beam-beam collision studies for da ne with crabbed waist crabbed waist advantages results for...

27
Beam-Beam Collision Studies for DANE with Crabbed Waist Crabbed Waist Advantages Results for SIDDHARTA IR P.Raimondi, D.Shatilov (BINP), M.Zobov INFN LNF, CSI, 7 November 2006

Upload: jazmyne-mayland

Post on 15-Jan-2016

224 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Beam-Beam Collision Studies for DA  NE with Crabbed Waist Crabbed Waist Advantages Results for SIDDHARTA IR P.Raimondi, D.Shatilov (BINP), M.Zobov INFN

Beam-Beam Collision Studiesfor DANE with Crabbed Waist

• Crabbed Waist Advantages• Results for SIDDHARTA IR

P.Raimondi, D.Shatilov (BINP), M.Zobov

INFN LNF, CSI, 7 November 2006

Page 2: Beam-Beam Collision Studies for DA  NE with Crabbed Waist Crabbed Waist Advantages Results for SIDDHARTA IR P.Raimondi, D.Shatilov (BINP), M.Zobov INFN

Crabbed waist is realized with a sextupole inphase with the I P in X and at / 2 in Y

2z

2x

z

x

2x/

2z*

e-e+Y

1. Large Piwinski’s angle = tg(z/x

2. Vertical beta comparable with overlap area y x/

3. Crabbed waist transformation y = xy’/(2)

Crabbed Waist in 3 Steps

P. Raimondi, November 2005

Page 3: Beam-Beam Collision Studies for DA  NE with Crabbed Waist Crabbed Waist Advantages Results for SIDDHARTA IR P.Raimondi, D.Shatilov (BINP), M.Zobov INFN

1. Large Piwinski’s angle

= tg(z/x

2. Vertical beta comparable

with overlap area

y x/

3. Crabbed waist transformation

y = xy’/(2)

Crabbed Waist Advantages

a) Geometric luminosity gain

b) Very low horizontal tune shift

a) Geometric luminosity gain

b) Lower vertical tune shift

c) Vertical tune shift decreases with oscillation amplitude

d) Suppression of vertical synchro-betatron resonances

a) Geometric luminosity gain

b) Suppression of X-Y betatron and synchro-betatron resonances

Page 4: Beam-Beam Collision Studies for DA  NE with Crabbed Waist Crabbed Waist Advantages Results for SIDDHARTA IR P.Raimondi, D.Shatilov (BINP), M.Zobov INFN

..and besides,

a) There is no need to increase excessively beam current and to decrease the bunch length:

1) Beam instabilities are less severe

2) Manageable HOM heating

3) No coherent synchrotron radiation of short bunches

4) No excessive power consumption

b) The problem of parasitic collisions is automatically solved due to higher crossing angle and smaller horizontal beam size

Page 5: Beam-Beam Collision Studies for DA  NE with Crabbed Waist Crabbed Waist Advantages Results for SIDDHARTA IR P.Raimondi, D.Shatilov (BINP), M.Zobov INFN

2222

2

0 12;

12;

14

1 NrNrNfnL

x

xex

xy

yey

yxb

Large Piwinski’s Angle

P.Raimondi, M.Zobov, DANE Techniocal Note G-58, April 2003

O. Napoly, Particle Accelerators: Vol. 40, pp. 181-203,1993

If we can increase N proportionally to :

1) L grows proportinally to ;

2 y remains constant;

3 x decreases as 1/;

is increased by:

a) increasing the crossing angle and increasing the bunch length z for LHC upgrade (F. Ruggiero and F.Zimmermann)

b) increasing the crossing angle and decreasing the horizontal beam size x in crabbed waist scheme

Page 6: Beam-Beam Collision Studies for DA  NE with Crabbed Waist Crabbed Waist Advantages Results for SIDDHARTA IR P.Raimondi, D.Shatilov (BINP), M.Zobov INFN

y

yyx

ye

yx

ye

y

yyyx

b

yx

b

NrNr

Nfn

NfnL

22

2

2

02

2

0

1212

1

14

1

14

1

Low Vertical Beta Function

Note that keeping y constant by increasing the number of particles N proportionally to (1/y)1/2 :

2/31

yL

(If x allows...)

Page 7: Beam-Beam Collision Studies for DA  NE with Crabbed Waist Crabbed Waist Advantages Results for SIDDHARTA IR P.Raimondi, D.Shatilov (BINP), M.Zobov INFN

y

ryy

y

rE

1

Page 8: Beam-Beam Collision Studies for DA  NE with Crabbed Waist Crabbed Waist Advantages Results for SIDDHARTA IR P.Raimondi, D.Shatilov (BINP), M.Zobov INFN

ξy(z-z0)

Relative displacementfrom a bunch center

z-z0

Head-on collision.Flat beams. Tune shiftincreases for halo particles.

Head-on collision.Round beams. ξy=const.

Crossing angle collision.Tune shiftdecreases for halo particles.

