automated radiosynthesizers for pet probes...automation can be achieved by having a computer execute...

42
3/7/2013 1 March 6, 2013 (START) © R. Michael van Dam, 2013 Automated Radiosynthesizers for PET Probes R. Michael van Dam March 6, 2013 March 6, 2013 (START) © R. Michael van Dam, 2013 Outline Recap: Synthesis of FDG on robotic synthesis module Remote control vs automation Basic architecture and elements of radiosynthesizers Examples of commercial radiosynthesizers of different types Fixed systems Flexible/modular systems Disposable cassette systems Indepth example of ELIXYS radiosynthesizer Indepth example of ELIXYS software

Upload: others

Post on 03-Sep-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Automated Radiosynthesizers for PET Probes...Automation can be achieved by having a computer execute steps in sequence Start Perform Step 1 Perform Step 2 Perform Step 3 … End Do

3/7/2013

1

March 6, 2013 (START)© R. Michael van Dam, 2013

Automated Radiosynthesizersfor PET Probes

R. Michael van Dam

March 6, 2013

March 6, 2013 (START)© R. Michael van Dam, 2013

Outline

• Recap: Synthesis of FDG on robotic synthesis module

• Remote control vs automation

• Basic architecture and elements of radiosynthesizers

• Examples of commercial radiosynthesizers of different types– Fixed systems– Flexible/modular systems– Disposable cassette systems

• In‐depth example of ELIXYS radiosynthesizer

• In‐depth example of ELIXYS software

Page 2: Automated Radiosynthesizers for PET Probes...Automation can be achieved by having a computer execute steps in sequence Start Perform Step 1 Perform Step 2 Perform Step 3 … End Do

3/7/2013

2

March 6, 2013 (START)© R. Michael van Dam, 2013

Recap: FDG synthesis on robotic synthesis module

March 6, 2013 (START)© R. Michael van Dam, 2013

+ K2CO3

[18F]FDG Synthesis

18F-

KryptofixK2.2.2

Mannose triflate

[18F]FTAG

HCl or NaOH

[18F]FDG

[18F]fluoride drying

fluorination reaction

hydrolysis reaction

MeCN105°C

to dryness

MeCN130°C 10min

MeCN/H2O130°C10min

Page 3: Automated Radiosynthesizers for PET Probes...Automation can be achieved by having a computer execute steps in sequence Start Perform Step 1 Perform Step 2 Perform Step 3 … End Do

3/7/2013

3

March 6, 2013 (START)© R. Michael van Dam, 2013

Viewing the synthesis from a system/engineering perspective

• How many reaction vessels are needed?

– Is purification required between steps?

• How does the synthesis translate into the following typical synthesizer operations?

– Adding reagents to the vessel– Mixing vessel contents– Heat vessel to perform evaporation– Heat vessel to perform reaction– Transfer from vessel– Purification

March 6, 2013 (START)© R. Michael van Dam, 2013

fluorination reaction

hydrolysis reaction

HCl or NaOH

[18F]fluoride drying

18F- + K2CO3

Reaction vessel

Collection vessel

H2Opurification

Page 4: Automated Radiosynthesizers for PET Probes...Automation can be achieved by having a computer execute steps in sequence Start Perform Step 1 Perform Step 2 Perform Step 3 … End Do

3/7/2013

4

March 6, 2013 (START)© R. Michael van Dam, 2013

B. Amarasekera, N. Satyamurthy

March 6, 2013 (START)© R. Michael van Dam, 2013

Oil Bath

Reaction vessel

Stopper 2Stopper 3

Motor

Mot

or

Leadscrew

Sep-Pak

Mot

or

Stopper 1

Valve 2

Valve 1

Reservoir

Electrical connector

Motor to raise/lower

oil bath

Motor to select which stopper aligned above reaction vessel

Motor to raise/lower

stopper assembly

Fromdip tube

Stopper Assembly

Sep-PakAssembly

To syringe (apply vacuum

or pressure)

Fluid path of Sep-Pak assembly

Valve 2(3-way)

Valve 1(2-way)

To nextreaction vessel

Sep-Pak

Reservoir

End Support Bearing

Drive Bushing

To waste

Page 5: Automated Radiosynthesizers for PET Probes...Automation can be achieved by having a computer execute steps in sequence Start Perform Step 1 Perform Step 2 Perform Step 3 … End Do

3/7/2013

5

March 6, 2013 (START)© R. Michael van Dam, 2013

Step 7 Step 8 Step 9 Step 10

[18F]fluoride precursor

Step 1 Step 2 Step 3 Step 4 Step 6Step 5

N2

Deliver [18F]fluoride

Heat vessel (azeotropic

evaporation)

