b i o l a b - b i o m e c h a n i c s t e a c h i n g & l e a r n i n g t o o l b o x linear...

18
B i o L a b - B i o m e c h a n i c s T e a c h i n g & B i o L a b - B i o m e c h a n i c s T e a c h i n g & L e a r n i n g T o o l B o x L e a r n i n g T o o l B o x Linear Kinematics An Introduction to Linear Kinematics

Upload: arabella-horn

Post on 16-Dec-2015

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: B i o L a b - B i o m e c h a n i c s T e a c h i n g & L e a r n i n g T o o l B o x Linear Kinematics An Introduction to Linear Kinematics

B i o L a b - B i o m e c h a n i c s T e a c h i n g & L e a r n i n g T o o l B o xB i o L a b - B i o m e c h a n i c s T e a c h i n g & L e a r n i n g T o o l B o xB i o L a b - B i o m e c h a n i c s T e a c h i n g & L e a r n i n g T o o l B o xB i o L a b - B i o m e c h a n i c s T e a c h i n g & L e a r n i n g T o o l B o x

Linear KinematicsLinear Kinematics

An Introduction to Linear Kinematics

An Introduction to Linear Kinematics

Page 2: B i o L a b - B i o m e c h a n i c s T e a c h i n g & L e a r n i n g T o o l B o x Linear Kinematics An Introduction to Linear Kinematics

• Linear Kinematics– description of the motion of a body– the appearance of a motion with respect to time

• Motion described in terms of (variables):– Distance, displacement, length (e.g. stride, stroke)– Time, cadence (e.g. stride frequency, stroke frequency)– Speed, velocity– Acceleration

• Single point models– e.g. Centre of mass (CM) during running/jumping

• Multi-segment models– e.g. Co-ordination of body segments during running/jumping

Kinematic AnalysisKinematic Analysis

Page 3: B i o L a b - B i o m e c h a n i c s T e a c h i n g & L e a r n i n g T o o l B o x Linear Kinematics An Introduction to Linear Kinematics

Distance & DisplacementDistance & Displacement• Distance:

– Length of path which a body covers during motion– Units: metre (m), centimeter (cm), kilometer (km)

• Displacement:– The change in position of a body during motion– Units: metre (m), centimeter (cm), kilometer (km)

• Distance is a scalar, and displacement is a vector variable

Page 4: B i o L a b - B i o m e c h a n i c s T e a c h i n g & L e a r n i n g T o o l B o x Linear Kinematics An Introduction to Linear Kinematics

Speed and VelocitySpeed and Velocity

• Speed (scalar)– Length of path (distance)

divided by change in time (∆t)

• Average velocity (vector)– Change in position (∆p)

divided by change in time (∆t)

– Displacement (d) divided by change in time (∆t)

– Vector equivalent of linear speed

If displacement = 50 m

Δt

d=

Δt

Δp=v

If t = 5 s

v = 50 / 5

= 10 m·s-1

Page 5: B i o L a b - B i o m e c h a n i c s T e a c h i n g & L e a r n i n g T o o l B o x Linear Kinematics An Introduction to Linear Kinematics

VelocityVelocity

• Units of velocity– m/s or m·s-1

• Velocity is a vector– Magnitude and direction

calculated using Pythagoras and trigonometry

– The velocity of a swimmer in a river is the vector sum of the velocities of swimmer and current.

Current velocity

Swimmer’s velocity

Resultant velocity

Page 6: B i o L a b - B i o m e c h a n i c s T e a c h i n g & L e a r n i n g T o o l B o x Linear Kinematics An Introduction to Linear Kinematics

VelocityVelocity

• For human gait, speed is the product of stride length and stride velocity.

• Adults walk faster using longer stride lengths and faster stride frequency.

• Stride length in children has great variability.

Page 7: B i o L a b - B i o m e c h a n i c s T e a c h i n g & L e a r n i n g T o o l B o x Linear Kinematics An Introduction to Linear Kinematics

VelocityVelocity• Runners traveling at a

slower pace tend to increase velocity primarily by stride ____?

• At faster running speeds, runners rely more on increasing stride ____?

• Most runners tend to choose a combination of stride length and stride frequency that minimizes physiological cost.

Best sprinters distinguished by high stride ___ & short ground contact time.

Page 8: B i o L a b - B i o m e c h a n i c s T e a c h i n g & L e a r n i n g T o o l B o x Linear Kinematics An Introduction to Linear Kinematics

VelocityVelocity

• Pace: rate of movement, or established rate of locomotion.

• Pace = _time_distance

– Men’s world record marathon pace = 4:37 min/mile (2:03.38)

– Women’s world record marathon pace = 5:30 min/mile

Position(m)

Ben JohnsonElapsed time

JohnsonPace

Carl LewisInterval time

LewisPace

0 0 0

10 1.83 s .183 s/m 1.89 .189 m/s

20 2.87 s .104 s/m 2.96 .107 m/s

30 3.80 s .093 s/m 3.90 s .094 m/s

40 4.66 s .086 s/m 4.79 s .089 m/s

50 5.50 s .084 s/m 5.65 s .086 m/s

60 6.33 s .083 s/m 6.48 s .083 m/s

70 7.17 s .084 s/m 7.33 s .085 m/s

80 8.02 s .085 s/m 8.18 s .085 m/s

90 8.89 s .087 s/m 9.04 s .086 m/s

100 9.79 s .090 s/m 9.92 s .088 m/s

Men’s 100-m Dash 1988 Olympic Games

Page 9: B i o L a b - B i o m e c h a n i c s T e a c h i n g & L e a r n i n g T o o l B o x Linear Kinematics An Introduction to Linear Kinematics

