background (dft.a0)€¦ · 0a dft background 4 young won lim 12/12/2010 power series expansion f x...

28
Young Won Lim 12/12/2010 Background (DFT.A0)

Upload: others

Post on 11-Oct-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Background (DFT.A0)€¦ · 0A DFT Background 4 Young Won Lim 12/12/2010 Power Series Expansion f x = f 0 f 0 x f a 2! x2 ⋯ f n a n! xn ⋯ sin x = x − x3 3! x5 5! − x7 7! ⋯

Young Won Lim12/12/2010

Background (DFT.A0)

Page 2: Background (DFT.A0)€¦ · 0A DFT Background 4 Young Won Lim 12/12/2010 Power Series Expansion f x = f 0 f 0 x f a 2! x2 ⋯ f n a n! xn ⋯ sin x = x − x3 3! x5 5! − x7 7! ⋯

Young Won Lim12/12/2010

Copyright (c) 2009, 2010 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to [email protected].

This document was produced by using OpenOffice and Octave.

Page 3: Background (DFT.A0)€¦ · 0A DFT Background 4 Young Won Lim 12/12/2010 Power Series Expansion f x = f 0 f 0 x f a 2! x2 ⋯ f n a n! xn ⋯ sin x = x − x3 3! x5 5! − x7 7! ⋯

0A DFT Background 3 Young Won Lim12/12/2010

Taylor Series

f x = f a f a x−a f a

2! x−a2 ⋯

f n a

n! x−an ⋯

f x = f 0 f 0 x f a

2!x2

⋯f n

an!

xn⋯

Page 4: Background (DFT.A0)€¦ · 0A DFT Background 4 Young Won Lim 12/12/2010 Power Series Expansion f x = f 0 f 0 x f a 2! x2 ⋯ f n a n! xn ⋯ sin x = x − x3 3! x5 5! − x7 7! ⋯

0A DFT Background 4 Young Won Lim12/12/2010

Power Series Expansion

f x = f 0 f 0 x f a

2!x2

⋯f n

an!

xn⋯

sin x = x −x3

3!

x5

5!−

x7

7!⋯

cos x = 1 −x2

2!

x 4

4!−

x6

6!⋯

e x= 1 x

x2

2!

x3

3!

x4

4!⋯

Page 5: Background (DFT.A0)€¦ · 0A DFT Background 4 Young Won Lim 12/12/2010 Power Series Expansion f x = f 0 f 0 x f a 2! x2 ⋯ f n a n! xn ⋯ sin x = x − x3 3! x5 5! − x7 7! ⋯

0A DFT Background 5 Young Won Lim12/12/2010

Complex Number

i = −1

i2= −1

i3= −i

i4= −i

x i y = r cosi r sin

= r cosi sin

x = r cos

y = r sin

Page 6: Background (DFT.A0)€¦ · 0A DFT Background 4 Young Won Lim 12/12/2010 Power Series Expansion f x = f 0 f 0 x f a 2! x2 ⋯ f n a n! xn ⋯ sin x = x − x3 3! x5 5! − x7 7! ⋯

0A DFT Background 6 Young Won Lim12/12/2010

Complex Power Series

sin x = x −x3

3!

x5

5!−

x7

7!⋯

cos x = 1 −x2

2!

x 4

4!−

x6

6!⋯e x

= 1 x x2

2!

x3

3!

x4

4!⋯

ei = 1 i

i2

2!

i 3

3!

i 4

4!

i5

5!⋯

= 1 i −

2

2!− i

3

3!

4

4! i

5

5!⋯

= 1 −

2

2!

4

4!⋯ i −

3

3!

