b.a. schrefler , f. pesavento - uni-stuttgart.de · > 1 model concepts for fluid-fluid and...

86
> 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach to model concrete as porous material B.A. Schrefler , F. Pesavento Department of Structural and Transportation Engineering University of Padova – ITALY D. Gawin Department of Building Physics and Building Materials Technical University of Lodz – POLAND Multi-physics approach to model concrete as porous material Model Concepts for Fluid - F luid and Fluid - Solid Interactions Freudenstadt - Lauterbad, March 20- 22, 2006

Upload: hoangtu

Post on 01-Sep-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

B.A. Schrefler , F. PesaventoDepartment of Structural and Transportation Engineering

University of Padova – ITALY

D. GawinDepartment of Building Physics and Building MaterialsTechnical University of Lodz – POLAND

Multi-physics approach to model concrete as porous material

Model Concepts for Fluid- Fluid and Fluid- Solid InteractionsFreudenstadt- Lauterbad, March 20- 22, 2006

Page 2: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 2 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

Introduction

Mathematical model of concrete as multiphase porous material

Modelling of concrete at early ages and beyond

Thermodynamic model of the kinetics of hydration process

Components of concrete strains & description of concrete shrinkage

Hygro- thermo- chemo- mechanical couplings in concrete at early ages

Numerical solution & examples of its application

Space- & temporal discretisation

Solution of the nonlinear equation set

Validation of the model: numerical examples

Concrete at high temperature

Physics of concrete exposed to high temperature

Spalling phenomena

Conclusions & final remarks

Layout

Page 3: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 3 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

Critical temperature & Critical point Scanning Electron Microscopy

10 000 x

Physical ModelPhases of moisture & inner structure of concrete poro sity

Page 4: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 4 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

Thermodynamical equilibrium state locally (slow phenomena)

Concrete treated as a deformable, multiphase porous material

Phase changes and chemical reactions (hydration) taken into account

Full coupling:

hygro-thermo-mechanical (stress – strain) ⇔ chemical reaction

(cement hydration)

Theoretical ModelFundamental hypotheses

Page 5: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 5 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

Various mechanisms of moisture- and energy- transportcharacteristic for the specific phases of concrete are considered.

Evolution in time (aging) of material properties, e.g. porosity, permeability, strength properties according to the hydration degree.

Non-linearity of material properties due to temperature, gas pressure, moisture content and material degradation.

Theoretical ModelFundamental hypotheses

Page 6: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 6 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

Capillary water (free water):

advective flow (water pressure gradient)

Physically adsorbed water:

diffusive flow (water concentration gradient)

Chemically bound water:

no transport

Water vapour:

advective flow (gas pressure gradient)

diffusive flow (water vapour concentration gradient)

Dry air:

advective flow (gas pressure gradient)

diffusive flow (dry air concentration gradient)

Theoretical ModelTransport Mechanisms

Page 7: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 7 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

Dehydration: solid matrix + energy ⇒ bound water water

Hydration: chemically bound water ⇒ solid matrix + energy

Evaporation: capillary water + energy ⇒ water vapour

Condensation: water vapour ⇒ capillary water + energy

Desorption: phys. adsorbed water + energy ⇒ water vapour

Adsorption: water vapour ⇒ phys. adsorbed water + energy

Theoretical ModelChemical reactions & Phase Changes

Page 8: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 8 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

Balance equations:

local formulation (micro- scale)

Volume Averaging Theory

by Hassanizadeh & Gray, 1979,1980

macroscopic formulation

(macro- scale)

δV

dv

Theoretical ModelMicro- ⇒⇒⇒⇒ macro- description

Model development:

Lewis & Schrefler: “The FEM in the Static and Dynamic ...”, Wiley, 1998

Schrefler: ”Mechanics and thermodynamics of saturated/unsaturated…”, Appl. Mech. Rev., 55(4), 2002

Representative

Elementary

Volume

Page 9: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 9 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

Mass balance equations

→ taking into account phase changes & related source terms

solid matrix

chemically bound water

capillary water (free water)

physically adsorbed water

water vapour

dry air

Liquid phase

Gas phase

Solid phase

Theoretical ModelMacroscopic (space averaged) balance equations

Page 10: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 10 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

Energy balance equation

→ taking into account phase changes & related source terms

conduction (Fourier’s law)

convection

Entropy inequality

limitations for constitutive relationships

Theoretical ModelMacroscopic (space averaged) balance equations

Page 11: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 11 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

Linear momentum balance equations

multiphase system (equilibrium equation)

capillary water (Darcy’s law)

adsorbed water (Fick’s law)

water vapour (Darcy’s and Fick’s law)

dry air (Darcy’s and Fick’s law)

Angular momentum balance equation

symmetry of stress tensor

Theoretical ModelMacroscopic (space averaged) balance equations

Page 12: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 12 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

Gas pressure – pg

Capillary pressure – pc

Temperature – T;

Displacement vector – [ux, uy , uz]

Hydration/Dehydration degree – Γhydr

Mechanical damage degree – d

Themo-chemical damage degree – V

Theoretical ModelState variables & internal variables

Theoretical fundamentals and model development:

Lewis & Schrefler : “The FEM in the Static and Dynamic ...”, Wiley, 1998

Gawin, Pesavento, Schrefler , CMAME 2003, Mat.&Struct. 2004, Comp.&Conc. 2005

Gawin, Pesavento, Schrefler , IJNME 2006 (part 1, part2)

Page 13: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 13 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

Energetic interpretation of capillary pressure

Theoretical ModelState variable for moisture transport

Chemical equilibrium

c wp = −Ψρ

lngw

ads bs

pH RT

f

∆ = −

/ads wH MΨ = −∆

lngw

gwsw

RT p

M f

Ψ =

b gwµ = µ

lnc gw

w gwsw

p RT p

M p

− = ρ

b gwf f=

Above critical point of water

bs gwsf f=

Adsorbed water potential

Below critical point of water

Page 14: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 14 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

The dry air and skeleton mass balance

The water species and skeleton mass balance

The multiphase medium enthalpy balance

The multiphase medium momentum balance (mechanical equilibrium)