Vertical Tune Shift

Page 9: Beam-Beam Collision Studies for DA  NE with Crabbed Waist Crabbed Waist Advantages Results for SIDDHARTA IR P.Raimondi, D.Shatilov (BINP), M.Zobov INFN

Vertical Synchro-Betatron Resonances

D.Pestrikov, Nucl.Instrum.Meth.A336:427-437,1993

Page 10: Beam-Beam Collision Studies for DA  NE with Crabbed Waist Crabbed Waist Advantages Results for SIDDHARTA IR P.Raimondi, D.Shatilov (BINP), M.Zobov INFN

x

y 2

x

y 2

Crabbed Waist Scheme

x

x

yy

K

*

*

1

2

1

Sextupole (Anti)sextupole

20 2

1yxpHH

Sextupole strength Equivalent Hamiltonian

IPyx , yx ,** ,

yx

*

2* /

yyy

xs

Page 11: Beam-Beam Collision Studies for DA  NE with Crabbed Waist Crabbed Waist Advantages Results for SIDDHARTA IR P.Raimondi, D.Shatilov (BINP), M.Zobov INFN

Geometric Factors

1. Minimum of y along the maximum density of the opposite beam;

2. Redistribution of y along the overlap area. The line of the minimum beta with the crabbed waist (red line) is longer than without it (green line).

*

2* /

yyy

xs

Page 12: Beam-Beam Collision Studies for DA  NE with Crabbed Waist Crabbed Waist Advantages Results for SIDDHARTA IR P.Raimondi, D.Shatilov (BINP), M.Zobov INFN

0

5 1035

1 1036

1,5 1036

2 1036

2,5 1036

0 100 200 300 400 500

crab, simulationsgeometric factorsno crab, simulations

y [m]

Luminosity [cm-2 s-1]

Geometric Factors (2)

..”crabbed waist” idea does not provide the significant luminosity enchancement. Explanation could be rather simple: the effective length of the collision area is just comparable with the vertical beta-function and any redistribution of waist position cannot improve very much the collision efficiency...

I.A.Koop and D.B.Shwartz (BINP)

Geom. gain

Geom. gain

Page 13: Beam-Beam Collision Studies for DA  NE with Crabbed Waist Crabbed Waist Advantages Results for SIDDHARTA IR P.Raimondi, D.Shatilov (BINP), M.Zobov INFN

High beta, Low densityLow beta, High density

y

z

Beam-Beam Resonances (Example)

Longitudinal Oscillations

(z)

Page 14: Beam-Beam Collision Studies for DA  NE with Crabbed Waist Crabbed Waist Advantages Results for SIDDHARTA IR P.Raimondi, D.Shatilov (BINP), M.Zobov INFN

Suppression of X-Y Resonances

Hor

izon

tal o

scill

atio

ns

sextupole

y

y

yy

Performing horizontal oscillations:

1. Particles see the same density and the same (minimum) vertical beta function

2. The vertical phase advance between the sextupole and the collision point remains the same (/2)

Page 15: Beam-Beam Collision Studies for DA  NE with Crabbed Waist Crabbed Waist Advantages Results for SIDDHARTA IR P.Raimondi, D.Shatilov (BINP), M.Zobov INFN

Luminosity Scan for Super-PEP (crab focus off)

0.5 0.52 0.54 0.56 0.58 0.6 0.62 0.64

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

Qx

Qy

Page 16: Beam-Beam Collision Studies for DA  NE with Crabbed Waist Crabbed Waist Advantages Results for SIDDHARTA IR P.Raimondi, D.Shatilov (BINP), M.Zobov INFN

Luminosity Scan for Super-PEP (crab focus on)

0.5 0.52 0.54 0.56 0.58 0.6 0.62 0.64

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

Qx

Qy

Page 17: Beam-Beam Collision Studies for DA  NE with Crabbed Waist Crabbed Waist Advantages Results for SIDDHARTA IR P.Raimondi, D.Shatilov (BINP), M.Zobov INFN

Parameters used in simulationsHorizontal beta @ IP 0.2 m (1.7 m)

Vertical beta @ IP 0.65 cm (1.7 cm)

Horizontal tune 5.057

Vertical tune 5.097

Horizontal emittance 0.2 mm.mrad (0.3)

Coupling 0.5%

Bunch length 20 mm

Total beam current 2 A

Number of bunches 110

Total crossing angle 50 mrad (25 mrad)

Horizontal beam-beam tune shift 0.011

Vertical beam-beam tune shift 0.080

L => 2.2 x 1033 cm-2 s-1

Page 18: Beam-Beam Collision Studies for DA  NE with Crabbed Waist Crabbed Waist Advantages Results for SIDDHARTA IR P.Raimondi, D.Shatilov (BINP), M.Zobov INFN

0

2

4

6

8

10

12

14

0 10 20 30 40 50

200um,20mm200um,15mm100um,15mm

I [mA]

L [10^33]