5

5!⋯

= cos i sin

Page 7: Background (DFT.A0)€¦ · 0A DFT Background 4 Young Won Lim 12/12/2010 Power Series Expansion f x = f 0 f 0 x f a 2! x2 ⋯ f n a n! xn ⋯ sin x = x − x3 3! x5 5! − x7 7! ⋯

0A DFT Background 7 Young Won Lim12/12/2010

Euler Series (1)

ei = cos i sin

ℜ{ei } = cos

ℑ{ei } = sin

∣ei∣ = cos2

sin2 = 1

arg ei = tan−1 sin

cos =

Page 8: Background (DFT.A0)€¦ · 0A DFT Background 4 Young Won Lim 12/12/2010 Power Series Expansion f x = f 0 f 0 x f a 2! x2 ⋯ f n a n! xn ⋯ sin x = x − x3 3! x5 5! − x7 7! ⋯

0A DFT Background 8 Young Won Lim12/12/2010

Euler Series (2)

ei = cos i sin

ℜ{ei } = cos =

ei e−i

2

ℑ{ei } = sin =

ei − e−i

2 i

e−i = cos − i sin

Page 9: Background (DFT.A0)€¦ · 0A DFT Background 4 Young Won Lim 12/12/2010 Power Series Expansion f x = f 0 f 0 x f a 2! x2 ⋯ f n a n! xn ⋯ sin x = x − x3 3! x5 5! − x7 7! ⋯

0A DFT Background 9 Young Won Lim12/12/2010

DeMoivre’s Theorem

ei = cos i sin

ei

n= cos i sinn

ei n = cos n i sin n

ei

1/n= cos i sin 1/n

ei /n= cos

n i sin

n

Page 10: Background (DFT.A0)€¦ · 0A DFT Background 4 Young Won Lim 12/12/2010 Power Series Expansion f x = f 0 f 0 x f a 2! x2 ⋯ f n a n! xn ⋯ sin x = x − x3 3! x5 5! − x7 7! ⋯

0A DFT Background 10 Young Won Lim12/12/2010

Complex Roots

z = r ei

z1/n= r1/ n ei /n

=nr cos

n i sin

n

Page 11: Background (DFT.A0)€¦ · 0A DFT Background 4 Young Won Lim 12/12/2010 Power Series Expansion f x = f 0 f 0 x f a 2! x2 ⋯ f n a n! xn ⋯ sin x = x − x3 3! x5 5! − x7 7! ⋯

0A DFT Background 11 Young Won Lim12/12/2010

Phasor

A cos t

A cos t = ℜ{Aei t }

= ℜ{eit⋅Ae i

}

Ae i A∢

Page 12: Background (DFT.A0)€¦ · 0A DFT Background 4 Young Won Lim 12/12/2010 Power Series Expansion f x = f 0 f 0 x f a 2! x2 ⋯ f n a n! xn ⋯ sin x = x − x3 3! x5 5! − x7 7! ⋯

0A DFT Background 12 Young Won Lim12/12/2010

Complex Phase Factor (1)

W 40

W 41

W 42

W 43

W 40

W 4−3

W 4−2

W 4−1

W 41= W 4

−3

W 42= W 4

−2

W 43= W 4

−1

W Nk±N

= W Nk

W 4k = e

− j 24

kW 4

−k = e j 2

4k

Page 13: Background (DFT.A0)€¦ · 0A DFT Background 4 Young Won Lim 12/12/2010 Power Series Expansion f x = f 0 f 0 x f a 2! x2 ⋯ f n a n! xn ⋯ sin x = x − x3 3! x5 5! − x7 7! ⋯

0A DFT Background 13 Young Won Lim12/12/2010

Complex Phase Factor (2)

W 80

W 81

W 82

W 83

W 84

W 85

W 81= W 8

−7

W 82= W 8

−6

W 83= W 8

−5

W 84= W 8

−4

W 85= W 8

−3

W 86= W 8

−2

W 87= W 8

−1

W 87

W 80

W 8−7

W 8−6

W 8−5

W 8−4

W 8−3

W 8−2

W 8−1

W 86

W Nk±N

= W Nk

W 8k = e

− j 28

kW 8

−k = e j 2

8k

Page 14: Background (DFT.A0)€¦ · 0A DFT Background 4 Young Won Lim 12/12/2010 Power Series Expansion f x = f 0 f 0 x f a 2! x2 ⋯ f n a n! xn ⋯ sin x = x − x3 3! x5 5! − x7 7! ⋯