Evolution equation for hydration/dehydration

Evolution equation for material damage

Evolution equation for thermo-chemical damage

Theoretical ModelMacroscopic balance equations & evolution equations

Page 15: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 15 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

Solid skeleton mass balance equations

( ) ( )1 1

s s sdehydrs

s s

mn D D nn div

Dt Dt− ρ − + − =ρ ρ

v&

Dry air mass balance equations

( ) ( )( )

1 11

1

s s s gagw s ga ga gs

s g g g gga ga ga

ssg dehydr dehydr

gs sdehydr

S nD S D T Dn n S S div div div n S

Dt Dt Dt

n S D mS

Dt

ρ− − β − + + + + ρρ ρ ρ

− Γ∂ρ− =∂Γρ ρ

v J v

&

Mathematical modelMacroscopic balance equations

Accumulation terms Flux terms Source terms

Page 16: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 16 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

Water species (liquid+vapor) mass balance equations

Energy balance equation (for the whole system)

( ) ( )

( ) ( ) ( ) ( )

( )

*

1

s s s gwww gw w gw s gw

w g swg g g

sshydrw ws gw gs w gw

w g w g shydr

hydr w gw sw gs

D S D T Dn S S div S n div

Dt Dt Dt

Dndiv n S div n S S S

Dt

mS S

ρρ − ρ + ρ + ρ α − β + +

Γ− ∂ρ+ ρ + ρ − ρ + ρ∂Γρ

= − ρ + ρ − ρρ

v J

v v

&

( ) ( )* 1 gw w wswg s g w w wn S S n Sβ = β − ρ + ρ + β ρwhere:

( ) ( ) ( )w w g gp w p g p eff vap vap hydr hydreff

TC C C grad T div grad T m H m H

t∂ρ + ρ + ρ ⋅ − χ = − ∆ − ∆∂

v v & &

Mathematical modelMacroscopic balance equations

Accumulation terms

Flux terms

Source terms

Page 17: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 17 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

Linear momentum balance equation (for the multipha se system)

+ 0s w ws ws w g gs gs gw gn S grad n S grad div−ρ − ρ + ⋅ − ρ + ⋅ + ρ = a a v v a v v gσσσσ

( )1 s w gw gn n S n Sρ = − ρ + ρ + ρwhere:

Mathematical modelMacroscopic balance equations

Inertial terms

Accumulation terms Flux term

Source term

Page 18: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 18 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

Governing equations of the model

Galerkin’s (weighted residuum)

method

Variational (weak) formulation

FEM (in space)

FDM (in the time domain)

Discretized form (non-linear set of equations)

Numerical solutionDiscretization and linearization the model equation s

Page 19: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 19 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

Discretized form (nonlinear equations)

the Newton - Raphson method

Solution of the final, linear equation set

the frontal method

Computer code (COMES family)

Numerical solutionDiscretization and linearization the model equation s

Page 20: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 20 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

tg

g cg c

gg gc gt gu gg gc gt g

cg c

cc ct cu cg cc ct c

cg c

tc tt tu tc tt t

g c

ug uc ut uu u

t t t t

t t t

t t t

t t t t

∂ ∂ ∂ ∂+ + + + + + =∂ ∂ ∂ ∂

∂ ∂ ∂+ + + + + =∂ ∂ ∂∂ ∂ ∂+ + + + + =∂ ∂ ∂

∂ ∂ ∂ ∂+ + + =∂ ∂ ∂ ∂

p p T uC C C C K p K p K T f

p T uC C C K p K p K T f

p T uC C C K p K p K T f

p p T uC C C C f

where Kij - related to the primary variablesCij - related to the time derivative of the primary variablesf i - related to the other terms, eg. BCs (i,j=g,c,t,u)

Numerical solutionMatrix form of the FEM-discretised governing equations

Page 21: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 21 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

( )

1

1

0 1

1

n n

n

n n n

t t+

+θ +

∂ − = ∂ ∆

< θ ≤= − θ + θ

X X X

X X X

θ =1 – fully implicit scheme (Euler backward);θ =0.5 – Crank-Nicholson scheme;θ =0 – fully explicit scheme (Euler forward);

( ) [ ]( )[ ]1 1

1 0

n nn

n nn

t

t tθ

θθ

θθ

+ ++

++

Ψ = + ∆ +− − − ∆ − ∆ =

X C K X

C K X F

( ) ( ) ( ) ( ) ( )1 1 1 1 1, , ,Tg c t u

n n n n n+ + + + +Ψ = Ψ Ψ Ψ Ψ X X X X Xwhere

Numerical solutionTime-discretisation – Finite Difference Method

Page 22: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 22 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

where

Monolithic approach (or partitioned approach)

Frontal solver (or domain decomposition &

(with preconditioning & pivoting, parallel multi-frontal solver)

but without disc storage)

( )1

1 1,ln

ii l l

n n

+

+ +∂

= − ∆∂

X

ΨΨ X X

X

( ) ( ) Tl ll l l

n 1 n 1 n 1n 1 n 1, , ,g c

+ + ++ + ∆ = ∆ ∆ ∆ ∆

X p p T u

Numerical solutionSolution of the equations set

Page 23: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 23 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

IntroductionModelling of concrete at early ages and beyond

Creep in concrete

Bazant, Wittmann (eds)- 1982

Bazant et al. - 1972-2002

Harmathy - 1969

Bazant, Chern – 1978 - 1987

Hansen - 1987

Bazant, Prasannan - 1989

De Schutter, Taerwe - 1997

Sercombe, Hellmich, Ulm, Mang - 2000

Hydration of cement

Jensen - 1995

van Breugel - 1995

De Schutter, Taerwe - 1995

Singh et al. – 1995

Ulm, Coussy -1996

Bentz et al. – 1998, 1999

Sha et al. - 1999

Page 24: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 24 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

( ) ( )1 1 11 1, , ,

Ti ii g c i in n nn n+ + ++ +

∆ = ∆ ∆ ∆ ∆ X p p T u 1

1 1 1i i in n n++ + += + ∆X X X

where:

( ) ,eqhydrhydr tΓ=Γ

( ) ( ) ( ) ,ττβτβ= ∫ ϕ dttt

o Teq

( ) ( ) ,

τ−=τβ

T1

T1

R

Uexp

o

hydrT

( ) ( )[ ] ,144 11

ϕ τϕ+α+=τβ

Details: [Bazant Z.P. (ed.), Mathematical Modeling of Creep and Shrinkage of Concrete, Wiley, 1988]

Γhydr - cement hydration degree;

teq - equivalent period of hydration;

βT - coefficient describing effect of the concrete temperature on the hydration rate;

βϕ - coefficient describing effect of the concrete relative humidity on the hydration rate;

Chemo - hygrothermal interactionsEvolution of the hydration process

Maturity-type model:

Page 25: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 25 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

Influence of the temperature and relative humidity[Bazant, 1988]

0

1

2

3

4

5

6

7

273 298 323 348 373

TEMPERATURE [K]

CO

EF

FIC

IEN

T ββ ββ

T [-

] U/R=const

U/R=f(T)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

RELATIVE HUMIDITY [-]

CO

EF

FIC

IEN

T ββ ββ

φφ φφ [-

]

Chemo - hygrothermal interactionsEvolution of the hydration process

Page 26: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 26 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

Evolution of the hydration degree[Ulm & Coussy, 1996]

Chemo - hygrothermal interactionsEvolution of the hydration process

hydrhydr

hydr

mm

χχ∞ ∞

Γ = =

( )exphydr ahydr

d EA

dt RTΓΓ = Γ −

%

where

- hydration degree-related, normalized affinity, χ - hydration extent,

Ea – hydration activation energy, R – universal gas constant, t – time.

( )hydrAΓ Γ%

Free water → Chemically bound water

Page 27: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 27 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

Hydration rate as a function of chemicalaffinity

[Cervera, Olivier, Prato, 1999]

Chemo - hygrothermal interactionsEvolution of the hydration process

( ) ( ) ( )21 1 exphydr hydr hydr hydr

AA A κ ηκΓ ∞

Γ = + Γ − Γ − Γ

%

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0 0.2 0.4 0.6

Hydration degree [-]

Hyd

ratio

n ra

te [

1/h]

Page 28: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 28 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

Evolution of the hydration degree[Gawin, Pesavento, Schrefler, IJNME 2006 part 1 and part 2]

Chemo - hygrothermal interactionsEvolution of the hydration process

x · (unhydrated cement) + w · H2O → z · (hydrated cement)

AΓ ≡ x · µ unhydr + w · µ water - z · µ hydr

( )hydrAΓ Γ

where

- hydration degree-related chemical affinity, χ - hydration extend,

µ – chemical potential, N – mole number, x, w, z - stoichiometric coefficients.

unhydr hydrwaterdN dNdNd

x w z= = =

− −χ

Page 29: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 29 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

Evolution of the hydration degree[Gawin, Pesavento, Schrefler, IJNME 2006 part 1 and part 2]

Chemo - hygrothermal interactionsEvolution of the hydration process

hydrhydr

hydr

mm∞ ∞

Γ = =χχ

( ) ( ), exphydr ahydr hydr

d EA

dt RTΓΓ = Γ Γ −

% ϕβ ϕ

( ) ( ) ( )21 1 exphydr hydr hydr hydr

AA AΓ ∞

Γ = + κ Γ − Γ −ηΓ κ %

where

- hydration degree-related, normalized affinity, χ - hydration extent,

Ea – hydration activation energy, R – universal gas constant, t – time.

( )hydrAΓ Γ%

from: [Cervera, Olivier, Prato, 1999]

Effect of relative humidity

Page 30: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 30 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

Influence of relative humidity on the hydration rate

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

RELATIVE HUMIDITY [-]

CO

EF

FIC

IEN

T ββ ββ

φφ φφ [-

]

Hygral - chemical interactionsEvolution of the hydration process

( )141 a aϕβ ϕ

− = − −

[Bazant, 1988]

Page 31: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 31 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

Influence of the hydration rate on the heat- & mass- sources

Chemo - hygrothermal interactionsEvolution of the hydration process

hydr hydrhydr hydr

mm m

t t ∞∂ ∂Γ

= =∂ ∂

&

hydr hydr hydrhydr hydr

Q mQ H

t t t∞∂ ∂Γ ∂

= = ∆∂ ∂ ∂

0,E+00

1,E-06

2,E-06

3,E-06

4,E-06

5,E-06

0 0,2 0,4 0,6 0,8 1

Hydration degree [-]

Hyd

ratio

n ra

te [

1/s]

Hydration rate

where:mhydr – mass of chemically bound water,

Qhydr – heat of hydration

Page 32: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 32 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

-1.E-03

-9.E-04

-8.E-04

-7.E-04

-6.E-04

-5.E-04

-4.E-04

-3.E-04

-2.E-04

-1.E-04

0.E+00

1.E-04

0 72 144 216 288 360 432 504 576 648 720

TIME [hour]

ST

RA

INS

[-]

total creep chemical mech. & shrinkage thermal

Chemo- mechanical interactionsStrain components

Caused by:mechanical load and shrinkage

( )chem chem hydr hydrd d= β Γ Γε

εchem - chemical strain

(irreversible)

details:

[Gawin, Pesavento, Schrefler,

IJNME part1 and part2]

Page 33: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 33 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

ϕβ dd shsh ⋅=ε

No physical mechanisms are taken into account

Based directly on experimental data

e.g:

[Bazant (ed.), Mathematical Modelling of Creep and Shrinkage of Concrete, Wiley, 1988]

Phenomenological modelling of shrinkage strain

Hygro-mechanical interactionsShrinkage of concrete

Page 34: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 34 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

Capillary pressure & disjoining pressure Forces:

in water

Capillary pressure

Disjoining pressure

in skeleton

Capillary pressure

Disjoining pressure

Hygro-mechanical interactionsShrinkage of concrete

Page 35: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 35 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

Effective stress principle:

where is the solid surface fraction in contact with the wetting film,

I- unit, second order tensor, α- Biot’s coefficient,

ps- pressure in the solid phase

Hygro-mechanical interactionsShrinkage of concrete

s g ws csp p p= − χ

wssx

Coefficient x

0,0E+00

5,0E-02

1,0E-01

1,5E-01

2,0E-01

2,5E-01

3,0E-01

3,5E-01

0,0 0,2 0,4 0,6 0,8 1,0

Saturation [-][Gray & Schrefler, 2001]

s s se p= + ασ σ I

Page 36: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 36 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