Cool vessel Add precursor Lift stopper #1 Move stopper #2into position

Seal vessel Heat vessel (fluorination

reaction)

Cool vessel Unseal reactor

+K222

+K2CO3

Step 11

Move stopper #1into position

March 6, 2013 (START)© R. Michael van Dam, 2013

Step 20Step 19

transfer Vacuum

acid

Step 12 Step 14Step 13

Add acid Lift stopper #1 Move stopper #2into position

Move stopper #1into position

Transfer product to reservoir

Step 15 Step 16 Step 17 Step 18

Seal vessel Heat vessel (hydrolysis reaction)

Cool vessel Unseal reactor

water

Step 21

Add water

Step 22

transfer Vacuum

Flush water to reservoir

Step 23

Pressure

Flush water to reservoir

[18F]FDG

Page 6: Automated Radiosynthesizers for PET Probes...Automation can be achieved by having a computer execute steps in sequence Start Perform Step 1 Perform Step 2 Perform Step 3 … End Do

3/7/2013

6

March 6, 2013 (START)© R. Michael van Dam, 2013

Remote controlled chemistryis not automation

• Remote control provides protection from radiation exposure

• But many steps require intervention:– Motion – manually start, manually stop

– Oil bath – turning on/off and setting temperature

– Using syringes to add reagents

– Judging when evaporation complete and removing heat

– Judging when liquid has flowed through purification cartridge (when to open/close valves)

– Etc.

March 6, 2013 (START)© R. Michael van Dam, 2013

What is Automation?

• Definition– Making an apparatus, process, or system operate without outside 

intervention (generally under computer control)

• General Goals– Increased throughput or productivity.– Improved robustness (consistency), of processes or product.

• Advantages:– Reduced process/synthesis time (higher synthesis yield)– Reduced cost of PET probe (reduced personnel effort)– Increased repeatability (make probe consistently from day to day and 

at different sites)– Safety (avoid radiation exposure)– Eliminate monotonous work and free up radiochemists to develop 

new probes

Adapted from http://en.wikipedia.org/wiki/Automation

Page 7: Automated Radiosynthesizers for PET Probes...Automation can be achieved by having a computer execute steps in sequence Start Perform Step 1 Perform Step 2 Perform Step 3 … End Do

3/7/2013

7

March 6, 2013 (START)© R. Michael van Dam, 2013

General architecture of automated radiosynthesizers

March 6, 2013 (START)© R. Michael van Dam, 2013

Reaction vessel

Reagent reservoirs

Cartridge

HPLC

General elements of a radiosynthesizer

Reagent transfer

Crude product transfer

Purification system

Purified product transfer To collection vial 

or another reaction vessel

Reaction energy source

Computer

Page 8: Automated Radiosynthesizers for PET Probes...Automation can be achieved by having a computer execute steps in sequence Start Perform Step 1 Perform Step 2 Perform Step 3 … End Do

3/7/2013

8

March 6, 2013 (START)© R. Michael van Dam, 2013

Types of reagent reservoirsFixed reservoirs

Filled by user at the start of the synthesis process

Disposable, pre‐filled vial

User must install/connect reagent reservoir, but no other handling required

Disposable,pre‐filled syringe

Vial spike

Filling port

Gas pressure

Reagent

March 6, 2013 (START)© R. Michael van Dam, 2013

Automated transfer of liquids

• Requires a liquid path between the source (e.g. reagent reservoir) and destination (e.g. reaction vessel)

• Electronically‐controlled pump provides force to move the liquid

• Electronically‐controlled valves control opening and closing of fluid path

Page 9: Automated Radiosynthesizers for PET Probes...Automation can be achieved by having a computer execute steps in sequence Start Perform Step 1 Perform Step 2 Perform Step 3 … End Do

3/7/2013

9

March 6, 2013 (START)© R. Michael van Dam, 2013

Common methods to pump liquids

Syringe pump

Motorized “stage” pushes or pulls syringe plunger

Pressurized gas source

Electronically‐controlled valve

Source(reagent in 

vial)

Destination (vial)

Vent

Electronically‐controlled valve

Controls whether liquid can move out of source vial

Controls whether vial is pressurized

Pressure‐driven flow

Destination (vial)

Vent

Source (reagent in syringe)

March 6, 2013 (START)© R. Michael van Dam, 2013

Comparison of pump approachesSyringe pump Pressure‐driven

Control of volume?Yes, can accurately dispense 

arbitrary volumeDifficult to control volume. Generally all or nothing

Feedback signalMotor position feedback reflects how much volume 

dispensed

No feedback. Measurement of “mass flow” of gas may enable 

feedback

Safety

Pressure can build up (if there is a clog) and can leak if it exceeds pressure limits of 

tubing/fittings

Intrinsic pressure limit(driving pressure)

