axial form factorsmicrotron.iasa.gr/pavi06/talks/schindler_iic.pdfgoldberger-treiman-relation...

30
Axial Form Factors M. R. Schindler Institut für Kernphysik Johannes Gutenberg-Universität, Mainz From Parity Violation to Hadronic Structure and more ... Milos Island 16-20 May, 2006 In collaboration with T. Fuchs, S. Scherer M. R. Schindler Milos 2006

Upload: others

Post on 24-Feb-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Axial Form Factorsmicrotron.iasa.gr/PAVI06/Talks/Schindler_IIc.pdfGoldberger-Treiman-Relation Consider limit lim q2→0 q2 GP,π (q 2) = −4 m F g πNN =! −4 m 2 GA (0) Goldberger-Treiman-Relation

Axial Form Factors

M. R. Schindler

Institut für KernphysikJohannes Gutenberg-Universität, Mainz

From Parity Violation to Hadronic Structure and more . . .Milos Island

16-20 May, 2006

In collaboration with T. Fuchs, S. Scherer

M. R. Schindler Milos 2006

Page 2: Axial Form Factorsmicrotron.iasa.gr/PAVI06/Talks/Schindler_IIc.pdfGoldberger-Treiman-Relation Consider limit lim q2→0 q2 GP,π (q 2) = −4 m F g πNN =! −4 m 2 GA (0) Goldberger-Treiman-Relation

Outline

Definition and Properties

Axial form factor GA(q2)

Induced pseudoscalar form factor GP(q2)

GA, GP in Lorentz-invariant ChPT

Summary

M. R. Schindler Milos 2006

Page 3: Axial Form Factorsmicrotron.iasa.gr/PAVI06/Talks/Schindler_IIc.pdfGoldberger-Treiman-Relation Consider limit lim q2→0 q2 GP,π (q 2) = −4 m F g πNN =! −4 m 2 GA (0) Goldberger-Treiman-Relation

Definition and Properties

M. R. Schindler Milos 2006

Page 4: Axial Form Factorsmicrotron.iasa.gr/PAVI06/Talks/Schindler_IIc.pdfGoldberger-Treiman-Relation Consider limit lim q2→0 q2 GP,π (q 2) = −4 m F g πNN =! −4 m 2 GA (0) Goldberger-Treiman-Relation

Form factors

Form factors of the nucleonParametrization of nucleon structureElectromagnetic form factors F1(q2), F2(q2)[GE(q2), GM(q2)

]Vector current ∼ γµ

Well known experimentallyImportant test for theories and models

Axial form factors GA(q2), GP(q2), GT (q2)

Axial-vector current ∼ γµγ5Not very well known

M. R. Schindler Milos 2006

Page 5: Axial Form Factorsmicrotron.iasa.gr/PAVI06/Talks/Schindler_IIc.pdfGoldberger-Treiman-Relation Consider limit lim q2→0 q2 GP,π (q 2) = −4 m F g πNN =! −4 m 2 GA (0) Goldberger-Treiman-Relation

Axial-vector current operator

Aµ,a(x) ≡ q(x)γµγ5τa

2q(x), q =

(ud

), a = 1, 2, 3

HermitianA†

µ,i(x) = Aµ,i(x)

Vector under isospin transformations

[Ia, Aµ,b(x)] = iεabcAµ,c(x)

Axial vector under parity

Aµ,i(x)P7→ −Ai

µ(Px)

Charge conjugation

Aµ,i(x)C7→ Aµ,i(x), i = 1, 3

Aµ,i(x)C7→ −Aµ,i(x), i = 2

M. R. Schindler Milos 2006

Page 6: Axial Form Factorsmicrotron.iasa.gr/PAVI06/Talks/Schindler_IIc.pdfGoldberger-Treiman-Relation Consider limit lim q2→0 q2 GP,π (q 2) = −4 m F g πNN =! −4 m 2 GA (0) Goldberger-Treiman-Relation

Definition of axial form factors

Axial-vector current matrix element

〈N(p′)|Aµi (0)|N(p)〉

= u(p′)[GA(q2)γµ +

2MGP(q2) + i

σµνqν

2MGT (q2)

]γ5

τi

2u(p)

qµ = p′µ − pµ

GA(q2): axial form factorGP(q2): induced pseudoscalar form factorGT (q2): induced pseudotensorial form factor