Hygro-mechanical interactionsShrinkage of concrete

Experimental data from: [Baroghel- Bouny, et al., Cem. Concr. Res. 29, 1999]

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

0% 20% 40% 60% 80% 100%

Relative humidity [% RH]

Shr

inka

ge s

trai

n [m

/m]

experimental results

theory by Coussy

theory by Schrefler & Gray

s g cwdp dp S dp= −

[Coussy, 1995]

" sd d dp= + ασ σ I

Effective stress principle:

s g ws csp p p= − χ

s se p= + ασ σ I

[Gray & Schrefler, 2001]

Page 37: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 37 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

Evolution of concrete porosity & permeability:

Hygro-structural - chemical interactionsEvolution of the material properties

0,0E+00

1,0E-01

2,0E-01

3,0E-01

4,0E-01

5,0E-01

6,0E-01

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

HYDRATION DEGREE [-]

PO

RO

SIT

Y [

-]

1,0E-21

1,0E-20

1,0E-19

1,0E-18

1,0E-17

1,0E-16

1,0E-15

1,0E-14

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

HYDRATION DEGREE [-]

PE

RM

EA

BIL

ITY

[m

2 ]

k = f (hydr)

k = f (porosity)

( ) 10 k hydrAhydrk k ΓΓ

∞Γ = ⋅( ) ( )10 knA n nk n k ∞−∞= ⋅( ) ( )1hydr n hydrn n A∞Γ = + Γ −

[Halamickova, Detwiler, Bentz, Garboczi, 1995] [Halamickova et al., 1995, Kaviany, 1999]

Page 38: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 38 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

Experimental results from [Cook & Hover, 1999]

15

20

25

30

35

40

45

50

55

30 40 50 60 70 80 90 100

HYDRATION DEGREE [%]

PO

RO

SIT

Y [

%]

W/C= 0.3

W/C= 0.4

W/C= 0.5

W/C= 0.6

W/C= 0.7

Evolution of concrete porosity & permeability:

Hygro-structural - chemical interactionsEvolution of the material properties

Page 39: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 39 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

Evolution of concrete strength properties:[De Schutter, 2002]

Hygro-structural - chemical interactionsEvolution of the material properties

Page 40: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 40 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

Mathematical modelConstitutive law for creep strain

Details: [Bazant Z.P. Prasannan S.,Solidification theory for concrete creep I: formulation, J. Eng. Mech., 115(8), 1989]

where ( ) ( )( ) ( )

se

vhydr

F tt t

t

σε γ

& & ( ) ( ) ( )( )

s se e

f

F t tt

t

σ σε

η =&

- creep strains (as sum of viscoelastic and viscous (flow) term);

- viscoelastic term;

- flow term;

- viscoelastic microstrain;

- apparent macroscopic viscosity

c

v

f

εεεγη

&

&

&

Solidification theory for basic creep

Effective stress

Hydration degree

c v fd d d= +ε ε ε( )

( )

se c th ch

c th ch

d d d d d

d

= −

+ −

D

D

σ ε ε − ε − εσ ε ε − ε − εσ ε ε − ε − εσ ε ε − ε − ε

ε ε − ε − εε ε − ε − εε ε − ε − εε ε − ε − ε

Page 41: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 41 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

( ) ( )1 1 11 1, , ,

Ti ii g c i in n nn n+ + ++ +

∆ = ∆ ∆ ∆ ∆ X p p T u 1

1 1 1i i in n n++ + += + ∆X X X

Non-linear dependance of creep on the stress:

- function of stresses ;

- normalized stress;

- effective stress;

- damage at high stress;

- compressive strenght;

se

c

F

s

f

σΩ

( ) ( )2101

; ;1

ses

ec

tsF t s s

f

σσ + = Ω = = ′− Ω

Details: [Bazant Z.P. Prasannan S.,Solidification theory for concrete creep I: formulation, J. Eng. Mech., 115(8), 1989]

Mathematical modelConstitutive law for creep strain

where:

Page 42: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 42 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

( ) ( )1 1 11 1, , ,

Ti ii g c i in n nn n+ + ++ +

∆ = ∆ ∆ ∆ ∆ X p p T u 1

1 1 1i i in n n++ + += + ∆X X X

Details:[Bazant Z.P. et al. Microprestress- solidification theory for concrete creep : aging and drying effects, J. Eng. Mech., 123(11), 1997]

Log-Power law:

Mathematical modelConstitutive law for creep strain

( ) 20

' ln 1n

t t qξλ

Φ − = +

11 pcpSη

−=

( )01

m

v t t

λ α = +

Microprestress theory

- compliance function

- parameter from B3 model

- microprestress ;

- positive constants;

- volume fraction of the solified matter;

- constant usually equal to 1;

- constants of the material;

( )2

0

'

,

( )

,

t t

q

S

p c

v t

m

λα

Φ −where( ) ( )1 1

hydrv t t=

Γ

Page 43: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 43 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

η1 Ε1

η2 Ε2

ηN ΕN

γ 1

γ 2

γ N

γ

Φ(t-t')

σg(v,t)

σ

v(t) dv(t)

σ

η

h(t) dh(t)

ε0

εf

εv

σE

STRAINS

elastic (with aging)

visco-elastic

viscous (flow)

+chemical+thermal+cracking

creep

Details: [Bazant Z.P. Prasannan S.,Solidification theory for concrete creep I: formulation, J. Eng. Mech., 115(8), 1989]

with

Rheologic model: (non-aging Kelvin chain)

( ) ( ) /' 1N

t t A e µξ τµ

µξ − Φ − = Φ = − ∑

1A

Eµµ

=

and

t

t

′- time (age of concrete);

- time (age of concrete) at loading time;

- elastic modulus of Kelvin unit

't tξ = −

Mathematical modelConstitutive law for creep strain

Page 44: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 44 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

Details: [Bazant Z.P. Xi Y.,Continuous retardation spectrum for solidification theory of concrete creep,