0A DFT Background 14 Young Won Lim12/12/2010

Complex Phase Factor (3)

W Nk−N

= e− j 2

Nk − N

W Nk−N

W Nk =

e− j 2

Nk − N

e−j 2

Nk

= e j 2 = 1

W NkN

= e− j 2

Nk N

W NkN

W Nk =

e− j 2

Nk N

e− j 2

Nk

= e− j2 = 1

W NkN

= e− j 2

NkN

= e− j2k=1

W NkN

= 1

W Nk = e

− j 2N

kW N

−k = e j 2

Nk

W Nk−N

= W Nk W N

kN= W N

k

W NkN

= e j 2

NkN

= e j2k=1

W N−kN

= 1

Page 15: Background (DFT.A0)€¦ · 0A DFT Background 4 Young Won Lim 12/12/2010 Power Series Expansion f x = f 0 f 0 x f a 2! x2 ⋯ f n a n! xn ⋯ sin x = x − x3 3! x5 5! − x7 7! ⋯

0A DFT Background 15 Young Won Lim12/12/2010

DFT Symmetry

X∗[k ]

= ∑n = 0

N − 1

x [n] W N−k n

= ∑n = 0

N − 1

x [n] W NnN W N

−k n

= ∑n = 0

N − 1

x [n] W NnN −k

= X [N−k ]

W Nk−N

= W Nk

X∗[k ] = X [N−k ]

X [k ] = ∑n = 0

N − 1

x [n ] W Nk n

W NnN

= 1

Page 16: Background (DFT.A0)€¦ · 0A DFT Background 4 Young Won Lim 12/12/2010 Power Series Expansion f x = f 0 f 0 x f a 2! x2 ⋯ f n a n! xn ⋯ sin x = x − x3 3! x5 5! − x7 7! ⋯

0A DFT Background 16 Young Won Lim12/12/2010

● Complex Phase Factors● N=8 DFT

● DFT Matrix● Exponents of W● Common Differences in Exponents of W● Complex Phase Factors in Angles

● N=8 IDFT Matrix● IDFT Matrix● Exponents of W● Common Differences in Exponents of W● Complex Phase Factors in Angles

Page 17: Background (DFT.A0)€¦ · 0A DFT Background 4 Young Won Lim 12/12/2010 Power Series Expansion f x = f 0 f 0 x f a 2! x2 ⋯ f n a n! xn ⋯ sin x = x − x3 3! x5 5! − x7 7! ⋯

0A DFT Background 17 Young Won Lim12/12/2010

N=8 DFT DFT Matrix

X [k ] = ∑n= 0

7

W 8k n x [n]

X [0] W 80 W 8

0 W 80 W 8

0 W 80 W 8

0 W 80 W 8

0 x [0 ]

X [1 ] W 80 W 8

1 W 82 W 8

3 W 84 W 8

5 W 86 W 8

7 x [1]

X [2 ] W 80 W 8

2 W 84 W 8

6 W 88 W 8

10 W 812 W 8

14 x [2]

X [3 ] W 80 W 8

3 W 86 W 8

9 W 812 W 8

15 W 818 W 8

21 x [3 ]

X [4 ] W 80 W 8

4 W 88 W 8

12 W 816 W 8

20 W 824 W 8

28 x [4 ]

X [5 ] W 80 W 8

5 W 810 W 8

15 W 820 W 8

25 W 830 W 8

35 x [5 ]

X [6] W 80 W 8

6 W 812 W 8

18 W 824 W 8

30 W 836 W 8

42 x [6 ]

X [7 ] W 80 W 8

7 W 814 W 8

21 W 828 W 8

35 W 842 W 8

49 x [7 ]

