bdm dark matter (solving cdm problems) · 2012-06-25 · evolution of gauge coupling constanta vs...

28
Instituto Avanzado de Cosmología El Universo Invisible 1er Congreso de Cosmología IAC BDM Dark Matter (solving CDM problems) PASCOS 2012, Merida Axel de la Macorra Instituto de Física, UNAM Instituto Avanzado de Cosmologia

Upload: others

Post on 13-Apr-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: BDM Dark Matter (solving CDM problems) · 2012-06-25 · Evolution of gauge coupling constanta vs Energy SU(3) Strong Interaction SU(N) Dark Matter SU(2) Weak Interaction SU(1) E.M

Instituto Avanzado de Cosmología

El Universo Invisible 1er Congreso de Cosmología IAC

BDM Dark Matter

(solving CDM problems)

PASCOS 2012, Merida

Axel de la Macorra

Instituto de Física, UNAM

Instituto Avanzado de Cosmologia

Page 2: BDM Dark Matter (solving CDM problems) · 2012-06-25 · Evolution of gauge coupling constanta vs Energy SU(3) Strong Interaction SU(N) Dark Matter SU(2) Weak Interaction SU(1) E.M

• Jorge Cevantes (ININ, Mexico) Students• Jorge Mastache (UNAM, Mexico)• Jesus Cereceres (UNAM, Mexico)

References:• BDM Dark Matter: CDM with a core profile and a free streaming scale

A. de la Macorra,  Astropart.Phys. 33:195‐200,2010.

• Galactic Phase Transition at Ec= 0.11 eV from Rotation Curves of Cored LSB and nonperturbative Dark Matter Mass. A. de la Macorra, J. Mastache, J. Cervantes. PRD Rapid Communications:      Phys.Rev. D84 (2011) 121301

• Core‐Cusp revisited and Dark Matter Phase Transition Constrained at 0.11 eV with LSB Rotation Curve. J. Mastache, A. de la Macorra, J. Cervantes arXiv:1107.5560

• High‐Resolution Rotation Curves and Galaxy Mass Models from THINGS. De Blok et al   Astrophys. J. 136, 2648, 2008

Collaborators and References

Page 3: BDM Dark Matter (solving CDM problems) · 2012-06-25 · Evolution of gauge coupling constanta vs Energy SU(3) Strong Interaction SU(N) Dark Matter SU(2) Weak Interaction SU(1) E.M

Evidence for Dark Matter:

Rotation curves in galaxies and cluster of galaxies , weak and strong lensing, CMB, Structure Formation, BAO …

Page 4: BDM Dark Matter (solving CDM problems) · 2012-06-25 · Evolution of gauge coupling constanta vs Energy SU(3) Strong Interaction SU(N) Dark Matter SU(2) Weak Interaction SU(1) E.M

Dark Matter

Type of Dark Matter

• CDM Massive particle with vanishing dispersion speed v = 0 ok (standard DM and with CDM is the “concordance cosmological model”)e.g. WIMPS (susy particles, axions etc) typical m > GeV

• HDM Relativistic particles with dispersion speed v=cstructure on small scales cannot grow NOT ok

e.g. neutrinos m=O(eV)

• Warm WDM Particles with mass m=O(keV) ok

• BDM (Bound Dark Matter) particles which acquire a non perturbative (large) mass M (with M >> mo) at a phase transition scale Ec

• e.g. m = mo for E > Ecm = mo + M for E < Ec

as for example protons and neutrons

Page 5: BDM Dark Matter (solving CDM problems) · 2012-06-25 · Evolution of gauge coupling constanta vs Energy SU(3) Strong Interaction SU(N) Dark Matter SU(2) Weak Interaction SU(1) E.M

CDM  or BDMAT  THE  BEGINNING  OF  THE  UNIVERSE

Problems of CDM:\\\\

1) Too much substructure

2) Cuspy vs Core DM profile(many DM dominated galaxies show a core profile)

Can they have a common answer ?

Substructure:

CDM predicts a large number of small galaxies which are not seen (satellite galaxies )

Page 6: BDM Dark Matter (solving CDM problems) · 2012-06-25 · Evolution of gauge coupling constanta vs Energy SU(3) Strong Interaction SU(N) Dark Matter SU(2) Weak Interaction SU(1) E.M

Galactic Rotation Curves => missing matter (Dark Matter)

CDM has NFW cuspy profile

(not preferred by data )

de Blok et al 01

20

1

ss

NFW

rr

rr

Page 7: BDM Dark Matter (solving CDM problems) · 2012-06-25 · Evolution of gauge coupling constanta vs Energy SU(3) Strong Interaction SU(N) Dark Matter SU(2) Weak Interaction SU(1) E.M