J. Eng. Mech., 121(2), 1993]

with

Retardation spectrum technique

and where

( )( )

log

L

µ

ττ∆

- retardation spectrum;

- time interval between two adjacent Kelvin units;

( )( ) ( )1ln10 logA L

Eµ µ µµ

τ τ= = ∆

( ) ( ) ( )( )2

31

1 3

n

nL q n n

µµ

µ

ττ

τ≈ −

+1 10µ µτ τ+ =

Mathematical modelConstitutive law for creep strain

Page 45: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 45 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

where the elastic instantaneous term is:

Evaluation of Young’s modulus:

1

0

hydr

q

Aµλ

Γ-parameter from B3 model;

-hydration degree;

- coefficient from the exponential algorithm;

- term 0 in the Kelvin chain

1

1 01

11 1N

hydr hydr

E q AE

µ

µ µ

λ−

=

−′′ ′= + + Γ Γ

1 1 / hydrq q′ = Γ

Aging elasticityHydration degree

Mathematical modelConstitutive law for creep strain

Page 46: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 46 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

Thermal conductivity

( )4

( ) 1+1

w

eff d s

n ST

n

ρχ = χ − ρ

( )1d do oA T Tχ χ = χ + −

1.1

1.2

1.3

1.4

1.5

1.6

1.7

20 70 120 170 220 270 320 370

Temperature [ oC]

The

rmal

con

duct

ivity

[W

/(mK

)]

Pc= 0 [Pa]

1.00E+08

2.00E+08

4.00E+08

6.00E+08

5.00E+07

Thermal capacity

2.00E+06

2.05E+06

2.10E+06

2.15E+06

2.20E+06

2.25E+06

2.30E+06

2.35E+06

2.40E+06

2.45E+06

20 70 120 170 220 270 320 370

Temperature [ oC]

The

rmal

cap

acity

[J/m

3 K]

Pc= 0 [Pa]

5.00E+07

1.00E+08

2.00E+08

4.00E+08

6.00E+08

( ) ( ) ( )( )1 1s w g gwp ps pw pga pgw pgaC n C n S C S C C C ρ = − ρ + ρ + − ρ + ρ −

( )1ps pso c oC C A T Tρ = ρ + −

Mathematical modelConstitutive relationships for thermal properties

Page 47: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 47 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

Mathematical modelConstitutive relationships for porous solid

[Baroghel-Bouny, Mainguy, Lassabatere, Coussy, Cement Concrete Res. 29, 1999]

Sorption isotherm

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 20% 40% 60% 80% 100%

Relative humidity [%]

Sat

urat

ion

degr

ee [

%] Ordinary Concrete

at T=20°C

Page 48: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 48 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

Cylinder size - d= 4 cm ; h= 60 cm

Initial conditions:

To= 293.15 K, ϕo= 99.9% RH, Γhydr=0.1, for Ordinary Concrete (Bentz test);To= 293.15 K, ϕo= 99.0% RH, Γhydr=0.1, for High Performance Concrete (Laplante test);

Boundary conditions:

- convective heat and mass exchange: sealed (adiabatic)- surface mechanical load: unloaded

CASE A ⇒ full model;

CASE B ⇒ simplified model (no Relative humidity, β ϕ(ϕ)=1)CASE C ⇒ full model adjusted (better agreement with experimental tests)

Numerical exampleMaturing of a cylindrical specimen (Bentz-Laplante te st)

Page 49: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 49 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

Parameter Symbol Unit OC HPC C-30 Water / cement ratio w/c [-] 0.45 0.35 0.35 Aggregate / cement ratio c/a [-] 4.0 4.55 3.0 Silica fume / cement ratio s/a [-] 0.00 0.09 0.00 Porosity n [%] 12.2 8.2 11.8 Intrinsic permeability k [m2] 3⋅10-18 1⋅10-18 3⋅10-18 Activation energy Ea/R [K] 5000 4000 5000 Parameter A1 A1 [1/s] 7.78⋅104 1.11⋅103

(8.88⋅102) 7.78⋅104

Parameter A2 A2 [-] 0.5⋅10-5 1⋅10-4 0.5⋅10-5 Parameter ∞κ ∞κ [-] 0.72 0.58 0.66

Parameter η η [-] 5.3 6.0 (4.7) 5.3

Heat of hydration hydrQ ∞ [MJ/m3] 202 172 103

Parameter a a [-] 18.6237 46.9364 18.6237 Parameter b b [-] 2.2748 2.0601 2.2748 Apparent density ρ eff [kg/m3] 2285 2373 2295 Specific heat (Cp)eff

[J/kgK] 1020 1020 1020 Thermal conductivity λ eff [W/mK] 1.5 1.78 1.5 Young’s modulus E [GPa] 24.11 39.61 29.52 Poisson’s ratio ν [-] 0.20 0.20 0.18 Compressive strength fc [MPa] 26 70 30

Characteristic properties of different types of concrete (in dry state, after 28 days of maturing)

Numerical exampleMaturing of a cylindrical specimen (Bentz-Laplante te st)

Page 50: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 50 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

Numerical exampleMaturing of a cylindrical specimen (Bentz-Laplante te st)

293.15

303.15

313.15

323.15

333.15

343.15

353.15

363.15

0 24 48 72 96 120 144 168

TIME [h]

TE

MP

ER

AT

UR

E [

K] Experiment

Numerical

293.15

303.15

313.15

323.15

333.15

343.15

353.15

0 4 8 12 16 20 24

TIME [h]

TE

MP

ER

AT

UR

E [

K]

case Acase Bcase CExperiment

Ordinary Concrete High Performance Concrete

Page 51: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 51 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

Numerical exampleMaturing of a cylindrical specimen (Bentz-Laplante te st)

OC-HPC comparison (case A) HPC - A-B-C- comparison

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0 24 48 72 96 120 144 168

TIME [h]

RE

LAT

IVE

HU

MID

ITY

[-]

NSCHPC

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0 12 24 36 48 60 72

TIME [h]

RE

LAT

IVE

HU

MID

ITY

[-]

case Acase Bcase C

Page 52: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 52 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

Numerical exampleMaturing of a cylindrical specimen (Bentz-Laplante te st)

OC-HPC comparison (case A) HPC - A-B-C- comparison

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 12 24 36 48 60 72 84 96

TIME [h]