=

W 8k n = e

− j 28

k n

Page 18: Background (DFT.A0)€¦ · 0A DFT Background 4 Young Won Lim 12/12/2010 Power Series Expansion f x = f 0 f 0 x f a 2! x2 ⋯ f n a n! xn ⋯ sin x = x − x3 3! x5 5! − x7 7! ⋯

0A DFT Background 18 Young Won Lim12/12/2010

N=8 DFTDFT Exponents of W

0 1 2 3 4 5 6 70 0

000

00

00

00

00

00

00

1 00

­1­1

­2­2

­3­3

­4­4

­5­5

­6­6

­7­7

2 00

­2­2

­4­4

­6­6

­80

­10­2

­12­4

­14­6

3 00

­3­3

­6­6

­9­1

­12­4

­15­7

­18­2

­21­5

4 00

­4­4

­80

­12­4

­160

­20­4

­240

­28­4

5 00

­5­5

­10­2

­15­7

­20­4

­25­1

­30­6

­35­3

6 00

­6­6

­12­4

­18­2

­240

­30­6

­36­4

­42­2

7 00

­7­7

­14­6

­21­5

­28­4

­35­3

­42­2

­49­1

nk­n·k  mod  8 

W Nn k

=

e− j 2/N n k

N = 8

W Nk±N

W Nk =

e− j 2

Nk ± N

e−j 2

Nk

= e∓ j2 = 1

example :−49 mod 8≡ −1 mod 8

Page 19: Background (DFT.A0)€¦ · 0A DFT Background 4 Young Won Lim 12/12/2010 Power Series Expansion f x = f 0 f 0 x f a 2! x2 ⋯ f n a n! xn ⋯ sin x = x − x3 3! x5 5! − x7 7! ⋯

0A DFT Background 19 Young Won Lim12/12/2010

N=8 DFTDFT Common Differences in Exponents of W

n=0 n=1 n=2 n=3 n=4 n=5 n=6 n=7

k=0

k=1

k=2

k=3

0 0 0 0 0 0 0 0­0 ­0 ­0 ­0 ­0 ­0 ­0

0 ­1 ­2 ­3 ­4 ­5 ­6 ­7­1 ­1 ­1 ­1 ­1 ­1 ­1

0 ­2 ­4 ­6 0 ­2 ­4 ­6­2 ­2 ­2 ­2 ­2 ­2 ­2

0 ­3 ­6 ­1 ­4 ­7 ­2 ­5­3 ­3 ­3 ­3 ­3 ­3 ­3

0 ­4 0 ­4 0 ­4 0 ­4­4 ­4 ­4 ­4 ­4 ­4 ­4

0 ­5 ­2 ­7 ­4 ­1 ­6 ­3­5 ­5 ­5 ­5 ­5 ­5 ­5

0 ­6 ­4 ­2 0 ­6 ­4 ­2­6 ­6 ­6 ­6 ­6 ­6 ­6

0 ­7 ­6 ­5 ­4 ­3 ­2 ­1­7 ­7 ­7 ­7 ­7 ­7 ­7

k=4

k=5

k=6

k=7

W Nn k

=

e− j 2/N n k

N = 8

W Nk±N

W Nk =

e− j 2

Nk ± N

e−j 2

Nk

= e∓ j2 = 1

­n·k  mod  8 

Page 20: Background (DFT.A0)€¦ · 0A DFT Background 4 Young Won Lim 12/12/2010 Power Series Expansion f x = f 0 f 0 x f a 2! x2 ⋯ f n a n! xn ⋯ sin x = x − x3 3! x5 5! − x7 7! ⋯

0A DFT Background 20 Young Won Lim12/12/2010

N=8 DFTDFT Complex Factors in Angles (1)

n=0 n=1 n=2 n=3 n=4 n=5 n=6 n=7

k=0

k=1

k=2

k=3

­0 ­0 ­0 ­0 ­0 ­0 ­0

­1 ­1 ­1 ­1 ­1 ­1 ­1

­2 ­2 ­2 ­2 ­2 ­2 ­2

­3 ­3 ­3 ­3 ­3 ­3 ­3

Page 21: Background (DFT.A0)€¦ · 0A DFT Background 4 Young Won Lim 12/12/2010 Power Series Expansion f x = f 0 f 0 x f a 2! x2 ⋯ f n a n! xn ⋯ sin x = x − x3 3! x5 5! − x7 7! ⋯