Cost Expensive Inexpensive

Physical size Bulky Compact

Disposable? Yes (syringe) Yes (vial)

Page 10: Automated Radiosynthesizers for PET Probes...Automation can be achieved by having a computer execute steps in sequence Start Perform Step 1 Perform Step 2 Perform Step 3 … End Do

3/7/2013

10

March 6, 2013 (START)© R. Michael van Dam, 2013

Common types of valves

Connect one of two inlets to a common outlet

Connect a common inlet to one of two 

outlets

Open or close a fluid path2‐way

(shutoff)

3‐way(selector)

Symbol ApplicationsType

March 6, 2013 (START)© R. Michael van Dam, 2013

Solenoid valves (2‐way or 3‐way)

Electrical signal controls valve state

Expensive.  Non‐disposable.  Must be cleaned.

Stopcock valves (2‐way or 3‐way)

Must be actuated by a rotary motion system (electric or pneumatic)

Inexpensive. Disposable.

Small dead volumes(10s of µL)

Significant dead volume (~100 µL). Some commercial systems use “zero‐dead‐volume” stopcocks

Max. operating pressure is low (30‐50 psig typ)

Somehwat higher operating pressure

Page 11: Automated Radiosynthesizers for PET Probes...Automation can be achieved by having a computer execute steps in sequence Start Perform Step 1 Perform Step 2 Perform Step 3 … End Do

3/7/2013

11

March 6, 2013 (START)© R. Michael van Dam, 2013

Injection valve (e.g. for HPLC)

Stream selection valve

Rotary valves

Rotary valves are expensive and non‐disposable, but can operate at very high pressures

Motor for electronic control

March 6, 2013 (START)© R. Michael van Dam, 2013

Reaction vessels

• General characteristics:

– Inert material: glass or glassy‐carbon– Often have a V‐shaped bottom to avoid residual liquid– Volume commonly 5‐20 mL

• Types:

– Fixed – all tubing is always connected to reaction vessel– Semi‐fixed – most tubing is connected to reaction vessel but dip 

tube is retractable (motorized or pneumatic)– Needles/septum sealed – Needles are inserted through a 

septum– Reconfigurable

Page 12: Automated Radiosynthesizers for PET Probes...Automation can be achieved by having a computer execute steps in sequence Start Perform Step 1 Perform Step 2 Perform Step 3 … End Do

3/7/2013

12

March 6, 2013 (START)© R. Michael van Dam, 2013

Reaction Mixture

Vapor

Valve Valve

Fixed reaction vessel

Short tube(s) to add reagents, supply pressure, etc.

Long  dip‐tube(s) to transfer product out, bubble nitrogen, etc.

Issue #2: Solvent vapor can condense, leading to loss from the reaction mixture

Issue #3: Air in the tubing can be compressed, allowing some liquid to fill tubing

Less volume, more concentrated than 

desired

This liquid does not get properly heated

In equilibrium reaches a pressure determined by the 

temperature

Issue #1: valves may not be sufficient to hold the required pressure at high temperatures

March 6, 2013 (START)© R. Michael van Dam, 2013

Retractable dip tube vessel

Start with dip‐tube in retracted position

Lower dip‐tube at end of synthesis

PEEKdip‐tube

Vertical actuator

Resolves Issue #3

Page 13: Automated Radiosynthesizers for PET Probes...Automation can be achieved by having a computer execute steps in sequence Start Perform Step 1 Perform Step 2 Perform Step 3 … End Do

3/7/2013

13

March 6, 2013 (START)© R. Michael van Dam, 2013

Septum‐sealed vessel

Reaction vial

Wheel of needle pairs that can be inserted into septum

F.T. Chin et al. J. LabelCompd Radiopharm 49:17‐31 (2006)

Dip tube

Reagent addition

Resolves Issues #1,2,3(removes tubing from vessel)

NOTE: pierced septum has limited pressure‐holding ability.