M. R. Schindler Milos 2006

Page 7: Axial Form Factorsmicrotron.iasa.gr/PAVI06/Talks/Schindler_IIc.pdfGoldberger-Treiman-Relation Consider limit lim q2→0 q2 GP,π (q 2) = −4 m F g πNN =! −4 m 2 GA (0) Goldberger-Treiman-Relation

Properties of axial form factors

Hermiticity for q2 ≤ 0

GA(q2)∗ = GA(q2)

GP(q2)∗ = GP(q2)

GT (q2)∗ = −GT (q2)

For mu = md : invariance under G-conjugation

G = C exp(iπI2)

⇒GT (q2) = 0

M. R. Schindler Milos 2006

Page 8: Axial Form Factorsmicrotron.iasa.gr/PAVI06/Talks/Schindler_IIc.pdfGoldberger-Treiman-Relation Consider limit lim q2→0 q2 GP,π (q 2) = −4 m F g πNN =! −4 m 2 GA (0) Goldberger-Treiman-Relation

Breit-System

~p = −12~q = −~p ′, q0 = 0

〈N (~q2 ) |A0,a(0)|N (−~q

2 )〉 = 0

〈N (~q2 ) |~A

a(0)|N (−~q2 )〉 =

τa

2

[E(−~q

2 )

M(~σ − ~σ · qq)GA(−~q 2) + ~σ · qqD(−~q 2)

]

M. R. Schindler Milos 2006

Page 9: Axial Form Factorsmicrotron.iasa.gr/PAVI06/Talks/Schindler_IIc.pdfGoldberger-Treiman-Relation Consider limit lim q2→0 q2 GP,π (q 2) = −4 m F g πNN =! −4 m 2 GA (0) Goldberger-Treiman-Relation

Axial form factor GA(q2)

M. R. Schindler Milos 2006

Page 10: Axial Form Factorsmicrotron.iasa.gr/PAVI06/Talks/Schindler_IIc.pdfGoldberger-Treiman-Relation Consider limit lim q2→0 q2 GP,π (q 2) = −4 m F g πNN =! −4 m 2 GA (0) Goldberger-Treiman-Relation

Axial form factor GA(q2)

GA(0) = gADetermined from n → p + e− + νeGA(q2 ≈ 0) = gA = 1.2670± 0.0035

GA(q2)

(Quasi)elastic (anti)neutrino scatteringPion electroproductionParametrization

GA(q2) =gA

(1− q2

M2A)2

with MA: axial mass

M. R. Schindler Milos 2006

Page 11: Axial Form Factorsmicrotron.iasa.gr/PAVI06/Talks/Schindler_IIc.pdfGoldberger-Treiman-Relation Consider limit lim q2→0 q2 GP,π (q 2) = −4 m F g πNN =! −4 m 2 GA (0) Goldberger-Treiman-Relation

Neutrino scattering

0.85 0.95 1.05 1.15 1.25MA [GeV]

Average

Argonne (1969)

CERN (1977)

Argonne (1977)

CERN (1979)

BNL (1980)

BNL (1981)

Argonne (1982)

Fermilab (1983)

BNL (1986)

BNL (1987)

BNL (1990)

Argonne (1973)

from V. Bernard, L. Elouadrhiri and U.-G. Meißner,

J. Phys. G 28, R1 (2002)

Global average (new)

MA = (1.001± 0.020) GeV

H. Budd, A. Bodek and J. Arrington,

arXiv:hep-ex/0308005

M. R. Schindler Milos 2006

Page 12: Axial Form Factorsmicrotron.iasa.gr/PAVI06/Talks/Schindler_IIc.pdfGoldberger-Treiman-Relation Consider limit lim q2→0 q2 GP,π (q 2) = −4 m F g πNN =! −4 m 2 GA (0) Goldberger-Treiman-Relation

Pion electroproductionγ∗ + p → n + π+ at threshold

Extract MA from E0+

0.85 0.95 1.05 1.15 1.25MA [GeV]

Frascati (1970)Frascati (1970) GEn=0Frascati (1972)DESY (1973)Daresbury (1975) SPDaresbury (1975) DRDaresbury (1975) FPVDaresbury (1975) BNR

AverageMAMI (1999)Saclay (1993)Olsson (1978)Kharkov (1978)DESY (1976)

