attou rmg msap

82
Projet de Fin d’Etude présenté par : M. ATTOU Amine Pour l'obtention du diplôme de : Master en Électrotechnique Parcours : Commande des Systèmes Electriques Intitulé du mémoire : Commande par mode glissant de la machine synchrone à aimants permanents UNIVERSITE DJILLALI LIABES DE SIDI BEL-ABBES Faculté des Sciences de l'Ingénieur Département d'Électrotechnique REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE Présenté devant le jury composé de : Dr : M. ABID Dr : A. MASSOUM Dr : A. BENTAALLAH Dr : A. AYAD Président Encadreur Examinateur Examinateur MCA UDL Sidi bel - Abbés MCA UDL Sidi bel - Abbés MCB UDL Sidi bel - Abbés MCB UDL Sidi bel - Abbés Soutenue le : 27 Juin 2011

Upload: attouamine

Post on 05-Jul-2015

1.562 views

Category:

Documents


9 download

DESCRIPTION

commande robuste par mode glissant d'une machine synchrone à aimants permanents

TRANSCRIPT

Page 1: ATTOU RMG MSAP

Projet de Fin d’Etude présenté par :

M. ATTOU Amine

Pour l'obtention du diplôme de :

Master en Électrotechnique

Parcours : Commande des Systèmes Electriques

Intitulé du mémoire :

Commande par mode glissant de la machine

synchrone à aimants permanents

UNIVERSITE DJILLALI LIABES DE SIDI BEL-ABBES

Faculté des Sciences de l'Ingénieur

Département d'Électrotechnique

REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

Présenté devant le jury composé de :

Dr : M. ABID

Dr : A. MASSOUM

Dr : A. BENTAALLAH

Dr : A. AYAD

Président

Encadreur

Examinateur

Examinateur

MCA UDL Sidi bel - Abbés

MCA UDL Sidi bel - Abbés

MCB UDL Sidi bel - Abbés

MCB UDL Sidi bel - Abbés

Soutenue le : 27 Juin 2011

Page 2: ATTOU RMG MSAP

e remercie Monsieur ABID, Maître de conférences (A) à l’université Djillali

Liabes, pour l'intérêt qu'il a manifesté à mon travail en acceptant de le

juger et de présider le jury de soutenance. Je remercie également

Monsieur BENTAALLAH et Monsieur AYAD, Maîtres de conférences (B) à

l’université Djillali Liabes d’avoir accepté la mission de m’examiner et de

participer à ma soutenance.

J

J

e souhaite tout particulièrement exprimer ma gratitude à mon encadreur,

Dr A.MASSOUM, Maître de conférences (A) à l’université Djillali Liabes,

pour la confiance qu'il m'a témoignée en m'accueillant, pour m’avoir offert

un sujet aussi riche et passionnant, pour son suivi permanent et ses

conseils judicieux. Merci surtout de m’avoir accompagné malgré votre

emploi du temps assez chargés.

J

Remerciements

e remercie tous les enseignants qui ont participé à notre formation et

toutes les personnes qui, de près ou de loin mon apportés leur soutien.

Page 3: ATTOU RMG MSAP

SOMMAIRE

Page 4: ATTOU RMG MSAP

UDL – Sidi bel Abbés - 2011 i

SOMMAIRE

Abréviations et notations ……………………………………………………………………………………………………………………………….……. i

Introduction générale …………………………………………………………………………………………………………………………………………… 1

Chapitre 01

Généralités sur la machine synchrone à aimants permanents

I.1 Introduction …………………………………………………………………………………………………………………………………………………………….

I.2 Présentation de la machine synchrone à aimants permanents ……………………………………………………………

I.2.1 Structure des inducteurs des machines à aimants………………………………………………………………………………...

I.2.1.a Structure sans pièce polaire …………………………………………………………………………………………………………..

Aimantation radial

Aimantation tangentielle

I .2.1.b Structure avec pièce polaire……………………………………………………………………………….…………….……………

Aimantation tangentielle

Aimantation radial

I.2.2 Propriétés diamant permanent ………………………………………………………………………………………………………….……

I.2.3 Choix d’aimants permanents utilisés pour la MSAP……………………………………………………………………….….

I.3 Avantage des machines synchrones à aimants ………………………………………………………………………….………………

I.4 Domaine d’application…………………………………………………………………………………………………………………………………….……

I.5 Conclusion ………………………………………………………………………………………………………………………………………………………….……

Chapitre 02

Modélisation de l’ensemble Convertisseurs-MSAP

II.1 Introduction.………………………………………………………………………………………………………………………………………………………...

II.2 Hypothèses simplificatrices. ………………………………………………………………………………………………………………………….

II .3 Modélisation de la MSAP …………………………………………………………………………………………………………………………………

II.3.1 Mise en équation de la MSAP en triphasé (modèle en abc) ………………………………………………………

II.3.1.a Équation électrique ………………………………………………………………………………………………………………………

II.3.1.b Équation électromagnétique ……………………………………………………………….……………………………………

II.3.1.c Équation mécanique…………………………………………………………………………………………………………….…………

II.3.1.d La puissance absorbée………………………………….………………………………………………………………….……………

II.3.2 Mise en équation de la MSAP en diphasé (modèle vectoriel) …………………………………….…………….

II.3.2.1 principe de la transformation de Park (composantes d-q) ……………………………………………..

II.3.2.2 principe de la transformation de CONCORDIA………………………………………………………………………

10

10

10

10

10

12

12

12

13

13

14

3

3

5

5

5

6

7

8

9

9

Page 5: ATTOU RMG MSAP

UDL – Sidi bel Abbés - 2011 ii

II.3.2.3 Passage du repère (d q) au repère ( ) …………………………………………………………….………..…….

II.3.3 Modélisation de la MSAP dans le repère de PARK …………………………………………………………………………

II.3.3.a Équation électrique ……………………………………………………………………………………………………………………….

II.3.3.b Équation électromagnétique ……………………………………………………………………………………….…………….

II.3.3.c Équation mécanique ……………………………………………………………………………………………………..……..…………

II.3.4 Mise sous forme d’équation d’état ………………………………………………………………………………………….…………

II.4 Modélisation de convertisseur …………………………………………………………………………………….……………………….…………

II.4.1 Modélisation du redresseur ………………………………………………………………………………………………………..…..………

II.4.2 Modélisation du filtre………………………………………………………………………………….………………………………..…..………

II.4.3 Modélisation de l'onduleur………………………………………………………………………………………………………………..………

II.4.3.1 Définition de l’onduleur de tension …………………………………………………………………………………….……

II.4.3.2 Modélisation de l’onduleur de tension……………………………………………………………………………..………

II.4.3.3 Commande de l’onduleur ………………………………………………………………………………………………..……….……

a) Principe de la commande MLI………………………………………………………………………………………...….………

b) Caractéristique de la MLI ………………………………………………………………………………………………...…………

II.5 Simulation numérique ………………………………………………………………………………………………………………………....…….………

II.5.1 résultats de simulations ……………………………………………………………………………………………………….………………..

II.5 .2 Interprétation des résultats ……………………………………………………………………………………………………..……………

II.6 Conclusion……………………………………………………………………………………………………………….………………………..………..……………

Chapitre 03

Commande vectorielle de la MSAP

III.1 Introduction. …………………………………………………………………………………………………………………………………………….….………

III.2 Principe de la commande vectorielle .………………………………………………………………………………………….…….………

III.3 Commande vectorielle direct par compensation ……………………………………………………………………….…….……

III.3.1 Techniques de découplage………………………………………………………………………………………………………….….………

III.3.2 Découplage par compensation.………………………………………………………………………………………………….…….……

III.4 Détermination des régulateurs ………………………………………………………………………………………………………….…….……

III.4.1 Description du système global.…………………………………………………………………………………………….……….………

III.4.2 Calcul des régulateurs. ……………………………………………………………………………………………………………….….………

III.4.3 Dimensionnement des régulateurs …………………………………………………………………………………………..….………

a- Régulateur du courant « Iq » ………………………………………………………………………………………………….….………

b- Régulateur du courant « Id » ……………………………………………………………………………………………….….…………

c- Régulation de vitesse ………………………………………………………………………………………………………….….……………

III.5 Limitation des courants……………………………………………………………………………………………………………………….……….……

III.6 Schéma global de simulation……………………………………………………………………………………………………………….…………

III.6.1 Résultats de simulation …………………………………………………………………………………………………………….……………

III.7 Interprétation des résultats ……………………………………………………………………………………………………………….………….

III.8 CONCLUSION……………………………………………………………………………………………………………………………………………….…………

15

15

15

16

16

16

17

18

18

19

19

19

20

20

20

22

23

24

24

25

25

26

26

27

29

29

30

31

32

33

34

35

36

37

37 38

Page 6: ATTOU RMG MSAP

UDL – Sidi bel Abbés - 2011 iii

Chapitre 04

Commande par mode glissant de la MSAP

IV.1 Introduction…………………………………………………………………………………………………………………………………………………………….

IV.2 Généralités sur la théorie du contrôle par mode glissement……………………………………………………………….

IV.3 L’objectif de la commande par mode glissant……………………………………………………………………….………………….

IV.4 Principe de la commande à structure variable ……………………………………………………………………….……………….

IV.4 .1 Définition des systèmes non linéaires ……………………………………………………………………………………………….

IV.4 .2 Formulation des expressions générales de la commande par mode de glissement …………

IV.4 .3 Condition pour l’existence du mode de glissant…………………………………………………………………………….

IV.5 Les modes de la trajectoire dans le plan de phase ……………………………………………………………………………….

IV.6 Conception de la commande par mode glissant……………………………………………………………………………………….

IV.6.a Choix de la surface de glissement………………………………………………………………………………………………………..

IV.6.b Conditions de convergence……………………………………………………………………………………………………………………..

IV.6.b.1 Fonction directe de commutation…………………………………………………………………………………………

IV.6.b.2 Fonction de Lyapunov………………………………………………………………………………………………………………..

IV.6.c Calcul la loi de commande………………………………………………………………………………………………………………….

IV.7 Définition des grandeurs de commande………………………………………………………………………………………………………

IV.8 Expression analytique de la commande………………………………………………………………………………………………………..

IV.9 Phénomène de chattering ………………………………………………………………………………………………………………………….…….

IV.10 Elimination du phénomène de chattering …………………………………………………………………………………………….

IV.10.1 Commande discontinue de base ………………………………………………………………………………………………………..

IV.10.2 Commande avec un seuil……………………………………………………………………………………………………………………….

IV.10.3 Commande adoucie ………………………………………………………………………………………………………………………………..

IV.10.4 Commande continue avec composante intégrale ………………………………………………………………………..

IV.10.5 Utilisation d’une surface augmentée ………………………………………………………………………………………………

IV.11 Application de la commande par mode de glissement à la MSAP …………………………………………………..

IV.11.a Stratégie de réglage à trois surfaces ……………………………………………………………………………………….………

IV.11.a.1 Réglage de la vitesse .……………………………………………………………………………………………..………….……….

IV.11.a.2 Réglage du courant direct ………………………………………………………………………………………………..……….

IV.11.a.3 Réglage du courant quadratique ……………………………………………………………………………………………… IV.11.b Résultat de simulation …………………………………………………………………………………………………………………………

IV.11.b.1 Test de robustesse ……………………………………………………………………………………………………………….……..

a- Test de robustesse par rapport à la variation de la résistance statorique ….…………

b- Test de robustesse par rapport à la variation de moment d’inertie J……………………….

c- Interprétation ……………………………………………………………………………………………………………………………...

IV.11.b.2 Conclusion ……………………………………………………………………………………………………………………………………...

Conclusion générale …………………………………………………………………………………………………………………………………………….……..

ANNEXE …………………………………………………………………………………………………………………………………………………………………………..…

Bibliographie ……………………………………………………………………………………………………………………………………………………………………

39

39

40

40

40

42

42

43

43

44

45

45

46

46

47

48

49

50

50

51

52

53

54

54

54

55

56

57

58

59

60

60

61

61

62

63

64

Page 7: ATTOU RMG MSAP

NOTATIONS ET ABREVIATIONS

Page 8: ATTOU RMG MSAP

UDL – Sidi bel Abbés - 2011 I

NOTATIONS ET ABREVIATIONS

MSAP : machine synchrone à aimants permanents.

MCC : machine à courant continu.

(abc) : modèle réelle de la machine triphasé.

(d-q) : modèle de Park.

MLI : modulation de largeur d’impulsion.

CSV : Commande à structure variable.

fφ,

sfφ : flux engendré par les aimants.

Rs : la résistance statorique.

Xa,b,c : composante réel dans le repère abc.

Ia,b,c : courants suivant les phases triphasées.

Xd : composante longitudinale suivant l’axe d.

Xq : composante transversale suivant l’axe q.

Id : courant de l’axe d.

Iq : courant de l’axe q.

ed et eq : termes de découplages.

θ : Angle électrique.

: La pulsation électrique.

p : nombre de paires de pôles.

r : Vitesse de rotation mécanique.

Cem : Couple électromagnétique.

Cr : Couple résistant.

J : Moment d’inertie.

f : Coefficient de frottement.

refXX ,

: Valeur de référence.

Page 9: ATTOU RMG MSAP

INTRODUCTION GENERALE

Page 10: ATTOU RMG MSAP

Introduction générale

UDL – Sidi bel Abbés - 2011 1

INTRODUCTION GENERALE

Durant ces dernières années, les composants de l’électronique de puissance ont subi une grande

évolution avec l’apparition de composants interrupteurs rapides, ainsi que le développement des

techniques de commande. Cette apparition à permis de concevoir des convertisseurs statiques capables

d’alimenter en amplitude et en fréquence variable les moteurs à courant alternatifs. Le collecteur

mécanique de la machine à courant continu à été remplacé par des inducteurs de type aimants

permanents dans le cas ou les machines sont à courant alternatives qui permis de supprimer les

contacts glissants. Le développement en parallèle de l'électronique de puissance et des aimants

permanents ont conduit à la conception d'un nouveau type de machine synchrone excitée par des

aimants permanents d’où le nom : Machine Synchrone à Aimants Permanents (MSAP).

Aujourd’hui, les moteurs synchrones à aimants permanents sont recommandés dans le monde

industriel. Ceci est dû au fait qu’ils sont fiables, le moteur synchrone à aimants permanents à une

vitesse de rotation proportionnelle à la fréquence d’alimentation et, il est moins encombrants que les

moteurs à courant continu grâce à l’élimination de la source d’excitation. Ainsi, leur construction est

plus simple puisque il n’appartient pas un collecteur mécanique qui entraîne des inconvénients majeurs

tels que la limitation de puissance, l’usure des balais et les pertes rotoriques. Par conséquent, ceci

augmente leur durée de vie et évite un entretien permanent.

La machine synchrone à aimants permanents est connue par sa robustesse qui permet de créer des

commandes de vitesse et de couple avec précision et des performances dynamiques très intéressantes

(actionneurs de robotiques, servomoteurs, entrainement à vitesse variable…etc.). Mais sa commande

est plus compliqué que celle d’une machine à courant continue ; car le système est non linéaire et il

est très difficile d’obtenir le découplage entre le courant induit et le courant inducteur. Afin de

faciliter notre étude on doit modéliser notre machine suivant les axes d-q donc, on abordera le passage

du repère triphasé au repère biphasé par le biais de transformation de Park et on établira les équations

électriques et mécaniques de la machine synchrone à aimants permanents.

La commande vectorielle « field oriented control » permet à la machine synchrone à aimants

permanents d'avoir une dynamique proche de celle de la machine à courant continu qui concerne la

linéarité et le découplage.

Cependant, cette structure de commande nécessite que les paramètres de la machine soient précis,

ceci exige une bonne identification des paramètres. En conséquence, le recours à des algorithmes de

commande robuste, pour maintenir un niveau de découplage et de performance acceptable est

nécessaire.

Page 11: ATTOU RMG MSAP

Introduction générale

UDL – Sidi bel Abbés - 2011 2

La commande à structure variable qui par sa nature non linéaire, possède cette robustesse. Le

réglage par mode de glissement est fondamentalement une méthode qui force la réponse à glisser le

long d'une trajectoire prédéfinie. Cependant, cette technique de commande à un inconvénient de

commutation aux hautes fréquences (effet de chattering).