March 6, 2013 (START)© R. Michael van Dam, 2013

Reconfigurable reaction vesselResolves Issues #1,2,3

(removes tubing from vessel)

Reaction vial

Tubing replaced with a robust seal(enables highest 

pressures)

[18F]FAC

Radu et al. Nature medicine 14(7): 783‐788 (2008)

Fluorination reaction:MeCN

T = 165°CP = 121 psi [834 kPa]

Base coupling reaction:1,2-dichloroethane

T = 160°CP = 101 psi [695 kPa]

Mangner et al. Nuclear Medicine and Biology 30: 

215–224 (2003)[18F]FMAU, [18F]FIAU, [18F]BMAU

Base coupling reaction:chloroformT = 150°C

P = 139 psi [957 kPa]

Page 14: Automated Radiosynthesizers for PET Probes...Automation can be achieved by having a computer execute steps in sequence Start Perform Step 1 Perform Step 2 Perform Step 3 … End Do

3/7/2013

14

March 6, 2013 (START)© R. Michael van Dam, 2013

Mixing methods

• Inert gas bubbling– Bubbling gas up from the bottom of the vessel 

agitates liquid

– Can only mix while a dip tube is in the vessel

• Magnetic stirring– A rotating magnet below the vessel causes a 

magnetic stirbar inside the vessel to rotate

– Can mix at any time

Inert gas

vent

Stir bar

March 6, 2013 (START)© R. Michael van Dam, 2013

Heating methods

• Oil bath– Control temperature of oil– Lower vessel into oil

• Metal jacket– Control temperature of a metal jacket around the 

vessel (resistive heater; thermoelectric)– Heat conducts from metal to vessel– Advantages: easier to switch temperatures; less 

messy

• Microwave– Feedback control of glass temperature (IR sensor); 

or apply constant power

Vessel

Temperature controller

Page 15: Automated Radiosynthesizers for PET Probes...Automation can be achieved by having a computer execute steps in sequence Start Perform Step 1 Perform Step 2 Perform Step 3 … End Do

3/7/2013

15

March 6, 2013 (START)© R. Michael van Dam, 2013

Motion in radiochemistry system –some examples

• Syringe drives• Raise and lower a dip‐tube• Rotate a stopcock valve

• Robotic synthesis module– Raise/lower oil bath– Select “stopper”– Raise/lower stopper

• Septum‐sealed vessel module– Rotate needle wheel– Raise/lower needles

March 6, 2013 (START)© R. Michael van Dam, 2013

Motion actuation ‐ electric

Leadscrew

Linear rail

Drive bushing

Linear motion actuator

Motor

Carriage

Stage

Motor Controller

Rotary motion also possible

Page 16: Automated Radiosynthesizers for PET Probes...Automation can be achieved by having a computer execute steps in sequence Start Perform Step 1 Perform Step 2 Perform Step 3 … End Do

3/7/2013

16

March 6, 2013 (START)© R. Michael van Dam, 2013

Motion actuation ‐ pneumaticPressureVent

Pressure Vent

Straightforward control. Use valves to control opening of pressure/vent

Rotary pneumatic actuator

Pneumatic Gripper

March 6, 2013 (START)© R. Michael van Dam, 2013

Comparison of motion actuation

Leadscrew actuator Pneumatic actuator

Available positionsCan move to arbitrary positions 

with high accuracyCan move to one end of 

travel or the other

Detectable positions

Can detect “home” and end‐points with switches.  Can 

detect intermediate positions with “encoder”

Can detect end‐pointswith switches

CostExpensive actuator plus expensive controller

Low‐cost actuator.No controller

(only requires 2 valves)

Setting amount of force

DifficultChoose operating 

pressure (and cylinder bore size)

Actuator size(for a given force)

Large Small

Page 17: Automated Radiosynthesizers for PET Probes...Automation can be achieved by having a computer execute steps in sequence Start Perform Step 1 Perform Step 2 Perform Step 3 … End Do

3/7/2013

17

March 6, 2013 (START)© R. Michael van Dam, 2013

PurificationCartridge (Solid‐Phase Extraction, SPE)

High‐Performance Liquid Chromatography (HPLC)

TrappingCrude product

Waste vial

Elution

Eluent vial

Purified product

March 6, 2013 (START)© R. Michael van Dam, 2013

Automation can be achieved by having a computer execute steps in sequence

Start Perform Step 1 Perform Step 2 Perform Step 3 … End

Do somethingIs task 

complete?

NO

YES

Deciding when to move on to the next Step is an important 

part of automation

How does the computer decide when to move forward?

Page 18: Automated Radiosynthesizers for PET Probes...Automation can be achieved by having a computer execute steps in sequence Start Perform Step 1 Perform Step 2 Perform Step 3 … End Do

3/7/2013

18

March 6, 2013 (START)© R. Michael van Dam, 2013

Sensors provide information about the system in an electronic format

• Desired temperature reached?– Thermocouple, thermistor, infra‐red sensor, etc.