VelocityVelocity

• Average velocity– Average velocity not

necessarily equal to instantaneous velocity

• Instantaneous velocity– Occurring at one instant in

time– Like an automobile

speedometer

Winner of the Men's 100 m at the 2004 Athens Olympics in 9.85 s

Average velocity = 100 / 9.85

= 10.15 m·s-1

2004 Olympic Men's 100 m

Page 10: B i o L a b - B i o m e c h a n i c s T e a c h i n g & L e a r n i n g T o o l B o x Linear Kinematics An Introduction to Linear Kinematics

Kinematic analysis of 100 m sprintKinematic analysis of 100 m sprint

Page 11: B i o L a b - B i o m e c h a n i c s T e a c h i n g & L e a r n i n g T o o l B o x Linear Kinematics An Introduction to Linear Kinematics

Kinematic analysis of 100 m sprintKinematic analysis of 100 m sprint

Page 12: B i o L a b - B i o m e c h a n i c s T e a c h i n g & L e a r n i n g T o o l B o x Linear Kinematics An Introduction to Linear Kinematics

Velocity during 100 mVelocity during 100 mAverage velocity 0-10 m

v = d / ∆t = 10 / 2.2 = 4.5 m·s-1

10-20 m= 10 / 1.2 = 8.3 m·s-1

20-30 m= 10 / 0.8 = 12.5 m·s-1

30-40 m= 10 / 0.7 = 14.3 m·s-1

40-50 m= 10 / 0.8 = 12.5 m·s-1

50-60 m= 10 / 0.8 = 12.5 m·s-1

60-70 m= 10 / 0.7 = 14.3 m·s-1

70-80 m= 10 / 0.8 = 12.5 m·s-1

80-90 m= 10 / 0.9 = 11.1 m·s-1

90-100 m= 10 / 0.9 = 11.1 m·s-1

Page 13: B i o L a b - B i o m e c h a n i c s T e a c h i n g & L e a r n i n g T o o l B o x Linear Kinematics An Introduction to Linear Kinematics

Average AccelerationAverage Acceleration

• Change in velocity (∆v) divided by change in time (∆t)

• Units– m/s/s or m/s2 or m·s-2

• Vector– As with displacement & velocity,

acceleration can be resolved into components using trigonometry & Pythagorean theorem

2 1(v - vva = =

t t

)

V1 = 4.5 m·s-1 V2 = 8.3 m·s-1

∆t = 1.2 s

a = (8.3 - 4.5) / 1.2 = 3.2 m·s-2

Page 14: B i o L a b - B i o m e c h a n i c s T e a c h i n g & L e a r n i n g T o o l B o x Linear Kinematics An Introduction to Linear Kinematics

Acceleration during 100 mAcceleration during 100 m

Acceleration at start of racea = (v2 - v1) / ∆t= (8.3 - 4.5) / 1.2 Positive Acceleration= 3.2 m·s-2

_________________________________________________________________________________________________________________________________

Acceleration during middle of racea = (v2 - v1) / ∆t= (12.5 - 12.5) / 0.8 Constant Velocity= 0

_________________________________________________________________________________________________________________________________

Acceleration at end of racea = (v2 - v1) / ∆t= (11.1 - 14.3) / 0.9 Negative Acceleration= -3.5 m·s-2

Page 15: B i o L a b - B i o m e c h a n i c s T e a c h i n g & L e a r n i n g T o o l B o x Linear Kinematics An Introduction to Linear Kinematics

Acceleration and Direction of Motion

Acceleration and Direction of Motion

• Complicating factor in understanding acceleration is direction of motion of object.

• When object moving in same direction continually, accelerate often used to indicate an increase in velocity and decelerate to indicate a decrease in velocity.

• If object changes direction, one direction is positive, the opposite direction is negative.

Page 16: B i o L a b - B i o m e c h a n i c s T e a c h i n g & L e a r n i n g T o o l B o x Linear Kinematics An Introduction to Linear Kinematics

Acceleration

Player running in negative direction increases negative velocity results in negative acceleration.Player begins to decrease velocity in negative direction has positive acceleration.Positive and negative accelerations can occur without changing directions.

Motion in a negative direction

Increasing velocity

Decreasing velocity

Negative acceleration

Positive acceleration

Motion in a positive direction

Increasing velocity

Decreasing velocity

Negative acceleration

Positive acceleration

Page 17: B i o L a b - B i o m e c h a n i c s T e a c h i n g & L e a r n i n g T o o l B o x Linear Kinematics An Introduction to Linear Kinematics

SummarySummary• Variables used to describe motion are either:

– Scalar (magnitude only: e.g. time, distance and speed)– Vector (magnitude and direction: e.g. displacement,

velocity and acceleration)

• Displacement is the change in position of a body

• Average velocity is the change in position divided by the change in time

• Average acceleration is the change in velocity divided by the change in time

Page 18: B i o L a b - B i o m e c h a n i c s T e a c h i n g & L e a r n i n g T o o l B o x Linear Kinematics An Introduction to Linear Kinematics

• Enoka, R.M. (2002). Neuromechanics of Human Movement (3rd edition). Champaign, IL.: Human Kinetics. Pages 3-10 & 22-27.

• Grimshaw, P., Lees, A., Fowler, N. & Burden, A. (2006). Sport and Exercise Biomechanics. New York: Taylor & Francis. Pages 11-21.

• Hamill, J. & Knutzen, K.M. (2003). Biomechanical Basis of Human Movement (2nd edition). Philadelphia: Lippincott Williams & Wilkins. Pages 271-289.

• McGinnis, P.M. (2005). Biomechanics of Sport and Exercise (2nd edition). Champaign, IL.: Human Kinetics. Pages 47-62.

Recommended ReadingRecommended Reading