bansal jncasr 07

70
Molecular Biophysics Unit DNA structure and dynamics -as revealed by Crystallography and MD simulation Prof Manju Bansal

Upload: fsaewgwtwatgwtgwag

Post on 06-Aug-2015

22 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Bansal Jncasr 07

Molecular Biophysics Unit

DNA structure and dynamics

-as revealed by Crystallography and MD simulation

Prof Manju Bansal

Page 2: Bansal Jncasr 07

Molecular Biophysics Unit

• A Brief History

• DNA structure and dynamics

Page 3: Bansal Jncasr 07

Molecular Biophysics Unit

--Lehninger 5th Ed

Page 4: Bansal Jncasr 07

Molecular Biophysics Unit

Page 5: Bansal Jncasr 07

Molecular Biophysics Unit

Page 6: Bansal Jncasr 07

Molecular Biophysics Unit

Page 7: Bansal Jncasr 07

Molecular Biophysics Unit

Page 8: Bansal Jncasr 07

Molecular Biophysics Unit

1. Chargaff's Rules.

Erwin Chargaff at Columbia University had, for a long time, measured the base compostion of nucleic acids. The curious feature of his data, which we now know as Chargaff's rules, was that the amount of adenine nearly always equalled the amount of thymine and the amount of cytosine nearly always equalled the amount of guanine.

The following table shows some sample data that he collected:

mol % of bases Ratios Source

A G C T A/T G/C %GC

PhiX-174 24.0 23.3 21.5 31.2 0.77

¦ 1.08 44.8

Maize 26.8 22.8 17.0 * 27.2 0.99 0.98 46.1

Octopus 33.2 17.6 17.6 31.6 1.05 1.00 35.2

Chicken 28.0 22.0 21.6 28.4 0.99 1.02 43.7

Rat 28.6 21.4 20.5 28.4 1.01 1.00 42.9

Human 29.3 20.7 20.0 30.0 0.98 1.04 40.7

Page 9: Bansal Jncasr 07

Molecular Biophysics Unit

WC base-pairing

Hoogsteen base-pairing

Page 10: Bansal Jncasr 07

Molecular Biophysics Unit

X-Ray fibre diffraction patters of A-DNA (left) and B-DNA (right). Images from the Maurice Wilkins 1952 Nobel Lecture at the Nobel Prize Foundation web site

Page 11: Bansal Jncasr 07

Molecular Biophysics Unit

Page 12: Bansal Jncasr 07

Molecular Biophysics Unit

Page 13: Bansal Jncasr 07

Molecular Biophysics Unit

DNA facts:

Deoxyribose - Nucleic Acid

Base composition:

Erwin Chargaff

(A)=(T), (G)=(C)

X-ray pattern:

Rosalind Franklin

Structure:

James Watson & Francis Crick

- base pairing between

A-T and G-C

- double helical model with

10 units per turn.

Page 14: Bansal Jncasr 07

Molecular Biophysics Unit

B A Z

5’

5’

5’

Page 15: Bansal Jncasr 07

Molecular Biophysics Unit

Page 16: Bansal Jncasr 07

Molecular Biophysics Unit

The various forms of DNA have been identified as A, B, C etc.

In fact, a detailed inspection of the literature reveals that only

the letters F, Q, U, V and Y are now available, to describe any

new DNA structure that may appear in future. It is also

apparent that it may be more relevant to talk about the A, B or

C type dinucleotide steps, since several recent structures

show mixtures of various different geometries and a careful

analysis is essential before identifying it as a ‘new structure’.

A Glossary of DNA structures from A to ZA. Ghosh & M. Bansal , Acta Cryst D, vol 59 (Apr 2003)