• Desired pressure reached?– Pressure transducer

• Certain amount of time elapsed?– Timer

• Moving part arrived at correct position?– Position sensors (optical, magnetic, electronic, etc…)

• Has all of liquid flowed from A to B?– Liquid detector can monitor contents of transparent tubing

• Other types of sensors:

– Radiation• Can estimate amount of radioactivity in parts of system (e.g. in vials, trapped on cartridges, etc…)• Clever combinations of sensors can estimate reaction yield

– Camera• Provide visual image of part of system (e.g. reaction vial)• Can verify completion of liquid transfers, completion of evaporation, etc.• Difficult for a computer to interpret images

March 6, 2013 (START)© R. Michael van Dam, 2013

Additional system components that may be found on system diagrams

Filter

Pressure gauge

Pressure regulator

Page 19: Automated Radiosynthesizers for PET Probes...Automation can be achieved by having a computer execute steps in sequence Start Perform Step 1 Perform Step 2 Perform Step 3 … End Do

3/7/2013

19

March 6, 2013 (START)© R. Michael van Dam, 2013

Examples of commercial radiosynthesizers

March 6, 2013 (START)© R. Michael van Dam, 2013

General types of synthesizers• Fixed

– System components and plumbing are fixed– Can make one probe, or other probes with similar synthesis protocols– Replumbing may enable other probes to be made– System must be cleaned between syntheses

• Modular– System can be expanded with additional hardware (e.g. additional reaction 

vessels, valves, reagent vials, etc.)– Replumbing is essential to incorporate additional elements.  Every system is 

custom.– System must be cleaned between syntheses

• Disposable cassette– Fluid path designed as a self‐contained “cassette” that can be discarded after 

each synthesis– Different cassettes may enable other probes to be made– Some systems allow users to reconfigure cassettes (by replumbing)– Cleaning is not required– Sometimes limitations due to materials (polymers) used

Page 20: Automated Radiosynthesizers for PET Probes...Automation can be achieved by having a computer execute steps in sequence Start Perform Step 1 Perform Step 2 Perform Step 3 … End Do

3/7/2013

20

March 6, 2013 (START)© R. Michael van Dam, 2013

Fixed systems

Synthra RNplus

March 6, 2013 (START)© R. Michael van Dam, 2013

GE TRACERlab FX N Pro

Siemens Explora FDG4Tracera TS‐1Raytest SynChrom

Scintomics hotbox2 GE TRACERlab FX F‐N

Page 21: Automated Radiosynthesizers for PET Probes...Automation can be achieved by having a computer execute steps in sequence Start Perform Step 1 Perform Step 2 Perform Step 3 … End Do

3/7/2013

21

March 6, 2013 (START)© R. Michael van Dam, 2013

A. Schildan, M. Patt, O. Sabri, 2007. Synthesis procedure for routine production of 2-[18F]fluoro-3-(2(S)-azetidinylmethoxy)pyridine (2-[18F]F-A-85380), Applied Radiation and Isotopes 65(11): 1244-1248.

March 6, 2013 (START)© R. Michael van Dam, 2013

J.D. Kalen et al. 2007. Automated synthesis of 18F analogue of paclitaxel (PAC): [18F]Paclitaxel (FPAC), Applied Radiation and Isotopes 65(6): 696‐700

Tracerlab FX F‐N Dual Reactor system

Page 22: Automated Radiosynthesizers for PET Probes...Automation can be achieved by having a computer execute steps in sequence Start Perform Step 1 Perform Step 2 Perform Step 3 … End Do

3/7/2013

22

March 6, 2013 (START)© R. Michael van Dam, 2013

Modular systems

Eckert&ZieglerModular‐Lab

T. Läppchen et al., 2012. Applied Radiation and Isotopes 70(1): 205-209.

March 6, 2013 (START)© R. Michael van Dam, 2013

C. Pascali et al. 2012. Simple preparation and purification of ethanol-free solutions of 3′-deoxy-3′-[18F]fluorothymidineby means of disposable solid-phase extraction cartridges, Nuclear Medicine and Biology 39(4): 540-550.

Page 23: Automated Radiosynthesizers for PET Probes...Automation can be achieved by having a computer execute steps in sequence Start Perform Step 1 Perform Step 2 Perform Step 3 … End Do

3/7/2013

23

March 6, 2013 (START)© R. Michael van Dam, 2013

T. Läppchen et al., 2012. Automated synthesis of [18F]gefitinib on a modular system, Applied Radiation and Isotopes 70(1): 205-209.

