h,M 11j

    (133)

  • 8/10/2019 beam_FEM

    24/45

  • 8/10/2019 beam_FEM

    25/45

    25

    { } ++= d2783h,M1

    0

    654314j

    (139)

    1

    0

    765414j

    72

    67

    58

    43h,M

    +

    +

    = (140)

    +

    +

    =

    7

    2

    6

    7

    5

    8

    4

    3h,M 14j

    (141)

    =420

    13h,M 14j

    (142)

    { } += d2h,M1

    0

    65422j

    (143)

    1

    0

    76522j

    7

    1

    3

    1

    5

    1h,M

    +

    = (144)

    +

    =7

    1

    3

    1

    5

    1h,M 22j

    (145)

    =105

    1h,M 22j

    (146)

    =

    420

    4h,M 22j

    (147)

    { } += d253h,M1

    0

    6543223j

    (148)

  • 8/10/2019 beam_FEM

    26/45

  • 8/10/2019 beam_FEM

    27/45

    27

    =420

    156h,M 33j

    (159)

    { } +++= d27822h,M1

    0

    6543234j

    (160)

    1

    0

    76543234j

    7

    2

    6

    7

    5

    8

    2

    1

    3

    2

    2

    1h,M

    +

    +

    +

    =

    (161)

    +

    +

    +

    =

    7

    2

    6

    7

    5

    8

    2

    1

    3

    2

    2

    1h,M 34j

    (162)

    =420

    22h,M 34j

    (163)

    { } ++= d464h,M1

    06543244j (164)

    1

    0

    7654344j

    7

    1

    3

    2

    5

    6

    3

    1h,M

    +

    +

    = (165)

    +

    +

    =

    7

    1

    3

    2

    5

    61

    3

    1h,M 44j

    (166)

    =420

    4h,M 44j

    (167)

  • 8/10/2019 beam_FEM

    28/45

    28

    Recall

    { }

    = d"L"L

    h

    EIK

    1

    0

    T3j

    (168)

    { } =1

    0

    Tj dLLhM

    (169)

    =

    4

    612

    264

    612612

    h

    EIK

    3j

    (170)

    =

    4

    22156

    3134

    135422156

    420

    hMj

    (171)

    Example 1

    Model the cantilever beam in Figure 1 as a single element using the mass and stiffness

    matrices in equations (170) and (171). The model consists of one element and two nodes

    as shown in Figure 3.

    Figure 3.

    Note that h=L.

    N1 N2

    E1

  • 8/10/2019 beam_FEM

    29/45

    29

    The eigen problem is

    =

    2

    2

    1

    1

    2

    2

    2

    1

    1

    3

    h

    y

    h

    y

    422313

    221561354

    313422

    135422156

    420

    L

    h

    y

    h

    y

    4626

    612612

    2646

    612612

    L

    EI

    (172)

    =

    2

    2

    1

    1

    2

    2

    1

    1

    h

    y

    h

    y

    422313

    221561354

    313422

    135422156

    h

    y

    h

    y

    4626

    612612

    2646

    612612

    (173)

    where

    24

    EI420

    L

    = (174a)

    = 4L

    EI420

    (174b)

    The boundary conditions at node 1 are

    0y1= (175)

    01= (176)

    The first two columns and the first two rows of each matrix in equation (173) can thus be

    struck out.

  • 8/10/2019 beam_FEM

    30/45

    30

    The resulting eigen equation is thus

    =

    2

    2

    2

    2

    h

    y

    422

    22156

    h

    y

    46

    612

    (177)The eigenvalues are found using the method in Reference 2.

    =

    8846.2

    029715.0

    2

    1 (178a)

    =

    6984.1

    1724.0

    2

    1 (178b)

    The finite element results for the natural frequencies are thus

    =

    6984.1

    1724.0

    L

    EI420

    42

    1 (179)

    =

    807.34

    5331.3

    L

    EI

    42

    1 (180)

    The finite element results are compared to the classical results in Table 1.