Dans notre travail, nous nous intéressons à l’étude des machines synchrones à aimants permanents

triphasé à pôles saillant alimentées par un onduleur commandé par la technique modulation de largeur

d’impulsions.

Ce mémoire s'articule en quatre chapitres :

Dans le premier chapitre, nous commençons par les caractéristiques générales des principaux

matériaux pour aimants permanents, puis nous présentons les différentes structures envisageables des

inducteurs des MSAP. A la fin du chapitre, nous citons les principaux avantages des Machines synchrones

à aimants permanents et leurs domaines d’application.

Le second chapitre concerne la modélisation de la machine synchrone à aimants permanents dans le

repère (abc), ainsi que dans le repère de Park (d-q) et on termine le chapitre par une étude de

l’association Machine-onduleur.

Le troisième chapitre décrit le principe de la commande vectorielle de la MSAP pour l'asservissement

de vitesse. La vitesse est réglée par un régulateur proportionnel intégral (PI).

L'intégration d'un régulateur par mode glissant, constitue l'objet du quatrième chapitre. Pour cela,

nous allons introduire dans un premier temps les notions générales sur la commande à structure

variable, on présentant les principes théoriques de cette commande où le système est contraint à

suivre la référence d’attractivité sans tenir compte du modèle de la machine

Nous terminerons par une conclusion générale en proposant des perspectives.

Page 12: ATTOU RMG MSAP

CHAPITRE I

Généralités sur la machine synchrone

à aimants permanents

Page 13: ATTOU RMG MSAP

CHAPITRE : I Généralités sur la machine synchrone à aimants permanents

UDL – Sidi bel Abbés - 2011 3

I.1 INTRODUCTION

Pendant plusieurs années, l’industrie a utilisé le moteur à courant continu (CC) offrant le Principal

avantage d’être facilement commandable grâce au découplage naturel du flux et du couple. Cependant

la présence du système balais collecteur a toujours été un grand inconvénient du moteur parmi d’autres

qui limitant de plus en plus son utilisation [3][14].

Cependant, la fragilité du système balai collecteur a toujours été un inconvénient de la M.C.C, ce

qui limite la puissance et la vitesse maximale et présente des difficultés de maintenance et des

interruptions de fonctionnement. C’est pour cette raison qu’on a eu intérêt à utiliser des moteurs

électriques à courant alternatif afin d’écarter cet inconvénient.

Parmi les moteurs à courant alternatif utilisés dans les entrainements à vitesse variable, le

moteur synchrone à aimants permanents reste un bon candidat. Son choix devient attractif et

concurrent de celui des moteurs asynchrones grâce à l’évolution des aimants permanents qu’ils soient à

base d’alliage ou à terre rare. Cela leur à permis d’être utilisés comme inducteur dans les moteurs

synchrones offrant ainsi, par rapport aux autres type de moteur, beaucoup davantage, entre autres,

une faible inertie et un couple massique élevé [15][25].

I.2 PRESENTATION DE LA MACHINE SYNCHRONE A AIMANTS PERMANENTS [6][15]

La machine synchrone à aimants permanents est un dispositif électromécanique qui comprend un

stator et un rotor.

Fig. I.1 : MSAP utilisée pour les validations expérimentales.

Page 14: ATTOU RMG MSAP

CHAPITRE : I Généralités sur la machine synchrone à aimants permanents

UDL – Sidi bel Abbés - 2011 4

Fig. I.2.a: stator d’une machine synchrone Fig. I.2.b: Photographie d’un rotor MSAP

Le stator est une partie fixe induit où se trouvent les enroulements liés à la source, il est

semblable au stator de toutes les machines électriques triphasées, il est constitué d’un empilage de

tôle magnétique qui contient des encoches dans lesquelles sont logés trois enroulements identiques

décalés entre eux de 3

2.

Concernant son fonctionnent, il est basé sur le principe de rotation du champ magnétique en

synchronisme avec le rotor (vitesse de rotation identique entre le rotor et le champ tournant

statorique) ; d’où le nom des machines synchrone à aimants permanents (MSAP).

La vitesse de rotation du champ tournant est proportionnelle au nombre de pôles de la machine et à

la pulsation des courants statoriques. On note [17] :

pr

(1.1)

Avec :

r : La vitesse de rotation de la machine (rad/s)

: La pulsation des courants statoriques (rad/s).

p: Le nombre de paire de pôles de la machine.

Le rotor est une partie mobile « inducteur » qui est monté sur l’axe de rotation, c’est un

noyau de fer sur lequel sont disposées des aimants permanents qui servent à générer une

excitation permanente.

Le rotor de la MSAP est généralement de deux types [15] :

Rotor sans pièces polaires, donc à entrefer constante, dans lequel les aimants sont orientés

soit perpendiculairement à l’entrefer (aimantation radial) figure (I.3), soit parallèlement

(aimantation tangentielle) figure (I.4).

Rotor possédant des pièces polaires, l’aimantation soit tangentielle figure (I.5) soit radiale

figure (I.6) .Dans ce type de machine, l’inducteur est à pôles saillants.

Page 15: ATTOU RMG MSAP

CHAPITRE : I Généralités sur la machine synchrone à aimants permanents

UDL – Sidi bel Abbés - 2011 5

I.2.1 STRUCTURE DES INDUCTEURS DES MACHINES A AIMANTS [29]

I.2.1.a Structure sans pièce polaire (SPP)

Aimantation radiale

Fig. I.3 : Machine synchrone à aimants (P=2), sans pièce polaire,

Aimantation radiale.

Les aimants de types alnico ou ferrite sont bien adaptés à cette structure, l’entrefer « e » peut être

considéré comme constante (machine à pôles lisses), le flux dans celui-ci est faible, cette structure est

essentiellement utilisée dans les machines synchrones de petite puissance.

Aimantation tangentielle

Fig. I.4 : Machine synchrone à aimants (P=2), sans pièce polaire,

Aimantation tangentielle.

En utilisation des aimants à aimantation tangentielle, on peut réaliser des machines à induction

sinusoïdale. La machine est à pôles lisses, l’induction est faible dans l’entrefer et le couple massique

reste faible.

I.2.1.b Structure avec pièce polaire (APP)

Aimantation tangentielle

Rotor (Circuit amagnétique)

Aimant permanent

Cale amagnétique

Allure d’une ligne de champ

Stator (Circuit magnétique)

Stator (encoches et enroulements triphasés) Air

Allure d’une ligne de champ

Stator (Circuit magnétique)

Rotor (Circuit amagnétique)

Aimant permanent

Air Cale amagnétique

Page 16: ATTOU RMG MSAP

CHAPITRE : I Généralités sur la machine synchrone à aimants permanents

UDL – Sidi bel Abbés - 2011 6

Fig. I.5 : Machine synchrone à aimants (P=4), avec pièce polaire,

Aimantation tangentielle

L’aimant est à base de terre-rare, et les pièces polaire permettent de concentrer le flux, on obtient

ainsi une induction dans l’entrefer supérieure à celle de l’aimant, ce qui accroit le couple massique.

Dans cette configuration, l’entrefer est variable Mm ee (donc la perméance du circuit magnétique, vu

du stator dépend de la position du rotor (machine à pôles saillants).

Aimantation radiale

Fig. I.6 : Machine synchrone à aimants (P=2), avec pièce polaire, Aimantation radiale.

Les pièces polaires sont sur la périphérie des aimants.

I.2.2 PROPRIETES D’AIMANT PERMANENT [18][30]

Les aimants permanents utilisés dans les machines synchrone ont pour fonction principale la création

du flux inducteur. Ils doivent permettre l’obtention d’une puissance massique élevée, ce qui réduit le

volume de la machine. D’autre part une faible sensibilité à la température est également

indispensable, ce qui limite la désaimantation en fonctionnement normal.

Les aimants sont principalement caractérisés par leurs cycles d’hystérésis et plus particulièrement

par la courbe de désaimantation du plan B-H figure (I.7).

Aimant permanent Rotor (Circuit magnétique)

Stator (Circuit magnétique)

Stator (encoches et enroulements triphasés)

Air

Pièce polaire

Allure d’une ligne De champ

Stator (Circuit magnétique)

Air

Zone de concentration de flux (pièce polaires magnétiques)

Page 17: ATTOU RMG MSAP

CHAPITRE : I Généralités sur la machine synchrone à aimants permanents

UDL – Sidi bel Abbés - 2011 7

λm : droite de charge

Fig. I.7 : Courbe de désaimantation d’un matériau pour aimant permanent

Cette courbe donne :

l’induction rémanente Br, c’est-à-dire l’induction résiduelle en circuit fermé ; c’est une

indication de la puissance potentielle de l’aimant.

le champ coercitif de l’induction HcB qui est le champ démagnétisant annulant l’induction ; plus

sa valeur est élevée et plus l’aimant est stable.

le produit d’énergie volumique (BH)max , qui définit la valeur énergétique de l’aimant par unité

de volume.

les valeurs Hm et Bm du point de fonctionnement optimal M correspondant (BH)max.

L’aimant permanent idéal pour la réalisation des inducteurs de machines synchrones doit présenter

une caractéristique B(H) rectangulaire, avec des valeurs de Br et Hc aussi élevées que possible.

I.2.3 CHOIX D’AIMANTS PERMANENTS UTILISES POUR LA MSAP [9][29]

Le choix des aimants permanents est essentiel puisqu’il intervient pour beaucoup dans le couple

massique d’un actionneur :

Les alnico sont des alliages à base de fer, d’aluminium et de nickel, avec des additions de cobalt,

cuivre ou de titane.

Les ferrites sont des composés d’oxyde de fer, de baryum et de strontium.

Fig. I.8 : Caractéristique B(H) de l’aimant permanent idéal

Br

H Hc

B

Page 18: ATTOU RMG MSAP

CHAPITRE : I Généralités sur la machine synchrone à aimants permanents

UDL – Sidi bel Abbés - 2011 8

Les terres rares tels que les Samarium-Cobalt sont beaucoup plus performants et autorisent une

température de fonctionnement élevée (jusqu’à 300°C), mais ils sont très coûteux en raison

notamment de la présence du cobalt dans leur composition.

Les alliages métaux de transitions-terres rares sont à l’heure actuelle les aimants permanents les

plus performants qui entrent dans la composition des inducteurs des machines synchrones. La version la

plus courante est l’alliage samarium–cobalt Sm2 Co17 , qui est quasiment amagnétiques (la perméabilité

relative vaut environ : µr =1.07) et qui est caractérisé par une induction rémanente et un champ

coercitif élevés (Br =1.25 T,Hc = 1000KA/m).la densité d’énergie emmagasinée dans l’aimant est à

taille égale trois fois plus importante que pour les alnico , et six fois plus importante que pour les

ferrites.

Le choix des aimants permanents dépend des facteurs suivants [18] :

Performance du moteur.

Poids du moteur.

Dimension du moteur.

Rendement du moteur.

Facteur économique.

I.3 AVANTAGE DES MACHINES SYNCHRONES A AIMANTS PERMANENTS [1][18][19]

Lors de construction des machines synchrones à aimants permanents (MSAP), l’utilisation des aimants

permanents a la place des bobinages d’excitation offrent beaucoup d’avantage :

suppression de l’alimentation du rotor (absence du contact bagues balais).

Moins des pertes de cuivre, les pertes viennent surtout du stator.

Facteur de puissance et rendement du moteur est améliorées.

Une faible inertie et un couple massique élevé.

Une meilleure performance dynamique.

Construction et maintenance plus simple.

pas d’échauffement au rotor, et absence des pertes joules.

0.35

Alnico

Fig. I.9 : Caractéristiques des aimants permanents

1.25

250 150 H KA/m 1000

B T

1.2

Terres rares

Ferrite

Page 19: ATTOU RMG MSAP

CHAPITRE : I Généralités sur la machine synchrone à aimants permanents

UDL – Sidi bel Abbés - 2011 9

I.4 DOMAINE D’APPLICATION [15]

La machine synchrone à aimants permanents est utilisée dans une large gamme de puissance, allant

de centaines de Watts (servomoteur) à plusieurs méga Watts (système de propulsion des navires), dans

des applications aussi diverse que le positionnement, la synchronisation l’entrainement à vitesse

variable, et la traction :

- il fonctionne comme compensateur synchrone.

- il est utilisé pour les entrainements qui nécessitent une vitesse de rotation constante, tels que les

grands ventilateurs, les compresseurs et les pompes centrifuges, et grâce au développement de

l’électronique de puissance, l’association machine à aimants convertisseur de puissance a trouvé de

nombreuses applications dans les domaines très divers tels que la robotique, la technologie de l’espace

et dans d’autres applications plus particulières (domestique,...).

I.5 CONCLUSION

Une simple comparaison des machines synchrones à aimants permanents avec les autres types de

machines laisse deviner un avenir brillant pour la machine à aimants surtout avec l'apparition des

aimants très performants.

On a présenté dans ce chapitre la machine synchrone à aimants permanents, sa constitution

fondamentale (partie induit et partie inducteur) et puisque nous pouvons distinguer les différents types

de machines synchrones à aimants permanents par la structure de leur rotor, on a analysée ces

structures en présence de pièce polaire et sans pièce polaire avec aimantation radiale et tangentielle.

Ainsi on a mis en évidences les avantages, et les domaines d’application de la machine synchrone à

aimants permanents. ..

Page 20: ATTOU RMG MSAP

CHAPITRE II

Modélisation de l’ensemble

convertisseurs-MSAP

Page 21: ATTOU RMG MSAP

Chapitre : II Modélisation de l’ensemble convertisseurs-MSAP

UDL - Sidi bel Abbes - 2011 10

II .1 INTRODUCTION

L’étude du comportement d’un moteur électrique est une tache difficile et qui nécessite avant tout

un modèle mathématique. La mise sous forme d’un modèle mathématique d’une MSAP permet

d’observer et d’analyse les différentes évolutions des grandeurs électriques de la MSAP d’une part et

l’élaboration des lois de commande d’autre part [15][17].

Pour commander une machine électrique donnée, il est nécessaire d’utiliser son modèle

mathématique en tenant compte de certaines hypothèses simplificatrices. Du point de vue

mathématique, la machine synchrone présente un système complexe multi variable et non linéaire.

L'approche actuelle de modélisation des machines électriques est basée sur la théorie des deux axes

qui transforme un système triphasé en un système biphasé équivalent, ce qui réduit la complexité du

modèle et permet l'étude des régimes transitoires.

Dans ce chapitre, on présentera la modélisation d’une machine synchrone à aimants permanents sans

amortisseur associée à un convertisseur statique (un onduleur à MLI) et en termine avec les résultats de

simulation de la machine-onduleur.

II.2 HYPOTHESES SIMPLIFICATRICES [1][14][15]

Avant d'établir le modèle mathématique nous devons nous imposer quelques hypothèses :

L’entrefer est d’épaisseur uniforme, et d’encochage négligeable.

La saturation du circuit magnétique, l’hystérésis et les courants de Foucault sont négligeables.

Les résistances des enroulements ne varient pas avec la température et l’effet de peau est

négligeable.

Le moteur possède une armature symétrique non saturée, les inductances propre et mutuelle

sont indépendants des courants qui circulent dans les différents enroulements.

La distribution des forces électromotrices, le long de l’entrefer, est supposée sinusoïdale.

Les pertes fer et l’effet amortisseur sont négligés.

La perméabilité des aimants est considérée comme voisine de celle de l’air.

II .3 MODELISATION DE LA MSAP [17]

II.3.1 MISE EN EQUATION DE LA MSAP EN TRIPHASE (MODELE EN ABC)

II.3.1.a Equation électrique

Les tensions, flux et courants statoriques triphasés, sont écrits avec les notations vectorielles

suivantes respectivement : vs , φ s] et i s .