0A DFT Background 21 Young Won Lim12/12/2010

N=8 DFTDFT Complex Factors in Angles (2)

n=0 n=1 n=2 n=3 n=4 n=5 n=6 n=7

k=4

k=5

k=6

k=7

­7 ­7 ­7 ­7 ­7 ­7 ­7

­4 ­4 ­4 ­4 ­4 ­4 ­4

­5 ­5 ­5 ­5 ­5 ­5 ­5

­6 ­6 ­6 ­6 ­6 ­6 ­6

Page 22: Background (DFT.A0)€¦ · 0A DFT Background 4 Young Won Lim 12/12/2010 Power Series Expansion f x = f 0 f 0 x f a 2! x2 ⋯ f n a n! xn ⋯ sin x = x − x3 3! x5 5! − x7 7! ⋯

0A DFT Background 22 Young Won Lim12/12/2010

● Complex Phase Factors● N=8 DFT

● DFT Matrix● Exponents of W● Common Differences in Exponents of W● Complex Phase Factors in Angles

● N=8 IDFT Matrix● IDFT Matrix● Exponents of W● Common Differences in Exponents of W● Complex Phase Factors in Angles

Page 23: Background (DFT.A0)€¦ · 0A DFT Background 4 Young Won Lim 12/12/2010 Power Series Expansion f x = f 0 f 0 x f a 2! x2 ⋯ f n a n! xn ⋯ sin x = x − x3 3! x5 5! − x7 7! ⋯

0A DFT Background 23 Young Won Lim12/12/2010

W 8−k n = e

j 28

k n

N=8 IDFTIDFT

x [n ] =1N ∑

k = 0

7

W 8−k n X [k ]

X [0]W 80 W 8

0 W 80 W 8

0 W 80 W 8

0 W 80 W 8

0x [0 ]

X [1 ]W 80 W 8

−1 W 8−2 W 8

−3 W 8−4 W 8

−5 W 8−6 W 8

−7x [1]

X [2 ]W 80 W 8

−2 W 8−4 W 8

−6 W 8−8 W 8

−10 W 8−12 W 8

−14x [2]

X [3 ]W 80 W 8

−3 W 8−6 W 8

−9 W 8−12 W 8

−15 W 8−18 W 8

−21x [3 ]

X [4 ]W 80 W 8

−4 W 8−8 W 8

−12 W 8−16 W 8

−20 W 8−24 W 8

−28x [4 ]

X [5 ]W 80 W 8

−5 W 8−10 W 8

−15 W 8−20 W 8

−25 W 8−30 W 8

−35x [5 ]

X [6]W 80 W 8

−6 W 8−12 W 8

−18 W 8−24 W 8

−30 W 8−36 W 8

−42x [6 ]

X [7 ]W 80 W 8

−7 W 8−14 W 8

−21 W 8−28 W 8

−35 W 8−42 W 8

−49x [7 ]

= 1N

Page 24: Background (DFT.A0)€¦ · 0A DFT Background 4 Young Won Lim 12/12/2010 Power Series Expansion f x = f 0 f 0 x f a 2! x2 ⋯ f n a n! xn ⋯ sin x = x − x3 3! x5 5! − x7 7! ⋯