    Table 1. Natural Frequency Comparison, 1 Element

    Index

    Finite ElementModel

    EI

    L4

    ClassicalSolution

    EI

    L4

    1 3.5331 3.5160

    2 34.807 22.034

  • 8/10/2019 beam_FEM

    31/45

  • 8/10/2019 beam_FEM

    32/45

    32

    The local stiffness matrix for element 2 is

    ( )

    3

    3

    2

    2

    3

    hy

    h

    y

    4626612612

    2646

    612612

    2/L

    EI (182)

    The local mass matrix for element 1 is

    ( )

    2

    2

    1

    1

    h

    y

    h

    y

    422313

    221561354

    313422

    135422156

    420

    2/L (183)

    The local mass matrix for element 2 is

    ( )

    3

    3

    2

    2

    h

    y

    h

    y

    422313

    221561354

    313422

    135422156

    420

    2/L (184)

    The global eigen problem assembled from the local matrices is

    ( )

    ( )

    =

    3

    3

    2

    2

    1

    1

    2

    3

    3

    2

    2

    11

    3

    h

    y

    h

    y

    h

    y

    42231300

    22156135400

    31380313

    135403121354

    00313422

    00135422156

    420

    2/L

    h

    y

    h

    y

    h

    y

    462600

    61261200

    268026

    612024612

    002646

    00612612

    2/L

    EI

    (185)

  • 8/10/2019 beam_FEM

    33/45

    33

    Again, the boundary conditions at node 1 are

    0y1= (186)

    01= (187)

    The first two columns and the first two rows of each matrix in equation (185) can thus be

    struck out.

    ( )

    ( )

    =

    3

    3

    2

    2

    2

    3

    3

    2

    2

    3

    h

    y

    h

    y

    422313

    221561354

    31380

    13540312

    420

    2/L

    h

    y

    h

    y

    4626

    612612

    2680

    612024

    2/L

    EI

    (188)

    Let

    ( )

    ( )

    =

    3

    2

    2/L

    EI

    420

    2/L

    (189)

    ( )( ) 23

    EI4202/L2/L

    = (190)

    24

    EI6720

    L

    = (191a)

    =

    4L

    EI6720 (191b)

  • 8/10/2019 beam_FEM

    34/45

    34

    The eigen problem in equation (188) becomes

    =

    3

    3

    2

    2

    3

    3

    2

    2

    hy

    h

    y

    422313221561354

    31380

    13540312

    hy

    h

    y

    4626612612

    2680

    612024

    (192)

    The eigenvalues are found using the method in Reference 2. Equation (192) yields four

    eigenvalues.

    =

    0810.7

    84056.0

    073481.0

    0018414.0

    4

    3

    2

    1

    (193a)

    =

    6610.2

    91682.0

    27107.0

    042912.0

    4

    3

    2

    1

    (193b)

    The finite element results for the first two natural frequencies are thus

    =

    27107.0

    042912.0

    L

    EI6720

    42

    1 (194)

    =

    221.22

    5177.3

    L

    EI

    42

    1 (195)

  • 8/10/2019 beam_FEM

    35/45

    35

    The finite element results are compared to the classical results in Table 2.

    Table 2. Natural Frequency Comparison, 2 Elements

    Index

    Finite Element

    Model

    EI

    L4

    Classical

    Solution

    EI

    L4

    1 3.5177 3.5160

    2 22.221 22.034

    Excellent agreement is obtained for the first two roots.

    The next step would be to solve for the eigenvectors, which represent the mode shapes. Agreater number of elements would be required to obtain accurate mode shapes, however.

    Example 3

    Repeat example 1 with 16 elements. Let each element have equal length. The global

    stiffness and mass matrix are omitted for brevity.

    The eigenvalue scale factor is

    = 4

    4

    LEI)16(420 (196)

    The model yields 32 eigenvalues. The first four are

    =

    0.00053121

    0.0001383

    005-1.7639e

    007-4.4913e

    4

    3

    2

    1

    (197)

  • 8/10/2019 beam_FEM

    36/45

    36

    =

    0.023048

    0.01176

    0.0041999

    0.00067017

    4

    3

    2

    1

    (198)

    =

    0.023048

    0.01176

    0.0041999

    0.00067017

    L

    EI)16(420

    4

    3 4

    42

    1

    (199)

    =

    92.120

    698.61035.22

    5160.3

    4L

    EI

    4

    32

    1

    (200)

    The finite element results are compared to the classical results in Table 3.

    Table 3. Natural Frequency Comparison, 16 Elements

    Index

    Finite ElementModel

    EI

    L4

    ClassicalSolution

    EI

    L4

    1 3.5160 3.5160

    2 22.035 22.034

    3 61.698 61.697

    4 120.92 120.90

    Excellent agreement is obtained for the first four roots.

