bc.pollub.plbc.pollub.pl/content/967/pdf/elmeco7.pdf · 2. fumiaki mitsugi, tomoaki ikegami,...

166
L u b l in U n iv e r s i ty o f Te c h n o l o g y I E E E Institute of Electrical Engineering & Electrotechnologies Lublin University of Technology Polish Academy of Sciences Branch in Lublin Centre of Excellence for the Application of Superconducting and Plasma Technologies in Power Engineering Proceedings of the 7 th International Conference E E L L M M E E C C O O - - 7 7 ELECTROMAGNETIC DEVICES AND PROCESSES IN ENVIRONMENT PROTECTION joint with 10 th Seminar “Applications of Superconductors" A A o o S S - - 1 1 0 0 September 28 – 30, 2011 Nałęczów, Poland

Upload: others

Post on 18-Oct-2020

12 views

Category:

Documents


0 download

TRANSCRIPT

  • Lublin University of Tech

    nolo

    gy

    I E E E

    Institute of Electrical Engineering & Electrotechnologies Lublin University of Technology

    Polish Academy of Sciences Branch in Lublin

    Centre of Excellence for the Application of Superconducting and Plasma Technologies in Power Engineering

    Proceedings of

    the 7th International Conference

    EELLMMEECCOO--77 ELECTROMAGNETIC DEVICES AND PROCESSES

    IN ENVIRONMENT PROTECTION

    joint with

    10th Seminar “Applications of Superconductors"

    AAooSS--1100

    September 28 – 30, 2011

    Nałęczów, Poland

  • Lublin University of Tech

    nolo

    gy

    I E E E

    Institute of Electrical Engineering & Electrotechnologies Lublin University of Technology

    Polish Academy of Sciences Branch in Lublin

    Centre of Excellence for the Application of Superconducting and Plasma Technologies in Power Engineering

    Proceedings of

    the 7th International Conference

    EELLMMEECCOO--77 ELECTROMAGNETIC DEVICES AND PROCESSES

    IN ENVIRONMENT PROTECTION

    joint with

    10th Seminar “Applications of Superconductors"

    AAooSS--1100

    September 28 – 30, 2011

    Nałęczów, Poland

  • Institute of Electrical Engineering and Electrotechnologies Lublin University of Technology

    38a Nadbystrzycka St. 20-618 Lublin

    Tel./fax: 48 81 53 84 289, 48 81 53 84 643 E-mail: [email protected]

    http://ipee.pollub.pl/elmeco_aos

    7th International Conference ELMECO-7

    ELECTROMAGNETIC DEVICES AND PROCESSES IN ENVIRONMENT PROTECTION

    joint with

    10th Seminar “Applications of Superconductors"

    AoS-10

    September 28 – 30, 2011 Nałęczów, Poland

    Organized by:

    Institute of Electrical Engineering and Electrotechnologies Lublin University of Technology

    Polish Academy of Sciences Branch in Lublin

    Centre of Excellence for the Application of Superconducting and Plasma Technologies in Power Engineering

    Conference venue: Conference Centre ENERGETYK

    10 Paderewskiego St., 24 - 140 Nałęczów tel. (48-81) 50 14 604

  • Scientific Committee

    Kazimierz Adamiak (University of Western Ontario, Canada) Shin-ichi Aoqui (Sojo University, Japan) Krystyna Cedzyńska (Technical University of Łódź, Poland) Antoni Cieśla (AGH University of Science and Technology, Cracow, Poland) Marian Ciszek (Polish Academy of Science, Wrocław, Poland) Vladimir Datskov (Joint Institute for Nuclear Research, Dubna, Russia) Kenji Ebihara (Kumamoto University, Japan) Bartek A. Głowacki (University of Cambridge, UK) Bogusław Grzesik (Silesian University of Technology, Gliwice, Poland) Tadeusz Janowski (Lublin University of Technology, Poland) Ulrich Kogelschatz (ABB, Switzerland) Zbigniew Kołaciński (Technical University of Łódź, Poland) Jan Leszczyński (Technical University of Łódź, Poland) Bolesław Mazurek (Electrotechnical Institute, Wrocław, Poland) Jerzy Mizeraczyk (Institute of Fluid Flow Machinery, PAS, Gdańsk, Poland) Anthony J. Moses (Wolfson Centre for Magnetics Techn., Cardiff Univ., UK) Andrzej Nafalski (University of South Australia, Adelaida) Ryszard Pałka (West Pomeranian University of Technology,Szczecin,Poland) Krzysztof Schmidt-Szałowski (Warsaw University of Technology, Poland) Andrzej Siemko (CERN, Geneva, Switzerland) Jacek Sosnowski (Electrotechnical Institute, Warsaw, Poland) Petro G. Stakhiv (Technical University of Lviv, Ukraine) Henryka D. Stryczewska (Lublin University of Technology, Poland) Bronisław Susła (Poznań University of Technology, Poland) Jan Sykulski (University of Southampton, UK) Andrzej Wac-Włodarczyk (Lublin University of Technology, Poland) Chobei Yamabe (Saga University, Japan) Sotoshi Yamada (Kanazawa University, Japan) Kazimierz Zakrzewski (Technical University of Łódź, Poland) Andrzej Zaleski (Polish Academy of Science, Wrocław, Poland

    Organizing Committee

    Tadeusz Janowski - Chairman Henryka Danuta Stryczewska

    Andrzej Wac-Włodarczyk Paweł Surdacki

    Beata Kondratowicz-Kucewicz Grzegorz Wojtasiewicz

    Renata Jaroszyńska - Secretary

    ISBN: 978-83-62889-14-3

    The proceedings have been published based on papers delivered by authors

  • 5

    PROGRAMME

    Wednesday, 28 Sept. Thursday, 29 Sept. Friday, 30 Sept.

    11:00-15:00 Jubilee Session of 50th Anniversary of PSTAEE in Lublin

    08:00 – 09:00 Breakfast 08:00 – 09:00 Breakfast

    08:30 – 09:30 Registration 09:00 - 10:15 Poster session P2 (with coffee) 09:30 - 11:00 Oral session O1 10:15 - 12:15 Oral session O3 11:00 - 11:30 Coffee break 12:15 – 12:30 Closing session 11:30 – 12:45 Oral session O2 12:45 – 14:00 Lunch 13:00 – 14:30 Lunch 14:30 - 15:45 Poster session P1 (with coffee)

    17:00 – 19:00 Registration Conference Centre “ENERGETYK" in Nałęczów

    16:00 – 18:30 Guided sightseeing in Nałęczów

    19:00 – 22:00 Barbecue 19:00 Conference Dinner

    Wednesday, 28 Sept. 2011 17:00 – 19:00 Registration - Conference Centre “ENERGETYK" in Nałęczów 19:00 – 22:00 Barbecue

    Thursday, 29 Sept. 2011 08:00 – 09:00 Breakfast 08:30 – 09:30 Registration 09:30 -11:00 Oral session O1 (Chairpersons: Henryka D. Stryczewska, Kenji Ebihara) 1. Bogusław Grzesik, Mariusz Stępień

    Magnetic refrigeration 2. S.V. Gudkov, V.M. Drobin, D.E. Donets, Evgeny D. Donets, E.E. Donets, E. Kulikov, H. Malinowski, V.V. Salnikov

    and V.B. Shutov, Cryogenic and superconducting technologies in electron string ion sources of multicharged ions

    3. Monika Lewandowska, Maurizio Bagnasco Conceptual design and analysis of a cryogenic system for a new test facility for high temperature superconductor current leads (HTS CLs)

    11:00-11:30 Coffee break

  • 6

    11:30 – 12:45 Oral session O2

    1. Mariusz Stępień, Bogusław Grzesik FEM modelling of quench propagation in BSCCO tape

    (Chairmen: Bronisław Susła, Toshiyuki Nakamiya)

    2. Mariusz Woźniak, Simon C. Hopkins, Bartłomiej A. Głowacki Characterisation of a MgB2 wire using different current pulse shapes in pulsed magnetic field

    3. Agnieszka Łękawa-Raus, Marek Burda, Lukasz Kurzepa, Xiaoyu Peng, Krzysztof K. Koziol Carbon nanotube fibre for electrical wiring applications

    13:00 – 14:30 Lunch

    14:30-15:45 Poster session P1

    1. Shinichi Aoqui, Ikuya Muramoto, Hiroharu Kawasaki, Tamiko Ohshima, Fumiaki Mitsugi, Toshiyuki Kawasaki, Tetsuro Baba, Yukio Takeuchi Optical study on the mechanisms for two and three phase gliding arc discharge

    (with coffee) (Chairmen: Kenji Ebihara, Zbigniew Kołaciński)

    2. Fumiaki Mitsugi, Tomoaki Ikegami, Shin-ichi Aoqui, Yui Tashima, Hiroharu Kawasaki, Toshiyuki Nakamiya, Yoshito Sonoda, Henryka Stryczewska Application of optical wave microphone to gliding arc discharge

    3. Tetsuro Baba, Yukio Takeuchi, Henryka Danuta Stryczewska, Shin-ichi Aoqui A study of simple power supply system with 6 electrodes configuration on gliding arc discharge

    4. Yoichiro Iwasaki, Toshiyuki Nakamiya, Ryosuke Kozai, Fumiaki Mitsugi, Tomoaki Ikegami Automatic image analysis of laser annealing effects on characteristics of carbon nanotubes

    5. Artur Berendt, Janusz Podliński, Jerzy Mizeraczyk Multi-DBD plasma actuator for flow separation control around NACA0012 and NACA0015 airfoil models

    6. Janusz Podliński, Artur Berendt, Jerzy Mizeraczyk EHD secondary flow in the ESP with spiked electrodes

    7. Anna Niewulis, Janusz Podliński, Jerzy Mizeraczyk EHD flow measured by 2D PIV in a narrow electrostatic precipitator with longitudinally-to-flow wire electrode

    8. Michał Sobański, Artur Berendt, Mariusz Jasiński, Jerzy Mizeraczyk Optymalizacja mikrofalowego generatora plazmy o strukturze współosiowej zasilanego falowodem

    9. Dariusz Czylkowski, Mariusz Jasiński, Jerzy Mizeraczyk Novel low power microwave plasma sources at atmospheric pressure

    10. Jerzy Mizeraczyk, Bartosz Hrycak, Mariusz Jasiński, Mirosław Dors Low-temperature microwave microplasma for bio-decontamination

    11. Bartosz Hrycak, Mariusz Jasiński, Dariusz Czylkowski, Marek Kocik, Mateusz Tański, Jerzy Mizeraczyk Tuning characteristics of cylindrical microwave plasma source operated with argon, nitrogen and methane at atmospheric pressure

    12. Marek Kocik , Mateusz Tański, Jerzy Mizeraczyk 3D structure of positive corona streamer reconstruction using stereo photography and computer algorothms

    13. Mateusz Tański, Robert Barbucha, Marek Kocik, Jerzy Mizeraczyk Diagnostics of the laser generated plasma plume dynamics using time-resolved imaging