La figure (II.1) donne la représentation des enroulements pour une machine synchrone triphasée à

aimants permanents :

Page 22: ATTOU RMG MSAP

Chapitre : II Modélisation de l’ensemble convertisseurs-MSAP

UDL - Sidi bel Abbes - 2011 11

Fig. II.1 : Représentation d’une machine synchrone à aimants permanents

dans le repère triphasé

A partir de la figure, nous écrivons les équations de la machine synchrone dans le repère fixe au

stator, en notation matricielle : [15][17]

dt

d +] is ][ Rs[ = ] [

ss

φv

][φ]][L[][φ s sfss i

Avec:

Tcbas ] v v[v = ] [v : Vecteur tensions statoriques

T

cbas iii i ][][ : Vecteur courants statoriques

T

cbas ]φφ[φ][ : Vecteur flux statoriques

[ Rs ] =

s

s

R00

00

00R

sR

: Matrice résistance du stator

[ Lss ] =

c

bc

acaba

L

M

MML

bcac

bab

MM

LM

: Matrice inductance du stator

[φ f ] = sfφ

)3

4cos(

)3

2cos(

)cos(

: Vecteur flux engendré par l’aimant

(2.1)

(2.2.a)

(2.2.b)

Page 23: ATTOU RMG MSAP

Chapitre : II Modélisation de l’ensemble convertisseurs-MSAP

UDL - Sidi bel Abbes - 2011 12

Où :

sfφ : Valeur crête (constante) du flux crée par l’aimant à travers l’enroulement statorique.

: Angle entre l'axe d et l'axe de référence dans le système triphasé défini par :

(t) =

0

)(d

Avec rp

: La pulsation électrique.

p : Le nombre de paire de pôles de la machine ;

r : La vitesse de rotation de la machine (rotor).

Le modèle électrique doit être complété par les expressions du couple électromagnétique et de la

vitesse, décrivant ainsi le mode mécanique.

II.3.1.b Equation électromagnétique

La connaissance du couple électromagnétique de la machine est essentielle pour l’étude de la

machine et sa commande.

d

] d[

2

1][

d

] d[

2

1][

f s φ s

ssT

sem iL

ic

II.3.1.c Equation mécanique

L’équation mécanique de la machine est donnée par :

remr fcrc

dt

dJ

Avec :

Cem : Couple électromagnétique délivré par le moteur.

Cr: Couple résistant.

f : Coefficient de frottement.

J: Moment d’inerte du moteur.

II.3.1.d La puissance absorbée

La puissance absorbée par la machine synchrone à aimants permanents est donnée par l’équation

suivant :

emsa cnP 2

aP : La puissance absorbée par le moteur en (w)

sn : La vitesse du champ tournant en (trs/s)

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

Page 24: ATTOU RMG MSAP

Chapitre : II Modélisation de l’ensemble convertisseurs-MSAP

UDL - Sidi bel Abbes - 2011 13

L’étude analytique du comportement des équations (2.1) et (2.2.a) est relativement laborieuse, vu

le grand nombre de coefficients variables. On utilise alors des transformations mathématiques qui

permettent de décrire le comportement du moteur à l’aide d’équations différentielles à coefficients

constants. L’une de ces transformations est la transformation de Park [17].

II.3.2 MISE EN EQUATION DE LA MSAP EN DIPHASE (MODELE VECTORIEL)

II.3.2.1 principe de la transformation de Park [8][13][17]

Le modèle diphasé de la MSAP s'effectue par une transformation du repère triphasé réel en un

repère diphasé fictive, qui n'est en fait qu'un changement de base sur les grandeurs physiques

(tensions, flux, et courants), il conduit à des relations indépendantes de l'angle θ et à la réduction

d'ordre des équations de la machine. La transformation la plus connue par les électrotechniciens est

celle de Park.

Le repère (d,q) peut être fixé au stator, au rotor ou au champ tournant, Selon l’objectif de

l’application.

La figure (II.2) présente la MSAP en modèle vectoriel (modèle de Park) :

Le repère (oa) est fixe. Le repère (d,q) tourne avec la vitesse de synchronisme r .

Fig. II.2 : Schéma équivalent de la MSAP dans le repère (d,q)

a) Passage direct : triphasé au diphasé

L’équation qui traduit le passage du système triphasé au système biphasé (d,q) est donnée par :

Tabcdqo XpX ][)(][ (2.8)

Avec : P( ) : la matrice de passage direct de Park .

P( ) = = 3

2

2

1

2

1

2

1

)3

π4sin(θ)

3

π2sin(θsinθ

)3

π4cos(θ)

3

π2cos(θcosθ

(2.9)

Page 25: ATTOU RMG MSAP

Chapitre : II Modélisation de l’ensemble convertisseurs-MSAP

UDL - Sidi bel Abbes - 2011 14

Où, X représente les variables considérées de la machine qui sont tensions, courants ou flux.

Tabcdqo VpV ][)(][ (2.10)

Tabcdqo IpI ][)(][ (2.11)

Tabcdqo p ][)(][ (2.12)

oX : La composante homopolaire, ajoutée pour rendre la transformation réversible, elle est nulle

lorsque le système est en équilibre.

B) Passage inverse : diphasé au triphasé

La transformée de Park inverse est nécessaire pour revenir aux grandeurs triphasées, elle est définie

par :

[X abc] = P( )-1[X dqo] (2.13)

Et la matrice de passage inverse de park P-1( ) est donnée par :

P-1( ) = 3

2

2

1)

3

4πsin(θ-)

3

4πcos(θ

2

1)

3

2πsin(θ-)

3

2πcos(θ

2

1sinθ-cosθ

(2.14)

II.3.2.2 principe de la transformation de CONCORDIA

La transformation direct de CONCORDIA est déterminée par une matrice [c], elle correspond les

vecteurs des axes (a,b,c) aux vecteurs des axes ( o,, ) ,elle est appliquée aux tensions, aux

courants, et aux flux, abcabcabc ,I,V aux αβoαβoαβo ,I,V respectivement.

Le vecteur X0 , représente la composante homopolaire.

a) Passage direct : triphasé au diphasé

Si on pose = 0 dans les équations (2.9) et (2.14), les matrices de PARK deviennent les matrices de

CONCORDIA :

oX

X

X

= [c]

cX

X

X

b

a

(2.15)

Avec :

X , X : représentent les vecteurs diphasés qui correspondent aux vecteurs Xa, Xb et Xc .

[C] : la Matrice direct de CONCORDIA, donnée par (2.16) :

Page 26: ATTOU RMG MSAP

Chapitre : II Modélisation de l’ensemble convertisseurs-MSAP

UDL - Sidi bel Abbes - 2011 15

[C] =3

2

2

1

2

1

2

12

3

2

30

2

1

2

11

(2.16)

B) Passage inverse : diphasé au triphasé

Le passage inverse de la transformation de CONCORDIA est définit par les relations suivants :

cX

X

X

b

a

= [c]-1

oX

X

X

(2.17)

Avec : [c-1] : la Matrice inverse de CONCORDIA .

[c-1

] =3

2

2

1

2

3

2

1

2

1

2

3

2

1-

2

101

(2.18)

On a choisi le coefficient pour les matrices de PARK et CONCORDIA afin de conserver la puissance

pendant le passage entre les deux référentiels.

II.3.2.3 passage du repère ( qd , ) au repère ( , )

Le passage des composantes ( , ) aux composantes ( qd , ) est donné par une matrice de rotation

exprimée par :

X

X = [R]

q

d

X

X (2.19)

Avec :

[R] =

cossin

sincos (2.20)

[R] : Matrice de passage ( qd , ) au ( , )

II.3.3 MODELISATION DE LA MSAP DANS LE REPERE DE PARK

II.3.3.a Equations électriques

Le modèle de la machine après la transformation de Park est donné par :

drq

qSq

qrd

dS

φ ωdt

dφIRV

φ pω-dt

dφIRV

p

d

(2.21)

Page 27: ATTOU RMG MSAP

Chapitre : II Modélisation de l’ensemble convertisseurs-MSAP

UDL - Sidi bel Abbes - 2011 16

D’après la relation (2.21), on a le couplage entre les axes « d » et « q » .

Expressions des flux

qqq

sfddd

ILφ

φILφ

(2.22)

qd L,L : Inductances d`axes directe et en quadrature.

II.3.3.B Equation électromagnétique

Le couple électromagnétique Ce dans le référentiel (d, q) est donné par l’expression suivante:

]I I)I L- (L[pC qsfqdqdem (2.23)

II.3.3.C Equations mécaniques

L'équation mécanique développée par la machine est donnée par la relation suivante :

remrr ccf

dt

dJ

(2.24)

J : Moment d'inertie de la partie tournante (kg.m2).

f : Coefficient de frottement visqueux (N.m.s/rad).

rc : Couple résistant (N.m).

r : Vitesse mécanique (rad/s).

II.3.4 MISE SOUS FORME D’EQUATION D’ETAT

Considérons les tensions (Vd,Vq) et le flux d’excitation sf comme grandeurs de commande, les

courants statoriques (Id, Iq) comme variables d’état. A partir des équations (2.21), (2.22), on peut écrire

le système d’équations comme suit : [14][17]

[B][U]+[A][X] ][

dt

Xd (2.25)

sf

q

d

r

q

d

q

d

q

s

q

d

r

d

q

rd

s

q

d

V

V

Lqp

L

L

I

I

L

R

L

Lp

L

Lp

L

R

I

I

dt

d

00

01

0

001

(2.26)

Avec :

dt

Xd ][ : Vecteur de dynamique du système.

Page 28: ATTOU RMG MSAP

Chapitre : II Modélisation de l’ensemble convertisseurs-MSAP

UDL - Sidi bel Abbes - 2011 17

[A] : matrice d’état.

][ X : vecteur d’état (posons T

qd ]I I [][ X )

[B] : matrice d’entrée

[U] : vecteur de commande (posonsT

sf qd ] v v[[U] )

A partir de (2.23), (2.24) et (2.26), le modèle de le MSAP dans le repère de Park est schématisé par

la figure (II.3) :

Fig. II.3 : Modèle de la machine dans le repère de Park.

II.4 MODELISATION DE CONVERTISSEUR

La machine synchrone à aimants permanents est un dispositif à vitesse variable, ou la fréquence des

tensions ou des courants d’alimentation est délivrée par un convertisseur statique et asservi à la

position du rotor.

La structure du convertisseur statique qui alimente la machine est constituée essentiellement, d'un

pont redresseur (AC/DC) connecté au réseau, après redressement, la tension continue est filtrée par

des composants passifs « C » ou « LC », pour être finalement appliquée à l’onduleur, et l’onduleur qui

permet d’alimenter la machine par un système de tension alternatif à fréquence variable. [13]

Schéma de principe de l’association convertisseur –machine est donnée par la figure suivante :

r

Page 29: ATTOU RMG MSAP

Chapitre : II Modélisation de l’ensemble convertisseurs-MSAP

UDL - Sidi bel Abbes - 2011 18

Fig. II.4 : Schéma de principe de l’association convertisseur –machine.

II.4.1 MODELISATION DU REDRESSEUR

Le redresseur est un convertisseur « alternatif/continu ». Il est représenté par la figure

(II.5), La conversion d’énergie électrique permet de disposer une source de courant continu a partir

d’une source alternative.

Fig. II.5 : Représentation de Redresseur à diodes.

Ce redresseur comporte trois diodes (D1, D2, D3). cathode commune assurant l’allée du courant Id, et

trois diodes (D’1, D’2, D’3) a anode commune assurant le retour du courant Id .

II.4.2 MODELISATION DU FILTRE

Pour éliminer les hautes fréquences et pour diminuer les ondulations à la sortie du redresseur nous

insérons à l’entrée de l’onduleur un filtre « LC », celui-ci est schématisé par la figure (II.6).

Fig. II.6 : Représentation d’un filtre “Lc”

Page 30: ATTOU RMG MSAP

Chapitre : II Modélisation de l’ensemble convertisseurs-MSAP

UDL - Sidi bel Abbes - 2011 19

II.4.3 MODELISATION DE L'ONDULEUR

L’onduleur de nos jours très largement utilisés dans les systèmes d'entraînement industriels , En

premier lieu, les progrès en matière de semi-conducteur ont permis la réalisation de convertisseurs

statiques de plus en plus performants. En second lieu, l'évolution des techniques numériques et

commandes.

On distingue plusieurs types d’onduleurs :

Selon la source :

— onduleurs de tension.

— onduleurs de courant .

Selon le nombre de phases (monophasé, triphasé, etc.),

Selon le nombre de niveaux (2,3, etc.) [15].

II.4.3.1 Définition de l’onduleur de tension

L’onduleur de tension assure la conversion de l’énergie continue vers l’alternatif (DC/AC). Cette

application est très répandue dans le monde de la conversion d’énergie électrique d’aujourd’hui.

L’onduleur peut être utilisé à fréquence fixe, par exemple alimenter un système alternatif à partir

d’une batterie, ou à fréquence (MLI) variable pour la variation de vitesse des machines électriques.

L’onduleur de tension à MLI permet d’imposer à la machine des ondes de tensions à amplitudes et

fréquences variables à partir du réseau.

L'onduleur qui est connecté à la machine, est constitué de trois bras formé d'interrupteurs

électroniques choisis essentiellement selon la puissance et la fréquence de travail, chaque bras compte

deux composants de puissance complémentaires munis de diode montée en anti-parallèle. Les diodes de

roue libres assurent la continuité du courant dans la Machine une fois les interrupteurs sont ouverts[13].

II.4.3.2 Modélisation de l’onduleur de tension

L’onduleur de tension alimente la MSAP peut être idéalement représenté selon la Figure (II.7):

Fig. II.7 : Schéma de l’association MSAP-onduleur de tension.

Ti et T’

i avec i = (a, b, c) sont des transistors MOSFET.

Si et S i ' sont les commandes logiques qui leur sont associées telle que :

si Si = 1, l’interrupteur Ti est passant et T’i est ouvert.

si Si = 0, l’interrupteur Ti est ouvert et T’i est passant.

Page 31: ATTOU RMG MSAP

Chapitre : II Modélisation de l’ensemble convertisseurs-MSAP

UDL - Sidi bel Abbes - 2011 20

II.4.3.3 Commande de l’onduleur

Pour les commandes de l’onduleur, il existe plusieurs stratégies, parmi les stratégies qu’on a :

La commande des régulateurs de courant qui génèrent directement les signaux de commande

de l’onduleur : c’est la stratégie ON/OFF(hystérésis).

La commande des régulateurs de courants qui fournissent des références de tension à

appliquer par l’onduleur et son système de commande par MLI (Modulation de Largeur et

d’Impulsion).

a) Principe de la commande MLI

Dans notre travaille, l’onduleur est commandé par la technique (MLI) générée par une porteuse sous

forme de dent de scie, La technique MLI appelée en anglais (Pulse Wit Modulation PWM). Elle est

utilisée pour générer un signal qui contrôle les interrupteurs, la MLI délivre un signal de commande en

créneaux, il est générer par l’intersection de deux signaux, signal de référence, généralement

sinusoïdale qui est de basse fréquence, et le signal de porteuse qui est de haute fréquence de forme

généralement triangulaire d’où l’appellation triangulo-sinusoïdale .

b) Caractéristique de la MLI

Deux paramètres caractérisent cette commande:

1) r

p

f

fm (2.28)

2) p

r

V

Vr (2.29)

Avec :

« m » : L’indice de modulation qui définit le rapport entre la fréquence fp de la porteuse et la

fréquence fr de la référence

« r » : Le taux de modulation (ou coefficient de réglage) qui donne le rapport de l’amplitude de

la modulante Vr à la valeur crête Vp de la porteuse

Fig. II.8 : Principe de la commande MLI-ST

Page 32: ATTOU RMG MSAP

Chapitre : II Modélisation de l’ensemble convertisseurs-MSAP

UDL - Sidi bel Abbes - 2011 21

On considère l’alimentation de l’onduleur comme une source parfaite, supposée être constituée par

deux générateurs de f.e.m. égale à 2

E

connectés entre eux par un point commun (0).