With the present achieved beam parameters (currents, emittances, bunchlenghts etc) a luminosity in excess of 1033 is predicted.With 2Amps/2Amps more than 2*1033 is possibleBeam-Beam limit is way above the reachable currents

M. Zobov(BBC Code by Hirata)

Page 19: Beam-Beam Collision Studies for DA  NE with Crabbed Waist Crabbed Waist Advantages Results for SIDDHARTA IR P.Raimondi, D.Shatilov (BINP), M.Zobov INFN

Beam-Beam Tails at (0.057;0.097)

Ax = ( 0.0, 12 x); Ay = (0.0, 160 y)

Page 20: Beam-Beam Collision Studies for DA  NE with Crabbed Waist Crabbed Waist Advantages Results for SIDDHARTA IR P.Raimondi, D.Shatilov (BINP), M.Zobov INFN

Siddharta IR Luminosity Scan

Crab On --> 0.6/ Crab Off

0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Lmax = 2.97x1033 cm-2s-1

Lmin = 2.52x1032 cm-2s-1

Lmax = 1.74x1033 cm-2s-1

Lmin = 2.78x1031 cm-2s-1

0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Page 21: Beam-Beam Collision Studies for DA  NE with Crabbed Waist Crabbed Waist Advantages Results for SIDDHARTA IR P.Raimondi, D.Shatilov (BINP), M.Zobov INFN

Crab On:

Crab Off:

Lmax = 2.97x1033

Lmin = 2.52x1032

Lmax = 1.74x1033

Lmin = 2.78x1031

Page 22: Beam-Beam Collision Studies for DA  NE with Crabbed Waist Crabbed Waist Advantages Results for SIDDHARTA IR P.Raimondi, D.Shatilov (BINP), M.Zobov INFN

Siddharta IR Luminosity Scan above half-integers

Lmax = 3.05 x 1033 cm-2s-1

Lmin = 3.28 x 1031 cm-2s-1

0.5 0.52 0.54 0.56 0.58 0.6 0.62 0.64

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64 0.50.55

0.60.65

0.50.55

0.6

0.65

0

1 1033

2 1033

3 1033

0

1 1033

2 1033

3 1033

Page 23: Beam-Beam Collision Studies for DA  NE with Crabbed Waist Crabbed Waist Advantages Results for SIDDHARTA IR P.Raimondi, D.Shatilov (BINP), M.Zobov INFN

for Conclusions.....

1. The simulations shows that the luminosity enchancement of one order of magnitude is possible in DANE with the “crabbed waist” scheme;

2. Such a conclusion is rather conservative since, according to the simulations, the luminosity of 1033 cm-2 s-1 can be obtained even without the “crabbing” sextupoles.

Page 24: Beam-Beam Collision Studies for DA  NE with Crabbed Waist Crabbed Waist Advantages Results for SIDDHARTA IR P.Raimondi, D.Shatilov (BINP), M.Zobov INFN

S.Tomassini, 27/09/2006

Page 25: Beam-Beam Collision Studies for DA  NE with Crabbed Waist Crabbed Waist Advantages Results for SIDDHARTA IR P.Raimondi, D.Shatilov (BINP), M.Zobov INFN

MAFIA Time Domain Simulations

B.Spataro and M.Zobov, 04/10/2006

σz

(cm)

Kl

(V/Q)

Wmax

(V/Q)

Wmin

(V/Q)

Z / n(mΩ)

P (Watts)

1 3.589 1010 1.382 1011 -9.577 1010 12.2 516

1.5 1.260 1010 4.152 1010 -4.717 1010 8.24 181

2. 5.766 109 2.699 1010 -2.777 1010 9.52 83

2.5 2.609 109 2.101 1010 -1.833 1010 11.58 38

3.0 1.104 109 1.602 1010 -1.300 1010 12.71 16

I = 20 mA

N = 110 bunches

f0 = 3.06 MHz

3D model 2D cross-section

Page 26: Beam-Beam Collision Studies for DA  NE with Crabbed Waist Crabbed Waist Advantages Results for SIDDHARTA IR P.Raimondi, D.Shatilov (BINP), M.Zobov INFN

-5

0

5

10

15

20

25

30

35

0 1 2 3 4 5 6

Re[

Z](

)

Freq[GHz]

-10

0

10

20

30

40

0 1 2 3 4 5 6

Im[Z

](

)

Freq[GHz]

-1

-0.5

0

0.5

1

1.5

0 1 2 3 4 5 6

scal

ed w

ake

pot

enti

al

distance from bunch head (m)

B.Spataro and M.Zobov, 13/10/2006

Page 27: Beam-Beam Collision Studies for DA  NE with Crabbed Waist Crabbed Waist Advantages Results for SIDDHARTA IR P.Raimondi, D.Shatilov (BINP), M.Zobov INFN

mode1 mode2 mode3 mode4

Driven mode solutionShort circuit at ports

F.Marcellini and D. Alesini

150 W