DNA structures from A to Z

Page 17: Bansal Jncasr 07

Molecular Biophysics Unit

Page 18: Bansal Jncasr 07

Molecular Biophysics Unit

Page 19: Bansal Jncasr 07

Molecular Biophysics Unit

Page 20: Bansal Jncasr 07

Molecular Biophysics Unit

NMR structure Model structure

DNA triple helix

Page 21: Bansal Jncasr 07

Molecular Biophysics Unit

Page 22: Bansal Jncasr 07

Molecular Biophysics Unit

Page 23: Bansal Jncasr 07

Molecular Biophysics Unit

G-quadruplex structure

Page 24: Bansal Jncasr 07

Molecular Biophysics Unit

G-Quadruplex

AGGGTTAGGGTTAGGGTTAGGGGGGG(Bro)UTTTGGGG

Page 25: Bansal Jncasr 07

Molecular Biophysics Unit

Holliday Junction

Page 26: Bansal Jncasr 07

Molecular Biophysics UnitHolliday Junction

Page 27: Bansal Jncasr 07

Molecular Biophysics Unit

• A Brief History

• DNA structure and dynamics

Page 28: Bansal Jncasr 07

Molecular Biophysics Unit

• A Brief History

• DNA structure and dynamics

Page 29: Bansal Jncasr 07

Molecular Biophysics Unit

Page 30: Bansal Jncasr 07

Molecular Biophysics Unit

Page 31: Bansal Jncasr 07

Molecular Biophysics Unit

Page 32: Bansal Jncasr 07

Molecular Biophysics Unit

Page 33: Bansal Jncasr 07

Molecular Biophysics Unit

αααα O3’-P-O5’-C5’ (g-)

ββββ P-O5’-C5’-C4’ (t)

γ γ γ γ O5’-C5’-C4’-C3’ (g+ )

δ δ δ δ C5’-C4’-C3’-O3’ (2E)

ε ε ε ε C4’-C3’-O3’-P (t)

ζ ζ ζ ζ C3’-O3’-P-O5’ (g-)

Backbone conformationBackbone conformation

Page 34: Bansal Jncasr 07

Molecular Biophysics Unit

Page 35: Bansal Jncasr 07

Molecular Biophysics Unit

Page 36: Bansal Jncasr 07

Molecular Biophysics Unit

All torsion angles vs alpha for oligomer crystallographic dataset

Page 37: Bansal Jncasr 07

Molecular Biophysics Unit

tRNA: schematic

Page 38: Bansal Jncasr 07

Molecular Biophysics Unit

tRNA

Page 39: Bansal Jncasr 07

Molecular Biophysics Unit

tRNA-Phe

Page 40: Bansal Jncasr 07

Molecular Biophysics Unit

Intra base pair parametersIntra base pair parameters

Page 41: Bansal Jncasr 07

Molecular Biophysics Unit

Page 42: Bansal Jncasr 07

Molecular Biophysics Unit

Page 43: Bansal Jncasr 07

Molecular Biophysics Unit

Dinucleotide parameter

Page 44: Bansal Jncasr 07

Molecular Biophysics Unit

Dinucleotide parameters decide the DNA structure

Page 45: Bansal Jncasr 07

Molecular Biophysics Unit

Page 46: Bansal Jncasr 07

Molecular Biophysics Unit

TATA box – TBP complex

Page 47: Bansal Jncasr 07

Molecular Biophysics Unit

Page 48: Bansal Jncasr 07

Molecular Biophysics Unit

Twist vs Roll for extended crystallographic dataset (2006):Including Oligomers and Protein bound DNA complexes

Page 49: Bansal Jncasr 07

Molecular Biophysics Unit

Zp

Page 50: Bansal Jncasr 07

Molecular Biophysics Unit

Zp vs Slide for oligomers dataset

Page 51: Bansal Jncasr 07

Molecular Biophysics Unit

GROOVE WIDTH:GROOVE WIDTH:

measure of minimum inter-strand P..P distance

Page 52: Bansal Jncasr 07

Molecular Biophysics Unit

Nucleosome Structure

Page 53: Bansal Jncasr 07

Molecular Biophysics Unit

Minor groove width histogram:

Oligomers crystallographic dataset

Page 54: Bansal Jncasr 07

Molecular Biophysics Unit

Brief Outline of MD Results

Page 55: Bansal Jncasr 07

Molecular Biophysics Unit

Dixit et al, Biophys J 89,2005

MD: Sugar Phase Angles for the136 unique tetranucleotides

Page 56: Bansal Jncasr 07

Molecular Biophysics Unit

Dixit et al, Biophys J 89,2005

State 1

State 2

State 3

State 4

State 5

State 6

State 7

MD: α/γ/ε-ζ/ distribution for the136 unique tetranucleotides

Page 57: Bansal Jncasr 07

Molecular Biophysics Unit

Beveridge et al, Biophys J 87,2004

MD: Distribution of the values of 6 local step parameters for CG step in a GCGC tetranucleotide