BDM   particles behave as     =

Radiation as HDM, w=1/3above the scale energy Ecwith m = 0 

Where can find this transition ?1. As  the Universe expands and   cools (we go from high to low energy denisty )2. Inside Galaxies as  we approach the center   region (we go from low to high energy density)

BDM:  Bound Dark MatterPhase transtion at   Ec

ca 3

ca 44Ecc cv

0v

Matter, CDM  w = 0Below the scale energy Ecwith E = m 

Phase  transtion  at      

Page 8: BDM Dark Matter (solving CDM problems) · 2012-06-25 · Evolution of gauge coupling constanta vs Energy SU(3) Strong Interaction SU(N) Dark Matter SU(2) Weak Interaction SU(1) E.M

CDM  or BDMSubstructure Problem (satelites galaxies)

The formation of small structures are surpressed inBDM compared to CDM.

• BDM particles have a dispersion velocity v = c,i.e. are HDM, above Ec while they behave as CDMbelow this scale with v = 0.

• We obtain a cut off in the power spectrum, due tothe free streaming of the particles , λfs:

NO formation of structure for scales smaller than fs

The observational data requires fs < 1 Mpc

giving galaxies with mass M > 109 Mo

Galaxy Mass

Page 9: BDM Dark Matter (solving CDM problems) · 2012-06-25 · Evolution of gauge coupling constanta vs Energy SU(3) Strong Interaction SU(N) Dark Matter SU(2) Weak Interaction SU(1) E.M

CDM  or  BDM

NFW CDM cuspy profile

BDM has a core profile

rc size of the core

Rotation Curves => DM profiles

Page 10: BDM Dark Matter (solving CDM problems) · 2012-06-25 · Evolution of gauge coupling constanta vs Energy SU(3) Strong Interaction SU(N) Dark Matter SU(2) Weak Interaction SU(1) E.M

Evolution of  gauge coupling constanta vs Energy

SU(3) Interacción Fuerte

SU(N) Dark Matter

SU(2) Interacción Débil

SU(1) E.M. Interac.

N fN cb

Eg

GeVE

EELogb

gutEgEg

gut

gut

gut

3

2/1)(

,10

][8)(2

1

)(21

2

16

2

,1016GeVEgut

2g

Particle motivation of BDM    BOUND DARK MATTERA. de la Macorra,  A.de la M.     Astropart.Phys. 33:195‐200,2010

ELog 10

• We assume a new Dark Gauge Group withSU(Nc) and Nf number of elementaryparticles.

• The mass of these elementary particles issmall or zero but at low energy a largemass M is generated due to nonperturbative physics

One loop Beta‐Function evolution

Page 11: BDM Dark Matter (solving CDM problems) · 2012-06-25 · Evolution of gauge coupling constanta vs Energy SU(3) Strong Interaction SU(N) Dark Matter SU(2) Weak Interaction SU(1) E.M

MeVEQCD 200 ,1016GeVEgut

2g

High energy

u

dd

ELog 10

N fN cb

Eg

GeVE

EELogb

gutEgEg

gut

gut

gut

3

2/1)(

,10

][8)(2

1

)(21

2

16

2

SU(3) Strong Interaction

SU(N) Dark Matter

SU(2) Weak Interaction

SU(1) E.M. Interaction

• We assume a new Dark Gauge Group withSU(Nc) and Nf number of elementaryparticles.

• The mass of these elementary particles issmall or zero but at low energy a largemass M is generated due to nonperturbative physics

Evolution of  gauge coupling constanta vs Energy

One loop Beta‐Function evolution

Particle motivation of BDM    BOUND DARK MATTERA. de la Macorra,  A.de la M Astropart.Phys. 33:195‐200,2010Particle motivation of BDM    BOUND DARK MATTERA. de la Macorra,  A.de la M Astropart.Phys. 33:195‐200,2010

Page 12: BDM Dark Matter (solving CDM problems) · 2012-06-25 · Evolution of gauge coupling constanta vs Energy SU(3) Strong Interaction SU(N) Dark Matter SU(2) Weak Interaction SU(1) E.M

One loop Beta‐Function evolution

MeVEQCD 200 ,1016GeVEgut

2gPhase

Transition

ELog 10

N fN cb

Eg

GeVE

EELogb

gutEgEg

gut

gut

gut

3

2/1)(

,10

][8)(2

1

)(21

2

16

2

High energy

u

dd

12 g

The condensation scale or phase transitionscale is defined when the gauge couplingconstant becomes strong, i.e.