Les tensions aux bornes de l’onduleur :

aococa

cobobc

boaoab

V - V V

V - V V

V- V V

(2.30)

Les tensions VaN , VbN et VcN forment un système de tension triphasées équilibrées, donc :

0 V V V cNbNaN (2.31)

0Nc0N

0Nb0bN

0Na0N

V+V= Vc

V+V= V

V+V= Va

0V V V V3 V V V c0b0 a0oNcNbNaN (2.32)

De (2.32) on déduit :

)V V (V3

1 V c0b0 a0aN (2.33)

A partir de l’équation (2.32) et (2.33) ,on a :

co

bo

ao

V

V

V

= 3

1

21-1

1-21

1-1-2

cN

bN

VaN

V

V (2.34)

MLI MLI MLI

VaN VbN VcN

uc ub ua Porteuse

Sa Sb Sc

K1

K3’ K1’

K2

K2’

K3

Fig. II.9 : Schéma équivalent de l’onduleur à MLI

E/2

-E/2

0

Page 33: ATTOU RMG MSAP

Chapitre : II Modélisation de l’ensemble convertisseurs-MSAP

UDL - Sidi bel Abbes - 2011 22

Dans une branche d’onduleur, un interrupteur statique (k) peut prendre la valeur +1 ou -1 selon les

conditions suivantes :

Va ref ≥ Vp Sa = 1 sinon Sa = -1

Vb ref ≥ Vp Sb = 1 sinon Sb = -1

Vc ref ≥ Vp Sc = 1 sinon Sc = -1

Avec :

V ref : amplitude de référence.

Vp : amplitude de porteuse.

Et les branches Vko peuvent être exprimées en fonction des switchs « sk » par :

Vko = Sk . (

2

E) Avec : k = (a, b, c) (2.35)

Donc :

c

b

a

cN

bN

aN

S

S

SE

V

V

V

21-1

1-21

1-1-2

6 : matrice de connexion (2.36)

Donc, le modèle de l’onduleur est donné par la figure (II.10).

Fig. II.10 : Schéma de l’onduleur sure simulink

II.5 SIMULATION NUMERIQUE

La figure (II.11) Représente l’association onduleur MLI-ST avec MSAP ou les tensions de référence

sinusoïdale

cba v,,v v sont comparées au signal de la porteuse Vp (dent de scie) afin de déduire les

instants de commutation des interrupteurs.

Fig. II.11 : Association onduleur (MLI-ST)-MSAP

Cem

r

Idq

Page 34: ATTOU RMG MSAP

Chapitre : II Modélisation de l’ensemble convertisseurs-MSAP

UDL - Sidi bel Abbes - 2011 23

La figure (II.12) Représente les résultats de la simulation de la machine avec l’onduleur.

La simulation a été effectuée sous le logiciel MATLAB/simulink traitant le comportement d’une

machine synchrone à aimants permanents. A noté que les paramètres de la machine sont donnés en

annexe.

II.5.1 RESULTATS DE SIMULATIONS

Fig. II.12 : comportement de l’ensemble onduleur -MSAP avec application de la charge

Cr = 2 (Nm) entre [0.3 0.5](s)

0 0.2 0.4 0.6 0.80

20

40

60

80

100

temps(s)

la vitesse Wr (rad/s)

0 0.2 0.4 0.6 0.80

2

4

6

8

10

12

14

16

temps(s)

couple éléctromagnetique cem (Nm)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80

0.5

1

1.5

2

couple réséstante Cr (Nm)

temps(s)

0 0.2 0.4 0.6 0.80

5

10

15

20

25

30

35

40

temps(s)

courant statorique (A)

Iq

Id

0 0.05 0.1 0.15 0.2

-300

-200

-100

0

100

200

300

temps(s)

tension de phase va (v)

0 0.2 0.4 0.6 0.8-40

-30

-20

-10

0

10

20

30

40

temps(s)

courant is (A)

Page 35: ATTOU RMG MSAP

Chapitre : II Modélisation de l’ensemble convertisseurs-MSAP

UDL - Sidi bel Abbes - 2011 24

II.5 .2 INTERPRETATION DES RESULTATS

Les résultats de simulation donnés par la figure (II.12), représente la réponse des variables

fondamentales de la machine synchrone à aimants permanents à savoir la vitesser , le couple

Electromagnétique Cem et les courants (Id,Iq).

L'allure de la courbe du couple présente au démarrage un pique qui sert à entrainer l’inertie de la

machine pendant le régime transitoire, une fois le régime permanent atteint, le couple revient à zéro.

Lors de l’application de la charge, la machine développe un couple électromagnétique pour

compenser cette sollicitation qui explique l’augmentation de couple dans cette plage qui se traduit par

une diminution de la vitesse.

Pour les courants Id et Iq au début de démarrage on voit des pics de courant assez important et cela

s'explique par la f.e.m qui est due à une faible vitesse de démarrage, ensuite ils se stabilisent à leurs

valeurs nominales r 100 (rad/sec) après un temps assez court.

Les courbes des courants Id et Iq montre bien qui il existe un couplage entre ces variables indiquant

le caractère non linéaire de la machine.

Cette modélisation montre un fortement couplage entre les deux composantes du courant et le

couple. Il est donc nécessaire de trouver un moyen pour rendre leur contrôle indépendant en vue

d’améliorer les performances en régimes dynamiques.

II.6 CONCLUSION

Dans les applications d’entrainement à vitesse variable, il est nécéssaire de modéliser

convenablement tout l’ensemble du système.

Dans ce chapitre, Nous avons modélisé les differents élements du système (convertisseur,MSAP),par

ce que cette partie est nécessaire pour l’intégration de la MSAP dans les systèmes de commandes. Le

modèle mathématique de la MSAP est obtenu dans le repère de park moyennant des hypothèses

simplificatrices pour avoir des équations considérablement simplifiés pour nous permettent d'aborder

aisément la commande qui est présenté dans le chapitre suivants.

Est en fin nous avons présenté le modele du MSAP avec l’onduleur de tension commandé par la

technique MLI-ST et on a conclu que les deux composantes du courant et le couple sont fortement

couplée, Il est donc nécessaire de trouver une moyenne pour rendre leur contrôle indépendant en vue

d’améliorer les performances en régimes dynamiques. c’est pour cette raison, qu’il faut faire un

découplage entre ces variables pour que la machine repond aux éxigences des systemes d’entrainement

à vitesse variables et avoir des hautes performanes dans le regime dynamique.

La solution la plus adéquate actuellement est l’orientation du flux suivant l’axe « d » .Le chapitre

suivant sera consacré à cette technique.

Page 36: ATTOU RMG MSAP

CHAPITRE III

Commande vectorielle de la MSAP

Page 37: ATTOU RMG MSAP

CHAPITRE : III Commande vectorielle de la MSAP

UDL – Sidi bel Abbés - 2011 25

III.1 INTRODUCTION

La commande des moteurs à courant alternatif est de plus en plus utilisée dans les applications

industrielles. Grâce aux développements des semi-conducteurs de puissance; les moteurs synchrones

à aimants permanents(MSAP) sont capables de concurrencer les moteurs à courant continu dans la

variation de vitesse, car la commutation est réalisée électriquement et à l'extérieur du moteur.

Les nouvelles applications industrielles nécessitent des variateurs de vitesse ayant des hautes

Performances dynamiques. Ces dernières années plusieurs techniques ont été développées pour

permettre aux variateurs synchrones à aimants permanents d’atteindre ces performances.

En 1971, BLASCHKE et HASS ont proposé une nouvelle théorie de commande par orientation du

champ où le vecteur courant statorique sera décomposé en deux composantes l’une assure le contrôle

du flux et l’autre agit sur le couple et rendre sa dynamique identique à celle de la machine à courant

continu a excitation séparée [4][28].

Cette technique est connue sous le nom de la commande vectorielle.

Apres avoir étudié la modélisation de la machine synchrone à aimants permanents (MSAP) et suite a

sa simulation, nous présentons dans ce chapitre la commande vectorielle de la MSAP alimentée par un

onduleur de tension. La stratégie de commande de l’onduleur est contrôlée par la technique MLI, La

simulation est réalisée grâce au logiciel MATLAB/Simulink.

III.2 PRINCIPE DE LA COMMANDE VECTORIELLE

En analysant le système d’équations (2.23) l’équation du couple, nous pouvons relever que le modèle

est non linéaire et il est couplé. En effet, le couple électromagnétique dépend à la fois des grandeurs

dI etqI .

L’objectif de la commande vectorielle de la MSAP est d’aboutir à un modèle équivalent à celui d’une

machine à courant continu à excitation séparée, c’est à dire un modèle linéaire et découplé, ce qui

permet d’améliorer son comportement dynamique[17].

plusieurs stratégies existent pour la commande vectorielle des machines à aimants permanents, la

commande par flux orienté est une expression qui apparait de nos jours dans la littérature traitent les

techniques de contrôle des moteurs électriques, cette stratégie consiste a maintenir le flux de réaction

d’induit en quadrature avec le flux rotorique produit par le système d’excitation comme cela est le cas

dans une machine a courant continue.

Puisque le principal flux de la MSAP est généré par les aimants du rotor, la solution la plus simple

pour une machine synchrone à aimants permanents est de maintenir le courant statorique en

quadrature avec le flux rotorique (le courant direct Id nul et le courant statorique réduire à la seule

composante qI : ( qs II ) qui donne un couple maximal contrôlé par une seule composante du courant

(qI )et de réguler la vitesse par le courant traverse

qI via la tension qV .Ceci vérifie le principe de la

machine à courant continu.

Page 38: ATTOU RMG MSAP

CHAPITRE : III Commande vectorielle de la MSAP

UDL – Sidi bel Abbés - 2011 26

Notons aussi que l’annulation de dI provoque une réduction du courant statorique, ce qui permet à

la machine de fonctionner dans la zone de non-saturation.

Pour 0dI , le système d’équations de la MSAP se réduit aux équations suivantes :

fp

dt

qdIqL

qIsRqv

qI

qLp

dv

r

r

(3.1)

rem

em

f. + dt

dJ C- C

φ p C

rr

qf I

(3.2)

On remarque que cette stratégie permet d’éliminer le problème de couplage entre les axes (d,q)

Lorsque le courant dI est nul ,le modèle de la MSAP est réduit au modèle équivalent à la machine à

courant continu à excitation séparée comme le montre la figure (III.2) :

III.3 COMMANDE VECTORIELLE DIRECT PAR COMPENSATION

III.3.1 TECHNIQUES DE DECOUPLAGE

Il existé plusieurs techniques de découplage, parmi c’est techniques on a :

découplage par compensation

commande vectorielle indirecte (FOC).

découplages par régulateur

r ω

Is=Iq

Id=0

f

θ

d

q

a 0

Fig. III.1 : Principe de la commande vectorielle

Is

Vq Vd

qL.sR

1

s

f.sJ

1

p . f

Cr

V q

+ -

+ -

Fig. III.2 : Modèle de MSAP commandé à flux orienté à Id nul

p . f

Iq

Cem

- r

Page 39: ATTOU RMG MSAP

CHAPITRE : III Commande vectorielle de la MSAP

UDL – Sidi bel Abbés - 2011 27

Nous exposons par la suite la première technique qui est l’objective de notre commande à étudiée

en mettant l’accent sur les avantages et les inconvénients.

III.3.2 DECOUPLAGE PAR COMPENSATION [17]

L’alimentation en tension est obtenue en imposant les tensions de référence à l’entrée de la

commande de l’onduleur. Ces tensions permettent de définir les rapports cycliques sur les bras de

l’onduleur de manière à ce que les tensions délivrées par cet onduleur aux bornes du stator de la

machine soient les plus proches possible des tensions de référence. Mais, il faut définir des termes de

compensation, car, dans les équations statoriques, il y a des termes de couplage entre les axes d et q.

Les tensions suivant les axes (d,q) peuvent être écrites sous les formes suivantes :

(c)

(b))φIL(ω

dt

IdLRV

(a)ILω

dt

IdLIRV

fdd

q

qqsq

qqd

ddsd

rp

I

(3.3)

La figure (III.3) représente le couplage entre l’axe « d » et « q » :

Fig. III.3 : Description de couplage

Les tensions Vd et Vq dépendent à la fois des courants sur les axes « d » et « q », on est donc amené à

implanter un découplage. Ce découplage est basé sur l’introduction de termes compensatoires ed et eq.

Avec :

)φI(L.ωe

ILωe

fddq

qqd

(3.4)

A partir de l’équation (3.3) et (3.4) :

On a donc :

q1qq

d1d

eVV

eVV d

(3.5)

Avec

qqsq1

ddsd1

I)LsR(V

I)LsR(V (3.6)

Page 40: ATTOU RMG MSAP

CHAPITRE : III Commande vectorielle de la MSAP

UDL – Sidi bel Abbés - 2011 28

Et

)φI(L.ωe

ILωe

fddq

qdd

(3.4)

On a donc les courants « dI » et « qI » sont découplés. Le courant dI ne dépend que de Vd1, et qI

ne dépend que Vq1, a partir de l’équation (3.6) les courant dI et qI s'écrivent de la façon suivante:

qs

q

q

ds

dd

sLR

VI

sLR

VI

1

1

)(

)(

b

a

(3.7)

s : Opérateur de Laplace.

Le principe de régulation consiste à réguler les courants statoriques à partir des grandeurs de

référence (désirées) par les régulateurs classiques. Le schéma de principe de régulation des courants

statoriques est représenté par la figure ci-dessous [18] :

Vd1 : la tension à la sortie de régulateur de courant « Id ».

Vq1 : la tension à la sortie de régulateur de courant « Iq » .

-

-

Fig. III.4 : Principe de découplages par compensation

Régulateur Id

qq IL ..ω

Régulateur Iq

Découplage

qI

q1V

Vd1

Iqref

Idref

Id

Iq

Vd

Vq +

+

+

-

fdd .ILω

ω

ω

dI

Page 41: ATTOU RMG MSAP

CHAPITRE : III Commande vectorielle de la MSAP

UDL – Sidi bel Abbés - 2011 29

Si on associer la machine avec le bloc de compensation on obtient la figure (III.5) :

Les actions sur les axes d et q sont donc découplés et représentées par la figure (III.6) :

III.4 DETERMINATION DES REGULATEURS

III.4.1 DESCRIPTION DU SYSTEME GLOBAL

La référence du courant direct drefI est fixée, et la sortie du régulateur de vitesse qrefI constitue la

consigne de couple

Cem . Les références des courants drefI et qrefI sont comparées séparément avec

les courants réels de la machine dI et qI .

Les erreurs sont appliquées à l’entrée des régulateurs classiques de type PI. Un bloc de découplage

génère les tensions de références

dV ,

qV .

Le système est muni d’une boucle de régulation de vitesse, qui permet de générer la référence de

courant qrefI . Par contre, le courantdrefI est imposé nul.

Chaque axe découplé peut être représenté par un bloc de correction Ci(s) avec (i = d, q). La figure

(III.7) représente le schéma global de la commande vectorielle d’une machine synchrone à aimants

permanents avec compensation dans le repère ( d,q ) :

Fig. III.5 : Structure générale : (machine-découplage par compensation).

+

+

eq

ed

- qs LR

1

s

ds LR

1

s

Modèle de la MSAP Correction+Découplage

Vq

+

+

ed

-

-

Idref

Iqref

Régulateur Id

Régulateur Iq

Régulateur Iq

eq

eq

+

+

+ +

-

Vd1

Vq1

Id

Iq

Iqref

Régulateur Iq

Régulateur Iq

Fig. III.6 : commande découplée

Vd1

Vq1

Régulateur Id

Iq

Idref

ds LR

1

s

qs LR

1

s

Id +

+

-

-

Page 42: ATTOU RMG MSAP

CHAPITRE : III Commande vectorielle de la MSAP

UDL – Sidi bel Abbés - 2011 30

III.4.2 CALCUL DES REGULATEURS

Pour calculer les paramètres des régulateurs, on adopte des modèles linéaires continus.

Les méthodes classiques de l’automatique sont utilisables. Ces méthodes ont l’avantage d’être

simples et faciles à mettre en œuvre.

Les éléments fondamentaux pour la réalisation des régulateurs sont les actions P.I.D

(proportionnelle, intégrale, dérivée). Les algorithmes, même les plus performants, sont toujours une

combinaison de ces actions.

Nous considérons que la machine est orientée vectoriellement et complètement découplée. Ceci

nous permet d’écrire les équations de la machine d’une manière simple et de calculer les coefficients

des régulateurs.