    14. Jarosław Diatczyk, Tomasz Giżewski, Lucyna Kapka, Grzegorz Komarzyniec, Joanna Pawłat, Henryka Danuta Stryczewska Generation of non-equilibrium low-temperature plasma in the array of gliding arc plasma reactors

    15. Jarosław Diatczyk, Julia Diatczyk ,Grzegorz Komarzyniec, Joanna Pawłat, Krzysztof Pawłowski, Henryka Danuta Stryczewska Problem zanieczyszczeń siloksanowych w instalacjach biogazowych

    16. Grzegorz Komarzyniec, Henryka Danuta Stryczewska, Jarosław Diatczyk Supply system of water treatment installation from PV panels

    17. Grzegorz Komarzyniec, Henryka Danuta Stryczewska, Jarosław Diatczyk Plasma deposition of ceramic layers directly onto the surfaces of the joints of osteoarthritis

    18. Justyna Jaroszyńska-Wolińska, P. A. F. Herbert Decomposition of BTX by plasma generated ozone

    19. Małgorzata Kalczewska Adhesive properties of the plasma treated PI/Cu laminate surface 20. Janusz Piechna, Witold Selerowicz, Teresa Opalińska, Małgorzata Kalczewska

    Reactants streams mixing in a chemical reactor employing of gliding discharge principles 21. Janusz Piechna, Witold Selerowicz, Teresa Opalińska, Bogdan Ulejczyk, Małgorzata Kalczewska

    Theoretical and experimental parameters of gliding discharge movement with a stream of reactants flowing through the discharge zone in a plasma reactor for a waste treatment device

    22. Grzegorz Raniszewski, Zbigniew Kołaciński, Łukasz Szymański Plasma arc for utilization of soils

    23. Zbigniew Kołacinski, Łukasz Szymanski, Grzegorz Raniszewski A rotating arc plasma reactor

  • 7

    24. Olena Solomenko, V. Chernyak, O. Nedybaliuk Reforming of ethanol in plasma-liquid system tornado type with the addition of CO2

    25. Jacek Majewski Methods for measuring ozone concentration in ozone-treated water

    26. Paweł A. Mazurek Methods to improve the electromagnetic compatibility of plasma reactor

    27. Andrzej Wac-Włodarczyk, Andrzej Kaczor Zaburzenia elektromagnetyczne na liniach zasilających reaktor plazmowy typu Glidarc

    28. Mario Janda, Zdenko Machala, Deanna Lacoste, Karol Hensel, Christophe Laux Discharge propagation in capillary tubes assisted by bias electric field

    29. Karol Hensel, Pierre Le Delliou, Pierre Tardiveau, Stephane Pasquiers Self-pulsing DC driven discharges in preheated air aimed for plasma assisted combustion

    30. Matej Klas, Michal Stano, Štefan Matejčík Electrical diagnostics of microdischarges in helium

    31. Hyun-Ha Kim Interaction of nonthermal plasma and catalyst at ambient temperature

    16:00 – 18:30 Guided sightseeing in Nałęczów

    19:00 Conference Dinner

    Friday, 30 Sept.

    08:00 – 09:00 Breakfast

    09:00-10:15 Poster session P2

    1. Katarzyna Juda, Mariusz Woźniak, Mariusz Mosiadz, Simon C. Hopkins, Bartłomiej A. Głowacki, Tadeusz Janowski Superconducting properties of YBCO coated conductors produced by inkjet printing

    (with coffee) (Chairmen: Ryszard Pałka, Bogusław Grzesik)

    2. Dariusz Czerwiński, Leszek Jaroszyński, Janusz Kozak, Michał Majka, Equivalent electromagnetic model for current leads made of HTS tapes

    3. Leszek Jaroszyński, Dariusz Czerwiński Numerical analysis of YBCO coated conductors

    4. Tadeusz Janowski, Joanna Kozieł, Tomasz Giżewski, Dariusz Czerwiński Modelowanie powrotnej charakterystyki rozgałęzionej taśmy nadprzewodnikowej HTS 2G

    5. Michał Majka, Janusz Kozak, Tadeusz Janowski, Sławomir Kozak Badania eksperymentalne i analiza skuteczności działania bezrdzeniowego indukcyjnego nadprzewodnikowego ogranicznika prądu

    6. Janusz Kozak , Michał Majka, Tadeusz Janowski, Sławomir Kozak Budowa i badania nadprzewodnikowego bezrdzeniowego indukcyjnego ogranicznika prądu średniego napięcia

    7. Beata Kondratowicz-Kucewicz, Sławomir Kozak Rozkład pola magnetycznego i energia nadprzewodnikowego zasobnika w różnej konfiguracji cewek

    8. Tadeusz Janowski, Grzegorz Wojtasiewicz Transformatory nadprzewodnikowe odporne na zwarcia i ograniczające prądy zwarcia

    9. Ryszard Pałka Synteza pola magnetycznego w nadprzewodnikowym ograniczniku prądowym

    10. Anup Patel, Ryszard Pałka, Bartłomiej A. Głowacki New bulk – bulk superconducting bearing concept using additional permanent magnets

    11. Paweł Surdacki Wpływ impulsu zaburzającego na parametry zanikania nadprzewodzenia w przewodzie nadprzewodnikowym MgB2/Cu

    12. Paweł Surdacki Wpływ prądu i temperatury pracy na parametry zanikania nadprzewodzenia w przewodzie nadprzewodnikowym YBCO

    13. Leszek Woźny, Anna Kisiel, Roman F. Szeloch, Eugeniusz Prociów Electrical electrodes of Ni-Me (Me=Ag, Mo, Cu) on YBa2Cu3Ox surface

    14. Anna Kisiel, Małgorzata Mielcarek, Jan Ziaja The influence of technological parameters on photovoltaic properties of TiO2

    15. K. Chybczyńska, M. Wróblewski, M. Wawrzyniak, Bronisław Susła Conductance quantization in Nb-Ti alloys and BiPbSrCaCuO superconducting tapes nanocontacts

    16. Michał Łanczont Modelowanie rezystancyjnego nadprzewodnikowego ogranicznika prądu w środowisku SCILAB

  • 8

    17. Michał Łanczont Perspektywy zastosowanie technologii nadprzewodnikowej w budowie urządzenia georadarowego

    18. Oleksandra Hotra, Piotr Bylicki Using the test method for optimization the Peltier device for achievement superconducting transition temperatures

    19. Mariusz Mazurek, Elżbieta Jartych, Dariusz Oleszak Mössbauer studies of Bi5Ti3FeO15 electroceramic prepared by mechanical activation

    20. Elżbieta Jartych, Dariusz Oleszak, Mariusz Mazurek Hyperfine interactions in multiferroic mechanically activated BiFeO3 compound

    21. Joanna Michałowska-Samonek, Arkadiusz Miaskowski, Andrzej Wac-Włodarczyk Analysis electromagnetic field distribution and specific absorption rate in breast models

    22. Arkadiusz Miaskowski, Andrzej Wac-Włodarczyk, Grażyna Olchowik Low frequency FDTD algorithm and its application to inductive hyperthermia

    23. Piotr Gas Temperature distribution in human tissue during interstitial microwave hyperthermia

    24. Eugeniusz Kurgan Comparison of different methods of force calculation in dielectrophoresis

    25. Tomasz Giżewski, Andrzej Wac-Włodarczyk, Ryszard Goleman, Dariusz Czerwiński Analiza nieparametrycznych metod automatycznej klasyfikacji obiektów wielowymiarowych w aplikacji do nieniszczącej detekcji uszkodzeń

    26. Andrzej Wac-Włodarczyk, Mateusz Wąsek Zastosowanie kamer termograficznych w bezinwazyjnej diagnostyce medycznej

    27. Tadeusz Janowski, Mariusz Holuk Promoting renewable energy sources to supply home power plants

    28. Eiji Sakai, Hiroshi Sakamoto Wireless rapid charger of super capacitor

    29. Sławomir Wiak, Agnieszka Pyć, Marcin Pyć Electrical machines in the military more electric aircraft and their impact on the environment

    30. Wojciech Jarzyna, Michał Augustyniak PD and LQR controllers applied to vibration damping of an active composite beam

    31. Andrzej Kotyra, Waldemar Wójcik, Krzysztof Jagiełło, Konrad Gromaszek, Tomasz Ławicki, Piotr Popiel Biomass-coal combustion characterization using image processing

    32. Andrzej Smolarz, Konrad Gromaszek, Waldemar Wójcik, Piotr Popiel Diagnostics of industrial pulverized coal burner using optical methods and artificial intelligence

    33. Waldemar Wójcik, Sławomir Cięszczyk, Tomasz Ławicki, Arkadiusz Miaskowski Application of curvelet transform in the processing of data from ground penetrating radar

    34. Paweł Komada, Sławomir Cięszczyk, Waldemar Wójcik Influence of gas concentration inhomogeneity on measurement accuracy in absorption spectroscopy

    10:15 – 12:15 Oral session O3 (Chairpersons: Shin-ichi Aoqui, Henryka D. Stryczewska) 1. Kenji Ebihara, Henryka Danuta Stryczewska, Fumiaki Mitsugi, Tomoaki Ikegami, Takamasa Sakai, Joanna Pawlat, S. Teii

    Recent development of ozone treatment for agricultural soil sterilization and biomedical prevention 2. Toshiyuki Nakamiya, Fumiaki Mitsugi, Ryota Ide , Tomoaki Ikegami, Yoichiro Iwasaki, Ryoichi Tsuda, Yoshito Sonoda

    Tomographic visualization of discharge sound fields using optical wave microphone 3. Zbigniew Kołaciński, Łukasz Szymanski, Grzegorz Raniszewski, Sławomir Wiak

    Plasma synthesis of carbon nanotubes for electric and electronic devices 4. Valeriy Chernyak, Sergij Olszewski, Evgen Martysh, Oleg Nedybalyuk, Vitalij Yukhymenko, Sergij Sidoruk, Iryna Prysyazhnevich,

    Olena Solomenko Plasma assisted distruction of organic moleculs in dynamic plasma–liquid systems

    5. Mirosław Dors, Tomasz Izdebski, Bartosz Hrycak, Jerzy Mizeraczyk Microwave plasma module for destruction of oil slicks

    6. Joanna Pawłat Atmospheric pressure plasma jet for sterilization purposes

    12:15 – 12:30 Conference Closing (Chairpersons: Henryka D. Stryczewska, Tadeusz Janowski) 12:45 – 14:00 Lunch

  • 9

    OPTICAL STUDY ON THE MECHANISMS FOR TWO AND THREE PHASE GLIDING ARC DISCHARGE

    Shinichi AOQUI1, Ikuya MURAMOTO1, Hiroharu KAWASAKI2, Tamiko OHSHIMA2, Fumiaki MITSUGI3,

    Toshiyuki KAWASAKI4, Tetsuro BABA5, Yukio TAKEUCHI5

    Sojo University (1), Sasebo College of Technology (2), Kumamoto University (3), Nippon Bunri University (4), VIC Co. Ltd(5)