March 6, 2013 (START)© R. Michael van Dam, 2013

Disposable‐cassette‐based systemsBioscan F‐18 Plus

GE TRACERlab MX

‐ Currently most widely used kit‐based system‐ 15 3‐way stopcocks‐ several syringe drives

Page 24: Automated Radiosynthesizers for PET Probes...Automation can be achieved by having a computer execute steps in sequence Start Perform Step 1 Perform Step 2 Perform Step 3 … End Do

3/7/2013

24

March 6, 2013 (START)© R. Michael van Dam, 2013

Comecer TaddeoUniversal Synthesis Module

Scintomics GRP

Eckert & ZiglerPharmTracer

GE FASTlab

Cassettes come pre‐loaded with reagents

Modular, cassette‐based system.  Cassettes can be expanded(more valves, syringes, etc…)

March 6, 2013 (START)© R. Michael van Dam, 2013

IBA Synthera

‐Very compact‐HPLC module available

Page 25: Automated Radiosynthesizers for PET Probes...Automation can be achieved by having a computer execute steps in sequence Start Perform Step 1 Perform Step 2 Perform Step 3 … End Do

3/7/2013

25

March 6, 2013 (START)© R. Michael van Dam, 2013

Tracerlab MXFDG

T. Bourdier et al. 2012. Automated radiosynthesis of [18F]PBR111 and [18F]PBR102 using the Tracerlab FXFN and Tracerlab MXFDG module for imaging the peripheral benzodiazepine receptor with PET, Applied Radiation and Isotopes 70(1): 176-183

March 6, 2013 (START)© R. Michael van Dam, 2013

S.J. Oh et al. 2005. Fully automated synthesis of [18F]fluoromisonidazole using a conventional [18F]FDG module, Nuclear Medicine and Biology 32(8): 899-905.

Tracerlab MXFDG

Page 26: Automated Radiosynthesizers for PET Probes...Automation can be achieved by having a computer execute steps in sequence Start Perform Step 1 Perform Step 2 Perform Step 3 … End Do

3/7/2013

26

March 6, 2013 (START)© R. Michael van Dam, 2013

ELIXYS radiosynthesizer(cassette‐based)

Sofie Biosciences ELIXYS

March 6, 2013 (START)© R. Michael van Dam, 2013

Progression to automation

Remote-controlled Semi-automated Fully automated

Robotic synthesis module

ARC-P ELIXYS

• Visual feedback for completion of step

• Manual addition of reagents

• Manual control of all components

• Visual feedback for completion of step

• Automated addition of some reagents

• Automated control of movement and temperature.

• Integration of three reactors in one system

• Automated control of all components

Page 27: Automated Radiosynthesizers for PET Probes...Automation can be achieved by having a computer execute steps in sequence Start Perform Step 1 Perform Step 2 Perform Step 3 … End Do

3/7/2013

27

March 6, 2013 (START)© R. Michael van Dam, 2013

March 6, 2013 (START)© R. Michael van Dam, 2013

Reaction vessel

Pneumatic cylinders

Camera

Spring-loaded “chuck”

Heater/Thermocouples

Coolant fluid path

Linear actuator

Page 28: Automated Radiosynthesizers for PET Probes...Automation can be achieved by having a computer execute steps in sequence Start Perform Step 1 Perform Step 2 Perform Step 3 … End Do

3/7/2013

28

March 6, 2013 (START)© R. Michael van Dam, 2013

Reactor design of ELIXYS radiosynthesizer

Fixed cassette/seals. Reaction vessel moves.

Reaction vessel

Heating/cooling jacket

Fixed reaction vessel. Stoppers move.

Sealing gasket along bottom

surfaceDisposable

cassette

March 6, 2013 (START)© R. Michael van Dam, 2013

Page 29: Automated Radiosynthesizers for PET Probes...Automation can be achieved by having a computer execute steps in sequence Start Perform Step 1 Perform Step 2 Perform Step 3 … End Do

3/7/2013

29

March 6, 2013 (START)© R. Michael van Dam, 2013

March 6, 2013 (START)© R. Michael van Dam, 2013

Page 30: Automated Radiosynthesizers for PET Probes...Automation can be achieved by having a computer execute steps in sequence Start Perform Step 1 Perform Step 2 Perform Step 3 … End Do

3/7/2013

30

March 6, 2013 (START)© R. Michael van Dam, 2013

March 6, 2013 (START)© R. Michael van Dam, 2013

Page 31: Automated Radiosynthesizers for PET Probes...Automation can be achieved by having a computer execute steps in sequence Start Perform Step 1 Perform Step 2 Perform Step 3 … End Do

3/7/2013

31

March 6, 2013 (START)© R. Michael van Dam, 2013

March 6, 2013 (START)© R. Michael van Dam, 2013

Y-axisX-axis

Z-axis

Vacuum

Inert Gas Vial gripper

Gas supplier

Pneumatic actuator for vial gripper

Pneumatic actuator for gas supplier

Page 32: Automated Radiosynthesizers for PET Probes...Automation can be achieved by having a computer execute steps in sequence Start Perform Step 1 Perform Step 2 Perform Step 3 … End Do