Daresbury (1976) SP

Daresbury (1976) BNRDaresbury (1976) DR

from V. Bernard, L. Elouadrhiri and U.-G. Meißner,

J. Phys. G 28, R1 (2002)

Global average

MA = (1.068± 0.017) GeV

M. R. Schindler Milos 2006

Page 13: Axial Form Factorsmicrotron.iasa.gr/PAVI06/Talks/Schindler_IIc.pdfGoldberger-Treiman-Relation Consider limit lim q2→0 q2 GP,π (q 2) = −4 m F g πNN =! −4 m 2 GA (0) Goldberger-Treiman-Relation

Heavy Baryon ChPT: Modification at O(q3)

Notation for amplitude

~M∣∣∣thr

= −4πWmN

i[i(~σ − ~σ · k k)E0+(k2) + i~σ · k kL0+(k2)

]Contribution from pion loops

1 1

2

1 1

2

1

2

M. R. Schindler Milos 2006

Page 14: Axial Form Factorsmicrotron.iasa.gr/PAVI06/Talks/Schindler_IIc.pdfGoldberger-Treiman-Relation Consider limit lim q2→0 q2 GP,π (q 2) = −4 m F g πNN =! −4 m 2 GA (0) Goldberger-Treiman-Relation

Heavy Baryon ChPT: Modification at O(q3)

Modification of the k2 dependence of E (−)0+

E (−)0+ (k2) =

egA

8πFπ[1 +

k2

4m2N

(κV +

12

)+

k2

6r2A︸ ︷︷ ︸

old

+M2

8π2F 2π

f(

k2

M2

)︸ ︷︷ ︸

new

+ · · · ]

Pion electroproduction: MA = (1.068± 0.017) GeV∆MA = 0.056 GeVNeutrino scattering: MA = (1.001± 0.020) GeV

Agreement

V. Bernard, N. Kaiser, and U.-G. Meißner, Phys. Rev. Lett. 69, 1877 (1992)M. R. Schindler Milos 2006

Page 15: Axial Form Factorsmicrotron.iasa.gr/PAVI06/Talks/Schindler_IIc.pdfGoldberger-Treiman-Relation Consider limit lim q2→0 q2 GP,π (q 2) = −4 m F g πNN =! −4 m 2 GA (0) Goldberger-Treiman-Relation

Haberzettl claims: Pion electroproduction data at thresholdcannot be interpreted in terms of GA[H. Haberzettl, Phys. Rev. Lett. 85, 3576 (2000)]

Solution: Minimal coupling does not respect constraintsdue to chiral symmetry[T. Fuchs and S. Scherer, Phys. Rev. C 68, 055501 (2003)]

L(3)eff = const. Ψγµγ5[Dν , f−µν ]Ψ + · · ·

with

f−µν = −2(∂µaν − ∂νaµ) + 2i ([vµ, aν ]− [vν , aµ])

+iF

[~τ · ~π, ∂µvν − ∂νvµ] + · · ·

M. R. Schindler Milos 2006

Page 16: Axial Form Factorsmicrotron.iasa.gr/PAVI06/Talks/Schindler_IIc.pdfGoldberger-Treiman-Relation Consider limit lim q2→0 q2 GP,π (q 2) = −4 m F g πNN =! −4 m 2 GA (0) Goldberger-Treiman-Relation

Induced pseudoscalar form factor GP(q2)

M. R. Schindler Milos 2006

Page 17: Axial Form Factorsmicrotron.iasa.gr/PAVI06/Talks/Schindler_IIc.pdfGoldberger-Treiman-Relation Consider limit lim q2→0 q2 GP,π (q 2) = −4 m F g πNN =! −4 m 2 GA (0) Goldberger-Treiman-Relation

Chiral limit

Axial-vector current divergence-free in chiral limit

M → 0 ⇒ ∂µAµ,a(x) = 0

∂µ〈N(p′)|Aµ,a(x)|N(p)〉 = ∂µ〈N(p′)|eiP·xAµ,a(0)e−iP·x |N(p)〉= iqµeiq·x〈N(p′)|Aµ,a(0)|N(p)〉= 0 ∀ x ,