    Abstract. Mechanisms of a gliding arc discharge have been studied using monochromater and high speed camera. Two-dimensional images of two phase gliding arc discharge show shapes of a string, and they glides from upstream to the downstream along with electrodes by gas flow. Gliding speed strongly depends on gas flow rate and discharge condition. Some of the ”string-like” arc discharge changes their shape, and some part of the discharge ”re-connect” in the discharge area especially on the upstream region Keywords: Gliding arc discharge, Two-dimensional images, re-connection. Introduction

    Gliding arc (GA) discharge is one of the electric discharge plasma which can be generated to open air space[1-3]. GA forms "plane plasma" in the two dimensional space between electrodes. GA generated using the direct current and the exchange power supply were applied to decomposition of the quality of an air pollutant. Recently, the method which used the high frequency pulse power supply was also proposed, and they are applied to surface treatments, such as resin, glass, metal. On GA discharge, many studies had been accomplished, but, as for the most, there were many experiential elements about the constitution of the electric discharge part such as shape, geometry and materials of electrode, power supply system, plasma ignition and so on. In this paper, two dimensional photographs of the gliding arc discharge were taken by high speed camera, and optical emission spectroscopic measurements were applied for the GA discharge in the atmospheric pressure in the several discharge conditions, such as gas, gas flow rate, discharge power. As the results, a basic process of a GA discharge were studied. Experimental

    The electrodes of arc discharge were iron and gases used for the experiment were argon, oxygen, and carbon dioxide. However, the atmosphere gases were mixed these gases since the electric discharge domain is not sealed. Gas flow rate was controlled from 10 l/min to 50 l/min by the pressure regulator and the digital flow instrument. Discharge voltage was controlled by the voltage slide regulator, and increased by using the high voltage transformer, and then high voltage was applied to the electrodes. Discharge voltage was measured using the high-voltage probe, and discharge current was measured using the clamp current probe. Applied voltage to the voltage slide regulator were 40V, 60V and 80V, and net discharge voltage between electrode for gliding arc were 4.9kV, 7.2kV, and 9.7kV, respectively. Two dimensional photographs of the gliding arc discharge were taken by two kinds of high speed cameras (Casio, High speed exilim EX-F1; shutter speed was 1200 flame per second), and super high speed camera (Photron, FASTCAM SA5; shutter speed was 54000 flame per second). Optical emission

    spectra were measured by the USB small multichannel spectroscope. Results and discussions The structure of gliding arc discharge

    Fig. 1 shows the photographs of two phase, two electrodes gliding arc using high speed camera. In this experiment, 60 V in input discharge voltage, and Ar gas flow was 50 l/min. As the results, arc discharge occurs between the shortest gaps and emission intensity is very high, like white-color emission. The arc discharge did not moved without gas flow, and it seems to one dimensional structure like needle to needle electrodes arc discharge as shown in Fig 1(a). The arc discharge glides from upstream to the downstream along with electrodes by Ar gas flow. The discharge spreads in two dimensions to the electrode and gas flow directions as shown in Figs. 1(b)-1(d). There were a lot of dischrage passes in the same flame of 0.83 ms gate time. We also observed two phase, two electrodes gliding arc discharge, not shown here. From the top view of them, discharge occurs between next electrodes and move to the side gap, like “delta” shape, at the early phase of discharge. However, the shape changes like “star” with the discharge glide to the downstream.

    Fig. 2 shows the photographs of gliding arc using super high speed camera. In this experiment, shutter speed was 54000 flame per second, 60 V in input discharge voltage, and Ar gas flow was 50 l/min. As the results, shapes of arc discharge in the downstream region looks like “rope” or “string”, and they seem to be twisted. Part of them looks like “re-connection”.

    Optical emission spectroscopy

    Emission spectra at the downstream area and that at the upstream area in the same gliding discharge are shown in Fig. 1. In the upstream area N2 molecular spectra, CO emission and O I emission peaks can be observed. On the other hand, there is only N2 second positive band in the the spectrum and any other peaks are disappeared. As the results, an upstream area is a positive column of the main arc discharge around the shortest gaps area. Almost all discharge power were consumed at the place and they can be controlled by discharge power. In the downstream

  • 10

    domain, plasma behaves ”plasma jet” or ”plasma plume” which exists across between electrodes that depend on the gas flow.

    (a) 0 ms (b) 0.8 ms

    (c) 1.6 ms (d) 2.4 ms

    Fig.1. The photographs of gliding arc using high speed camera. (1200 fps, ISO1600, 60 V in input discharge voltage).

    Fig.2. The photographs of gliding arc using super high speed camera. (54000 fps, 60 V in input discharge voltage)

    Fig.3. Emission spectra at the downstream area and that at the upstream area in the same gliding discharge.

    CONCLUSION Optical emission spectroscopic measurements for the

    gliding arc discharge in the atmospheric pressure suggests that two discharge domains exist in the upstream and downstream sides along with a gas flow. In the upstream discharge, emission spectra strongly depend on the gas, discharge power and gas flow rate. On the other hand, emission spectra in the downstream discharge domain is different from that in the upstream. In the spectra, there are no emission peaks other than N2 second positive band.

    REFERENCES [1] A. Czemichowski: Gliding arc. Applications to engineering and

    environment control, Pure and Applied Chemistry, Vol.66 (1994), No.6, pp.1301-1310.

    [2] A. Fridman, S. Nester, L. A. Kennedy, A. Saveliev, O. Mutaf-Yardimci, Gliding arc gas discharge, Progress in Energy and Combustion Science, Vol.25 (1999) pp.211-231.

    [3] H. Shiki, H. Saito, S. Oke, Y. Suda. H. Takikawa, S. Yamanaka, T. Okawa, Y. Nishimura, S. Hishida, E. Usuki, Influence of Series Inductance in Pulsed Gliding Arc Discharge, Vol. 16,(2008), No.2, pp.105-112.

    Authors: Mr. Ikuya MURAMOTO, Division of Energy Electronics, Sojo Univ., Ikeda 4-22-1, Kumamoto, 860-0082, Japan, E-mail: [email protected], prof. dr Shin-ichi AOQUI, Graduate School of Electrical & Electronics Eng., Sojo Univ., Ikeda 4-22-1, Kumamoto, E-mail: [email protected], prof. dr Hiroharu Kawasaki, Sasebo College of Tech., 1-1, Okishin, Sasebo, Nagasaki, Japan, E-mail: [email protected]; dr Tamiko Ohshima, Sasebo College of Tech., 1-1, Okishin, Sasebo, Nagasaki, Japan, E-mail: [email protected], dr Fumiaki MITSUGI, Faculty of Eng. Kumamoto Univ., Kurokami 2-39-1, Kumamoto [email protected], dr Toshiyuki KAWASAKI, Faculty of Eng. Nippon Bunri Univ., [email protected], Tetsuro BABA, VIC Co. Ltd., [email protected], Yukio TAKEUCHI, VIC Co. Ltd., [email protected].

    (c) 0 s

    (b) 1.9×10-6 s

    (a) 3.8×10-6 s

    mailto:[email protected]�mailto:[email protected]�mailto:[email protected]�mailto:[email protected]�mailto:[email protected]�mailto:[email protected]�mailto:[email protected]�mailto:[email protected]

  • 11

    A STUDY OF SIMPLE POWER SUPPLY SYSTEM WITH 6

    ELECTRODES CONFIGURATION ON GLIDING ARC DISCHARGE

    Tetsuro BABA1, Yukio TAKEUCHI1, Henryka Danuta STRYCZEWSKA2, Shin-ichi AOQUI3 VIC International Inc.(1), Lublin University of Technology (2), Sojo University (3)

    Abstract. We report the trial manufacture equipment of 6 phases gliding arc discharge and analyzed I-V characteristic.About the power supply, exclusive equipment was not used, and general-purpose equipment were combined and made. We investigated current voltage characteristic of gliding arc discharge. Keywords : gliding arc, non-thermal equilibrium plasma, 6 phases alternating current discharge, gaseous processing

    Introduction The processing of exhausted industry hazardous gas

    is a top priority environmental protection matter now. In recent years a plasma technique has been used for purification of the exhaust pollution.

    Inductively Coupled Plasma (ICP) is suitable technique for a decomposition of a neutral gas therefore, it is used widely. Because the temperature is high (5000 K-20000 K) in the plasma with ICP equipment, organic matter almost completely decomposes. And also equipment is simple normally.

    However, large electric power is required to maintain the plasma which is near to thermal equilibrium with atmospheric pressure on ICP. On the other hand, Gliding Arc discharge generating non-thermal equilibrium plasma can generate atmospheric pressure plasma with small input electric power much more in comparison with ICP [1-3]. But, because gliding arc is non-thermal equilibrium, a volume of plasma is not large, and a large quantity of gaseous processing is not easy. Furthermore, the basic of plasma process is unknown enough. Therefore a system which combined a catalyzer with discharge has been proposed with many reactors on gliding arc [4].

    In this study, it was carried out from the viewpoint of fundamental electric circuit system of a plasma generation and enhancement of the plasma volume with 3 and 6 phases electrode of gliding arc[5]. Particularly simple power supply system was proposed with 6 phases alternating current. Experiment

    Fig.1 shows the experimental setup. Gliding arc discharge strongly depends on an arrangement of electrode and power supply system. In this study, six pieces of knife edge-shaped electrodes made by pure iron were located at an angle of 60 degrees. The electrode distance was adjustable from 0 to 10 mm. Pure Ar gas was introduced by the electrodes lower part and gas flow was controlled by a flowmeter. Two three-phase circuit power transformers of maximum voltage 6.6kV were used. Generally an exclusive transformer is used to supply electrode with high voltage alternating current more than a three-phase circuit. However, it is difficult for the high voltage multi-phase transformer to maintain isolation of a winding wire between every phase. In addition, the price

    of that type is expensive, too. Therefore we examined a reverse connection of a three-phase circuit power transformer for power line use that was low-priced with high performance. In our study, as for one transformer (HV Trans 2), the phase was reversed for an inversion transformer to realize 6 phases. Therefore 6 generated phases were not phase differences of 60 degrees. A high voltage trigger electrode for an initial ignition was not used to avoid an unnecessary current path for explication of gliding arc plasma phenomenon.

    A current and a voltage of each electrode were measured by digital oscilloscope with a high voltage probe and a current probe, respectively. The discharge was observed using a normal camera and high-speed camera.

    Fig.1 Experimental setup

    Result Fig.2 shows photography of the electrode with

    discharge. Fig.3 shows a voltage waveform. Because there was

    not initial ignition electrode, a discharge did not start up to 3300V but after the ignition, the discharge was maintained at 2000V or less. The gas flow rate was 10L/min. The angular degree of each phase was according to setting before a discharge breakdown. After the discharge

  • 12

    breakdown, the voltage waveform which was similar to two-phase or three-phase the gliding arc discharge was shown. With enhancement of the applied voltage (3, 4.5, 6 KV), the overall length of current paths of discharge extended. The current path of sub-m sec order was observed with a high-speed camera.