Nous nous contentons de régulateurs classiques de type PI dans une structure par boucle imbriquée.

Dans ce cas, nous pouvons distinguer deux modes :

Le mode électrique (mode rapide : boucle interne).

Le mode mécanique (mode lent : boucle externe).

Pour chacune des boucles de courant, nous proposons de commander la machine par des régulateurs

classiques Proportionnel Intégrateur (PI) pour compenser la perturbation du couple résistant au niveau

de la réponse de la vitesse de rotation, c'est-à-dire ; ils comportent une action proportionnelle qui sert

à régler la rapidité avec laquelle la régulation doit avoir lieu et une action intégrale qui sert à éliminer

l’erreur statique entre la grandeur régulée et la grandeur de consigne. [4][17].

Le régulateur PI (action proportionnelle-intégrale) est une combinaison d'un régulateur P et d'un

régulateur I.

Le régulateur (PI) est la mise en parallèle des actions proportionnelle et intégrale, figure (III-9).

Fig. III.7: Schéma bloc de la commande vectorielle avec compensation des f.e.m

Charge

Co

mm

and

e

ML

I

Cd(s)

Cq(s) reg(ωr)

s

1

Idref

Iqref

+

-

-

Id

Iq

E

Vq

rrefω

- +

Onduleur

ωr

MSAP 2Φ

Vd

P

Page 43: ATTOU RMG MSAP

CHAPITRE : III Commande vectorielle de la MSAP

UDL – Sidi bel Abbés - 2011 31

La relation entre la sortie )(tru et le signal d’erreur )(t est donnée par la relation suivante :

t

ipr tdtktktu0

)()()()(

C’est à dire : p

kk

p

pu ip

r

)(

)(

pk : Gain proportionnel

ik : Gain intégral

iT : Constant de temps d’intégration; avec i

i

kT

1

Le régulateur PI est donné par la figure suivante :

La fonction de transfert sera :

)s

KK(U i

pr

On peut aussi écrire le régulateur sous la forme suivante :

Avec :

2 i

2

1 p

T1

TT

k

k

(b)

(a)

III.4.3 DIMENSIONNEMENT DES REGULATEURS

La machine étant découplée selon deux axes (d,q), la régulation sur l'axe "d" est faite par une seule

boucle, tandis que la régulation sur l'axe "q" est faite par deux boucles en cascades l'une interne pour

réguler le courant et l'autre externe pour réguler la vitesse.

.

.

.

1

2

1. rU sT

P IsT

Kp

Ki

s

1

Système

y Yref

+

+

+ -

U r

Fig. III.9 : Régulateur PI

.P ICr

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

Page 44: ATTOU RMG MSAP

CHAPITRE : III Commande vectorielle de la MSAP

UDL – Sidi bel Abbés - 2011 32

a-Régulateur du courant « qI »

La commande de la MSAP s’effectue en contrôlant les courants dI et qI , le système est composé

d’une boucle de régulation de vitesse, qui impose la référence qrefI , le courant dI est maintenu nul,

la commande est effectuée par les régulateurs PI pour avoir l’erreur statique nulle ( = 0).

Sachant que qI = qs

q

LsR

v

.

1

Et que la forme générale du régulateur PI est : 2

11

sT

sT (équation (3.11)), on aboutit au schéma de

la figure (III.10) :

La fonction de Transfer en boucle ouvert (FTBO) de la figure (III-10) est :

FTBO=)(

1

2

1

qsq

q

sLRsT

sT

FTBO = )1(

1

2

1

s

qq

q

RLsRsT

sT

Par l’utilisation de la méthode de compensation des pôles, on aura :

s

qq

RLssT 11 1

Ce qui se traduit par la condition:

qqs

q TRL 1

Avec s

q

RL : constant de temps électrique.

Si en remplace la constant qT 1 par sa valeur équation (3.15) dans l’équation (3.13), on trouve :

FTBO = qsTsR 2

1

Pour la fonction de Transfer en boucle fermé(FTBF) :

FTBF= FTBO

FTBO

1

FTBF= qTsRs 21

1

de la forme

qs1

1

Fig. III.10 : Boucle de régulation du courant Iq

………………..

1q

2q

1 T

sT

s

q

1

R Ls

Iq ref Iq +

-

qI

1qV

3.7(b)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

Page 45: ATTOU RMG MSAP

CHAPITRE : III Commande vectorielle de la MSAP

UDL – Sidi bel Abbés - 2011 33

Par identifications on trouve :

qsq TR 2 s

qq

RT

2

On imposant le temps de référence : qrT 3 (critère de 5%)

On a : s

rq

R

TT

32

rT : Temps de réponse imposé.

s

q

q RL : Constante de temps électrique de l'axe "q" du machine.

En remplace l’équation (3.19) dans (3.12b), On obtient : q

si

RK

Si on remplace l’équation (3.20) dans (3.22) :

On obtient finalement

r

s iq

r

q pq

T3RT

3L

k

k

b-Régulateur du courant « dI »

La boucle de régulation sur l’axe « d » est présentée par la figure suivant :

Pour la régulation du courant dI , on suit la même procédure utilisée pour la régulation du courant Iq .

FTBO =

)1(.

.1

.2

1

s

dsd

d

R

LsRTs

Ts

FTBF = dsTsR 21

1

dd

s

TR

Ld 1

On impose : drT 3

1d

2d

1 T

sT

s d

1

R Ls

Idref Id +

-

Fig. III.11 : Boucle de régulation du courant Id

dI 1dV

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

Page 46: ATTOU RMG MSAP

CHAPITRE : III Commande vectorielle de la MSAP

UDL – Sidi bel Abbés - 2011 34

dd TR 2. s

dd

RT

2

On remplace l’équation (3.26) dans (3.27) on obtient :

s

rd

R

TT

32

s

dd R

L : Constante de temps électrique de l'axe "d" du machine.

c- Régulation de vitesse

Le processus à commander est décomposé en deux sous système :

Sous système du réglage de courant qI donc du couple aussi.

Sous système de la partie mécanique.

La boucle de régulation de la vitesse est représentée par la figure ci-dessous :

Le schéma de la figure (III.12.a) peut être simplifié par la figure (III.12.b) :

)(sF : La fonction de transfert du régulateur de vitesse.

2

11)(

sT

sT

s

kksF i

p

Ou :

2 i

2

1 p

T1

TT

k

k

oF

rw*

+ -

F

Fig. III.12.Boucle de régulation de vitesse

rC

Fig. III.12.a : Boucle de régulation de vitesse

r

*

r

sq1

1

s

kk i

p

fp. fJs

1

*emC

qI + -

s

kk i

p

fp.

+ -

*

qI

-

(3.28)

(3.29)

(3.30)

(3.31)

Page 47: ATTOU RMG MSAP

CHAPITRE : III Commande vectorielle de la MSAP

UDL – Sidi bel Abbés - 2011 35

)(sFo : La fonction de transfert en boucle ouverte :

)1()1()(

mq

f

ossf

psF

f

Jm : Constant mécanique de la machine.

La FTBF est donnée par :

)()(1

)()()(

sFsF

sFsFsF

o

oBF

Après les calculs en trouve:

iwfpwfqq

iwpwfBF

kpsfkpsfJsJ

kskpsF

)(²)(

)()(

3

Si on néglige )( qJ et )( qf devant )(J , le polynôme caractéristique de cette fonction devient:

ifpf kpskpfJssp .).(²)(

En imposant au polynôme caractéristique en boucle fermée deux pôles complexes conjugués

)1(2,1 jS , il devient alors :

22 22)( ssp S

Par identification terme à terme entre l’équation (3.35) et (3.36) on trouve :

f

iw

f

pw

p

Jk

p

fJk

22

2

Ou : nw

nw : Pulsation propre du système

: Facteur d’amortissement

III.5 LIMITATION DES COURANTS [4][11][12]

Les organes de commande introduisent des limitations sur la grandeur de commande [u] .ces

limitations peuvent causer des problèmes lors de grands phénomènes transitoires sous formes d’un

dépassement élevé de la grandeur à régler, voire même d’un comportement instable du réglage.

La caractéristique non linéaire de la limitation ne permet plus l’application de la théorie linéaire

afin d’analyser précisément le comportement dynamique dès que la sortie du régulateur est saturée.

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)

Page 48: ATTOU RMG MSAP

CHAPITRE : III Commande vectorielle de la MSAP

UDL – Sidi bel Abbés - 2011 36

wref Onduleur

M L I

Découplage par

Compensation --------

Transformation dq_abc

Cem

IdIq

wr

t

Régulateur Iq Régulateur wr

Régulateur IdIdref = 0

va

vb

vc

Cr

wr

Id ,Iq

Cem

Cr

La saturation perturbe également le fonctionnement des régulateurs comportant une action

intégrale. En effet, la composante intégrale continue à croitre, bien que la sortie du régulateur soit

limitée.

Afin d’éviter ces inconvénients, il s’avère indispensable de corriger le comportement dynamique du

régulateur (en particulier la composante intégrale) lorsque la limitation est atteinte. Cette mesure est

appelée mesure anti-reset-windup (anti remise de l’emballement).

Comme le dimensionnement de ce régulateur est très compliqué, nous procédons par des simulations

pour régler le correcteur de vitesse. La méthode utilisée est du type :

Essai – erreur - dépassement. Les coefficients obtenus sont : mip kkk .

III.6 SCHEMA GLOBAL DE SIMULATION

Le schéma de simulation de la commande vectorielle avec association onduleur à deux niveaux et

MSAP est représenté par la figure (III-15) :

Out1

1

Saturation

1

sKi

Km

Kp

In1

1

rrefw

Fig. III.13 Boucle de régulation de vitesse avec limitation du courant.

s.Jf

1 +

s

kk

i

p

-

C r

C em -

+

rw

Fig. III.14 : Régulateur PI avec anti_windup

M

S

A

P

Reg(Iq)

Reg(Id)

Reg(wr)

Fig. III.15 : Schéma globale de simulation de la commande vectorielle avec réglage classique (PI).

Page 49: ATTOU RMG MSAP

CHAPITRE : III Commande vectorielle de la MSAP

UDL – Sidi bel Abbés - 2011 37

III.6.1 RESULTATS DE SIMULATION

Fig. III.16 : Résultats de simulation de la commande vectorielle du MSAP avec réglage classique (PI).

III.7 INTERPRETATION DES RESULTATS

Les performances de la commande proposée ont été testées par simulation dans le cas du réglage

classique d’une MSAP alimentée par un onduleur de tension à deux niveaux, avec un régulateur PI face

à une vitesse de référence de 100 (rad/s) puis -100 (rad/s) à l’instant t=0.6 (s) suivie d’une application

d’un couple résistante de 8 (Nm) à une période de [0.2s], entre t=0.2 (s) et t=0.4 (s).

0 0.2 0.4 0.6 0.8-150

-100

-50

0

50

100

150

temps(s)

vitesse de référence wr (rad/s)

vitesse mécaniqueréelle wr (rad/s)

0 0.2 0.4 0.6 0.8

-40

-30

-20

-10

0

10

20

30

40

temps(s)

Id(A)

Iq(A)

0 0.2 0.4 0.6 0.80

2

4

6

8

temps(s)

couple résistante Cr=8Nm

0 0.2 0.4 0.6 0.8-40

-30

-20

-10

0

10

20

30

40

temps(s)

couple éléctromagnetique Cem (Nm)

0 0.2 0.4 0.6 0.8-40

-30

-20

-10

0

10

20

30

40

Is(A)

temps(s)

Page 50: ATTOU RMG MSAP

CHAPITRE : III Commande vectorielle de la MSAP

UDL – Sidi bel Abbés - 2011 38

Les résultats de simulation montrent que le découplage est maintenu quelque soit la variation de la

charge (dans le régime permanent). L’onduleur engendre des fluctuations qui sont ressenties au niveau

du couple.

Le courant dI après le régime transitoire revient à sa valeur zéro.

La variation de la vitesse est rapide avec très petite dépassement et sans erreur statique, le rejet de

perturbation est aussi rapide avec un temps de réponse de 0.022 (s).

III.8 CONCLUSION

L’application de la commande vectorielle à la MSAP nous permet non seulement de simplifier le

modèle de la machine mais aussi améliorer ces performances dynamique et statique, le développement

de la commande vectorielle permet d’atteindre un découplage entre les axes « d » et « q » ce qui rend

la machine synchrone à aimants permanents similaire à la machine à courant continu. Le réglage de la

vitesse par la commande vectorielle avec un régulateur classique (PI) permet d’obtenir des

performances dynamiques satisfaisantes.

Puisque les correcteurs classiques sont dimensionnés à partir des paramètres de la machine. Si ces

derniers varient dans une large plage de fonctionnement, les performances sont détériorées, alors il est

préférable de voir d’autres techniques de réglage. Ainsi notre prochain chapitre sera consacré à la

commande par mode glissant. Où les correcteurs sont connus par leur robustesse.

Page 51: ATTOU RMG MSAP

CHAPITRE IV

Commande par mode glissant de la MSAP

Page 52: ATTOU RMG MSAP

CHAPITRE : IV Commande par mode glissant de la MSAP

UDL – Sidi bel Abbés - 2011 39

IV-1 INTRODUCTION

Dans le chapitre précédent nous avons mis en œuvre la commande vectorielle en utilisant les

régulateurs PI classiques ou les lois de commande qui utilise les régulateurs à action proportionnelle,

intégrale donnent des bons résultats dans le cas des systèmes linéaires à paramètres constants. [4][22]

Ces lois de commande classique peuvent être insuffisantes car elles sont non robustes surtout lorsque

les exigences sur la précision et autres caractéristiques dynamiques du système sont strictes. On doit

faire appel à des lois de commande insensibles aux perturbations, aux variations de paramètres et aux

non linéarités. [4][26]

Lorsque la partie commandée est soumise à des perturbations et à des variations de paramètres du

système, une solution auto adaptative, qui par réajustement des paramètres des régulateurs, permet

de conserver des performances fixées à l’avance en présence de perturbations et de variations de

paramètres. Cette solution présente l’inconvénient de nécessiter une mise en œuvre souvent complexe.

Ainsi, il est possible d’enregistrer une autre solution plus simple, faisant appel à une classe

particulière de systèmes de commande appelés « systèmes à structures variables », ces systèmes ont

fait l’objet depuis longtemps de travaux importants au Japon par H.Harachima, aux Etat Unis par

I.I.Slotine et en ex-Union Soviétique par V.Utkin et ceci à partir des travaux théoriques du

mathématicien soviétique A.F.Filipov. [21][22]

L’intérêt récent accordé à cette technique de commande est dû essentiellement à la disponibilité

des composants électroniques plus performants et de microprocesseurs très développés.

La commande à structure variable (CSV) est par nature une commande non linéaire. La

caractéristique principale des systèmes à structure variable est que leur loi de commande se modifie

d’une manière discontinue. [5][22][23]

Ce type de commande (CSV) présente plusieurs avantages tels que la robustesse, précision

importante, stabilité et simplicité, temps de réponse très faible vis-à-vis l’insensibilité a la variation

des paramètres internes et externes. Ceci lui permet d'être particulièrement adaptée pour traiter les

systèmes qui ont des modèles mal connus, soit à cause de problèmes d'identifications des paramètres,

soit à cause de simplification sur le modèle du système [4][5][26].

IV-2 GENERALITES SUR LA THEORIE DU CONTROLE PAR MODE GLISSANT

Les commutations de la commande à structure variable s’effectuent en fonction des variables

d’état, utilisées pour créer une « variété » ou « surface » dite de glissement.

La commande par mode glissant consiste à ramener la trajectoire d’état vers la surface de

glissement et de le faire évoluer dessus avec une certaine dynamique jusqu’au point d’équilibre.

Une surface de glissement : c’est une surface S sur laquelle le système suivra l’évolution souhaitée

(sur laquelle évoluera l’erreur) [11].

Quand l’état est maintenu sur cette surface, le système est dit en régime glissant. Ainsi, tant que les

conditions de glissement sont assurées, la dynamique du système reste insensible aux variations des

paramètres du processus, aux erreurs de modélisation (dans une gamme qui reste plus large par rapport

à celle des approches classiques de l’automatique), et à certaines perturbations [4][20].

