bab 1 intorductions and planck theory

Upload: muhammad-anshory

Post on 02-Jun-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/11/2019 Bab 1 Intorductions and Planck Theory

    1/24

    QUANTUM PHYSICS

    KFS 423

    Dr. Abdurrahman, M.Si Antomi Saregar, S.Pd, M.Si

  • 8/11/2019 Bab 1 Intorductions and Planck Theory

    2/24

    2

    0. Prelude -- Development of

    Classical Physics and Dark Clouds

    (before 20th century)

  • 8/11/2019 Bab 1 Intorductions and Planck Theory

    3/24

    3

    Classical Mechanics

    Newton, Sir Isaac, PRS,(1643 1727), Englishphysicist andmathematician

    Euler, Leonhard(1707 -- 1783),Swissmathematician.

    Lagrange, Joseph Louis(1736 -- 1813),Italian-French mathematician,astronomer and physicist.

    Hamilton, William Rowan (1805 --1865),Irish mathematician andastronomer.

  • 8/11/2019 Bab 1 Intorductions and Planck Theory

    4/24

    4

    Classical Electrodynamics

    Coulomb, CharlesAugustin (1736 1806 ), French physicist

    Biot, Jean Baptiste(1774 --1862), FrenchPhysicist;Savart, Flix (1791 --1841), French Physicist

    Ampere, AndreMarie (1775 -- 1836),French Physicist

    Faraday, Michael(1791 -- 1867),English Physicist

    Lorentz, HendrikAntoon (1853 --1928), DutchPhysicist

    Maxwell, James Clerk (1831 1879), Scottish physicist

  • 8/11/2019 Bab 1 Intorductions and Planck Theory

    5/24

    5

    Classical Thermodynamics

    Clausius, RudolfJulius Emanuel(1822 -- 1888) ,Germanmathematicalphysicist.

    Thomson, William(Baron Kelvin) (1824 - 1907),

    British physicistand mathematician.

    Boltzmann, Ludwig, (1844

    1906), Austrian physicist.

    Helmholtz, Hermann

    Ludwig Ferdinand von(1821 -- 1894), Germanphysicist and physician.

    Carnot, Nicolas

    Lonard Sadi (1796-- 1832),French physicist.

    Dalton, John (1766

    -- 1844), Britishchemist andphysicist.

    Joule, James

    Prescott (1818 --1889), Britishphysicist.

    Maxwell, JamesClerk (1831 1879), Scottish

    physicist

    http://www.answers.com/main/ntquery?method=4&dsname=Wikipedia+Images&dekey=Johndalton.jpg
  • 8/11/2019 Bab 1 Intorductions and Planck Theory

    6/24

    6

    Classical Statistical Mechanics

    Boltzmann, Ludwig, (1844

    1906), Austrian physicist.

    Equal a priori probability postulate (Boltzmann)

    Given an isolated system in equilibrium, it is found with equalprobability in each of its accessible microstates.

    Microcanonical ensemble(independent system)

    Canonical ensemble (isolated system)

    Grandcanonical ensemble (opened system)

  • 8/11/2019 Bab 1 Intorductions and Planck Theory

    7/24

    7

    Dark Clouds

    Lord and Lady Kelvin at thecoronation of King EdwardVII in 1902.

    Sir William Thomsonworking on a problem ofscience in 1890.

    William Thomson produced 70patents in the U.K. from 1854to 1907.

    There is nothing new to be discovered in physics now.

    All that remains is more and more precise measurement.

  • 8/11/2019 Bab 1 Intorductions and Planck Theory

    8/24

    8

    Dark Clouds

    Nineteenth-Century Clou ds over the Dynam ical Theory of Heat and Light (27th April 1900, Lord Kelvin)

    "Beauty and clearness of theory... Overshadowed by two clouds..."