Evolution of  gauge coupling constanta vs Energy

SU(3) Strong Interaction

SU(N) Dark Matter

SU(2) Weak Interaction

SU(1) E.M. Interaction

Particle motivation of BDM    BOUND DARK MATTERA. de la Macorra,  A.de la M Astropart.Phys. 33:195‐200,2010

Page 13: BDM Dark Matter (solving CDM problems) · 2012-06-25 · Evolution of gauge coupling constanta vs Energy SU(3) Strong Interaction SU(N) Dark Matter SU(2) Weak Interaction SU(1) E.M

MeVEQCD 200 ,1016GeVEgut

2g

u

udLow Energy

uud

P

dud n

uudP

ELog 10

N fN cb

Eg

GeVE

EELogb

gutEgEg

gut

gut

gut

3

2/1)(

,10

][8)(2

1

)(21

2

16

2

Evolution of  gauge coupling constanta vs Energy

SU(3) Strong Interaction

SU(N) Dark Matter

SU(2) Weak Interaction

SU(1) E.M. Interaction

The value of EQD is determine by gaugedynamics and may be phenomenologicallyobtained from cosmological data.

One loop Beta‐Function evolution

Particle motivation of BDM    BOUND DARK MATTERA. de la Macorra,  A.de la M Astropart.Phys. 33:195‐200,2010

Page 14: BDM Dark Matter (solving CDM problems) · 2012-06-25 · Evolution of gauge coupling constanta vs Energy SU(3) Strong Interaction SU(N) Dark Matter SU(2) Weak Interaction SU(1) E.M

MeVEQCD 200?CE ,1016GeVEgut

2g

PhaseTransition

ELog 10

N fN cb

Eg

GeVE

EELogb

gutEgEg

gut

gut

gut

3

2/1)(

,10

][8)(2

1

)(21

2

16

2The value of Ec is determine by gaugedynamics and may be phenomenologicallyobtained from cosmological data.

Evolution of  gauge coupling constanta vs Energy

SU(3) Strong Interaction

SU(N) Dark Matter

SU(2) Weak Interaction

SU(1) E.M. Interaction

One loop Beta‐Function evolution

Particle motivation of BDM    BOUND DARK MATTERA. de la Macorra,  A.de la M Astropart.Phys. 33:195‐200,2010

Page 15: BDM Dark Matter (solving CDM problems) · 2012-06-25 · Evolution of gauge coupling constanta vs Energy SU(3) Strong Interaction SU(N) Dark Matter SU(2) Weak Interaction SU(1) E.M

MeVEQCD 200?CE ,1016GeVEgut

2g

PhaseTransition ELog 10

cbdm Ekm )101( Ok

e.g. proton m = 938 with

QCD = 200 MeV, c = 4.6

We expect from gauge group dynamics that the effectivemass to be of the order of the phase transition scale Ec

ibgic eEE /8 2

Evolution of  gauge coupling constanta vs Energy

Particle motivation of BDM    BOUND DARK MATTERA. de la Macorra,  A.de la M Astropart.Phys. 33:195‐200,2010

N fN cb

Eg

GeVE

EELogb

gutEgEg

gut

gut

gut

3

2/1)(

,10

][8)(2

1

)(21

2

16

2

One loop Beta‐Function evolution

SU(3) Strong Interaction

SU(N) Dark Matter

SU(2) Weak Interaction

SU(1) E.M. Interaction

Page 16: BDM Dark Matter (solving CDM problems) · 2012-06-25 · Evolution of gauge coupling constanta vs Energy SU(3) Strong Interaction SU(N) Dark Matter SU(2) Weak Interaction SU(1) E.M

Linear Evolution of energy density perturbarions 

Page 17: BDM Dark Matter (solving CDM problems) · 2012-06-25 · Evolution of gauge coupling constanta vs Energy SU(3) Strong Interaction SU(N) Dark Matter SU(2) Weak Interaction SU(1) E.M

SAMPLE: THINGS     (34 High resolution Nearby Galaxies)

• We limit our sample to 17 low luminous (early type and dwarf) galaxies with smooth, symmetric and extended to large radii rotation curves and small or none bulge.

• These properties provide a good estimate of the DM halo in galaxies because it is believed that it dominates over all other components at all radii.

• Great angular resolution in sub kpc

Page 18: BDM Dark Matter (solving CDM problems) · 2012-06-25 · Evolution of gauge coupling constanta vs Energy SU(3) Strong Interaction SU(N) Dark Matter SU(2) Weak Interaction SU(1) E.M

Visible matter componentes

• Stars• Bulb• Gas

BULGE

GASSTARS

MASS MODELMatter  Components

Rotation curves alsorequire extra matter:

• Dark Matter

Page 19: BDM Dark Matter (solving CDM problems) · 2012-06-25 · Evolution of gauge coupling constanta vs Energy SU(3) Strong Interaction SU(N) Dark Matter SU(2) Weak Interaction SU(1) E.M