Page 53: ATTOU RMG MSAP

CHAPITRE : IV Commande par mode glissant de la MSAP

UDL – Sidi bel Abbés - 2011 40

IV.3 L’OBJECTIF DE LA COMMANDE PAR MODE GLISSANT

L’objectif de la commande par mode glissant est de :

synthétiser une surface 0)( xs , telle que toutes les trajectoires du système obéissent a un

comportement désiré de poursuite, de régulations et de stabilité.

Déterminer une loi de commande qui est capable d’attirer toutes les trajectoires d’état vers la

surface de glissement 0)( xs et de les maintenir sur cette surface. [11]

IV.4 PRINCIPE DE LA COMMANDE A STRUCTURE VARIABLE

IV.4.1 DEFINITION DES SYSTEMES NON LINEAIRES

Le comportement des systèmes possédant des discontinuités peut être décrit formellement par

l'équation:

),,()( Utxftx

x : le vecteur d'état, nx .

t : le temps

U : grandeur de commande, mu .

f : la fonction décrivant l'évolution du système au cours du temps.

Historiquement, les premiers régulateurs bâtis sur ce modèle ont été de simples relais. Faciles à

mettre en œuvre, ils ont représenté les prémices du contrôle par structure variable. Ils ont ainsi amené

les automaticiens à développer une théorie qui puisse décrire un tel fonctionnement. Les bases d'une

telle théorie ont été posées : il suffit de dire que le comportement du système est décrit par deux

équations différentielles distinctes, suivant que l'équation d'évolution du système soit supérieure ou

inférieure à une surface dénommée hypersurface de commutation où :

,0)()(

,0)()()(

xSisixU

xisixUxU

S mi ,.....1

La commande U est construire de façon à ce que les trajectoires du système soient amenées vers

la surface de glissement et soient ensuite maintenues dans un voisinage de celle-ci.

U et

U étant des fonctions continus.

Le système variable (4.1) avec la loi de commande (4.2) peut se ramener à l’écriture suivante :

0),(),(

0),(),(),,()(

txSsitxf

txSsitxfUtxftx

),( txS : est une surface dans n qui divise l'espace en deux parties disjointes : 0),( txS et 0),( txS

.

En dehors de la surface de discontinuité, les fonctions

f et

f peuvent avoir différents

comportements :

les fonctions

f et

f traversent la surface d'un côté vers l'autre : Figure (IV.1.a) et

(4.1)

(4.2)

(4.3)

Page 54: ATTOU RMG MSAP

CHAPITRE : IV Commande par mode glissant de la MSAP

UDL – Sidi bel Abbés - 2011 41

Figure (IV.1.b).

les fonctions

f et

f sont pointés chacun vers la surface : Figure (IV.1.c).

Fig. IV.1.a Fig. IV.1.b Fig. IV.1.c

Fig. IV.1 : Différents comportements en dehors de la surface de discontinuité.

Le cas qui nous intéresse est celui où les deux fonctions

f et

f sont pointés chacun vers la

surface, on dit alors que la surface est attractive, figure (IV.1.c). [7]

En se plaçant dans un espace à 2 dimensions, le principe de discontinuité de la commande (Equation

(4.2) et (4.3)) peut être illustré par la figure (IV.2) :

Fig. IV.2 : Convergence de la trajectoire vers la surface de commutation

Grâce à la discontinuité de la commande

Ainsi, le problème de l'existence du régime glissant se résume à analyser la trajectoire du système,

qui ne doit pas s'éloigner de la surface S. Nous cherchons à vérifier que la distance et la dérivée de la

distance (autrement dit, la vitesse d'approche), entre la trajectoire et la surface de commutation

soient opposées en signe, cela peut être exprimé par l'équation suivante :

0s0s

0Slimet0Slim

D’où la condition d’attractivité pour l’obtention du régime glissant :

0)x(S).x(S

Il s'agit du principe d'attractivité. Des justifications mathématiques complémentaires, pourront être

trouvées dans les ouvrages traitant des systèmes non linéaires.

(4.1)

(4.5)

Page 55: ATTOU RMG MSAP

CHAPITRE : IV Commande par mode glissant de la MSAP

UDL – Sidi bel Abbés - 2011 42

IV.4.2 FORMULATION DES EXPRESSIONS GENERALES DE LA COMMANDE PAR MODE DE GLISSEMENT

Les définitions des modes glissant dans le cadre d’un système non linéaire dont le comportement

dynamique est défini par les équations différentielles suivants :

Utxgtxfx ),(),(

Où :

x : le vecteur dont les composantes sont les variables d'état, nx ;

u : vecteur de commande, mu .

f : est un champ de vecteur ou fonction vectorielle, nnf 1: ;

),( txB : la matrice de commande, mnntxb *1:),(

.

La fonction de commutation S sépare l'espace d'état en deux régions représentant des structures

différentes. C'est une fonction vectorielle dont les composantes sont des fonctions scalaires

représentatives d'une relation algébrique entre deux grandeurs. Elle est définie par l'utilisateur afin

d'obtenir les performances dynamiques désirées. [4][10][11]

Lorsque nous sommes dans le "mode de glissement", la trajectoire restera sur la surface de

commutation. Cela peut être exprimé par:

0)t,x(Set0)t,x(S

IV.4.3 CONDITION POUR L’EXISTENCE DU MODE DE GLISSANT

Le mode de glissement existe lorsque les commutations ont lieu continûment entre maxU et minU

pour un système de deuxième ordre avec les grandeurs d’état X S1 et X S 2 , ce phénomène est présenté

par la figure suivante :

Fig. IV.3 : phénomène de glissement

On admet d’abord une hystérèse sur la loi de commande S(x) = 0, par conséquent, les commutations

ont lieu sur les droites décalées parallèlement de ± Δ Sh .

(4.6)

(4.7)

Page 56: ATTOU RMG MSAP

CHAPITRE : IV Commande par mode glissant de la MSAP

UDL – Sidi bel Abbés - 2011 43

Une trajectoire avec maxUU touche au point (a) le seuil de basculement inférieur. Si minUU , la

trajectoire est orientée vers l’intérieur de la zone de l’hystérèse, elle touche au point (b) le seuil de

basculement supérieure ou a lieu une commutation sur minUU .

Si la trajectoire est de nouveau orientée vers l’intérieur, elle touche le point (c) le seuil de

basculement inférieur et ainsi de suite. Il y a donc un mouvement continu de la zone de l’hystérèse.

On suppose dans le cas idéal que l’hystérèse est infiniment petite. La loi de commutation fait un

mouvement infiniment petit autour de 0)( sXS . Par conséquent, le vecteur d’état X S suit une

trajectoire qui respecte cette condition. La fréquence de commutation est donc infiniment élevée

[5][12].

IV.5 LES MODES DE LA TRAJECTOIRE DANS LE PLAN DE PHASE

La technique par mode glissement consiste à ramener la trajectoire d’état d’un système vers la

surface de glissement et faire commuter a l’aide d’une logique de commutation appropriée jusqu’au

point d’équilibre.

Cette trajectoire est constituée de trois parties distinctes, figure (IV.4) :

Le mode de convergence (MC) : dont la variable régulier se déplace à partir du point d’équilibre

initial.

Le mode glissement (MG) : durant lequel la variable d’état à atteint la surface de glissement.

Le mode de régime permanent (MRP) : le comportement du système est autour du point

d’équilibre.

Fig. IV.4 : les modes de trajectoires dans le plan de phase

IV.6 CONCEPTION DE LA COMMANDE PAR MODE GLISSANT

La conception de la commande par mode glissant revient principalement à déterminer trois étapes :

1. Le choix de la surface.

2. L’établissement des conditions d’existence de la convergence.

3. La détermination de la loi de commande.

Xs1

Xs2

S(X)

MRP

MG MC

Page 57: ATTOU RMG MSAP

CHAPITRE : IV Commande par mode glissant de la MSAP

UDL – Sidi bel Abbés - 2011 44

IV.6.a CHOIX DE LA SURFACE DE GLISSEMENT

Le choix de la surface de glissement concerne non seulement le nombre nécessaire de ces

surfaces mais également leur forme en fonction de l’application et de l’objectif visé .En général,

pour un système défini par l’équation d’état suivant [11] :

)(),(),()( tutxgtxftx

(4.8)

Il faut choisir «m» surfaces de glissement pour un vecteur y de dimension «m» .En ce qui concerne la

forme de la surface, deux possibilités se présentent : soit dans le plan de phase ou dans l’espace

d’état. Dans ce dernier cas, on trouve la méthode dite«loi de commutation par contre réaction d’état»

celle- ci utilise les concepts du réglage par contre réaction d’état pour synthétiser la loi de

commutation. Son inconvénient majeur réside dans le faite qu’elle présente une réponse transitoire

lente et de conception très difficile.

Dans le cas du traitement dans l’espace de phase, la fonction de commutation est une fonction

scalaire, telle que la variable à régler glisse sur cette surface pour atteindre l’origine du plan de

phase.

Ainsi, la surface )(xS représente le comportement dynamique désiré du système. J.J.Slotine

propose une forme d’équation générale pour déterminer la surface de glissement qui assure la

convergence d’une variable vers sa valeur désirée, cette équation est sous la forme suivant : [2]

Avec :

)(xe : L’écart de la variable à régler. xxxe ref )( .

x : Une constante positive qui interprète la bande passante du contrôle désiré.

r : Degré relatif, égale au nombre de fois qu’il fait dériver la sortie pour faire apparaître la

commande.

Il est à noter qu’en général, on donne une grande valeur à x pour assurer l’attractivité ainsi que le

maintien du système sur cette surface.

Où :

e

kx

k : scalaire positif donné ;

: Constante positive de valeur très faible.

Il est à noter que

k représente la pente de glissement le long de la surface quand elle est atteinte

par le système.

Pour )()(1 xexSr .

Pour )()()(2 xexexSr x .

Pour )()(2)()(3 2 xexexexSr xx .

0)( xS est une équation différentielle linéaire dont l’unique solution est 0)( xe .

)()()( 1 xet

xS r

x

(4.9a)

(4.10)

(4.9b)

Page 58: ATTOU RMG MSAP

CHAPITRE : IV Commande par mode glissant de la MSAP

UDL – Sidi bel Abbés - 2011 45

La difficulté de cette commande, revient à un problème de poursuite de trajectoire dont l’objectif

est de garder )(xS à zéro .Ceci est équivalent à une linéarisation exacte de l’écart en respectant la

condition de convergence .La linéarisation exacte de l’écart a pour but de forcer la dynamique de

l’écart : (référence – sortie) à être une dynamique d’un système linéaire autonome d’ordre « r »

[11][12][23][28].

IV.6.b CONDITIONS DE CONVERGENCE [11][12]

Les conditions de convergence ou d’attractivité permettent aux dynamiques du système de

converger vers les surfaces de glissement et rester indépendamment a la perturbation. Il y’a deux

conditions, celles correspondent au mode de convergence de l’état de système qui sont :

La fonction de commutation.

La fonction de LYAPUNOV.

IV.6.b.1 Fonction directe de commutation

C’est la première condition de convergence, elle est proposée par U.TKIN, Il s’agit de donner à la

surface une dynamique convergente vers zéro. Elle est donnée par :

0)().(

xSxS (4.11)

Ceci signifie, Figure (IV.6) que la trajectoire du point de fonctionnement après avoir atteint la

surface de glissement durant un régime transitoire qui vérifie la condition (4.11) oscille de part et

d’autre de la surface avec une fréquence élevée et une amplitude faible et tend rapidement vers le

point de fonctionnement désiré ( 0)( xe ).[28]

0

1r

)(xer

)(xe

)(1 xer )(xS

EntréexS :)(

Sortiexe :)(

Fig. IV.5 : Linéarisation exacte de l’écart.

Page 59: ATTOU RMG MSAP

CHAPITRE : IV Commande par mode glissant de la MSAP

UDL – Sidi bel Abbés - 2011 46

Fig. IV.6 : L’évolution du point de fonctionnement dans l’espace des phases

TG: temps de glissement; le glissement s’effectue a partir de TG au voisinage de la surface de

glissement S(x) = 0.

IV.6.b.2 Fonction de LYAPUNOV [24]

La fonction de LYAPUNOV est une fonction scalaire positive 0)( xV pour les variables d’état du

système, la loi de commande doit faire décroitre cette fonction, la condition, elle rend la surface

attractive et invariante.

En définissant la fonction de LYAPUNOV par :

)(2

1)( 2 xSxV (4.12)

Pour que la fonction de LYAPONUV décroisse, il suffit de s’assurer que sa dérivée soit

négative. Ceci est vérifié par la relation suivante :

0)()(0)( xSxSxV

(4.13)

Cela peut être exprimé par l'équation suivante :

00

0lim0lim

ss

SetS

(4.14)

L'équation (4.12) explique que le carré de la distance vers la surface mesurée par S2(x)

diminue tout le temps, contraignant la trajectoire du système à se diriger vers la surface dans les

deux côtés. Cette condition suppose un régime glissant idéal- où la fréquence de

commutation est infinie.

IV.6.C CALCUL LA LOI DE COMMANDE [11]

Une fois la surface de glissement est choisie, ainsi que le critère de convergence, il reste à

déterminer la commande nécessaire pour ramener la variable à contrôler vers la surface et

ensuite vers son point d’équilibre en maintenant la condition d’existence des modes glissants.

Page 60: ATTOU RMG MSAP

CHAPITRE : IV Commande par mode glissant de la MSAP

UDL – Sidi bel Abbés - 2011 47

Une des hypothèses essentielles dans la conception des systèmes à structure variable contrôlés par

les modes glissants, est que la commande doit commuter entre Maxu et Minu instantanément (fréquence

infinie), en fonction du signe de la surface de glissement Figure (IV.7) .Dans ce cas, des oscillations de

très haute fréquence qui apparaissent dans le mode de glissement.

IV.7 DEFINITION DES GRANDEURS DE COMMANDE [4][11][24][26]

En mode glissant, le but est de forcer la dynamique du système à correspondre avec la surface de

glissement S(X) au moyen d’une commande définie par l’équation suivante :

Neq ututu )()( (4.15)

avec : U : grandeur de commande,

U eq : correspond à la composante équivalente.

Un : correspond à la composante non linéaire (grandeur de commande discontinue).

Lorsque la surface de commutation est atteinte, équation (4.7), on peut écrire :

.0 Neq uavecUU (4.16)

La commande eqU peut être interprétée comme étant la valeur moyenne que prend la commande U

lors des commutations rapides entre ( Maxu ) et ( Minu ) :

Fig. IV.8 : La valeur continue equ prise par la commande lors de la commutation entre Maxu et Minu .

tt

u

Maxu

Minu

equ

)(xS

u

Maxu

Minu

Fig. IV.7 : Commande appliquée aux systèmes à structure variable.

Page 61: ATTOU RMG MSAP

CHAPITRE : IV Commande par mode glissant de la MSAP

UDL – Sidi bel Abbés - 2011 48

Le vecteur de commande U permet donc de régler les dynamiques des deux modes de

fonctionnement :

eqU : Permet d'influer sur le mode de glissement. Elle est calculée en sachant que le

comportement du système durant le modèle de glissement est décrit par 0)( xS .c’est-a-dire

dans le cas d’un système sans incertitudes. elle est obtenue grâce aux conditions d’invariance de

la surface donnée par l’équation (4.7) : 0),(0),( txSettxS

N

u : Permet d'influer sur le mode d'approche, elle est déterminée pour garantir l’attractivité de

la variable à contrôler vers la surface de glissement et satisfaire la condition de convergence, elle

assure l’insensibilité du système aux variations des paramètres [3][4].

IV.8 EXPRESSION ANALYTIQUE DE LA COMMANDE

Nous nous intéressons au calcul de la commande équivalente et par la suite au calcul la commande

attractive du système défini dans l’espace d’état par l’équation (4.8) :

)(),(),()( tutxgtxftx

(4.8)

Le vecteur u est composé par deux grandeurs :

Neq ututu )()(

On a :

t

x

x

S

dt

dStxS

.),(

x

x

S. neq utxg

x

Sutxgtxf

x

S),(.),(),(.