Page 58: Bansal Jncasr 07

Molecular Biophysics Unit

12.2(1.0)

11.7(1.6)

12.7(1.4)

G:C

13.6(1.0)

12.5(1.8)

12.8(1.5)

T:A

11.4(1.3)

11.4(1.1)

11.0(1.1)

T:A

10.4(1.0)

10.4(0.7)

10.1(0.7)

T:A

10.2(0.9)

10.4(0.8)

10.1(0.7)

A:T

10.7(0.9)

11.3(1.1)

10.7(0.9)

A:T

11.9(1.1)

12.6(1.2)

12.3(1.0)

A:T

12.7(1.0)

12.0(1.5)

13.3(1.2)

C:G

A3T3 (Ber,

rand)

Å

A3dU3 (Ber)

ÅA3T3 (Ber)

Å

MD results: 6-7ns mean minor groove width

Page 59: Bansal Jncasr 07

Molecular Biophysics Unit

d(CGTTTTAAAACGTTTTAAAACGTTTTAAAACG)

d(GACTAAAAATGACTAAAAAATGACTAAAAAT)

d(GCAAAATTTTGCAAAATTTTGCAAAATTTTGC)

MD : sequence dependent curvature

Page 60: Bansal Jncasr 07

Molecular Biophysics Unit

Biological Implications of the Sequence Dependent Variation in DNA Structure

Page 61: Bansal Jncasr 07

Molecular Biophysics Unit

Transcription:

Transcription

Promoter TerminatorGene

RNA polymerase

RNA

Page 62: Bansal Jncasr 07

Molecular Biophysics Unit

How does RNA polymerase know

where to start transcription?

It is through sequence motifs which match the consensus sequences in -10 and -35 regions,

but large variability seen. Also similar sequences seen in non-promoter regions.

Page 63: Bansal Jncasr 07

Molecular Biophysics Unit

Some typical sequence motifs

• There are few sequence motifs which exactly match the consensus sequence, large variability seen.

• Similar sequences seen in non-promoter regions.

-35 -10

TATAATTACTGTGACACTTATGGT

TSS

17 bp

SPACER1

TTGACACTGACGTGGACTGTCACA

ConsensusaraBADaraCgalP1

Page 64: Bansal Jncasr 07

Molecular Biophysics Unit

Structure of the complex of DNA and TATA-box binding protein

Page 65: Bansal Jncasr 07

Molecular Biophysics Unit

Dinucleotide Rollo

Tilto

Twisto

CA/TG(BI)* 5.10 -0.31 31.03

GG/CC 5.02 -1.83 32.4

AG/CT 4.30 2.68 29.46

CG/CG 3.50 0.15 34.1

TA/TA 2.94 0.04 39.94

AA/TT 2.60 -1.66 35.58

AC/GT -0.70 -0.15 33.29

AT/AT -1.79 0.21 32.49

GA/TC -2.31 -0.88 38.55

GC/GC -6.49 -0.18 38.61

CA/TG(BII)* -7.50 0.68 47.62

Dinucleotide parameters in Free Oligomers

Bansal M (1996) Biological Structure and Dynamics, Proceedings of the Ninth Conversation (Vol. I) pp 121-134

Page 66: Bansal Jncasr 07

Molecular Biophysics Unit

Roll at

junction

Roll at

every step

Page 67: Bansal Jncasr 07

Molecular Biophysics Unit

Radiu

sdl

max

A B

D

Imax

Imin

C

Successiv

e bending

angle , (i

=1)

Cumulative bending angle = Σ(i

=1 to n)

4. Bending Angle

1. Least square circle fit 2. d/lmax

3. Imax/Imin

Measures

of DNA curvature

Page 68: Bansal Jncasr 07

Molecular Biophysics Unit

Page 69: Bansal Jncasr 07

Molecular Biophysics Unit

• Acknowledgement:

• Arvind Marathe

• Senthil Kumar

• Prof Dhananjay Bhattacharyya (SINP, Kolkata)

• Dept of Biotech, Govt of India

Page 70: Bansal Jncasr 07

Molecular Biophysics Unit

G- quadruplex