    Fig.2 Electrode photograph

    Fig.3 Voltage characteristic of gliding arc discharge border of

    discharge before and after.

    Fig. 4 shows current voltage characteristic (I-V

    characteristic) in a case Ar gas flow rate was changed. A current flowed with a sharp break of the terminal voltage of each phase.

    In addition, with the enhancement of the gas flow rates, the overall length of current paths of discharge extended.

    :

    :

    :

    Fig.4 I-V characteristic of gliding arc discharge

    Conclusion A fundamental confirmation of the electrical discharge

    and fundamental electrical property were measured. That proposed that general-purpose equipment were combined and made for 6 phases gliding arc discharge by 6 phases power supply.

    An enough discharge volume was secured without used 6 phases transformer with complex structure.

    REFERENCES

    [1] R.McAdams, J. Phys. D: Appl. Phys. 34, 2810 (2001) [2] J. S.Chang, T. Myint, A. Chakrabarti, A. Miziolek, Jpn. J.

    Appl. Phys. 36, 5018 (1997) [3] K. Krawczyk, B. Ulejczyk, Plasma Chemistry and Plasma

    Processing, 24, 2, 155 (2004) [4] K. S-Szalowski, K. Krawczyk, M.Mlotek, Plasma Process.

    Polym, 4, 728 (2007) [5] J. Diatczyk, G. Komarzyniec, and H. D. Stryczewska, I.J.PEST,

    vol. 5, no. 1, 12, (2011) Authors: Tetsuro Baba, and Yukio Takeuchi, VIC International Inc., Nagaoka 2-1-2, Nishitama-gun Mizuho city, Tokyo 190-1232, Japan, E-mail:[email protected]. ; Prof. Henryka Stryczewska, Institute of Electrical and Electrotechnologies, Lublin University of Technology, 38A Nadbystrzycka St. 20-618, Lublin, Poland, E-mail: [email protected]; Prof. Shin-ichi Aoqui, Sojo University, Ikeda 4-22-1, Kumamoto city, Kumamoto 860-0082, Japan, E-mail: [email protected].

  • 13

    MULTI-DBD PLASMA ACTUATOR FOR FLOW SEPARATION CONTROL AROUND NACA0012 AND NACA0015 AIRFOIL MODELS

    Artur BERENDT1, Janusz PODLIŃSKI1, Jerzy MIZERACZYK1, 2 Plasma and Laser Engineering, The Szewalski Institute of Fluid Flow Machinery, Polish Academy of Sciences (1),

    Department of Marine Electronics, Gdynia Maritime University (2)

    Abstract. In this paper application of innovative multi-DBD plasma actuator for flow separation control is presented. The influence of the airflow generated by this actuator on the flow around NACA0012 and NACA0015 airfoil models was investigated. The results obtained from 2D PIV measurements showed that the multi-DBD actuator with floating interelectrode is attractive for leading and trailing edge separation control.

    Streszczenie. W niniejszej pracy zaprezentowano innowacyjny aktuator plazmowy z elektrodą o potencjale pływającym. Aktuator ten zastosowano do aktywnej kontroli przepływu wokół elementów aerodynamicznych. Rezultaty badań wskazują, że badany aktuator umożliwia kontrolę oderwania warstwy przyściennej wokół modeli skrzydła NACA0012 i NACA0015.

    Keywords: plasma, airflow control, surface dielectric barrier discharge, DBD. Słowa kluczowe: plazma, kontrola przepływu, powierzchniowe wyładowanie barierowe, DBD. Introduction

    Nowadays, the importance of an air transport in the world economy is constantly growing. Unfortunately, the heavy air traffic is the source of pollutions which are harmful for a human health and an environment. Thus, the great research effort is directed to make aircrafts more human and environment friendly. This objective can be achieve e.g. by improving aircraft aerodynamic. Unfortunately, using the conventional technologies, further improvements of the aircraft aerodynamic is severely limited. Thus, the new solutions like usage of dielectric barrier discharge (DBD) plasma actuators for active airflow control around aerodynamic elements are under development.

    The DBD actuators are devices using plasma generated by the surface dielectric barrier discharge for active airflow control [1-3]. The DBD establishes when a voltage is applied to electrodes which are asymmetrically set on the top and bottom sides of a dielectric material. The plasma generated by the DBD actuator induces electrohydrodynamic (EHD) flow that allow to control flow around aerodynamic elements. Using DBD actuators it is possible to increase the lift of the airfoil or to decrease its aerodynamic drag, to control the boundary layer flow separation or laminar-turbulent flow transition. DBD plasma actuators are also used for reducing noise generated by the turbulent airflow around the aircraft.

    Currently, researches on DBD plasma actuators for flow control are popular and are performed in many laboratories all over the world. Although, the published experiments results showed that DBD plasma actuators are capable of modifying airflow around aerodynamic elements they are still not used for practical applications. The main reason of this is relatively low airflow velocity generated by the DBD actuator (for single-DBD actuator generated airflow do not exceed 5 - 6 m/s) which is not adequate for efficient control of the flow around aircraft wing. Thus, indispensable are new investigations that will allow us to better know the properties of surface dielectric barrier discharge and mechanism of inducing EHD flow.

    In this paper we present the innovative multi-DBD actuator with floating interelectrode for flow separation control. The results of the flow separation control experiments with NACA0012 and NACA0015 airfoil models are showed. Performed investigations showed that our multi-DBD actuator has very good parameters and could be attractive for aerodynamic applications. Experimental set-up Multi-DBD actuator with floating interelectrode

    The investigated multi-DBD actuator with floating interelectrode is presented in Fig. 1 (more detailed description of the multi-DBD actuator with floating interelectrodes could be find in [4]). To fit the actuator on the NACA airfoil model flexible dielectric material (3 layers of a 45 Kapton tape) was used. All electrodes used in this actuator were made of a 50 µm-thick copper tape. The smooth HV electrode was 6 mm wide, while the saw-like grounded electrode and the floating interelectrode were 3 mm wide. The floating interelectrode consisted of a series of separated saw teeth (Fig. 2). The described above multi-DBD actuator was used in our investigations of flow separation control on NACA0012 and NACA0015 airfoil models.

    Fig. 1 Schematic side view of the multi-DBD actuator with saw-like floating interelectrode for flow separation control

    Fig. 2 Schematic top view of the saw-like floating interelectrode consisted of a series of separated saw teeth

  • 14

    Airfoil models Two airfoil models with fixed multi-DBD actuator were

    prepared. In both cases investigated airfoil model was 200 mm wide in chord and 595 mm wide in spanwise direction. The first airfoil model was NACA0012 and was used for the leading edge flow separation control experiments. The first DBD generated by the multi-DBD actuator was started at position x/C = 4% (x – distance from the leading edge, C – chord length).

    The second airfoil model was NACA0015 and was used for trailing edge separation control. In this case the first DBD generated by the multi-DBD actuator was started at position x/C = 52%. Experimental apparatus

    The experimental apparatus for flow separation control investigations is presented in Fig. 3. It consisted of an AC power supply and a 2D particle image velocimetry (PIV) equipment for measurements of the velocity fields [4].

    The sinusoidal high voltage (frequency 1.5 kHz) applied to multi-DBD actuator was generated by a function generator Trek model PM04015A.

    The experiments were carried out in an ambient air at atmospheric pressure. A test section of the wind tunnel was 600 mm wide and 480 mm high. A free stream velocity in the wind tunnel during measurements was 10 m/s, 15 m/s or 20 m/s and the turbulence level was below 0.1%.

    Fig. 3 Experimental set-up for flow separation control measurements Results

    The leading edge (NACA0012) and trailing edge (NACA0015) flow separation control experiments were performed. The examples of obtained time-averaged contour velocity maps for leading edge flow separation control investigations with multi-DBD actuator turned off and turned on are presented in Figs. 4 and 5, respectively. In this case the free stream velocity was V0 = 15 m/s (Re = 2x105) and an angle of attack was 11o. The high voltage applied to multi-DBD actuator was 15 kVpp. As it is seen, when the multi-DBD actuator was off airflow separated near the leading edge of the airfoil and a large vortex existed, while airflow reattachment occur when the multi-DBD actuator was turned on. Similar effect of actuation was observed for trailing edge flow separation experiments.

    Fig. 4 Time-averaged contour velocity map of the airflow above the NACA0012 airfoil model. Free stream velocity V0 = 15 m/s; angle of attack 11o. Plasma OFF – separated airflow.

    Fig. 5 Time-averaged contour velocity map of the airflow NACA0012 airfoil model. Free stream velocity V0 = 15 m/s; angle of attack 11o. Plasma ON – airflow reattached. The applied sine-wave voltage was 15 kVpp and the frequency was 1.5 kHz.

    Conclusions

    The multi-DBD plasma actuator with floating interelectrode was investigated. The 2D PIV measurements of the flow around NACA0012 and NACA0015 airfoil models were performed. The obtained contour velocity maps shows that this kind of actuator is useful for controlling the leading and trailing edge flow separation. Such a result bring us to a conclusion that the multi-DBD actuator with floating interelectrode is attractive for aerodynamic applications.

    REFERENCES [1] Roth J. R, Sherman D. M., and Wilkinson S. P., Boundary

    layer flow control with a one atmosphere uniform glow discharge surface, AIAA Meeting, Reno, USA, #98-0328, 1998

    [2] Moreau E., Airflow control by non-thermal plasma actuators, J. Phys. D: Appl. Phys. 40, 3 (2007)

    [3] Touchard G., Plasma actuators for aeronautics applications - State of art review, I. J. PEST, 2, 1, 2008

    [4] Berendt A., Podlinski J., Mizeraczyk J., Elongated DBD with floating interelectrodes for actuators, EPJ AP, 2011 (in print)

    Authors: M.Sc. Artur Berendt [email protected] and Dr. Janusz Podliński [email protected], Centre for Plasma and Laser Engineering, The Szewalski Institute of Fluid Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-952 Gdańsk; Prof. Jerzy Mizeraczyk [email protected], Centre for Plasma and Laser Engineering, The Szewalski Institute of Fluid Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-952 Gdańsk and Department of Marine Electronics, Gdynia Maritime University, Morska 81-87, 81-225 Gdynia

    mailto:[email protected]�mailto:[email protected]�mailto:[email protected]

  • 15

    CONDUCTANCE QUANTIZATION IN Nb-Ti ALLOYS AND BiPbSrCaCuO SUPERCONDUCTING TAPES NANOCONTACTS

    K. Chybczyńskaa , M. Wróblewskia,c, M. Wawrzyniakb , B. Susłaa

    aInstitute of Physics, Poznan University of Technology Nieszawska 13a, 60-965 Poznan, Poland

    bFaculty of Electronics and Telecommunications Poznan University of Technology, Piotrowo 3, 60-965 Poznan, Poland

    cInstitute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poland [email protected]

    Abstract. The paper present experimental results on the conductance quantization of heterojunction between Nb-Ti tip and a Nb-Ti wires and also between BiPbSrCaCuO tip and BiPbSrCaCuO tapes. The conductance stepwise behavior of the nanowires was directly observed with a storage oscilloscope. These data have been statistically analyzed by plotting histograms for more than 3 thousand conductance curves..

