b.-m. sinnhuber, remote sensing i, university of bremen, summer 2007 remote sensing i atmospheric...

49
B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007 Remote Sensing I Atmospheric Microwave Remote Sensing Summer 2007 Björn-Martin Sinnhuber Room NW1 - U3215 Tel. 8958 [email protected] www.iup.uni-bremen.de/~bms

Post on 19-Dec-2015

223 views

Category:

Documents


0 download

TRANSCRIPT

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

Remote Sensing IAtmospheric Microwave Remote Sensing

Summer 2007

Björn-Martin SinnhuberRoom NW1 - U3215Tel. [email protected]/~bms

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

Contents

Chapter 1 Introduction

Chapter 2 Electromagnetic Radiation

Chapter 3 Radiative Transfer through the Atmosphere

Chapter 4 Weighting Functions and Retrieval Techniques

Chapter 5 Atmospheric Microwave Remote Sensing:

A short review of spectroscopy

Chapter 6 Atmospheric UV/visible Remote Sensing

Chapter 7 Radar and Sea Ice Remote Sensing

Chapter 8 Remote Sensing of Ocean Colour

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

Chapter 5 Atmospheric Microwave Remote Sensing

• Ground-based microwave remote sensing

• A short review of microwave spectroscopy

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

Radiometer for Atmospheric Measurements (RAM)

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

NDSC Stadion at Ny-Alesund, Spitsbergen (79°N)

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

Observations in Spitsbergen (79°N)

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

Principle of the Radiometer for Atmospheric Measurements

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

Measured Microwave Spectrum by the RAM

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

Pressure Broadening of Spectral Lines

50km / 0.5 hPa

20km / 50 hPa

10km / 200 hPa

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

Weighting Functions for Ozone Retrieval

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

Retrieval techniques / Inverse Modelling

xy F

xKy

Assume that the measured spectrum y is a known function of the atmospheric profile x plus some noise ε.

Linearize F (also known as the forward model):

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

However,

can not be directly inverted (ill-posed problem)

Optimal Estimation

xKy

aT

aT

aa KxySKKSKSxx 1

ˆ

A-priori profile

A-priori profile covariance matrix

Measurement error covariance matrix

Best guess profile

Best estimate given by Optimal Estimation solution:

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

Example Ozone Profile: RAM vs. Ozonesonde

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

Optimal Estimation: Averaging Kernels

aT

aT

aa KxySKKSKSxx 1

ˆ

1 SKKSKSG T

aT

a

aa xxKGxx̂

GxxAxx aaˆ

GxAIAx a

Optimal estimation solution:

Define:

Then:

Define Averaging Kernel Matrix A = GK:

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

Averaging Kernel Functions

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

Chapter 5 Atmospheric Microwave Remote Sensing

• Ground-based microwave remote sensing

• A short review of microwave spectroscopy

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

Molecular Rotations

Diatomic molecule:

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

Rotational Energy (classical)

q

qqqIT 2

2

1 q qq

q

I

J

2

2

rotational Energy

qqqq IJ angular momentum

moment of inertia

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

Molecular Rotations: Moments of Inertia

Diatomic molecule:

210 rrr 2211 rmrm

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

Molecular Rotations: Moments of Inertia

i

iirmI 2

2121

211122

222

211

mmrr

rrmrrm

rmrmI

210 rrr 2211 rmrm

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

Molecular Rotations: Moments of Inertia

21

012

21

021 and

mm

rmr

mm

rmr

20

20

21

21 rrmm

mmI

21

21

mm

mm

reduced mass:

21

111

mm

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

Rotational Energy (classical)

q qq

q

I

JT

2

2

zz

z

yy

y

xx

x

I

J

I

J

I

J

222

222

classically:

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

Rotational Energy (quantum mechanics)

zz

z

yy

y

xx

x

III 222

222 JJJH

Quantum mechanics:

I2

2JH

For linear molecules:

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

Rotation: Energy Levels

,2,1,0with12

2

JJJI

EJ

I2

2JH

Angular momentum is quantized:

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

Rotation: Energy Levels

12

2

JJI

EJ

Express energy in terms of wave numbers:

14

JJIc

JF

hc

E~remember:

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

Rotation: Energy Levels

cIB

4

with Rotational Constant B:

24 rc

14

JJIc

JF

1 JBJJFwrite as

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

Rotational Energy Levels

J F(J)

)0()1(~01 JFJFJJ

)0()1(~01 FF

]cm[202~ 101

BB

]cm[426~ 112

BBB

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

Rotational Transitions

121~1 JBJJJBJJ

JJJJB 22 23

12 JB

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

Rotational Transitions

12~1 JBJJ

allowed transitions:

1J

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

Microwave Spectrum of HCl

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

Rotational Constant

22 rc

hB

with μ the (reduced) mass ofthe molecule and r the bond length.

Difference between two rotational linesgiven by 2B, where B is the rotational constant:

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

Microwave Spectrum of ClO

22 rc

hB

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

Intensities of Rotational Lines

•Probability for transition between level l and level udepends on the difference of molecules in level l and u•In thermal equilibrium given by Boltzmann distribution:

TkEN

NBJ

l

u exp

TkJBhcJ B1exp

(tends to decrease with increasing J)

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

Intensities of Rotational Lines

•Depends also on degenaracies of the levels:

12 Jg J

(tends to increase with increasing J)

Why?

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

Degeneracies of Rotations

posibleorientations

12 J

J=1

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

Degeneracies of Rotations

J=2 J=3

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

Intensities of Rotational Lines

•Depends also on degenaracies of the levels:

12 Jg J

(tends to increase with increasing J)

Overall proportional to:

TkJBhcJJ B1exp12

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

Intensities of Rotational Lines

May be used to derivetemperature from observedspectrum

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

Microwave Spectrum of ClO

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

Microwave Spectrum of N2O

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

Microwave Spectrum of H2O

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

The N2O Molecule

NN O

N2O is a linear molecule

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

The Water Molecule

O

H H

0.09578 nm

104.48°

B.-M. Sinnhuber, Remote Sensing I, University of Bremen, Summer 2007

Microwave Spectrum of Ozone