HY

DR

AT

ION

DE

GR

EE

[-]

OCHPC

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 12 24 36 48 60 72

TIME [h]

HY

DR

AT

ION

DE

GR

EE

[-]

case Acase Bcase C

Page 53: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 53 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

Cubic specimen – 50x50x200 mm;

Initial conditions:To= 293.15 K, ϕo= 99.0% RH, Γhydr=0.1;

Boundary conditions:

- convective heat and mass exchange: sealed (adiabatic)- surface mechanical load: unloaded

Properties of the cement paste:

- Elastic modulus measured prior the test (1, 3 and 7 days), curing temperature 20°C

Numerical exampleAutogenous shrinkage in High Performance Cement Pas te

(Lura, Jensen, van Breugel test)

Page 54: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 54 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

Numerical exampleAutogenous shrinkage in High Performance Cement Pas te

(Lura, Jensen, van Breugel test)

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

0 24 48 72 96 120 144 168

TIME [h]

RE

LAT

IVE

HU

MID

ITY

[-]

RHb=4, fc=10b=2.8, fc=10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 12 24 36 48 60 72

TIME [h]

HY

DR

AT

ION

DE

GR

EE

[-]

Experimental

b=4 or 2.8, fc=10

R.H. development in time Hydr. Degree development in time

Page 55: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 55 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

Numerical exampleAutogenous shrinkage in High Performance Cement Pas te

(Lura, Jensen, van Breugel test)

Temperature development in time Saturation development in time

293.15

294.15

295.15

296.15

297.15

298.15

299.15

300.15

301.15

302.15

303.15

0 24 48 72 96 120 144 168

TIME [h]

TE

MP

ER

AT

UR

E [K

]

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

0 24 48 72 96 120 144 168

TIME [h]

SA

TU

RA

TIO

N [

-]

Page 56: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 56 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

Numerical exampleAutogenous shrinkage in High Performance Cement Pas te

(Lura, Jensen, van Breugel test)

Effective stress development in time Total strains vs R.H.

-4.0E+06

-3.5E+06

-3.0E+06

-2.5E+06

-2.0E+06

-1.5E+06

-1.0E+06

-5.0E+05

0.0E+00

0 24 48 72 96 120 144 168

TIME [h]

EF

FE

CT

IVE

ST

RE

SS

[P

a]

-3.5E-04

-3.0E-04

-2.5E-04

-2.0E-04

-1.5E-04

-1.0E-04

-5.0E-05

0.0E+00

5.0E-05

0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

RELATIVE HUMIDITY [-]T

OTA

L S

TR

AIN

[-]

total

shrinkage

chemical

creep

thermal

Page 57: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 57 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

Numerical exampleAutogenous shrinkage in High Performance Cement Pas te

(Lura, Jensen, van Breugel test)

Effect of shrinkage – creep coupling

-3.0E-04

-2.5E-04

-2.0E-04

-1.5E-04

-1.0E-04

-5.0E-05

0.0E+00

0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

RELATIVE HUMIDITY [-]

TO

TA

L S

TR

AIN

[-]

total - experiment

shrinkage - experiment

total - numerical

shrinkage - numerical

Page 58: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 58 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

Numerical exampleTests of Bryant and Vadhanavikkit (1987)

Slab – thickness=30 cm; concrete: C50

Initial conditions:

To= 293.15 K, ϕo= 99.8% RH, Γhydr=0.3;

Boundary conditions:

Shrinkage- convective heat and mass exchange: αc=5W/m2K; βc=0.002m/s

- surface mechanical load: unloaded or load=7 MPa

Sealed

- convective heat and mass exchange: αc=5W/m2K; sealed - surface mechanical load: unloaded or load=7 MPa

Age of loading: 8,28,84,182 days

Page 59: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 59 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

Numerical exampleTests of Bryant and Vadhanavikkit (1987)

Drying & Load

-1.8E-03

-1.6E-03

-1.4E-03

-1.2E-03

-1.0E-03

-8.0E-04

-6.0E-04

-4.0E-04

-2.0E-04

0.0E+00

1 10 100 1000

TIME [days]

TO

TA

L S

TR

AIN

[-]

exp. shrinkageshrinkageexp. 8 daystotal 8 daysexp. 28 daystotal 28 daysexp. 84 daystot. 84 daysexp. 182 daystot. 182 days

-2.0E-03

-1.8E-03

-1.6E-03

-1.4E-03

-1.2E-03

-1.0E-03

-8.0E-04

-6.0E-04

-4.0E-04

-2.0E-04

0.0E+00

1 10 100 1000

TIME [days]

ST

RA

IN [-

]

exp. Sealed - load sealed - loadexp. shrinkageshrinkageexp. total creepdrying & load

Pickett’s effect (8 days)

Page 60: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 60 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

Numerical exampleTests of Bryant and Vadhanavikkit (1987)

Square prism – 15x15x60 cm; equiv. cylinder φ=16.3 cm; concrete: C50

Initial conditions:

To= 293.15 K, ϕo= 99.8% RH, Γhydr=0.3;

Boundary conditions:

Shrinkage- convective heat and mass exchange: αc=5W/m2K; βc=0.002m/s; RHamb=60%

- surface mechanical load: unloaded or load=7 MPa

Sealed

- convective heat and mass exchange: αc=5W/m2K; sealed - surface mechanical load: unloaded or load=7 MPa

Age of loading: 8,28,84,182 days

Page 61: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 61 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

Numerical exampleTests of Bryant and Vadhanavikkit (1987)

Drying & Load Pickett’s effect (8 days)

-2.5E-03

-2.0E-03

-1.5E-03

-1.0E-03

-5.0E-04

0.0E+00

1 10 100 1000

TIME [days]

TO

TA

L S

TR

AIN

[-]

exp. shrinkageshrinkageexp. 8 daystotal 8 daysexp. 28 daystotal 28 daysexp. 84 daystotal 84 daysexp. 182 daystot. 182 days

-2.5E-03

-2.0E-03

-1.5E-03

-1.0E-03

-5.0E-04

0.0E+00

1 10 100 1000

TIME [days]

ST

RA

IN C

OM

PO

NE

NT

[-].