    Keywords: Nb-Ti alloys, nadprzewodnikowe ograniczniki prądu, BiPbSrCaCuO superconducting tapes.

    Over two decades ago it was discovered [1, 2] that the conductance of a ballistic point contact is quantized in units of the conductance quantum, Go=2e2/h = (12.9 kΩ)-1. The origin of this phenomenon is the quantization of transverse momentum in the constriction. Each of the N opened channels degenerates transverse modes at the Fermi energy EF in such quantum point contact and contributes 2e2/h to the conductance. The appearance of these interesting and potentially useful effects in practical devices is related to the size scale. With smaller devices the effect will be important at higher temperature. When the wire width is reduced to the nanometer size or the Fermi wavelength ( λF ) scale, the conductance between electrodes is quantized. Electronic transport changes from diffusive to ballistic, that is, without scattering, as shown schematically in Fig. 1.

    Fig. 1. Diffusive (a) and ballistic (b) transport of electrons in one-dimensional wires.

    Quantum point contacts have been used in a wide variety of investigations, including transport through quantum dots,

    the quantum Hall effect, magnetic focusing and the Aharonov-Bohm effect [3]. The experimental setup is presented in Fig.2. Nanowires are formed between electrodes A and B of the studied materials. The experiments are performed at room temperature and in air.

    Fig. 2. Schematic diagram of the experimental setup used in investigations of conductance quantization.

    We present experimental results on the conductance quantization of heterojunction between Nb-Ti tip and a Nb-Ti wires and also between BiPbSrCaCuO tip and BiPbSrCaCuO tapes. The conductance stepwise behavior of the nanowires was directly observed with a storage oscilloscope. Our data have been statistically analyzed by plotting histograms for more than 3 thousand conductance curves.

    We show that conductance quantization phenomena can be observed at room temperature in materials used commercially in superconducting magnets. The important is that this kind of behavior happens in all cases on small enough size scale, and this kind of striking features is not

    mailto:[email protected]

  • 16

    governed by diffusion. This means that the devices, whose operation is based on diffusion models, will work differently.

    Acknowledgements: This work was supported in part by Poznan University of Technology under DS 62-176/11.

    REFERENCES:

    [1.] B.J. van Wees, H. van Houten, C.W. J. Beenakker, J.G.

    Williamson, L.P. Kouwenhoven, D. van der Marel, and C.T. Foxon, Phys. Rev. Lett. 60, 848 (1988)

    [2.] J.I. Pascual, J. Mendez, J. Gomez-Herrero, A.M. Baro, N. Garcia, Phys. Rev. Lett. 71, 1852 (1993).

    [3.] C.W.J. Beenakker and H.van Houten, Solid State Phys. 44, 1 (1991)

    Authors: K. Chybczyńska, B. Susła Institute of Physics, Poznan University of Technology,,Nieszawska 13a, 60-965 Poznan, Poland; M. Wróblewski, Institute of Physics, Poznan University of Technology,,Nieszawska 13a, 60-965 Poznan, Polan & Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poland, M. Wawrzyniak,Faculty of Electronics and Telecommunications, Poznan University of Technology, Piotrowo 3, 60-965 Poznan, Poland [email protected]

    mailto:[email protected]

  • 17

    PLASMA ASSISTED DISTRUCTION OF ORGANIC MOLECULS IN DYNAMIC PLASMA–LIQUID SYSTEMS

    Valeriy CHERNYAK, Sergij OLSZEWSKI, Evgen MARTYSH,

    Oleg NEDYBALYUK`, Vitalij YUKHYMENKO, Sergij SIDORUK, Iryna PRYSYAZHNEVICH, Olena SOLOMENKO

    Taras Shevchenko National Universityof Kyiv, Radio Physics Faculty

    Abstract. The processes of organic compound (phenol and cation-active surfactants) destruction in water solutions, which occur under the influence of plasma treatment was investigated in different dynamic plasma-liquid systems (PLS). The breakdown products of phenol and cation-active surfactants detected with absorption spectroscopy. The most effective system for phenol plasmolytic destruction in water solutions are the secondary discharge with a liquid electrode at atmospheric pressure and PLS, based on the impulse discharge in the gas channel with liquid wall. Keywords: dynamic plasma-liquid system, plasma-chemical processing, ultrasonic nebulization. Introduction

    Water is a valuable natural resource. With metabolic processes forming the base of human living, water plays an exclusive role in every aspect. The everyday human need for it is known to all. At the UN World Economic Forum (January 2008) held in Switzerland), has been claimed that the population of more than half of the world population will experience a shortage of clean water by 2025, and 75% by 2050. Methods based on plasma-chemical processes in the liquid-gas environments for water treatment and purification of highly polluted wastewater are among the most promising. Unlike the regenerative methods which remove the impurities from the water into the solid (adsorption), gas (desorption) or non-aqueous liquid (extraction) phase, the destructive method (technology of water and industrial waste plasma-chemical processing) is based on changing the chemical structure of molecules and impurities.

    The problem of complete cleaning for the industrial wastewaters from organic high active and toxic substances (HATS) is important enough and simultaneously difficult to decide. However this problem can not be considered as decided. Apparently, plasmachemical technologies are represented by most perspective, as allow to achieve high velocity of substances destruction at the expense of high-energy concentration. However, it is necessary to take into account, that toxic substances are, frequently, the complex high-molecular compounds. Therefore destruction of HATS results in occurrence not only products of disintegration, but also wide spectrum more complex compounds [1]. The chemical reactions both in plasmachemical systems can proceed with participation of the electronic-exited particles, which practically are not investigated today. It is specified that high probability of unknown earlier substances occurrence at the data technologies. Therefore now the transition starts to complex technologies on a basis of plasmachemical processes.

    Discharge systems for plasma stimulation of physical and chemical processes, peculiarities of oxidation and reduction reactions and the applicability issues, caused by contact between plasma and the liquid solution, were studied in the present work.

    Experimental technique The process of organic compound destruction in water

    solutions, which occurs under the influence of plasma, was investigated in different plasma-liquid systems (PLS).

    The organic solutions in distillated water was treated by plasma of secondary discharge stimulated by transverse arc at atmospheric pressure [2, 3] of DC discharge in the gas channel with liquid wall and the additional excitation of ultrasonic field in liquid [4]. Pulse discharge in gas channel with liquid wall [5] and the discharge in reverse-vortex gas flow of “tornado” type with “liquid” electrode [6].

    The studies were with various plasma-forming gases: dry air (mode A), water vapor (WV), a mixture of air and aerosol solution, which is handled by (S).

    Experimental results

    Examples of experimental results that were obtained by emission spectroscopic method in UV region ((200 - 400 nm) are shown in Fig. 1. The flow of plasma gas was stable - 0,13 l·s-1.

    Fig. 1. Dependences of the relative intensity of the hydroxyl molec-ular band – trigonal points and hydrogen – round points in the emission spectra of DGCLW plasma on the distilled water treatment time. The black lines correspond to ultrasound in liquid is present. The grey lines – to ultrasound is absent. All spectral components are normalized on intensity of respective atomic lines of copper (electrodes material).

  • 18

    As follows from the analysis of aggregated data that there is always a strong absorption at λ (wavelength) < 250 nm for the spectra of hydrogen peroxide H2O2 and formic acid HCOOH. These compounds are formed during the plasma chemical processing regardless of the type of orifice gas, electrode material and polarity of the “liquid electrode”. During the plasma chemical processing, it was noted that there is a significant disruption of copper and graphite electrodes. “Liquid electrode” with a positive polarity is the most bright example. Bands of nitrogen compounds, typical for the absorption spectra are: NO3- (broad band with maximum 300 nm) and NO2- (broad band with maximum 355 nm). So, investigated discharges produce very powerful oxidizing species and can essentially change the acidity of our samples. The quantitative responses presented at Fig.2. Fig. 2. Variation of pH value from air flow with and without plasma treatment. a - PLS with secondary di scharge; b, c - with DC and Pulse discharges in the gas channel with liquid wall; d - with the discharge in reverse-vortex gas flow of “tornado” type with liquid electrode.

    Examples of experimental results that were obtained by spectrophotometric method in UV region ((200 - 400 nm) are shown in Fig. 3. In here set out results of plasma assisted destructions of phenol molecules in water solution 0,0003 mol/l. Solutions were treatment by plasma of secondary discharge stimulated by transverse arc with air flow and air-droplet flow. The air-droplet flow was generated by ultrasonic nebulization of initial solution. The total discharge power was ~ 800 W. The flow of plasma gas was stable - 0,13 l·s-1.

    Fig. 3. Evolution of phenol-water solutions after plasma assisted destruction of phenol molecules. Chart -a) correspond to secondary discharge stimulated by transverse arc with air flow; chart -b) – with air-droplet flow. The plasma exposition time is 30 sec. The total discharge power ~ 800 W. The grey curve #1 correspond to initial solution, the black #2 – to processing solution in 60 sec after plasma treatment and the black #3 – to processing solution in 127 hours after plasma treatment. Conclusions

    It has been established that the water processing by plasma leads to destruction of toxic phenylic compounds in water solutions.

    Analysing the received experimental data, it is possible to conclude that the cleaning of water occurs basically at the expense of oxidizing destruction of phenylic compounds. It is a result of hydrogen peroxide influence, nitric and nitrogenous acids, which are formed in water under influence of plasma secondary discharge, and also of others chemically active particles. Plasma-chemical factors, which cause the compound destruction:

    a) forming the active particles, which activate cascade chemical reactions with molecules of phenylic compounds (free radicals and active oxygen); b) changing of water structure under plasma-radiolysis and as a consequence - displacement of equilibrium to destruction of molecules of phenylic compounds.

    REFERENCES

    [1] Bystritskij, V., Wood, T., Yankelevich, Y., Chaunan, S., Wessel, F. (1998) Abstr. 12th Intern.Conf. on High-Power Particle Beams, Haifa, Israel

    [2] Prysiazhnevych, I., Chernyak, V., Olszewski, S., Yukhymenko, V. Chem. Listy 102, (2008),.s1403−s1407.

    [3] Prysyazhnevich, I., Chernyak, V., Skalný, J.D., Matejčik, Š., Yukhymenko, V., Olszewsky, S., Naumov, V. “Sources of Nonequilibrium Plasma at Atmospheric Pressure”//UJP (2008) Vol. 53, N5, p. 472-476

    [4] Olszewski, S., Solomenko, Ol., Yukhymenko, V., Chernyak, V. Abst. III Central European Symposium on Plasma Chemistry, August 23 – 27 (2009), Kyiv, Ukrane, - pp. 100-101.

    [5] Sidoruk, S., Chernyak, V., Olszewski, S. Abst. III Central European Symposium on Plasma Chemistry, August 23 - 27, (2009) Kyiv, Ukrane, - pp. 92-93.