Dirac equation ⇒

4◦m

2 ◦GA (q2) + q2 ◦

GP (q2) = 0

M. R. Schindler Milos 2006

Page 18: Axial Form Factorsmicrotron.iasa.gr/PAVI06/Talks/Schindler_IIc.pdfGoldberger-Treiman-Relation Consider limit lim q2→0 q2 GP,π (q 2) = −4 m F g πNN =! −4 m 2 GA (0) Goldberger-Treiman-Relation

Chiral limit

Possible solutions◦m= 0 and

◦GP (q2) = 0

◦GP (q2) = −4

◦m

2 ◦GA(q2)q2

GA(0) = gA ≈ 1.26 ⇒◦GP (q2) has pole for q2 → 0

M. R. Schindler Milos 2006

Page 19: Axial Form Factorsmicrotron.iasa.gr/PAVI06/Talks/Schindler_IIc.pdfGoldberger-Treiman-Relation Consider limit lim q2→0 q2 GP,π (q 2) = −4 m F g πNN =! −4 m 2 GA (0) Goldberger-Treiman-Relation

Pion pole contribution

Interpretation in terms of pion pole contribution

Most general pion pole contribution

−2Fπ(q2)gπNN(q2)

q2 −M2 − Σ(q2)uqµγ5

τa

2u

M. R. Schindler Milos 2006

Page 20: Axial Form Factorsmicrotron.iasa.gr/PAVI06/Talks/Schindler_IIc.pdfGoldberger-Treiman-Relation Consider limit lim q2→0 q2 GP,π (q 2) = −4 m F g πNN =! −4 m 2 GA (0) Goldberger-Treiman-Relation

Pion pole contribution: chiral limit

M2 → 0

→ −2F (q2)◦gπNN (q2)

q2−◦Σ (q2)

2◦m u

2◦m

γ5τa

2u

⇒ Contribution to◦GP

−4◦m F (q2)

◦gπNN (q2)

q2−◦Σ (q2)

with◦Σ (0) = 0

M. R. Schindler Milos 2006

Page 21: Axial Form Factorsmicrotron.iasa.gr/PAVI06/Talks/Schindler_IIc.pdfGoldberger-Treiman-Relation Consider limit lim q2→0 q2 GP,π (q 2) = −4 m F g πNN =! −4 m 2 GA (0) Goldberger-Treiman-Relation

Goldberger-Treiman-Relation

Consider limit

limq2→0

q2 ◦GP,π (q2) = −4

◦m F

◦gπNN

!= −4

◦m

2 ◦GA (0)

Goldberger-Treiman-Relation

◦gA

F=

◦gπNN

◦m

Real world

Satisfied up to ≈ 2%

M. R. Schindler Milos 2006

Page 22: Axial Form Factorsmicrotron.iasa.gr/PAVI06/Talks/Schindler_IIc.pdfGoldberger-Treiman-Relation Consider limit lim q2→0 q2 GP,π (q 2) = −4 m F g πNN =! −4 m 2 GA (0) Goldberger-Treiman-Relation

Experimental data

2mNGP(q2 = −0.88m2

µ) = gP

Ordinary muon capture (OMC): µ− + p → νµ + n

gP = 8.7± 1.9

Liquid hydrogen target: complications due to formation ofpµp moleculesMuCap experiment at PSI: hydrogen gas

Radiative muon capture (RMC): µ− + p → νµ + n + γ

gP = 12.3± 0.9

q2-dependence: one pion electroproduction experiment

M. R. Schindler Milos 2006

Page 23: Axial Form Factorsmicrotron.iasa.gr/PAVI06/Talks/Schindler_IIc.pdfGoldberger-Treiman-Relation Consider limit lim q2→0 q2 GP,π (q 2) = −4 m F g πNN =! −4 m 2 GA (0) Goldberger-Treiman-Relation

BUT: new measurement of ortho-para transition rate in pµpmolecule

Λnewop = (11.1±1.7±0.9

0.6)×104 s−1 vs. Λoldop = (4.1±1.4)×104 s−1

OMC (Saclay)gP = 0.8± 2.7

RMC (TRIUMF)gP = 10.6± 1.1

average liquid H2gP = 5.6± 4.1

J. H. D. Clark et al., Phys. Rev. Lett. 96, 073401 (2006)

M. R. Schindler Milos 2006

Page 24: Axial Form Factorsmicrotron.iasa.gr/PAVI06/Talks/Schindler_IIc.pdfGoldberger-Treiman-Relation Consider limit lim q2→0 q2 GP,π (q 2) = −4 m F g πNN =! −4 m 2 GA (0) Goldberger-Treiman-Relation