    The corresponding mode shapes are shown in Figures 5 through 8. Note that each mode

    shape is multiplied by an arbitrary amplitude scale factor. The absolute amplitude scale is

    thus omitted from the plots.

  • 8/10/2019 beam_FEM

    37/45

  • 8/10/2019 beam_FEM

    38/45

    38

    0

    0 L

    x

    Displacement

    CANTILEVER BEAM, 16 ELEMENT MODEL, MODE 3

    Figure 7.

    0

    0 L

    x

    Displacement

    CANTILEVER BEAM, 16 ELEMENT MODEL, MODE 4

    Figure 8.

  • 8/10/2019 beam_FEM

    39/45

  • 8/10/2019 beam_FEM

    40/45

    40

    APPENDIX A

    Energy Method

    The total strain energy P of a beam is

    =

    L

    0dx

    2

    2dx

    y2dEI

    2

    1P (A-1)

    The total kinetric energy T of a beam is

    [ ] =L

    0

    22n dxy2

    1

    T (A-2)

    Again let

    h/xj,jhxh)1j(,aL)x(YT == (A-3)

    h/xj,jhxh)1j(,a'Lh

    1)x(Y

    dx

    d T =

    = (A-4)

    h/xj,jhxh)1j(,a"Lh

    1)x(Y

    dx

    d T22

    2

    =

    = (A-5)

    h/dxd = (A-6)

    Assume constant mass density and stiffness.

    The strain energy is converted to a localized stiffness matrix as

    { }

    = d"L"L

    h

    EIK

    1

    0

    T3j

    (A-7)

  • 8/10/2019 beam_FEM

    41/45

    41

    The kinetic energy is converted to a localized mass matrix as

    { } =1

    0

    Tj dLLhM

    (A-8)

    The total strain energy is set equal to the total kinetic energy per the Rayleigh method. Theresult is a generalized eigenvalue problem.

    For a system of n elements,

    n,...,2,1j,0MK j2

    j == (A-9)

    where

    =

    4

    612

    264

    612612

    h

    EIK

    3j

    (A-10)

    =

    4

    22156

    3134135422156

    420

    hMj

    (A-11)

  • 8/10/2019 beam_FEM

    42/45

    42

    APPENDIX B

    Beam Bending - Alternate Matrix Format

    The displacement matrix for beam bending is

    2

    2y

    1

    1y

    (B-1)

    The stiffness matrix for beam bending is

    =

    2h4

    h612

    2h2h62h4

    h612h612

    3h

    EIjK (B-2)

    The mass matrix for beam bending is

    =

    2h4

    h22156

    2h3132h4

    h1354h22156

    420

    hjM (B-3)

  • 8/10/2019 beam_FEM

    43/45

    43

    APPENDIX C

    Free-Free Beam

    Repeat example 1 from the main text with a single element but with free-free boundary

    conditions.

    The eigen problem is

    =

    2

    2

    1

    1

    2

    2

    2

    1

    1

    3

    h

    y

    h

    y

    422313

    221561354

    313422

    135422156

    420

    L

    h

    y

    h

    y

    4626

    612612

    2646

    612612

    L

    EI

    (C-1)

    =

    2

    2

    1

    1

    2

    2

    1

    1

    h

    y

    h

    y

    422313

    221561354

    313422

    135422156

    h

    y

    h

    y

    4626

    612612

    2646

    612612

    (C-2)

    where

    24

    EI420

    L

    = (C-3)

    =

    4L

    EI420 (C-4)

  • 8/10/2019 beam_FEM

    44/45

    44

    The eigenvalues are found using the method in Reference 2. Equation (C-1) yields four

    eigenvalues.

    =

    20

    1.7143

    0

    0

    4

    3

    2

    1

    (C-5)

    =

    4.4721

    1.3093

    0

    0

    4

    3

    2

    1

    (C-6)

    The finite element results for the first four natural frequencies are thus

    =

    4.4721

    1.3093

    0

    0

    4L

    EI420

    4

    3

    2

    1

    (C-7)

    =

    91.652

    26.8330

    0

    4L

    EI

    4

    32

    1

    (C-8)

  • 8/10/2019 beam_FEM

    45/45

    The finite element results are compared to the classical results in Table C-1.

    Table C-1. Natural Frequency Comparison, 2 Elements

    Index

    Finite ElementModel

    EI

    L4

    ClassicalSolution

    EI

    L4

    1 0 0

    2 0 0

    3 26.833 22.373

    4 91.652 61.673