    [6] Chernyak, V., Olszewski, S., Nedybaliuk, O., Sidoruk, S., Yukhymenko, V., Prysiazhnevych, I., Shchedrin, A., Levko, D., Naumov, V., Demchina, V., Kudryavzev, V. Proc. of the Tenth International Conference on Combustion and Energy Utilization (10th ICCEU), 4-8 May (2010), Mugla, Turkey.- pp. 295-300

    Authors: Valeriy Chernyak, Sergij Olszewski, Evgen Martysh, Oleg Nedybalyuk`, Vitalij Yukhymenko, Sergij Sidoruk, Iryna Prysyazhnevich, Olena Solomenko: Taras Shevchenko National Universityof Kyiv, Radio Physics Faculty, Prospect Acad. Glushkova 2/5, Kyiv 03022, Ukraine, phone/fax:+380 44 526058/+380 44 5213590 e-mail: [email protected]

    a)

    b) c)

    d)

    a) b)

    mailto:[email protected]

  • 19

    EQUIVALENT ELECTROMAGNETIC MODEL FOR CURRENT LEADS MADE OF HTS TAPES

    Dariusz CZERWIŃSKI1, Leszek JAROSZYŃSKI1

    Janusz KOZAK2, Michał MAJKA2 Lublin University of Technology (1), Electrotechnical Institute (2)

    Abstract. An equivalent electromagnetic model that describes the behaviour of a current lead build of HTS tapes has been proposed. Electromagnetic filed analysis of HTS lead using FEM environment was made. The model is based on the physical structure and behaviour of HTS tapes. It was possible to calculate the magnetic filed distribution in the lead. Obtained results can be very useful in the analysis of quench states of the superconducting current leads. Streszczenie. W niniejszym opracowaniu został przedstawiony elektromagnetyczny model przepustów prądowych wykonanych z taśm nadprzewodnikowych HTS drugiej generacji. Model opiera się na fizycznej strukturze i zachowaniu taśmy HTS. Dzięki temu było możliwe obliczenie rozkładu pola elektromagnetycznego w przepuście. Uzyskane wyniki mogą być bardzo przydatne w analizie stanów przejściowych przepustów HTS. Keywords: HTS tape model, superconducting tapes analysis, quench state Słowa kluczowe: model taśmy HTS, analiza taśm HTS drugiej generacji, stany przejściowe Introduction The development of the HTS tape manufacturing technologies leads to evolution of many superconducting devices. It is possible to build the current lead based on the high temperature superconducting tapes (Fig. 1). For this kind of current leads it is very important to keep the heat sources on the very low level (even 1 Joule).

    HTS tapes

    Stainless steeltubes

    Fig. 1. Current lead build of HTS tapes In this paper the authors showed the researches of the electromagnetic model of second generation superconducting tapes. Tapes made of High Temperature Superconductors Discovery of the HTS materials was the first step in development of new generation superconducting applications. Many of HTS materials are superconductors and carry significant current above the boiling point of liquid nitrogen at 77.4 K. High performance high temperature superconductor wire underlies the worldwide opportunity to revolutionize the electric power grid, transportation, materials processing and many other industries, with a new generation of high efficiency, compact and environmentally friendly electrical equipment. Rapid progress in commercializing these many applications has been enabled by an HTS wire known as first generation (1G) [1]. This wire is a composite structure consisting of number of filaments of HTS material embedded in a silver alloy

    matrix. First generation HTS wire is characterized usually by low critical current, therefore many companies are making researches on improved performance of HTS wires. Second generation wire has quite different architecture compared with first generation wire. The 2G HTS wire comprises multiple coatings on a base material or substrate. This architecture is designed to achieve the highest degree of alignment possible of the atoms in the superconductor material. The reason of such construction is reaching the highest possible electrical current. Second generation (2G) HTS wire consists of a tape-shaped base, or substrate, upon which a thin coating of superconductor compound, usually YBa2Cu3O7 (“YBCO”), is deposited or grown such that the crystalline lattice of the YBCO in the final product is highly aligned, creating a coating that is virtually a single crystal. The superconductor coating in this coated conductor wire architecture typically has a thickness on the order of one micron (Fig. 2) [1-5].

    Fig. 2. First generation (1G) versus second generation (2G) HTS tape [1] Another important aspect in HTS wire is the value of the critical current in external magnetic filed. When the magnetic flux increases the critical current decreases rapidly, even 10 times in some cases. To counteract this disadvantage the HTS wires are produced with special defects, so called pinning centres. Pinning can be achieved by introducing defects into the HTS material on a nanometer scale, comparable to the diameter of the flux lines passing through the HTS surface. While tubular

  • 20

    defects can match the flux line geometry most optimally, a more practical approach is to find ways to introduce a high density of very fine particles called nanoparticles or nanodots. Particles of yttrium oxide (Y2O3) and yttrium cuprate (Y2Cu2O5) are dispersed throughout wire’s YBCO superconductor layer (Fig. 3). The effect of the dispersion is that nanodots become pinning centres of magnetic vortices associated with current flow in the superconductor. As the result the improvement of current carrying capability of the HTS wire can be observed.

    Fig. 3. Transmission electron micrograph of yttria nanodots in the YCBO matrix [2] The AMSC is the company with the most experience in the production of 2G HTS tapes. The wire manufacturing process has been based on long, 40 millimeter wide strips of superconductor material that are produced in a high-speed, continuous reel-to-reel deposition process. This process is similar to the low-cost production of motion picture film in which celluloid strips are coated with a liquid emulsion. The wires are laminated on both sides with copper, stainless-steel, or brass metals to provide strength, durability and certain electrical characteristics needed in applications. Finally the tape is formed into standard wires with a width of 4.4, 4.8 or 12 mm. [2] Electromagnetic Model of the Second Generation High Temperature Superconductor Tape Modelling of the second generation HTS wire is a difficult task, because of the large disparity of thickness to width of the tape. The width of the tape is at least 30 times bigger then thickness. The first step of the simulation was the construction of the 2G HTS tape FEM model (Fig. 4).

    Fig. 4. FEM model of the second generation HTS tape Model is based on the SCS3050 tape produced by the SuperPower company. Model consists of: thin layer of (RE)BCO superconductor (thickness 1 μm), substrate made of hastelloy (50 μm), silver overlayer (2 μm) and copper stabilizers (20 μm each). Width of the tape is 3 mm.

    Building the mesh it is very important to obtain good quality elements in HTS layer, this will get the correct results. The value of the current is 50 A and it is less then critical current for this tape equal Ic=60 A. The tape was modelled in superconducting state. After the solution the flux distribution was obtained (Fig. 5).

    Fig.5. Distribution of the flux density in the model (self field) One can notice that the ends of the strips are inhomogeneities in the distribution of magnetic flux.

    |B|, Tesla

    Length, um

    2e-014

    1.5e-014

    1e-014

    5e-015

    00 10 20 30 40 50 60 70 80 90

    Fig. 6. Flux density versus height of tape The flux highest values were obtained in hastelloy substrate, silver overlayer and copper stabilizers.

    REFERENCES [1] Amer ic an S u p erc on duc t or C or p or at i on ,

    h t tp : / / www. ams u p er .c om/ , 2 0 11 [2] SuperPower®2G HTS Wire Specifications,

    http://www.superpower-inc.com/, 2011 [3] Seong-Woo Yim, Sung-Hun Lim, Hye-Rim Kim Si-Dole Hwang,

    Kohji Kishiro, Electrical Behavior of Bi-2223/Ag Tapes Under Applied Alternating Over-Currents, IEEE Transactions on Applied Superconductivity, vol. 15, No. 2, June 2005

    [4] Y.S. Cha, Semi-Empirical Correlation for Quench Time of Inductively Coupled Fault Current Limiter, IEEE Transactions on Applied Superconductivity, vol. 15, No. 2, June 2005

    [5] T. J. Arndt, A. Aubele, H. Krauth, M. Munz, B. Sailer, Progress in preparation of technical HTS tapes of type Bi-2223/Ag alloy of industrial lengths, IEEE Transactions on Applied Superconductivity, vol. 15, No. 2, June 2005

    Authors: dr inż. Dariusz Czerwiński, dr inż. Leszek Jaroszyński, Politechnika Lubelska, Instytut Podstaw Elektrotechniki i Elektrotechnologii, ul. Nadbystrzycka 38A, 20-618 Lublin, e-mail: [email protected] dr inż. Janusz Kozak, dr inż. Michał Majka, Instytut Elektrotechniki, ul. Pożaryskiego 28, 04-703 Warszawa

    mailto:[email protected]

  • 21

    NOVEL LOW POWER MICROWAVE PLASMA SOURCES AT ATMOSPHERIC PRESSURE

    Dariusz CZYLKOWSKI1, Mariusz JASIŃSKI1, Jerzy MIZERACZYK1,2

    The Szewalski Institute of Fluid Flow Machinery, Gdańsk (1), Gdynia Maritime University (2)

    Abstract. The aim of this paper is to present the results of our experimental investigations concerning novel low power microwave plasma sources. Such devices are of high interest from industry point of view, namely for plastic or metal surface treatment. Proposed by us plasma sources are small, simple and low cost. Plasma generated by them is of regular shape. They can be operated at atmospheric pressure, at standard frequency of 2.45 GHZ and microwave power lower than 500 W. Streszczenie. Celem pracy jest zaprezentować wyniki naszych prac eksperymentalnych nad nowymi mikrofalowymi źródłami plazmy małej mocy. Takie urządzenia cieszą się zainteresowaniem przemysłu w celu zastosowań w obróbce plastikowych i metalowych powierzchni. Zaproponowane przez nas źródła plazmy małej mocy są małe, proste I tanie. Pracują pod ciśnieniem atmosferycznym I standardowej częstotliwości 2,45 GHz. Keywords: atmospheric pressure discharge, microwave plasma sources, surface treatment. Słowa kluczowe: wyładowanie pod ciśnieniem atmosferycznym, mikrofalowe źródła plazmy, obróbka powierzchni. Introduction To meet industry expectations of having small and low cost source of plasma for surface treatment we started an experimental investigations concerning this problem. Except above-named properties generated plasma should be regular in shape. Currently, devices provided plasmas in the form of flame [1] or column [2] are well known. In this paper we presents results of our work and we propose a few novel low power microwave plasma sources. These are: waveguide slit plasma generator, multijet microwave plasma generator and microwave plasma sheet generator. All of them are operated at atmospheric pressure, at standard frequency of 2.45 GHz and microwave power not exceeding 500 W. Waveguide slit plasma generator The new waveguide slit plasma generator is based on the WR 430 standard rectangular waveguide. Its photo is presented in the figure 1. It has the form of the wedge waveguide tipped with a slit of dimensions 1×54,6 mm. From microwave power input side the generator is terminated with a teflon plate which prevent flowing of the gas to the waveguide circuit.