Heavy baryon ChPT

Order O(q3) calculation

GP(q2) =4mNFπgπNN(q2)

M2 − q2 − 23

m2NgA〈r2〉A

gP = 8.23

Allows for systematical corrections

M. R. Schindler Milos 2006

Page 25: Axial Form Factorsmicrotron.iasa.gr/PAVI06/Talks/Schindler_IIc.pdfGoldberger-Treiman-Relation Consider limit lim q2→0 q2 GP,π (q 2) = −4 m F g πNN =! −4 m 2 GA (0) Goldberger-Treiman-Relation

GA, GP in manifestly Lorentz-invariant ChPT

M. R. Schindler Milos 2006

Page 26: Axial Form Factorsmicrotron.iasa.gr/PAVI06/Talks/Schindler_IIc.pdfGoldberger-Treiman-Relation Consider limit lim q2→0 q2 GP,π (q 2) = −4 m F g πNN =! −4 m 2 GA (0) Goldberger-Treiman-Relation

Calculation of GA(q2) and GP(q2) up to and includingO(q4)

Infrared renormalization scheme

GA(q2) = gA +16

gA〈r2〉Aq2 +g3

A4F 2 H(q2)

with H(0) = H ′(0) = 0

gP = 8.09

0.1 0.2 0.3 0.4

Q2@GeV2D

0.2

0.4

0.6

0.8

1

GAHQ2L�GAH0L

-0.1 0 0.1 0.2Q2@GeV2D

-150

-100

-50

0

50

100

150

200

GPHQ2L

M. R. Schindler Milos 2006

Page 27: Axial Form Factorsmicrotron.iasa.gr/PAVI06/Talks/Schindler_IIc.pdfGoldberger-Treiman-Relation Consider limit lim q2→0 q2 GP,π (q 2) = −4 m F g πNN =! −4 m 2 GA (0) Goldberger-Treiman-Relation

Electromagnetic form factors

Compare to situation for e.m. form factors

Inclusion of vector mesons (ρ, ω, Φ)

M. R. Schindler, J. Gegelia and S. Scherer, Eur. Phys. J. A 26, 1 (2005)M. R. Schindler Milos 2006

Page 28: Axial Form Factorsmicrotron.iasa.gr/PAVI06/Talks/Schindler_IIc.pdfGoldberger-Treiman-Relation Consider limit lim q2→0 q2 GP,π (q 2) = −4 m F g πNN =! −4 m 2 GA (0) Goldberger-Treiman-Relation

Inclusion of axial-vector meson a1

Reformulated infrared renormalization → inclusion ofaxial-vector mesons as explicit degrees of freedom

L(3)πA = fA〈AµνFµν

− 〉

L(0)AN = GANΨAµγµγ5Ψ

GAVMA (q2) = −8fAGAN

q2

q2 −M2a1

GAVMP (q2) = 32m2

N fAGAN1

q2 −M2a1

effectively only one additional coupling constant fAGAN

M. R. Schindler Milos 2006

Page 29: Axial Form Factorsmicrotron.iasa.gr/PAVI06/Talks/Schindler_IIc.pdfGoldberger-Treiman-Relation Consider limit lim q2→0 q2 GP,π (q 2) = −4 m F g πNN =! −4 m 2 GA (0) Goldberger-Treiman-Relation

Summary

M. R. Schindler Milos 2006

Page 30: Axial Form Factorsmicrotron.iasa.gr/PAVI06/Talks/Schindler_IIc.pdfGoldberger-Treiman-Relation Consider limit lim q2→0 q2 GP,π (q 2) = −4 m F g πNN =! −4 m 2 GA (0) Goldberger-Treiman-Relation

Summary

Axial form factors parameterize axial structure of nucleonGA(q2)

(Anti)neutrino scatteringPion electroproductionDiscrepancy explained in HBChPT

GP(q2)

Ordinary muon capture (OMC)Radiative muon capture (RMC)Results for gP do not agreeTheory agrees with OMC

Infrared renormalizationInclusion of a1 mesonOnly one additional low energy constant

M. R. Schindler Milos 2006