3/7/2013

32

March 6, 2013 (START)© R. Michael van Dam, 2013

Disposable Cassettes

Top Bottom

Reagent addition

March 6, 2013 (START)© R. Michael van Dam, 2013

Disposable Cassettes

Top Bottom

Chemical reactions

Page 33: Automated Radiosynthesizers for PET Probes...Automation can be achieved by having a computer execute steps in sequence Start Perform Step 1 Perform Step 2 Perform Step 3 … End Do

3/7/2013

33

March 6, 2013 (START)© R. Michael van Dam, 2013

Disposable Cassettes

Top Bottom

Evaporations

March 6, 2013 (START)© R. Michael van Dam, 2013

Disposable Cassettes

Top Bottom

Transfers

Page 34: Automated Radiosynthesizers for PET Probes...Automation can be achieved by having a computer execute steps in sequence Start Perform Step 1 Perform Step 2 Perform Step 3 … End Do

3/7/2013

34

March 6, 2013 (START)© R. Michael van Dam, 2013

Dip tube

Reagent addition

position 1

Reagent addition

position 2

Eluentvial

Stored reagent

vialStopcock

valves

Vacuumport Inert gas

portCartridge

waste

Eluent addition position

Cassette designed to facilitate several a “unit 

operations” at each gasket position that the reaction vessel can be sealed against

March 6, 2013 (START)© R. Michael van Dam, 2013

Evaporation

VacuumInert gas

Evaporate position

Page 35: Automated Radiosynthesizers for PET Probes...Automation can be achieved by having a computer execute steps in sequence Start Perform Step 1 Perform Step 2 Perform Step 3 … End Do

3/7/2013

35

March 6, 2013 (START)© R. Michael van Dam, 2013

Sealed Reaction

React position 2

March 6, 2013 (START)© R. Michael van Dam, 2013

React position 1

Sealed Reaction

Page 36: Automated Radiosynthesizers for PET Probes...Automation can be achieved by having a computer execute steps in sequence Start Perform Step 1 Perform Step 2 Perform Step 3 … End Do

3/7/2013

36

March 6, 2013 (START)© R. Michael van Dam, 2013

Reagent Addition

Inert gas

Reagent addition

position 1

Reagent addition

position 2

Addition position

March 6, 2013 (START)© R. Michael van Dam, 2013

Transfer

Cartridgewaste

Output to next

cassette or HPLC

valve

Purification cartridge

Transfer position

Inert gas

Page 37: Automated Radiosynthesizers for PET Probes...Automation can be achieved by having a computer execute steps in sequence Start Perform Step 1 Perform Step 2 Perform Step 3 … End Do

3/7/2013

37

March 6, 2013 (START)© R. Michael van Dam, 2013

Radioisotope HandlingRadioisotope inlet(e.g., [18F]fluoride)

Inert gas

Recovery vial(e.g., [18O]H2O) Eluent

vial

Optional cartridge

(e.g., QMA)

Addition position

March 6, 2013 (START)© R. Michael van Dam, 2013

ELIXYS Radiosynthesizer software

Page 38: Automated Radiosynthesizers for PET Probes...Automation can be achieved by having a computer execute steps in sequence Start Perform Step 1 Perform Step 2 Perform Step 3 … End Do

3/7/2013

38

March 6, 2013 (START)© R. Michael van Dam, 2013

Main software screen for IBA Synthera

Simplifying software for radiochemists

Programming a synthesis

March 6, 2013 (START)© R. Michael van Dam, 2013

Unit operations to hide complexity from users

# Adjust pressure‐ Set regulator 1 to delivery pressure

# Move reactor to add position‐ Lower reactor‐Move reactor robot to add position‐ Raise reactor

# Move reagent vial to delivery position‐ Open gripper‐ Raise gripper‐ Raise gas transfer‐Move reagent robot to reagent position‐ Lower gripper‐ Close gripper‐ Raise gripper‐Move reagent robot to delivery position ‐ Lower gas transfer‐ Open gas transfer valve‐ Lower gripper

# Deliver reagent‐Wait for delivery time to elapse

# Return vial to reagent position‐ Raise gripper‐ Close gas transfer valve‐ Raise gas transfer‐Move reagent robot to reagent position‐ Lower gripper‐ Open gripper‐ Raise gripper‐Move reagent robot to home

Parameters:

• Reactor• Reagent• delivery position

• delivery pressure 

• delivery time

“ADD REAGENT” unit operation

Other unit operations:

‐ REACT (temperature, time)‐ EVAPORATE (temperature, time)‐ TRANSFER (from, to, pressure)‐ PROMPT (message)‐ etc…

Page 39: Automated Radiosynthesizers for PET Probes...Automation can be achieved by having a computer execute steps in sequence Start Perform Step 1 Perform Step 2 Perform Step 3 … End Do

3/7/2013

39

March 6, 2013 (START)© R. Michael van Dam, 2013

Toolboxof unit operations

“Filmstrip” view of synthesis process

Parameters for selected unit operation

March 6, 2013 (START)© R. Michael van Dam, 2013

How to choose parameter values?