MASS MODEL

20

1

sss

c

BDM

rr

rr

rr

Halo Profile :       BDMCore

Halo Profile :  NFWCuspy

20

1

ss

NFW

rr

rr

ccBDM rrEc )(4

BDM gives a core for ρg > ρc=Ec^4

c

sc r

r2

0

Pseudo‐IsotermalCore

BurkertCore

20

1

s

ISO

rr

2

0

11ss

B

rr

rr

A large number of galaxies dominated byDM, as Dwarf galaxies or LSB (LowSurface Brightness), have a better fit torotation curves with a core DM profileinstead as the CDM NFW cuspy profile.H

DM

CD

M

Phase transition from CDM to HDM

Page 20: BDM Dark Matter (solving CDM problems) · 2012-06-25 · Evolution of gauge coupling constanta vs Energy SU(3) Strong Interaction SU(N) Dark Matter SU(2) Weak Interaction SU(1) E.M

Conclusiones

Page 21: BDM Dark Matter (solving CDM problems) · 2012-06-25 · Evolution of gauge coupling constanta vs Energy SU(3) Strong Interaction SU(N) Dark Matter SU(2) Weak Interaction SU(1) E.M

20

1

sss

c

BDM

rr

rr

rr

BDM Profile

NFW Profile

20

1

ss

NFW

rr

rr

Page 22: BDM Dark Matter (solving CDM problems) · 2012-06-25 · Evolution of gauge coupling constanta vs Energy SU(3) Strong Interaction SU(N) Dark Matter SU(2) Weak Interaction SU(1) E.M

(1 2 ) 2-D contour plots of vs r core for diff. Mass models

Page 23: BDM Dark Matter (solving CDM problems) · 2012-06-25 · Evolution of gauge coupling constanta vs Energy SU(3) Strong Interaction SU(N) Dark Matter SU(2) Weak Interaction SU(1) E.M

(1 2 ) 2-D contour plots of vs r core for diff. Mass models

Page 24: BDM Dark Matter (solving CDM problems) · 2012-06-25 · Evolution of gauge coupling constanta vs Energy SU(3) Strong Interaction SU(N) Dark Matter SU(2) Weak Interaction SU(1) E.M

ConclusionesSummary of 2-D contour plots of c vs r core for diff. Mass models

Kroupa

Minimum Disk

Page 25: BDM Dark Matter (solving CDM problems) · 2012-06-25 · Evolution of gauge coupling constanta vs Energy SU(3) Strong Interaction SU(N) Dark Matter SU(2) Weak Interaction SU(1) E.M

c

c

rr1

2int

44 )06.0( eVcEc

kpcrc 3.1

INNER ANALYSIS useful to extract information on the inner region of  galaxies

r0 52.00

½1

0rcrr

sc rrr

NFW has = 1

Page 26: BDM Dark Matter (solving CDM problems) · 2012-06-25 · Evolution of gauge coupling constanta vs Energy SU(3) Strong Interaction SU(N) Dark Matter SU(2) Weak Interaction SU(1) E.M

r0

c

c

rr1

2int

INNER ANALYSIS 

52.0

0½1

0rcrr

sc rrr

Page 27: BDM Dark Matter (solving CDM problems) · 2012-06-25 · Evolution of gauge coupling constanta vs Energy SU(3) Strong Interaction SU(N) Dark Matter SU(2) Weak Interaction SU(1) E.M

Summary and Conclusions

• BDM DARK MATTER behave as :HDM at high energy (above Ec)CDM at low energy (below Ec)

• The phase transition Ec can be determined from gauge theory, • i.e. when the bound particles acquire a non perturbative mass

• Ec can also be determined from cosmological data

• We find this high-low energy density transition : i) due to the expansion of our universeii) in the inner region of galaxies

• BDM has a cut in the power spectrum• BDM has cored DM profile (instead of the cuspy CDM NFW profile)

• Solves the problems of CDM: substrucure and cuspy profile

• Has an equivalent or better fit to the cosmological data than CDM

Page 28: BDM Dark Matter (solving CDM problems) · 2012-06-25 · Evolution of gauge coupling constanta vs Energy SU(3) Strong Interaction SU(N) Dark Matter SU(2) Weak Interaction SU(1) E.M

References:

• BDM Dark Matter: CDM with a core profile and a free streaming scaleA. de la Macorra,  Astropart.Phys. 33:195‐200,2010.

• Galactic Phase Transition at Ec= O(0.1 eV)  from Rotation Curves of Cored LSB and non perturbative Dark Matter Mass. A. de la Macorra, J. Mastache, J. Cervantes. PRD Rapid Communications:      Phys.Rev. D84 (2011) 121301

• Core‐Cusp revisited and Dark Matter Phase Transition Constrained at 0.1 eV with LSB Rotation Curve. J. Mastache, A. de la Macorra, J. Cervantes arXiv:1107.5560

References