    Fig.1. The photo of the waveguide slit plasma generator. Generated in the waveguide slit plasma due to the gas flow leaves the waveguide region. For initiation the discharge

    the PA absorbed microwave power, as low as 50 W, is required. Protruded plasma gives the possibility of contact with treatment material. Depending on the absorbed microwave power PA the plasma has the form of separate or confluent spots (see figure 2). For assuring better efficiency of microwave power transfer to the plasma the three stub tuner can be used.

    Fig.2. Waveguide slit argon plasma for different values of absorbed microwave power PA. Gas flow rate Q=25 l/min. Multijet microwave plasma generator The idea of the multijet plasma generator is based on the surface wave sustained discharge in dielectric tubes [4]. Similarly like in [5] we accommodate a few quartz discharge tubes in one launching gap of the Surfaguide [6]. We coupled six single tubes together, with a low loss dielectric glue, in a single file. The inner and outer diameters of each tube are 1 and 5 mm, respectively. Such small tube inner diameter prevents plasma filamentation. Ensuring

  • 22

    appropriate gas flow rate the plasma exits out of the tubes. On the figure 3 the photo of the six microwave plasma jets, for absorbed microwave power PA=500 W, and argon total flow rate Q=15 l/min, can be seen. Changing the gas flow rate and position of the tubes within the waveguide the length of the plasma jets can be modified.

    Fig.3. Six microwave plasma jets. Absorbed microwave power PA=500 W, argon flow rate Q=15 l/min. Microwave plasma sheet generator The main advantage of presented here plasma source is a shape of generated plasma, namely sheet shape. It is convenient from surface treatment point of view, thus attractive for industry. The plasma is generated inside a quartz box through which the working gas flows. Because of the gas flow the plasma goes out of a box permitting the processing of the material’s surface (see fig.4).

    Fig.4. Plasma sheet, fed through waveguide, during metal plate treatment. Microwave power PI=250 W, argon flow rate Q=25 l/min. The exemplary dimensions of the generated plasma sheet could be 50 mm of width and 1 mm of thickness for absorbed microwave power PA=200 W and argon flow rate Q=5 l/min. Depending on the microwave power and gas flow rate the gas temperature of the generated plasma varies from 400ºC to 800ºC. Presented here plasma sheet generator can be supplied from a waveguide, from a wedge waveguide or a stripline (see fig.5).

    Fig.5. Stripline based device for generation og the microwave plasma sheet. Microwave power PI=300 W, argon flow rate Q=5 l/min. Conclusions The undisputed advantages of presented in this paper microwave devices are as follows. They are of small dimensions (a few centimetres) and simple in design thus cheap in production. They can be operated at atmospheric pressure what eliminates an expensive vacuum apparatus. Standard microwave frequency of 2.45 GHz and microwave power not exceeding 1000 W allows to use cheap commercial magnetrons such as that installed in microwave oven. Sustaining the plasma in quartz tubes or box prevent contaminations from metallic electrode. Plasma generated in presented devices is of regular shape mainly has a form of a plasma sheet. Assuming, we conclude that presented in this paper devices makes them attractive for industry in surface treatment of various materials. This research was supported by The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences under the program IMP PAN O3Z1T1.

    REFERENCES [1] Mois an M . , Z akr zews ki Z . , R os t a i ng J .C . ,

    W aveg u i d e- b as ed s i ng l e an d mu l t i p l e n ozz l e p l as ma t orch es : t h e T I AGO c onc ep t , P las ma So urc es Sc i . T ech n o l . , 1 0 (2 0 01 ) , 3 8 7- 39 5

    [2 ] N ow ako ws ka H . , C zyl kowsk i D . , Z ak r zews ki Z . , Sur f ac e wa ve s us t a i n ed d isc h arg e i n ar g on : t wo-t emp er at ur e c o l l is i on al - r ad i a t i ve mod el an d e xp er i men t a l ver i f ic at i on , J . O pt o e lec t ro n. Adv . Mat er . , 7 (2 0 05 ) , 2 4 27 -2 4 37

    [3] J as i ńs ki M. , G oc h M . , Mi zer ac zyk M. , P l as ma d evi c e f or t r eat men t of mat er i a l su r f ac es , Pa te n t Ap p l ica t io n , N o. P 3 83 7 0 3

    [4] Moisan M., Beaudry C., Leprince P., A new device for the production of long plasma columns at a high electron density, Phys. Lett., 50A (1974), 125-126

    [5 ] Moi s an M. , Z ak r zewsk i Z . , E t em ad i R . , R os t a i n g J .C . , Mul t i t u b e s ur f ac e- wa ve d isch ar g es f or inc r e as ed g as th r ou gh p ut a t a t mos ph er ic pr ess ur e, J . A pp l . P hys . , 8 3 ( 19 9 8) , 5 6 9 1- 57 0 1

    [6 ] Moisan M., Zakrzewski Z., Pantel R., Leprince P.: A waveguide-based launcher to sustain long plasma columns through the propagation of an electromagnetic surface wave, IEEE Trans. Plasma Sci., PS-12 (1984), 203-214

    Authors: mgr inż. Dariusz Czylkowski, dr inż. Mariusz Jasiński, The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, ul. Fiszera 14, 80-952 Gdańsk, E-mail: [email protected], [email protected]; prof. dr hab. inż. Jerzy Mizeraczyk, The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, ul. Fiszera 14, 80-952 Gdańsk and Gdynia Maritime University, Faculty of Marine Electrical Engineering, Morska 81-87, 81-225 Gdynia, E-mail: [email protected]

    mailto:[email protected]�mailto:[email protected]�http://we.am.gdynia.pl/�http://we.am.gdynia.pl/�

  • 23

    GENERATION OF NON-EQUILIBRIUM LOW-TEMPERATURE PLASMA IN THE ARRAY OF GLIDING ARC PLASMA REACTORS

    Jarosław DIATCZYK1, Tomasz GIŻEWSKI1, Lucyna KAPKA2, Grzegorz KOMARZYNIEC1,

    Joanna PAWŁAT1, Henryka Danuta STRYCZEWSKA1 1Lublin University of Technology, 2Maria Curie-Skłodowska University in Lublin, 3Institute of Rural Health

    Abstract. The gliding arc array is the new idea of applying non-thermal and non-equilibrium plasmas for very large volume. The main problem is the properly designed power supply system for the GA array. Authors based on their previously experience in power supply systems plan to propose power supply that provide simultaneous ignition and discharge sustaining for all reactors in the grid. Streszczenie. Matryca reaktorów ze ślizgającym się wyładowaniem łukowym jest nowym rozwiązaniem, pozwalającym generować nierównowagową niskotemperaturową plazmę w dużej objętości. Głównym zadaniem jest zaprojektowanie odpowiedniego systemu zasilania matrycy reaktórów. Autorzy w oparciu o ich wcześniej doświadczenie w projektowaniu układów zasilania urządzeń wyładowczych planują zaproponować układ zasilania, który zapewni jednoczesny zapłon i podtrzymanie wyładowania we wszystkich reaktorach w matryce. Keywords: plasma reactors, non-equilibrium plasma. Słowa kluczowe: reaktor plazmowy, nierównowagowa plazma. Introduction Nowadays atmospheric pressure low temperature plasmas are applied in many industrial processes. They are: treatment of flue gases emitted by industrial processes of combustion, painting and varnishing, wastes utilization, deodorization, disinfection and sterilization, material processing and new material manufacturing for application in microelectronics and nanotechnologies. Non-thermal and non-equilibrium plasma based methods allow treatment of organic materials, like rubber, fabrics, bio-materials and they are ecologically justified alternative for chemical ones. Researches in the field of industrial application of plasma chemical methods are now concentrated on obtaining controllable plasma parameters and chemical reactions in large volume of treated gases. The gliding arc array is the new idea of applying non-thermal and non-equilibrium plasmas for very large volume [1]. Repeatability of the plasma-chemical process depends on stability of plasma parameters, which influence the proper chemical reaction path. The main parameters: are the chemical composition of the plasma gas, its pressure, flow rate, geometry of plasma reactor and electrical parameters of power system, i.e. value and form of supply voltage, power, and frequency. Array of plasma reactors Arc discharge can be the source of non-thermal and non-equilibrium plasma at some conditions of power supply system, reactor electrodes’ geometry and gas flow rate. The gliding arc discharge plasma is the example of this kind of low temperature plasma that can be generated in multi-electrode reactors at atmospheric pressure. Gliding arc reactor considerably differs from other non-thermal plasma sources. Plasma generated in the gliding arc reactor is in non-equilibrium state: the temperature of “hot electrons” is much higher then gas temperature [2]. The array of gliding arc plasma reactors generate non-equilibrium plasma in very large volume. This kind of source of high energy electrons without heating the plasma gas in the whole volume of plasma reactor chamber is essential for typical plasma chemistry applications.

    Fig.1. Proposition of arrangement of 16 gliding arc plasma reactors in matrix (arrows mean example flow of processing gas). Creating array of plasma reactors involves necessity to solve several scientific problems:

    • minimizing of gliding arc discharge reactor; • designing of proper high frequency power supply

    system; • elaborating of distribution and mixing system for

    process gases; • diagnostics of plasma generated in the array of

    plasma reactors. The array of gliding arc plasma reactors, as an electrical energy receiver, requests properly designed power supply system. Such power supply must provide simultaneous ignition and discharge sustaining for all reactors in the grid. The Institute of Electrical Engineering and Electrotechnologies at the Lublin University of Technology

  • 24

    has long-time experience in this area. Authors have been developed three-phase power system for simultaneous supplying up to three plasma reactors (fig. 2).

    Fig.2. Power system for supplying three plasma reactors [3]. The main advantage of such array will be non-equilibrium generation of low-temperature plasma at atmospheric pressure. And so we do not need complicated and expensive vacuum systems. Construction of the array of minimized plasma reactors could produce discharges on a much larger volume compared to a conventional reactor with the gliding arc discharge [4]. Conclusion A measurable effect of research will be:

    • obtaining knowledge in field of methods of producing non-thermal non-equilibrium plasma in large volumes of treated gas and elaborating of plasma reactors array designing rules;

    • implementation array of gliding arc plasma reactors, working at atmospheric pressure; power supply system for array of plasma reactors;

    • elaborating of diagnostic methods (GC) of non-thermal non-equilibrium plasma generated in array of gliding arc plasma reactors;

    • assessment of possibility to use practically non-thermal and non-equilibrium plasma generated in array of gliding arc plasma reactors.

    Collected and elaborated research results will be useful in further research on designing of reactors of non-thermal non-equilibrium plasma and their power supply systems, especially in designing efficient power systems, with good regulating and exploiting features, for industrial scale applications. Planned researches will allow broadening scope of industrial uses of gliding arc plasma reactors (e.g. surface modification, bio-medical applications and so on).