• For some processes, there are no sensors built into ELIXYS to detect completion.  A timer approach is used instead.

• Example: How to determine desired duration of applying gas pressure for reagent addition

– Load reagent vial with desired volume of desired reagent– Deliver at desired pressure to reaction vessel– Monitor completion with camera– Repeat many times, take maximum time, multiply by safety 

factor (e.g. 1.3 – 1.5)– Set this as the desired time

Page 40: Automated Radiosynthesizers for PET Probes...Automation can be achieved by having a computer execute steps in sequence Start Perform Step 1 Perform Step 2 Perform Step 3 … End Do

3/7/2013

40

March 6, 2013 (START)© R. Michael van Dam, 2013

System Probe Operation count

ELIXYS [18F]FDG 17 unit operations

ELIXYS D‐[18F]FAC 42 unit operations

ELIXYS L‐[18F]FMAU 42 unit operations

ELIXYS [18F]SFB 15 unit operations

ELIXYS [18F]FLT 15 unit operations

ELIXYS [18F]Fallypride 12 unit operations

IBA SYNTHERA [18F]FDG 227 program steps

IBA SYNTHERA [18F]FLT 241 program steps

IBA SYNTHERA [18F]SFB 206 program steps

GE FASTLAB [18F]FDG 335 program steps

March 6, 2013 (START)© R. Michael van Dam, 2013

Page 41: Automated Radiosynthesizers for PET Probes...Automation can be achieved by having a computer execute steps in sequence Start Perform Step 1 Perform Step 2 Perform Step 3 … End Do

3/7/2013

41

March 6, 2013 (START)© R. Michael van Dam, 2013

Summary

March 6, 2013 (START)© R. Michael van Dam, 2013

Advantages of ELIXYS

• Flexibility for diverse PET probes– Up to 3 reaction vessels– Movable reactor can withstand high reaction temperatures and pressures

– Most fluid paths (e.g. connection between a reagent vial and reaction vessel) are created on the fly

• Allows most reconfiguration to be done in software• No need to customize / replumb system• Improves standardization of hardware so a custom system isn’t used for each probe

• Very few valves and fittings (improves reliability)• Intuitive software interface, requires no knowledge of hardware architecture of the system

• Cassettes enable rapid shift from probe development to routine production

Page 42: Automated Radiosynthesizers for PET Probes...Automation can be achieved by having a computer execute steps in sequence Start Perform Step 1 Perform Step 2 Perform Step 3 … End Do

3/7/2013

42

March 6, 2013 (START)© R. Michael van Dam, 2013

Summary

• Recapped synthesis of FDG on robotic synthesis module

• Remote control vs automation

• Basic architecture and elements of radiosynthesizers

• Examples of commercial radiosynthesizers of different types

• ELIXYS radiosynthesizer

• ELIXYS software

• Next week:  automated radiosynthesizer lab (ELIXYS)

March 6, 2013 (START)© R. Michael van Dam, 2013

Resources• R. Krasikova. 2007. “Synthesis Modules and Automation in F‐18 Labeling”. In PET 

Chemistry: The Driving Force in Molecular Imaging, Schubiger, P.A., Lehmann, L., Friebe, M. (Eds.). 62: 289‐316. Springer‐Verlag Berlin Heidelberg.

• D.L. Alexoff. 2003. “Automation for the Synthesis and Application of PET Radiopharmaceuticals.” In Handbook of Radiopharmaceuticals: Radiochemistry and Applications, Welch, M.J. and Redvanly, C.S. (Eds.). 283‐305. John Wiley & Sons, Ltd.

• P.Y. Keng, M. Esterby, R.M. van Dam. 2012. “Emerging Technologies for Decentralized Production of PET Tracers”. In Positron Emission Tomography: Current Clinical and Research Aspects. 153‐182. InTech.

• J.I. Sachinidis , S. Poniger, H.J. Tochon‐Danguy. 2010. “Automation for OptimisedProduction of Fluorine‐18‐Labelled Radiopharmaceuticals.” Current Radiopharmaceuticals 3: 248‐253.

• H.C. Padgett, D.G. Schmidt, A. Luxen, G.T. Bida, N. Satyamurthy, J.R. Barrio. 1989. “Computer‐controlled radiochemical synthesis: A chemistry process control unit for the automated production of radiochemicals”. Applied Radiation and Isotopes 40(5): 433‐445. [Historical paper]