0A DFT Background 24 Young Won Lim12/12/2010

N=8 IDFTIDFT Exponents of W

0 1 2 3 4 5 6 70 0

000

00

00

00

00

00

00

1 00

11

22

33

44

55

66

77

2 00

22

44

66

80

102

124

146

3 00

33

66

91

124

157

182

215

4 00

44

80

124

160

204

240

284

5 00

55

102

157

204

251

306

353

6 00

66

124

182

240

306

364

422

7 00

77

146

215

284

353

422

491

kn+n·k mod  8 

W N−n k

=

e j 2/N n k

N = 8

W N−k±N

W N−k =

e j 2

Nk ± N

e j 2

N k

= e± j2 = 1

example :49 mod 8≡ 1 mod 8

Page 25: Background (DFT.A0)€¦ · 0A DFT Background 4 Young Won Lim 12/12/2010 Power Series Expansion f x = f 0 f 0 x f a 2! x2 ⋯ f n a n! xn ⋯ sin x = x − x3 3! x5 5! − x7 7! ⋯

0A DFT Background 25 Young Won Lim12/12/2010

N=8 IDFTIDFT Common Differences in Exponents of W

k=0 k=1 k=2 k=3 k=4 k=5 k=6 k=7

n=0

n=1

n=2

n=3

0 0 0 0 0 0 0 0+0 +0 +0 +0 +0 +0 +0

0 +1 +2 +3 +4 +5 +6 +7+1 +1 +1 +1 +1 +1 +1

0 +2 +4 +6 0 +2 +4 +6+2 +2 +2 +2 +2 +2 +2

0 +3 +6 +1 +4 +7 +2 +5+3 +3 +3 +3 +3 +3 +3

0 +4 0 +4 0 +4 0 +4+4 +4 +4 +4 +4 +4 +4

0 +5 +2 +7 +4 +1 +6 +3+5 +5 +5 +5 +5 +5 +5

0 +6 +4 +2 0 +6 +4 +2+6 +6 +6 +6 +6 +6 +6

0 +7 +6 +5 +4 +3 +2 +1+7 +7 +7 +7 +7 +7 +7

n=4

n=5

n=6

n=7

+n·k  mod  8 

W N−n k

=

e j 2/N n k

N = 8

W N−k±N

W N−k =

e j 2

Nk ± N

e j 2

N k

= e± j2 = 1

Page 26: Background (DFT.A0)€¦ · 0A DFT Background 4 Young Won Lim 12/12/2010 Power Series Expansion f x = f 0 f 0 x f a 2! x2 ⋯ f n a n! xn ⋯ sin x = x − x3 3! x5 5! − x7 7! ⋯

0A DFT Background 26 Young Won Lim12/12/2010

N=8 IDFTIDFT Complex Factors in Angles (1)

k=0 k=1 k=2 k=3 k=4 k=5 k=6 k=7

n=0

n=1

n=2

n=3

+0 +0 +0 +0 +0 +0 +0

+1 +1 +1 +1 +1 +1 +1

+2 +2 +2 +2 +2 +2 +2

+3 +3 +3 +3 +3 +3 +3

Page 27: Background (DFT.A0)€¦ · 0A DFT Background 4 Young Won Lim 12/12/2010 Power Series Expansion f x = f 0 f 0 x f a 2! x2 ⋯ f n a n! xn ⋯ sin x = x − x3 3! x5 5! − x7 7! ⋯

0A DFT Background 27 Young Won Lim12/12/2010

N=8 IDFTIDFT Complex Factors in Angles (2)

k=0 k=1 k=2 k=3 k=4 k=5 k=6 k=7

n=4

n=5

n=6

n=7

+4 +4 +4 +4 +4 +4 +4

+5 +5 +5 +5 +5 +5 +5

+6 +6 +6 +6 +6 +6 +6

+7 +7 +7 +7 +7 +7 +7

Page 28: Background (DFT.A0)€¦ · 0A DFT Background 4 Young Won Lim 12/12/2010 Power Series Expansion f x = f 0 f 0 x f a 2! x2 ⋯ f n a n! xn ⋯ sin x = x − x3 3! x5 5! − x7 7! ⋯

Young Won Lim12/12/2010

References

[1] http://en.wikipedia.org/[2] J.H. McClellan, et al., Signal Processing First, Pearson Prentice Hall, 2003