    REFERENCES [1] Str yc zewska H. D . , D i atc zyk J . , P awł at J . ,

    Temperature Distribution in the Gliding Arc Discharge Chamber, J. Adv. Oxid. Technol. Vol. 14, No. 2, 2011, 276-281

    [2] D i atc zyk J . , K om ar zyn i ec G . , S t r yc zewska H. D . , Plazma nietermiczna – warunki generacji, wybrane zastosowania, rozdział w monografii: Technologie nadprzewodnikowe i plazmowe w energetyce, Lublin 2009, 137-171

    [3] Stryczewska H. D., Technologie plazmowe w energetyce i inżynierii środowiska, Wydawnictwo Politechniki Lubelskiej, Lublin, 2009

    [4] D i a tc zyk J . , S t r yc zews ka H. D . , K om ar zyn i ec G . , Diagnostyka nierównowagi termodynamicznej plazmy ślizgającego się wyładowania łukowego, Przegląd Elektrotechniczny, nr 5, 2010, 298-300

    Authors: Jarosław Diatczyk PhD Eng., Tomasz Giżewski PhD Eng., Grzegorz Komarzyniec PhD Eng., Joanna Pawłat PhD Eng., prof. Henryka Danuta Stryczewska PhD Eng. DSc, Lublin University of Technology, Institute of Electrical Engineering and Electrotechnology, ul. Nadbystrzycka 38a, 20-618 Lublin, E-mail: [email protected]. Lucyna Kapka PhD, Institute of Rural Health, ul. Jaczewskiego 2, 20-090 Lublin.

    mailto:[email protected]

  • 25

    PROBLEM ZANIECZYSZCZEŃ SILOKSANOWYCH W INSTALACJACH BIOGAZOWYCH

    Jarosław DIATCZYK1, Julia DIATCZYK2,3 ,Grzegorz KOMARZYNIEC1, Joanna PAWŁAT1,

    Krzysztof PAWŁOWSKI4, Henryka Danuta STRYCZEWSKA1 1Lublin University of Technology, 2Maria Curie-Skłodowska University in Lublin, 3Institute of Rural Health, 4ATUS Sp. z o.o.

    Abstract. Biogas is an energy carrier produced from organic matter (biomass) in the process of anaerobic digestion. The preferred way of using this fuel is primarily the production of electricity, which in a simple way can be converted to any form of energy. Biogas purification requires the use of processes of siloxanes and sulfur compounds. An important element of the biogas treatment installation is appropriate detection of siloxane concentration. Streszczenie. Biogaz jest nośnikiem energii wytwarzanym z substancji organicznej (biomasy) w procesie fermentacji beztlenowej. Preferowana droga wykorzystania tego paliwa jest przede wszystkim produkcja energii elektrycznej, która w prosty sposób, z wysoką sprawnością może być zamieniana na dowolną postać energii. Biogaz wymaga zastosowania procesów oczyszczania z siloksanów i zwiazków siarki. Istotnym elementem instalcji oczyszczania biogazu jest właściwa detekcja zawartości siloksanów. Keywords: siloxanes, biogas, generators, boilers. Słowa kluczowe: siloksany, biogas, generatory, kotły. Wstęp Racjonalne gospodarowanie energią ma kluczowe znaczenie dla przyszłości ludzkości. Wzrost liczebności populacji ludzkiej, stałe dążenie do poprawy poziomu życia, migracja ludności do miast, wzrost produkcji rolnej oraz działalność przemysłowa i transport powodują spotęgowane oddziaływanie na ecosystem [1]. Zapotrzebowanie na energię będzie wzrastać i tylko prawidłowe systemowe rozwiązania będą mogły ograniczyć negatywne skutki aktywności ludzkiej na otaczające środowisko. Ważnym jest racjonalne wytwarzanie podstawowych dóbr w procesach o relatywnie wyższej sprawności i mniejszej generacji zagrożeń dla środowiska. W tym kontekście uzasadnionym jest proces przekształcania sektora energetycznego, zdominowanego przez konwencjonalne technologię oparte głównie na spalaniu paliw kopalnianych, poprzez doskonalenie procesów wytwarzania energii elektrycznej i cieplnej w skojarzeniu oraz rozpowszechnienie technologii opartych na odnawialnych źródłach energii; docelowo zmierzając do popularyzacji technologii wykorzystujących wodór jako zasadniczy nośnik energii. Dyrektywa Parlamentu Europejskiego i Rady Europy 2009/28/WE z dnia 23 kwietnia 2009 r. w sprawie promowania stosowania energii ze źródeł odnawialnych, określa i ustanawia wspólne ramy dla promowania energii ze źródeł odnawialnych oraz obowiązkowe krajowe cele ogólne w odniesieniu do całkowitego udziału energii ze źródeł odnawialnych w końcowym zużyciu energii brutto i w odniesieniu do udziału energii ze źródeł odnawialnych w transporcie [2]. W Polsce, a szczególnie na Lubelszczyźnie, duże nadzieje pokładane są w wykorzystaniu biogazu I biopaliw do produkcji energii elektrycznej, cieplnej lub obu jednocześnie (CHP). Implementacja instalacji biogazowych rodzi różnorodne pozytywne skutki ekologiczne. Do niewątpliwych korzyści należą m. in. ograniczenie niekontrowanej emisji gazów cieplarnianych, dzięki zagospodarowaniu odpadów do produkcji paliwa oraz redukcja emisji zanieczyszczeń,

    dzięki wykorzystaniu do produkcji energii biogazu zamiast paliw kopalnych. Biogaz Biogaz jest nośnikiem energii wytwarzanym z substancji organicznej (biomasy) w procesie fermentacji beztlenowej. Fizycznie, biogaz stanowi roztwór gazowy składający się głównie z metanu i dwutlenku węgla oraz śladowych zanieczyszczeń, takich jak: para wodna, siarkowodór, siloksany, związki aromatyczne, tlen, azot, fluorowce (chlorki, fluorki, i inne) [3]. Skład jakościowy i udziały poszczególnych składników zależą od rodzaju surowca poddawanego procesowi biodegradacji oraz od sposobu realizacji tego procesu. Powyższe zanieczyszczenia usuwane sąą zazwyczaj z biogazu przed jego energetycznym wykorzystaniem.

    Rys.1. Pozyskiwanie energii z biogazu [Dresser, 2010]. Zasadniczo można wyróżnić trzy typy instalacji wykorzystujących proces fermentacji beztlenowej do produkcji biogazu: biogazownie rolnicze, fermentacje osadów ściekowych w biologicznych oczyszczalniach

  • 26

    ścieków oraz ujęcia biogazów na składowiskach odpadów. Proces realizowany jest najczęściej w ogrzewanych zamkniętych wydzielonych komorach fermentacyjnych (WKF) z mieszaniem osadu [4]. Wpływ zanieczyszczeń Preferowaną drogą wykorzystania paliwa jest przede wszystkim produkcja energii elektrycznej, która w prosty sposób, z wysoką sprawnością może być zamieniana na dowolną postać energii. Najczęściej obecnie stosowanym sposobem utylizacji biogazu są tłokowe silniki spalinowe, w których energia elektryczna jest wytwarzana ze sprawnością mniejszą niż 40%. Intensywnie są rozwijane, choć wciąż jeszcze bardzo drogie inwestycyjnie, ogniwa paliwowe, które dzięki bezpośredniej konwersji energii chemicznej paliwa do energii elektrycznej cechują się bardzo wysoką sprawnością wytwarzania elektryczności, na poziomie 50%. Największym zagrożeniem dla prawidłowej pracy silników spalinowych są występujące w biogazie związki krzemu – siloksany, wysoka zawartość których prowadzi do obniżenia sprawności I uszkodzeń mechanicznych. Z powodu relatywnie wysokiego poziomu zanieczyszczeń gaz składowiskowy powinien zostać poddany oczyszczeniu uwzględniając następujące etapy: Etap I. Oczyszczenie wstępne polegające na usunięciu stałych i ciężkich składników oraz osuszeniu gazu. Etap II. Oczyszczenie zaawansowane: - odsiarczanie, - usunięcie organicznych związków krzemu (siloksanów), - usunięcie innych gazowych zanieczyszczeń (węglo-

    wodorów, amoniaku). Usuwanie siloksanów Siloksany to grupa związków organicznych wytworzonych przez człowieka, w których składzie znajduję się krzem, tlen i grupy metylowe. Siloksany stosowane są przy produkcji środków higieny osobistej i ochrony zdrowia, obecne są także w produktach przemysłowych. Na składowisku siloksany o niskiej masie cząsteczkowej ulatniają się, przedostając się do biogazu. Podczas spalania gazu zawierającego siloksany, w celu wytworzenia energii (np. w turbinach gazowych, kotłach i silnikach spalinowych), siloksany przekształcają się w dwutlenek krzemu (SiO2), który może osadzać się na elementach urządzeń związanych z procesem spalania i/lub odprowadzania spalin. O zawartości siloksanów w gazie składowiskowym świadczy obecność białego proszku na częściach urządzeń związanych ze spalaniem, lekki nalot na różnego rodzaju wymiennikach ciepła oraz lekki nalot na katalizatorach znajdujących się za częścią związaną ze spalaniem [5]. Podstawowymi metodami stosowanymi do usuwania siloksanów są:

    - absorpcja na węglu aktywnym, - absorpcja w ciekłej mieszaninie węglowodorów, - oziębianie gazu z jednoczesnym usuwaniem wody.

    Gaz może być schłodzony nawet do 10°C, co prowadzi do usunięcia 99% siloksanów.

    - reaktory kolumnowe, z możliwością regeneracji warstwy adsorbcyjnej.

    Obecnie, te zanieczyszczenia usuwane są głównie za pomocą filtrów z węglem aktywnym. Chociaż tą metodą można usunąć większość zanieczyszczeń, to koszt zarówno węgla aktywnego jak i jego regeneracji oraz utylizacji jest wysoki. Podsumowanie Silniki tłokowe są najbardziej popularną technologią stosowaną w przypadku energetycznego wykorzystania biogazu. Konstrukcja ich jest wrażliwa na osadzanie się związków krzemu – siloksanów. Biogaz wymagá zastosowania procesów oczyszczania z siloksanów i zwiazków siarki. Konieczność oczyszczania i jego stopień uzalezniony jest od stężenia zanieczyszczeń i od wymagań stawianych przez producentów silników. Istotnym elementem instalcji oczyszczania biogazu jest właściwa detekcja zawartości siloksanów. Odpowiednio zaprojektowane metody chromatografii gazowej (GC) pozwalają realizować monitoring zawartości siloksanów w czasie rzeczywistym. Szerokie pole do dalszych badań pozostawiają obecnie stosowane metody usuwania siloksanów (głównie absorpcja na węglu aktywnym). Autorzy widzą możliwości wykorzystania nierównowagowej niskotempraturowej plazmy generowanej przy ciśnieniu atmosferycznym do usuwania zanieczyszczeń gazowych (w tym związków siarki).

    REFERENCES [1] Pi ąt ek R . , Produkcja i energetyczne wykorzystanie biogazu –

    przykłady nowoczesnych technologii, Materiały pokonferencyjne, Konferencja Naukowo-Techniczna Odnawialne źródła energii w województwie śląskim. Zasoby, techniki i technologie oraz systemy wykorzystania OŹE, Katowice, 2005