    Michelson, Albert Morley, Edward

    Einstein, Albert Planck, MaxMichelson-Morley Experiment (1887)

    Ultraviolet catastrophy in blackbody radiation (before October, 1900)

  • 8/11/2019 Bab 1 Intorductions and Planck Theory

    9/24

    Chapter 1 Thermal radiation and Plancks postulate

    FUNDAMENTAL CONCEPTS OF QUANTUM

    PHYSICS Thermal radiation: The radiation emitted by a body as a result of temperature.

    Blackbody : A body that surface absorbs all the thermal radiation incident on

    them.

    Spectral radiancy : The spectral distribution of blackbody radiation .)(T R :)( d R T represents the emitted energy from a unit area per unit time

    between and at absolute temperature T. d

    1899 by Lummer andPringsheim

  • 8/11/2019 Bab 1 Intorductions and Planck Theory

    10/24

    Chapter 1 Thermal radiation and Plancks postulate

    The spectral radiancy of blackbody radiation shows that:

    (1) little power radiation at very low frequency

    (2) the power radiation increases rapidly as increases from very

    small value.

    (3) the power radiation is most intense at certain for particulartemperature.

    (4) drops slowly, but continuously as increases

    , and

    (5) increases linearly with increasing temperature.

    (6) the total radiation for all ( radiancy )

    increases less rapidly than linearly with increasing temperature.

    max

    )(,max T R

    .0)( T R

    m ax

    d R R T T )(0

  • 8/11/2019 Bab 1 Intorductions and Planck Theory

    11/24

    Chapter 1 Thermal radiation and Plancks postulate

    Stefans law (1879): 4284 /1067.5, K m W T R o T

    Stefan-Boltzmann constant

    Wiens displacement (1894): mK xT 3m ax 109.2.

    1.3 Classical theory of cavity radiation

    Rayleigh and Jeans (1900):

    (1) standing wave with nodes at the metallic surface

    (2) geometrical arguments count the number of standing waves

    (3) average total energy depends only on the temperature

    one-dimensional cavity:

    one-dimensional electromagnetic standing wave

    )2sin()2

    sin(),( 0 t x

    E t x E

  • 8/11/2019 Bab 1 Intorductions and Planck Theory

    12/24

    Chapter 1 Thermal radiation and Plancks postulate

    for all time t, nodes at .......3,2,1,0,/2 n n x

    a nc n a n a a x

    x

    2//22

    0

    standing wave

    :)( d N the number of allowed standing wave between and +d

    d c a dn d N

    d c a dn c a n

    )/4(2)(

    )/2()/2(

    two polarization states

    n 0

    ))(/2( d c a d

    )/2( c a d

  • 8/11/2019 Bab 1 Intorductions and Planck Theory

    13/24

    Chapter 1 Thermal radiation and Plancks postulate

    for three-dimensional cavity

    d c a dr c a r )/2()/2(

    the volume of concentric shell dr r r

    d c

    V d c

    a dr r d N

    d c

    a d

    c

    a v

    c

    a dr r

    23

    23

    32

    23222

    884812)(

    )2

    (4)2

    ()2

    (44

    The number of allowed electromagnetic standing wave in 3D

    Proof:

    nodalplanes

    )2sin()/2sin(),(

    )2sin()/2sin(),(

    )2sin()/2sin(),(

    2/cos)2/(

    2/cos)2/(

    2/cos)2/(

    0

    0

    0

    t z E t z E

    t y E t y E

    t x E t x E

    z z

    y y

    x x

    z

    y

    x

    propagation

    direction

    /2

    /2

  • 8/11/2019 Bab 1 Intorductions and Planck Theory

    14/24

    Chapter 1 Thermal radiation and Plancks postulate

    for nodes:

    .....3,2,1,/2,,0

    .....3,2,1,/2,,0

    .....3,2,1,/2,,0

    z z z

    y y y

    x x x

    n n z a z

    n n y a y

    n n x a x

    222

    2222222

    /2

    )coscos(cos)/2(

    cos)/2(,cos)/2(,cos)/2(

    z y x

    z y x

    z y x

    n n n a

    n n n a

    n a n a n a

    d c a dr c a n n n r

    r a c n n n a c c

    z y x

    z y x

    )/2()/2(

    )2/()2/(/

    222

    222

    d c a d c a d N

    d N dr r dr r dr r N 2323

    22

    )/(4)/2)(2/()(

    )(2/4)8/1()(

    considering two polarization state

    d c V d N 23)/1(42/)(

    :/8)( 32 c N Density of states per unit volume per unit frequency

  • 8/11/2019 Bab 1 Intorductions and Planck Theory

    15/24

    Chapter 1 Thermal radiation and Plancks postulate

    the law of equipartition energy:

    For a system of gas molecules in thermal equilibrium at temperature T,

    the average kinetic energy of a molecules per degree of freedom is kT/2,

    is Boltzmann constant.K joul e k o /1038.1 23

    average total energy of each standing wave :KT KT

    2/2 the energy density between and +d:

    kTd c

    d T 3

    28)( Rayleigh-Jeans blackbody radiation

    ultraviolet catastrophe

    )()4/()( T T c R

  • 8/11/2019 Bab 1 Intorductions and Planck Theory

    16/24

    Chapter 1 Thermal radiation and Plancks postulate

    1.4 Plancks theory of cavity radiation

    ),( T Plancks assumption: and 0,0

    kT

    the origin of equipartition of energy:

    Boltzmann distribution kT e P kT /)( /

    :)( d P probability of finding a system with energy between and +d

    kT

    kT e kT e kT kT

    d kT

    e d P

    e kT kT

    d kT

    e d P

    d P

    d P

    kT kT

    kT

    kT

    kT

    ])(|)([1

    )(

    1|)(1

    )(

    )(

    )(

    0

    /0

    /

    0 0

    /

    0/

    0

    /

    0

    0

    0

  • 8/11/2019 Bab 1 Intorductions and Planck Theory

    17/24

    Chapter 1 Thermal radiation and Plancks postulate

    Plancks assumption: ..............4,3,2,,0 kT kT ,

    kT kT ,

    kT kT ,

    kT 0(1) small

    (2) large large 0

    s joul h

    h

    34

    1063.6 Planck constant

    Using Plancks discrete energy to find

    kT h

    e

    e n kT

    e kT

    e kT

    nh

    P

    p

    n nh

    n

    n

    n

    n

    n

    kT nh

    n

    kT nh

    n

    n

    /

    1)(

    )(

    ......3,2,1,0,

    0

    0

    0

    /

    0

    /

    0

    0

  • 8/11/2019 Bab 1 Intorductions and Planck Theory

    18/24

    Chapter 1 Thermal radiation and Plancks postulate

    0

    0

    0

    0

    0

    0

    0

    ln

    n

    n

    n

    n

    n

    n

    n

    n

    n

    n

    n

    n

    n

    n

    e

    e n

    e

    e d

    d

    e

    e d

    d

    e d d

    00

    ln]ln[n

    n

    n

    n e d

    d h e

    d

    d kT

    1132

    32

    0

    )1()1(.......1

    .....1

    e X X X X

    e e e e

    e X

    n

    n

    11)

    1

    1(

    )]1ln([)()1ln(

    /

    1

    kT h e h

    e

    h e

    e h

    e d

    d h e

    d

    d h

    01

    /1

    /

    /

    h e kT h

    kT kT h e kT h

    kT h

    kT h

  • 8/11/2019 Bab 1 Intorductions and Planck Theory

    19/24

    Chapter 1 Thermal radiation and Plancks postulate

    energy density between and +d:1

    8)( /3

    2

    kT hT

    e

    h

    c

    1

    18)()()(

    )()(

    /52 kT hc T T T

    T T

    e

    hc c

    d

    d

    d d

    Ex: Show )()4/()( T T c R

    dA

    dV

    r 22 4

    cos

    4

    r

    dA

    r

    r Ad solid angle expanded by dA is

    spectral radiancy:

    )(4

    sin4

    cos)(

    )/()4

    cos()()(

    2220

    2/

    0

    2

    0

    2

    T

    t c

    T

    T T

    c

    dr r t r

    d d

    t dAr

    dAdV R

  • 8/11/2019 Bab 1 Intorductions and Planck Theory

    20/24

    Chapter 1 Thermal radiation and Plancks postulate

    Ex: Use the relation between spectral radiancy

    and energy density, together with Plancks radiation law, to derive

    Stefans law

    d cd R T T )()4/()(

    32454 15/2, h c k T R T

    44

    3

    4

    2

    0

    3

    3

    4

    2

    0 /

    3

    200

    15

    )(2

    1

    )(21

    2)(

    4

    )(

    T h

    kT

    c

    dx e

    x

    h

    kT

    c

    d

    e

    h

    c

    d c

    d R R

    x

    kT h T T T

    15/)1/(

    /

    4

    0

    3 dx e x

    kT h x

    x

    32

    45

    152

    h c k

  • 8/11/2019 Bab 1 Intorductions and Planck Theory

    21/24

    Chapter 1 Thermal radiation and Plancks postulate

    Ex: Show that 15/)1( 410

    3 dx e x x

    dy e y n

    dx e x dx e e x I

    e e e e

    dx e e x dx e x I

    y

    n n

    x n

    n

    nx x

    n

    nx x x x

    x x x

    0

    3

    04

    00

    )1(3

    00

    3

    0

    21

    1

    0

    31

    0

    3

    )1(

    1

    .....1)1(

    )1()1(

    Sety x n e e n y x n dy dx x n y )1(33 ,)1/()1/()1(

    1 40 4

    0

    3

    16

    )1(

    16

    6

    n n

    y

    n n I

    dy e y by consecutive partial integration

    ?1

    14

    n n

    90

    1148

    18

    5)(

    6

    1)(

    4

    1

    4

    1

    4

    1

    22

    444

    2

    12

    2

    n n n

    x

    n

    x

    n n n x F

    n x F :F Fourier series expansion

  • 8/11/2019 Bab 1 Intorductions and Planck Theory

    22/24

    Chapter 1 Thermal radiation and Plancks postulate

    Ex: Derive the Wien displacement law ( ),T max ./2014.0max k hc T

    15

    0)1(

    50

    )(

    18

    )(

    2/

    /

    /

    /5

    x

    kT hc

    kT hc

    kT hc T

    kT hc T

    e x

    e

    e

    kT

    hc

    e d

    d

    e

    hc

    kT hc x /

    x e y x

    y 21 ,51

    Solve by plotting: find the intersection point for two functions

    5/11 x y

    x e y 2

    T max

    5

    Y

    X

    intersection points:965.4,0 x x

    k hc T /2014.0max

  • 8/11/2019 Bab 1 Intorductions and Planck Theory

    23/24

    Chapter 1 Thermal radiation and Plancks postulate

    1.5 The use of Plancks radiation law in

    thermometry

    (1) For monochromatic radiation of wave length the ratio of the spectral

    intensities emitted by sources at and is given byK T o 1 K T o

    2

    1

    12

    1

    /

    /

    kT hc

    kT hc

    e

    e

    :

    :

    2

    1

    T

    T standard temperature ( Au )

    unknown temperature

    C T o melting 1068

    (2) blackbody radiation supports the big-bang theory. K o

    3

    optical pyrometer

  • 8/11/2019 Bab 1 Intorductions and Planck Theory

    24/24

    Chapter 1 Thermal radiation and Plancks postulate

    1.6 Plancks Postulate and its implication

    Plancks postulate: Any physical entity with one degree of freedom whose

    coordinate is a sinusoidal function of time

    (i.e., simple harmonic oscillation can posses

    only total energynh

    Ex: Find the discrete energy for a pendulum of mass 0.01 Kg suspended

    by a string 0.01 m in length and extreme position at an angle 0.1 rad.

    295

    333334

    5

    102105

    10)(106.11063.6

    )(105)1.0cos1(1.08.901.0)cos1(

    sec)/1(6.11.08.9

    21

    21

    E

    E J h E

    J mg mgh

    l g

    The discreteness in the energy is not so valid.