exp. shrinkagenum. shrinkageexp. loadnum. loadexp. load + shrinkagenum. load + shrinkage

Page 62: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 62 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

Numerical exampleTests of L’Hermite (1965)

Square prism – 7x7x28 cm; equiv. cylinder φ=7.6 cm; concrete: C30

Initial conditions:

To= 293.15 K, ϕo= 99.9% RH, Γhydr=0.3;

Boundary conditions:

Shrinkage- convective heat and mass exchange: αc=5W/m2K; βc=0.002m/s; RHamb=50%

- surface mechanical load: unloaded or load=4.9, 9.8 and 12.3 MPa

Sealed

- convective heat and mass exchange: αc=5W/m2K; sealed - surface mechanical load: unloaded or load=4.9, 9.8 and 12.3 MPa

Age of loading: 7, 21, 90 and 180 days

Page 63: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 63 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

Numerical exampleTests of of L’Hermite (1965)

Drying & Load Effect of load (180 days)

-1.8E-03

-1.6E-03

-1.4E-03

-1.2E-03

-1.0E-03

-8.0E-04

-6.0E-04

-4.0E-04

-2.0E-04

0.0E+00

1 10 100 1000

TIME [days]

ST

RA

IN C

OM

PO

NE

NT

[-]

exp.shrinkageshrinkageexp. 4.905 MPatotal 4.905 MPaexp. 9.81 MPatotal 9.81MPaexp.12.2625 MPatotal 12.2625 MPa

-3.0E-03

-2.5E-03

-2.0E-03

-1.5E-03

-1.0E-03

-5.0E-04

0.0E+00

1 10 100 1000

TIME [days]

ST

RA

IN C

OM

PO

NE

NT

[-].

exp.shrinkageshrinkageexp. 7daystotal 7 daysexp. 21 daystotal 21 daysexp. 90 daystotal 90 daysexp. 180 daystotal 180 days

Page 64: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 64 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

Conclusions

The FE model of concrete based on a thermodynamically consistentmechanistic theory and its application for concrete at early ages and beyond has been presented.

Concrete is considered as multiphase, porous visco-elastic material.

Phase changes, chemical reactions (hydration), different fluid flows, material non-linearities (with respect to temperature, moisture content & evolution of cement hydration) and coupling between these processes are taken into account.

Futher research on introducing into the model a plastic damage theoryfor description of concrete cracking during early stages of hydration is in progress.

Page 65: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 65 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

IntroductionModelling of concrete at high temperarure

Concrete at high temperature

Bazant, Thonguthai – 1978

Thelandersson – 1987

England, Khoylou - 1995

Bazant, Kaplan – 1996

Gerard, Pijaudier-Cabot, Laborderie - 1998

Gawin, Majorana, Schrefler - 1999

Bentz – 2000

Nechnech, Reynouard, Meftah

- 2001

Thermal spalling

Phan – 1996

Ulm, Coussy, Bazant – 1999

Sullivan – 2001

Phan, Lawson, Davis - 2001

HITECO project – 1995-2000

NIST workshop – 1997

UPTUN project – 2002-2006

Page 66: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 66 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

Dehydration of concrete

Thermo-chemical interactionsConcrete at high temperature

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 200 400 600 800 1000

Temperature [ oC]

Deh

ydra

tion

degr

ee [

-]

0

0,005

0,01

0,015

0,02

0,025

0,03

0,035

0 0,2 0,4 0,6 0,8 1

Dehydration degree [-]

Deh

ydra

tion

rate

[1/

s]

( ) ( )[ ]maxdehydr dehydrt T tΓ = Γ ( )

−⋅Γ=∂Γ∂

Γ RT

EexpA

ta

AΓ – chemical affinityT –temperature of concrete

Page 67: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 67 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

Non-local isotropic damage theory

[Mazars & Pijaudier-Cabot, 1989]

Mechanical – mat. degradation interactionsMechanical material degradation description

2

2( ) exp

2oc

x sx s

l

−Ψ − = Ψ −

1( ) ( ) ( )

( )r V

x x s s dvV x

ε = Ψ − ε∫ %

( )3 2

1i

i+

=

ε = ε∑%

Ko

Koc

Fct

Fcc

εmax

σ−

ε−

t t c cd d d= +α α

Page 68: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 68 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

Chemo - mechanical interactionsConcrete at high temperature

Correlation of dehydration degree & thermo-chemical damage

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

0 0,1 0,2 0,3 0,4

Dehydration degree [-]

The

rmo-

chem

ical

dam

age

[-]

( )1

( )o

o a

E TV

E T= −

( ) ( )( ) ( ) ( )1 1 1 1 1

( ) ( ) ( )o

o a o o a

E T E T E TD d V

E T E T E T= − = − = − − ⋅ −

0 0(1 )(1 ) : (1 ) :e ed V D= − − = −σ Λ ε Λ εσ Λ ε Λ εσ Λ ε Λ εσ Λ ε Λ ε

( ) ( )1 1S

d VS= =

− −σσσσσ σσ σσ σσ σ% %

Page 69: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 69 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

Effect of thermo- chemical material degradation on the stress – strain curves for C-60 concrete

Thermochemical - mechanical interactionsConcrete at high temperature

-70

-60

-50

-40

-30

-20

-10

0

-0.006 -0.005 -0.004 -0.003 -0.002 -0.001 0

Strain [-]

Str

ess

[MP

a]

20°C200°C

300°C

400°C

500°C

Experimental results from the EURAM-BRITE “HITECO” project

Page 70: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 70 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

Intrinsic permeability – damage relationship

1.E-18

1.E-17

1.E-16

1.E-15

1.E-14

1.E-13

0 0.2 0.4 0.6 0.8 1

Damage parameter [-]

Wat

er in

tr.

perm

eabi

lity

[m2 ]

C-60

C-60 SF

C-70

C-90

Mechanical - hygral interactionsConcrete at high temperature

( )10 10p

D

Agf T A D

o go

pk k

p

= ⋅ ⋅ ⋅

Details:[Gawin, Pesavento & Schrefler,CMAME 2003]

Experimental results from the EURAM-BRITE “HITECO” project

Page 71: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 71 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

Chemo - mechanical interactionsConcrete at high temperature

Load Free Thermal Strain (LFTS) model

LFTS - irreversible part of thermal strain

V – thermo-chemical damage parametr

LFTS model according to:

[Gawin, Pesavento, Schrefler, Mat&Struct2004]

( )tchem tchemd V dVβ=ε

Thermal dilatation of C-90

-8,0E-03

-6,0E-03

-4,0E-03

-2,0E-03

0,0E+00

2,0E-03

4,0E-03

6,0E-03

8,0E-03

1,0E-02

0 100 200 300 400 500 600 700 800

Temperature [ oC]

Line

ar s

trai

n [m

/m]

experimental

total

therm_dilat

shrinkage

thermo-chem.