En mode de glissement, la trajectoire restera sur la surface de commutation 0)( xS , autrement dit,

sa dérivée sera nulle 0)(

xS et 0Nu , l’équation (4.16).

1

),(),()(

txg

x

Stxf

x

Stueq , 0Nu

Durant le mode de convergence, en remplaçant le terme equ par sa valeur (4.18) dans

l’équation(4.17).

Posons :x

SL

d’ou : 1

LgLfueq

Donc, nous obtenons une nouvelle expression de la dérivée de la surface :

Nutxgx

SxS ),()(

(4.15)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

Page 62: ATTOU RMG MSAP

CHAPITRE : IV Commande par mode glissant de la MSAP

UDL – Sidi bel Abbés - 2011 49

Le problème revient à trouver Nu tel quel :

0),()()()(

Nutxg

x

SxSxSxS

La solution la plus simple est de choisir Nu sous la forme de relais, Figure (IV.9). Dans ce cas, la

commande s’écrit comme suit :

))(( xSsignKuN

En remplaçant l’expression (4.22) dans (4.21), on obtient :

0),(.)()()(

txgK

x

SxSxSxS (4.23)

le facteur ),( txgx

S

est toujours négatif pour la classe de système que nous considérons.

Le gain K est choisi positif pour satisfaire la condition (4.23) .Le choix de ce gain est très

influent car s’il est très petit, le temps de réponse sera très grand et s’il est choisi très grand,

nous aurons un temps de réponse très petit et des fortes oscillations au niveau de l’organe de la

commande .Ces oscillations de très haute fréquence, appelées « Chattering » peuvent exciter les

dynamiques négligées ou même détériorer l’organe de commande ou endommager les

actionneurs[11].

IV.9 PHENOMENE DE CHATTERING

Un régime glissant idéal requiert une commande pouvant commuter à une fréquence infinie.

Evidement, pour une utilisation pratique, seule une commutation à une fréquence finie est possible.

Ainsi, durant le régime glissant, les discontinuités appliquées à la commande peuvent entrainer un

phénomène de broutement ou « chattering ». Celui-ci se caractérise par de fortes oscillations des

trajectoires du système autour de la surface de glissement. Le principal raison à l’ origine de ce

phénomène, c’est le caractère discontinu de la commande correspond à la composante discontinue de

la forme « k.sign(S) » qui permet au point de fonctionnement d’osciller autour de la surface de

glissement avec une fréquence élevée sous la forme (4.22) rappelée ci-dessous

))(( xSsignKuN

)(xS

Nu

Fig. IV.9 : définition de la commande

+K

-K

Page 63: ATTOU RMG MSAP

CHAPITRE : IV Commande par mode glissant de la MSAP

UDL – Sidi bel Abbés - 2011 50

C’est pour ça qu’on peut dire que lorsque la surface de commutation est atteinte, condition (4.7), on

peut écrire : equu , 0Nu .

On a un glissement moins satisfaisant si on a un chattering plus important.

le phénomène de chattering apparaît clairement dans la courbe de couple électromagnétique,

Cependant le phénomène de chattering sera réduit par des techniques qui sont cité dans le

paragraphe suivant. [3][5][27][28]

IV.10 ELIMINATION DU PHENOMENE DE CHATTERING [7]

Du point de vue de la synthèse de commande, on procède généralement au choix de la surface de

commutation 0)( xs en fixant le plus souvent la dynamique de glissement, puis on en déduit une

commande discontinue 0),( txu du type, équation (4.2) qui rend cette surface attractive et assure

ainsi l’apparition du mode de glissement.

Ce mode de glissement idéal est illustré par la figure (IV.2). Un mode de glissement idéal correspond

à une commande qui commute à une fréquence infinie or il n’existe aucun organe de commande

pouvant réaliser cette opération. Malgré les différents avantages de la commande par modes de

glissement, son utilisation a été entravée par un inconvénient majeur lié au phénomène de broutement

(phénomène de chattering), figure (IV.10). Ce phénomène est une conséquence naturelle du

comportement dynamique réel de l’ensemble actionneur système à commander.

Le broutement peut provoquer une détérioration anticipée de l’organe de commande ou exciter des

dynamiques hautes fréquences non considérées dans la modélisation du système.

Ainsi, nous allons chercher par différentes méthodes à limiter ce phénomène.

Fig. IV.10 : Mode de glissement avec chattering.

IV.10.1 COMMANDE DISCONTINUE DE BASE

Plusieurs choix pour la commande discontinue nu peuvent être faits. Le plus simple consiste à

exprimer la commande discontinue ].......,[ 21 nn uuuu avec la fonction signe par rapport a

].......,[ 21 mssss

01)(

01)(

SsiSSign

SsiSSign (4.24)

Page 64: ATTOU RMG MSAP

CHAPITRE : IV Commande par mode glissant de la MSAP

UDL – Sidi bel Abbés - 2011 51

nu S’exprime donc :

))(( xssignkun (4.25)

Avec : k Gain positif.

Ce premier choix de la fonction discontinue est représenté sur la figure suivante :

IV.10.2 COMMANDE AVEC UN SEUIL

Cette commande est caractérisée par un seuil ε. Dans la bande qui entoure la surface de glissement

)(xs , seule la composante continue ( equ ) de la de tension de commande (u = ueq+ un) agit. La partie

discontinue ( nu ) étant égale à zéro, les oscillations sur les réponses fortement atténuées. Cependant

lorsque ε augmente, il apparaît un écart statique sur la réponse en régulation. La commande

discontinue est donnée par l’expression :

)())((

)(0

xSsixSKsign

xSsi

un (4.26)

Ce choix de la fonction est représenté par la figure (IV .12) :

Fig. IV.12 : (a) : Traduction de la bande qui entoure la surface dans le plan de phase ; (b) : Fonction signe avec un seuil.

e(x)

S(x)=0

)(xe ueq

(a)

un

+K …...

….. -K

+ε -ε

(b)

)(xS

nu

K

K

Fig. IV.11 : Commande appliquée aux systèmes à structure variable.

S(x)

Page 65: ATTOU RMG MSAP

CHAPITRE : IV Commande par mode glissant de la MSAP

UDL – Sidi bel Abbés - 2011 52

Ce type de commande n'est pas très utilisé, car en plus du problème d'erreur statique en présence

d'une perturbation, nu intervient avec toute sa valeur et des oscillations peuvent persister en régime

permanent. Un adoucissement de la commande nu est donc nécessaire.

IV.10.3 COMMANDE ADOUCIE

Dans le but de diminuer progressivement la valeur de la commande nu en fonction de la distance

entre la trajectoire de la variation à régler et la surface de glissement, donc il s’agit d’encadrer la

surface par une bande avec un ou deux seuils. Cette commande est caractérisée par un seuil (1) ou

deux seuils (1, 2) pour Diminuer progressivement la valeur de la commande nu .

Dans cette configuration présentée par la figure (IV.13), on peut distinguer trois zones dans

l’intervalle positif qui dépendent de la distance du point à la surface de glissement :

La distance est supérieure au seuil (2) , alors la fonction signe est effective.

La distance est inférieure au seuil (1), alors nu est nul (zone morte)

Le point dans la bande (1, 2) et alors nu est une fonction linéaire de la distance.

Droite de pente égale : 12

K (4.27)

Fig. IV.13 : Fonction signe de la commande adoucie

Quelle que soit la méthode utilisée, nous remarquons que le seuil est grand, il y a problème de

précision. En effet le système va évoluer dans la bande et risque donc de ne jamais atteindre le point

désirer (origine du plan de phase).

En conclusion, nous pouvons dire que la commande adoucie :

Limitent voir éliminent les oscillations de glissement.

de point de vue théorique, le mode de glissement n'existe plus parce que la trajectoire d'état

n'est pas forcée de rester sur 0)( xs .

un

e(x)

S(x)=0

)(xe

ueq+un

adoucie

P1

P2

S(x)

un

+K …………….

………….… -K

-ε2 -ε1

+ε1 +ε2

Page 66: ATTOU RMG MSAP

CHAPITRE : IV Commande par mode glissant de la MSAP

UDL – Sidi bel Abbés - 2011 53

le système ayant deux points d'équilibre (P1 et P2) et par conséquence, en régime permanent, un

écart statique apparaît et dépend du seuil utilisé.

IV.10.4 COMMANDE CONTINUE AVEC COMPOSANTE INTEGRALE

Les oscillations de haute fréquence qui apparaissent sur les réponses en régime glissant peuvent être

éliminées en convertissant la commande discontinue nu , équation (4.26) en commande continue en

remplaçant la fonction signe par la fonction continue voisine :

)(

)(.

xS

xSKun

(4.28)

: est un paramètre définissant le degré d'atténuation des oscillations.

Lorsque 0, on tend vers la même commande discontinue défini par (4.26).

La fonction nu est illustrée sur la figure (IV.14) :

Pour augmenter la précision de la réponse du système, on peut utiliser une commande continue

incluant une composante intégrale qui devient active lorsque le point est proche de la surface.

En général, le compensateur intégral diminue l'erreur en régime permanent, mais il est souvent

indésirable pour les régimes transitoires brusques, car il provoque des oscillations supplémentaires sur

la réponse.

La commande nu dans ce cas devient :

)x(S

)x(S.Kun

Avec :

0

)x(Ssi

)x(Ssidt)x(S.

0

0

Fig. IV.14 : Fonction intégrale de nu

- -K

+K -

S(x)

un

(4.29)

(4.30)

(4.31)

Page 67: ATTOU RMG MSAP

CHAPITRE : IV Commande par mode glissant de la MSAP

UDL – Sidi bel Abbés - 2011 54

)x(Ssi

)x(Ssidt)x(S.

0

0

Où ,,, 000 sont des constantes ou paramètres adaptatifs en fonction des références. Ce type

de commande est difficile à mettre en œuvre car il y a un grand nombre de paramètres à déterminer.

IV.10.5 UTILISATION D’UNE SURFACE AUGMENTEE

Le phénomène des oscillations peut être résolu par une méthode différente des méthodes décrites

ci-dessus et qui consiste à augmenter faiblement l’ordre de la surface de glissement. En introduisant la

dérivée de l’erreur dans le calcul de la surface (ce qui revient à introduire un terme d’accélération

dans le cas de l’asservissement de vitesse).

)()()( 21 xeKxeKxS (4.33)

Où : 21, KK sont deux constantes positives.

L’emploi d’une surface augmentée entraîne une augmentation de la fréquence de commutation de la

commande d’où une diminution des oscillations.

IV.11 APPLICATION DE LA COMMANDE PAR MODE DE GLISSEMENT A LA MSAP

On rappelle le modèle de la machine synchrone à aimants permanents :

rrq

fdqd

rr

q

q

r

q

f

dr

q

dq

q

sqq

d

d

qr

d

q

d

d

sdd

J

fC

JI

J

pILLp

dt

d

ULL

pIp

L

LI

L

RII

dt

d

UL

IpL

LI

L

RII

dt

d

1

1

1

)(

)(

)(

c

b

a

(4.34)

IV.11.a Stratégie de réglage à trois surfaces

La figure (IV.15) présent le schéma du réglage par mode glissement utilisant le principe de la

méthode de réglage en cascade, la structure comprend une boucle de régulation de vitesse qui génère

la référence de courant

qI laquelle impose la commande

qV .la commande

dV est imposée par la

régulation de courant

dI .

(4.32)

Page 68: ATTOU RMG MSAP

CHAPITRE : IV Commande par mode glissant de la MSAP

UDL – Sidi bel Abbés - 2011 55

Fig. IV.15 : schéma global de réglage par mode glissant stratégie de trois surfaces

IV.11.a.1 REGLAGE DE LA VITESSE

La synthèse de commande exploite la technique des modes glissants en utilisant le principe de la

méthode de réglage en cascade, Cette dernière nécessite le choix des surfaces qui assurent les objectifs

de commande. [11][21]

On remarque que d’après l’équation (4.34c), le degré relatif de la vitesse r avec qI est égal a 1 :

Dans ce cas, l’erreur de réglage est choisie comme la surface :

rrrefrS )( (4.35)

Par conséquent sa dérivée :

rrrefrS )( (4.36)

La loi de commande est définie par :

rnreqr UUU (4.37)

Qui est exprimée aussi par la forme suivant :

qnqeqqref III (4.38)

Si ont remplace l’équation (4.34 c) dans (4.36), on obtient :

rrq

fdqdrrefr

J

fC

JI

J

pILLpS

1)( (4.39)

Et si on remplace l’équation (4.38) dans (4.39), on obtient :

Page 69: ATTOU RMG MSAP

CHAPITRE : IV Commande par mode glissant de la MSAP

UDL – Sidi bel Abbés - 2011 56

rrqnqeq

fdqdrrefr

J

fC

JII

J

pILLpS

1)()(

Durant le mode de glissement on a :

0)( rS , 0)(

rS , 0qnI

Donc, on déduit la commande équivalente à partir de l’équation (4.40) :

JpI

J

LLp

CJJ

f

If

dqd

rrrefrref

qeq

.)(

1

Durant le mode de convergence, la dérivée de l’équation de LYAPUNOV doit être négative : 0)()()( rrr SSV

, si en remplace l’équation (4.42) dans (4.40), on obtient :

qnfd

qd

r IpIJ

LLpS

)(

Avec : ))(( rqn SsignkIr

rk : Gain positive pour le régulateur de vitesse.

IV.11.a.2 REGLAGE DU COURANT Id

L’expression de courant dI est donnée par l’équation (4.34a):

d

d

qr

d

q

d

d

sdd U

LIp

L

LI

L

RII

dt

d 1

On remarque que d’après l’équation (4.34a),le degré relatif du courant dI avec la commande dU est

égal à 1:

Donc la variable erreur de est donnée par :

ddrefd IIe

L’erreur résultante sera corrigée par un régulateur fonctionnant en mode de glissement et la surface

de cette régulation est donnée par :

ddrefd IIIS )(

Par conséquent la dérivé de la surface :

ddrefd IIIS

)(

En tenant compte de l’expression du courant dI déduite dans l’équation du système (4.34a), la

dérivé de cette surface devient :

(4.40)

(4.41)

(4.42)

(4.43)

(4.44)

(4.34a)

(4.45)

(4.46)

(4.47)

Page 70: ATTOU RMG MSAP

CHAPITRE : IV Commande par mode glissant de la MSAP

UDL – Sidi bel Abbés - 2011 57

d

d

qr

d

q

d

d

sdrefd U

LIp

L

LI

L

RIIS

1)(

Lorsque le régime glissant est atteint, la surface s’annule et par conséquent sa dérivée est donnée

par :

0)(

dIS dqr

d

q

d

d

sdrefdeq LIp

L

LI

L

RIU

, 0dnU

D’où

dndeqdref UUU

Durant le mode de convergence :

0)()(

dd ISIS

))(( dddn ISsignKU

Par conséquent, la commande a la sortie de régulateur dévient:

))(( dddqr

d

q

d

d

sdrefd ISsignKLIp

L

LI

L

RIU

dK : Gain positive pour le régulateur de courant direct.

IV.11.a.3 REGLAGE DU COURANT Iq

L’expression de courant qI est donnée par l’équation (4.34b) :

q

q

r

q

f

dr

q

dq

q

sqq U

LL

pIp

L

LI

L

RII

dt

d 1

La valeur de qrefI a la sortie de régulateur de la vitesse est comparée à celle mesurée. L’erreur

résultante sera corrigée par un régulateur fonctionnant en mode de glissement.

Pour calculer qrefU et qnU on passe par la même procédure précédente.