Page 72: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 72 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

Thermo - mechanical interactionsConcrete at high temperature

Load Induced Thermal Strain (LITS = „thermal creep”) model

3-D modelling of LITS:

[Thelandersson, 1987]

βtr(V) relation according to:

[Gawin, Pesavento & Schrefler, Mat&Struct 2004]

c

( )f ( )

tr str e

a

Vd dT

Tβ=ε Q : σ

( ) ( )11

2ijkl ij kl ik jl il jkQ = − + + +γδ δ γ δ δ δ δ

Transient thermal creep of C-90

15% load

30% load45% load60% load

0% load

-1,00E-02

-7,50E-03

-5,00E-03

-2,50E-03

0,00E+00

2,50E-03

5,00E-03

7,50E-03

1,00E-02

0 100 200 300 400 500 600 700 800

Temperature [oC]

Line

ar s

trai

n [

m/m

]

Page 73: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 73 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

( )( 1/ )1

bS G

−= + ( ) 1,

b

bc cE

G G T p pa

− = =

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400

Temperature [°C]

Sat

urat

ion

[-]

1.00E+051.00E+065.00E+061.00E+072.00E+075.00E+071.00E+081.00E+091.00E+10

Porosity of concrete

( )0 0A T Tφφ = φ + −

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 100 200 300 400 500 600

Temperature [°C]P

oros

ity [

-]

silicate-concrete

basalt-concretelimestone-concrete

Desorption isotherms

Thermo - mechanical interactionsConcrete at high temperature

Page 74: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 74 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

Physical phenomena in heated concreteCauses of thermal spalling phenomenon

moisture clog

High pressure of vapour0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

273,15 323,15 373,15 423,15 473,15Temperature (K)

Sat

urat

ed v

apou

r pr

essu

re

(MP

a)

v vsp p ϕ= ⋅

Page 75: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 75 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

moisture clog

High pressure of vapour

Cement matrix

Aggregate

Physical phenomena in heated concreteCauses of thermal spalling phenomenon

Page 76: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 76 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

moisture clog

High pressure of vapour

stresses: aggregate - cem. matrix

Cement matrix

Aggregate

thermaldegradation

+

Physical phenomena in heated concreteCauses of thermal spalling phenomenon

Page 77: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 77 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

moisture clog

High pressure of vapour

stresses: aggregate - cem. matrix

Stress – strain curve

thermaldegradation

+

Physical phenomena in heated concreteCauses of thermal spalling phenomenon

Page 78: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 78 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

moisture clog

High pressure of vapour

stresses: aggregate - cem. matrix

thermal degradation

+

Cement matrix Aggregate

chemical degradation+

water from dehydration

+v vsp p ϕ= ⋅

Physical phenomena in heated concreteCauses of thermal spalling phenomenon

Page 79: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 79 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

moisture clog

High pressure of vapour

chemical degradation

+water from

dehydration

+thermal

degradation

+

stresses: aggregate - cem. matrix

Physical phenomena in heated concreteCauses of thermal spalling phenomenon

Page 80: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 80 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

moisture clog

High pressure of vapour

chemical degradation

+water from

dehydration

+thermal

degradation

+

stresses: aggregate - cem. matrix

Mechanical stresses

Constraints for thermal dilatation

Physical phenomena in heated concreteCauses of thermal spalling phenomenon

Page 81: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 81 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

Problem description

C- 60 concrete 30x30 cm column

ICs:

ϕin= 60 % RH, Tin= 298.15 K

BCs:

convective & radiative for heat exchange:

αc=18 W/m2K, eσo=5.1⋅10-8 W/(m2K4),

Te=ISO fire curve,

convective for moisture exchange

pv= 1000 Pa, βc= 0.018 m/s

Numerical simulationsSquare column subjected to ISO-Fire

Page 82: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 82 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

Parameter Symbol Unit Value Porosity n [-] 0.082 Intrinsic permeability k [m2] 2×10-18 Apparent density ρ [kg/m3] 2564 Specific heat Cp

s [J/kgK] 855 Thermal conductivity λ [W/mK] 1.92 Young’s modulus E [GPa] 34.52 Poisson’s ratio ν [-] 0.18 Compressive strength fc [MPa] 60 Tensile strength ft [MPa] 6.0

C-60 concrete

Material properties

Numerical simulationsSquare column subjected to ISO-Fire

Page 83: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 83 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

C-60 concrete

Temperature & relative humidity after 20 min. of fi re

Numerical simulationsSquare column subjected to ISO-Fire

Page 84: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 84 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

C-60 concrete

Gas pressure & total damage after 20 min. of fire

Numerical simulationsSquare column subjected to ISO-Fire

Page 85: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 85 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

Spalling of the C-60 unloaded column

Numerical simulationsSquare column subjected to ISO-Fire during the test

Page 86: B.A. Schrefler , F. Pesavento - uni-stuttgart.de · > 1 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006 Multi-physics approach

> 86 Model Concepts for Fluid-Fluid and Fluid-Solid Interactions, Freudenstadt-Lauterbad, March 20-22, 2006

Multi-physics approach to model concrete as porous material

Conclusions

Numerical model of hygro-thermo-chemo-mechanical performance of concrete at high temperature has been developed.

Energy and mass transport mechanisms typical for different phases of concrete, as well as phase changes and chemical reactions are taken into account.

Full coupling between hygral-, thermal-, chemical- and mechanical processes is considered.

The model is validated by means of averaging theories and thermodynamics.

The model is verified by means of the investigation of its numerical properties.