La surface de cette régulation est donnée par l’équation suivant:

ddrefd IIIS )(

Sa dérivée est donnée par :

qqrefq IIIS

)(

En remplaçant la valeur

qI de (4.34b) dans l’équation (4.55), on obtient :

q

q

r

q

f

dr

q

dq

q

sqrefq U

LL

pIp

L

LI

L

RIIS

1)(

(4.48)

(4.49)

(4.50)

(4.51) (4.52)

(4.53)

(4.34b)

(4.54)

(4.55)

(4.56)

Page 71: ATTOU RMG MSAP

CHAPITRE : IV Commande par mode glissant de la MSAP

UDL – Sidi bel Abbés - 2011 58

qnqeqqref UUU

Lorsque le régime glissant est atteint, la surface s’annule: 0)( qIS , 0)(

qIS , Donc :

LqL

pIp

L

LI

L

RIU r

q

f

dr

q

dq

q

sqrefqeq

, 0qnU

Pour garantir la convergence on choisi :

))(( qqqn ISsignKU

En remplaçant la valeur de qeqU (4.58) et de qnU (4.59) dans qrefU (4.57), on obtient :

))(( qqqr

q

f

dr

q

dq

q

sqrefqref ISsignKL

L

pIp

L

LI

L

RIU

Avec

qK : Gain positive pour le régulateur de courant quadratique.

IV.11.b RESULTAT DE SIMULATION

Pour la validation de la structure de la commande par mode glissant. On a fait des simulations à

l’aide du logiciel MATLAB/simulink.

Le schéma de simulation est donné par la figure (IV.15).

La figure (IV.16) représente le comportement dynamique de l’ensemble MSAP –onduleur (MLI) avec

régulation par mode glissement, stratégie de trois surfaces.

La simulation est faite comme suit :

Le démarrage à vide pour une consigne de 100 (rad/s) avec application d’un couple résistant Cr=8

(Nm) entre [0.1 et 0.2] (s) puis on inverse le sens de rotation de r 100 (rad/s) à r -100 (rad/s)

à l’instant t = 0.3(s) puis on refait l’application d’un couple résistant Cr =-8 (Nm) entre [0.4 et 0.5] (s).

(4.57)

(4.58)

(4.59)

(4.60)

Page 72: ATTOU RMG MSAP

CHAPITRE : IV Commande par mode glissant de la MSAP

UDL – Sidi bel Abbés - 2011 59

Fig. IV.16 : réponse de la MSAP avec régulation par mode glissant sans variation paramétrique

IV.11.b.1 TEST DE ROBUSTESSE

Pour mettre en évidence l’importance de la technique de la commande par mode glissant, on va

effectuer des tests de robustesse de notre machine ; et pour vérifier cette dernière :

0 0.1 0.2 0.3 0.4 0.5 0.6-40

-30

-20

-10

0

10

20

30

40

temps(s)

Iq(A)

Id(A)

0 0.1 0.2 0.3 0.4 0.5 0.6

-8

-6

-4

-2

0

2

4

6

8 couple resistante (Nm)

temps(s)

0 0.1 0.2 0.3 0.4 0.5 0.6-40

-30

-20

-10

0

10

20

30

40

temps(s)

couple éléctromagnetique Ce (Nm)

0 0.1 0.2 0.3 0.4 0.5

-200

-150

-100

-50

0

50

100

temps(s)

erreur wr (rad/s)

0 0.1 0.2 0.3 0.4 0.5 0.6-40

-20

0

20

40

temps(s)

is(A)

ZOOM

-

-

Page 73: ATTOU RMG MSAP

CHAPITRE : IV Commande par mode glissant de la MSAP

UDL – Sidi bel Abbés - 2011 60

1/ on a varié les paramètres électriques de la machine à savoir:

Rs : La résistance statorique.

2/On fait également varier les paramètres mécaniques à savoir :

J : Le moment d’inertie.

Les variations introduites dans les essais ressemblent en pratique aux conditions de travail comme

échauffement et le freinage.

a- TEST DE ROBUSTESSE PAR RAPPORT A LA VARIATION DE LA RESISTANCE STATORIQUE

Dans ce test on a triplé et quintuplé la valeur initiale de la résistance statorique. Les résultats

obtenus sont donnés par la figure (IV.17) :

Fig. IV.17 : comportement dynamique de la MSAP avec changement de résistance statorique avant le démarrage.

On remarque d’après la figure (IV.17) que la vitesse restera insensible aux variations de la

résistance statorique et cette dernière suit sa consigne avec un temps de réponse très court sans aucun

dépassement.

b- TEST DE ROBUSTESSE PAR RAPPORT A LA VARIATION DE MOMENT D’INERTIE J

Fig. IV.18 : comportement dynamique de la MSAP avec changement de moment d’inertie avant le démarrage.

Pour le moment d’inertie, on a doublé et triplé la valeur initial, on remarque que la vitesse

mécanique suit sa consigne avec un temps de réponse qui est très petit (environ 0.015(s) pour chaque

variation).

0 0.1 0.2 0.3 0.4 0.5-150

-100

-50

0

50

100

150

temps(s)

vitesse de référence Wr(rad/s)

Wr( 2*J )

Wr( 3*J )

Wr( J )

Vitesse de référence

Vitesse réelle (5*Rs)

Vitesse réelle (3*Rs)

Vitesse réelle (Rs)

Page 74: ATTOU RMG MSAP

CHAPITRE : IV Commande par mode glissant de la MSAP

UDL – Sidi bel Abbés - 2011 61

c- INTERPRETATION

Les différentes simulations faites nous permettent de constater que :

Le rejet de perturbation est très rapide ;

Un temps de réponse très faible ;

Une erreur statique pratiquement nulle ;

Un découplage réalisé avec succès par le maintient de Id nul ;

Le système répond positivement à ce test, il est insensible aux perturbations internes et externes, cette commande présente une bonne robustesse.

IV.11.b.2 CONCLUSION

Dans ce chapitre, nous avons présenté la commande à structure variable (CSV) fonctionnant en

mode de glissement appliquée à la machine synchrone à aimants permanents, après la présentation de

la théorie de base de cette commande et le calcul des lois de régulateurs, nous avons réalisé une

simulation de la commande par la méthode de trois surfaces : une structure en cascade ( surface de la

vitesse avec la surface du courant quadratique) et la surface du courant direct.

La commande par mode glissant montre que les performances sont meilleures autour du point de

fonctionnement. Le point fort de cette technique de régulation est la simplicité de mise en œuvre et la

robustesse même en présence des perturbations internes et externes avec un temps de réponse très

faible.

Finalement, on peut conclure que la caractéristique essentielle de cette technique est la capacité de

robustesse dans tout le régime permanent, Néanmoins cette robustesse reste limitée par un

inconvénient du réglage qui réside dans l’existence d’une loi de contrôle discontinu produisant l’effet

de « chattering ».

Le contrôle par mode glissant garanti une bonne insensibilité à la variation paramétrique illustrée

par la poursuite en vitesse est sans dépassement, sans erreur statique, la stabilité et la convergence

vers l’équilibre. On ajoute aussi que la régulation proposée peut être appliquée dans des domaines

exigeants de hautes performances telles que le domaine de la robotique et le domaine des machines

outils.

Page 75: ATTOU RMG MSAP

CONCLUSION GENERALE

Page 76: ATTOU RMG MSAP

Conclusion générale

UDL – Sidi bel Abbés - 2011 62

CONCLUSION GENERALE

e travail présenté dans ce mémoire est une modeste contribution à l’étude des

performances des commandes appliquées sur la machine synchrone à aimants permanents à

pôles saillant. L'objectif principal de ce mémoire est la réalisation d'une nouvelle commande

robuste par mode glissant qui améliore les performances de la machine.

Afin d'aborder cette étude, on a présenté au premier chapitre, une étude générale sur les aimants

permanents (leurs structures et leurs propriétés), avantages et les domaines d’application qui concerne

la machine synchrone à aimants permanents.

Ensuite, nous avons abordé dans le deuxième chapitre la problématique de la modélisation de la

machine synchrone à aimants permanents en se basant sur les équations électriques et mécaniques

dans le repère (abc) et (d-q).le modèle mathématique de la machine obtenue par la transformation de

PARK en tenant compte des hypothèses simplificatrices qui permettent de réduire la complexité du

système.

L’association convertisseur-machine nous a permis de constater une insuffisance au niveau des

performances. A partir des équations présentées dans le chapitre et les courbes de simulation obtenus

par le logiciel MATLAB/simulink, On a constaté que la machine est non linière et fortement couplé.

Au troisième chapitre, on a donné un aperçu explicite d’une solution parmi les différentes solutions

de découplage, qui est la commande vectorielle. La commande vectorielle permet d’imposer à la

machine synchrone à aimants permanents un comportement semblable à celle de la machine à courant

continu à excitation séparée là ou les courants ne s’affectent pas entre eux.

La commande par mode glissant a fait l’objet d’un quatrième chapitre, c’est une commande robuste

liée aux systèmes à structures variables, dont le but est de palier les inconvénients des commandes

classiques, vu que la Commande a structures variables est par nature une commande non linéaire et

que leur loi de commande se modifie d'une manière discontinue. La robustesse apparait au moment de

l’ajustement automatique des régulateurs à la mise en œuvre (réduction du temps d’ajustement et

amélioration des performances). Le point fort de cette technique de régulation est la simplicité de mise

en œuvre et la robustesse par rapport aux perturbations internes et externes même aux incertitudes du

système. Cependant le principal inconvénient du réglage par mode glissant réside dans l’existence

d’une loi de contrôle discontinu produisant l’effet de chattering. Le choix de la fonction signe adoucie

permet la réduction d’effet de chattering.

Comme perspective, il est intéressant de valider les techniques de notre étude par des essais

expérimentaux, et cherché d’élaborer un modèle mathématique qui assure la stabilité et la poursuite

de consigne même dans le régime transitoire de système.

Page 77: ATTOU RMG MSAP

ANNEXE

Page 78: ATTOU RMG MSAP

UDL – Sidi bel Abbés - 2011 63

ANNEXE

Paramètres de la machine synchrone à aimants permanents :

Puissance : p = 1.5 KW

La fréquence : F = 50 Hz

Résistance statorique : Rs = 0.6 Ω

Inductance suivant l’axe d : Ld = 1.4 . 10-3 H

Inductance suivant l’axe q : Lq = 2.8 . 10-3 H

Nombre de paire de pôles : P =4

Flux permanent : fφ = 0.12Wb

Moment d’inertie : J = 1.1.10-1 kg.m2

Coefficient de frottement visqueux : f = 1.4.10-3 N.m.s/rad

Page 79: ATTOU RMG MSAP

BIBLIOGRAPHIE

Page 80: ATTOU RMG MSAP

UDL – Sidi bel Abbés - 2011 64

BIBLIOGRAPHIE

Thèses

[1] M. CARRIERE Sébastien, Synthèse croisée de régulateurs et d'observateurs pour le contrôle robuste

de la machine synchrone, Thèse de doctorat, l'Institut National Polytechnique de Toulouse, France,

année 2010.

[2] HUSSAIN Ayman, Contribution à la commande adaptative robuste par modes glissants, Thèse de

doctorat, Université de Reims Champagne Ardenne, FRANCE, année 2009.

[3] BENMANSOUR Khelifa, Réalisation d’un banc d’essai pour la commande et l’observation des

convertisseurs multicellulaires, Thèse de doctorat, Université de Cergy Pontoise, FRANCE, année 2009.

[4] MASSOUM Ahmed, Contribution à la Commande Singulièrement Perturbée d’une Machine Synchrone

à Aimants Permanents : Commande à Structure Variable (CSV); Commande Neuro-Floue. Thèse de

doctorat, Université de Djilali Liabes , SBA , Algerie, année 2007.

[5] ABID Mohamed , Adaptation de la commande optimisée au contrôle vectoriel de la machine

asynchrone alimentée par onduleur à M.L.I ,Thèse de doctorat, Université de Djilali Liabes ,SBA,

Algerie, année 2006.

[6] FAROOQ Jawad Ahmed, Etude du problème inverse en électromagnétisme en vue de la localisation

des défauts de désaimantation dans les actionneurs à aimants permanents, Thèse de doctorat,

Université de Technologie de Belfort, MONTBELIARD, France. année 2008.

[7] SOSSE ALAOUI Mohammed Chakib, Commande et observateur par modes glissants d’un système de

pompage et d’un bras manipulateur, Thèse de doctorat, université sidi Mohamed ben Abdellah, Fes,

Maroc, année 2009.

[8] CIMUCA Gabriel Octavian, Système inertiel des stockage d’énergie associe a des générateurs

éoliens, Thèse de doctorat, Ecole Nationale Supérieure D’arts et Métiers Centre de Lille, France. année

2005.

[9] GASC Laurent, Conception d’un actionneur à aimants permanents à faibles ondulations de couple

pour assistance de direction automobile Approches par la structure et par la commande, Thèse de

doctorat, Institut National Polytechnique de Toulouse, France, année 2004.

[10] VIDAL Paul-Etienne, Commande non-linéaire d'une machine asynchrone a double alimentation,

Thèse de doctorat, Ecole Nationale Supérieure Electrotechnique, D'électronique, D'informatique,

D'hydraulique et des Télécommunications, TOULOUSE, France, année 2004.

Page 81: ATTOU RMG MSAP

UDL – Sidi bel Abbés - 2011 65

Mémoires Magisters

[11] BELABBES Baghdad ,Commande linearisante d’un moteur synchrone à aimants permanents,

mémoire de magister, université djilali liabes, SBA ,Algérie, année 2001

[12] SEKKEL Ahmed Sadreddine, Etude comparative des différentes commandes de la machine à

aimants permanents, mémoire de magister, université djilali liabes SBA, Algérie, année 2008.

[13] REZGUI SALAH EDDINE , Commande de machine electrique en environnement, Matlab/Simulink et

Temps Réel, mémoire de magister, Université Mentouri de Constantine, Algérie, année 2009.

[14] LAHOUEL Dalila,Commande non linéaire adaptative d'une machine synchrone à aimants permanents,

mémoire de magister, Université de Batna, Algérie, année 2009.

[15] BENBRAHIM Amel, Commande prédictive généralisée d’une machine synchrone à aimants

permanents, mémoire de magister, Université de Batna, Algérie, année 2009.

[16] BEN FERDIA Abdelkader, Commande non linéaire d’un moteur synchrone à aimants permanents,

mémoire de magister, Université de Batna, Algérie, année 2006.

[17] BENCHABANE Fateh, Commande en position et en vitesse par mode de glissement d’un moteur

synchrone triphasé à aimants permanents avec minimisation du chattring, mémoire de magister,

Université mohamed khider de Biskra, Algérie, année 2005.

[18] MERZOUG Med Salah, Etude comparative des performances d’un DTC et d’un FOC d’une machine

synchrone à aimants permanents, mémoire de magister, Université de Batna, Algérie.

Mémoire Master

[19] BOUDISSA Ahmed, Synthèse d'observateurs adaptatifs pour la commande sans capteur de la

machine synchrone: application aux véhicules hybride, mémoire de master, Université de Poitiers,

France, Année 2010.

Articles

[20] ADJOUDJ Mohamed, ABID Mohamed, AISSAOUI Abdelghani, RAMDANI Youcef, BOUNOUA Houria,

Commande par mode glissant d’une machine asynchrone à double alimentation montée dans une

éolienne, Revue « Nature et Technologie », janvier 2010.

[21] B.BELABBES, A. MEROUFEL, M.K. FELLAH et M. ABID, Commande à structure par linéarisation

exacte de l’écart d’un moteur synchrone à aimants permanents, Volume 49, Number 2, 2008.

Page 82: ATTOU RMG MSAP

UDL – Sidi bel Abbés - 2011 66

[22] KECHICH Abderrahmane et MAZARI Benyounes, La commande par mode glissant : Application à la

machine synchrone à aimants permanents, ISSN 1813-548X, Afrique SCIENCE 04(1), 2008.

[23] A. Kechich1, B. Mazari2 and I. K. Bousserhane, Application of nonlinear sliding-mode control to

permanent magnet synchronous machine, International Journal of Applied Engineering Research , ISSN

0973-4562 Vol.2, No.1 ,2007.

[24] A.BENAISSA et M.K.FELLAH, Commande par mode glissement d’un convertisseur AC/DC avec

correction du facteur de puissance, ACTA ELECTROTEHNICA, volume 47, Number 2,2006.

[25] A.TITAOUINE, F. BENCHABANE, K. YAHIA, PR: A. MOUSSI, Commande d’une machine synchrone à

aimants permanents et estimation de ces paramètres en utilisant le filtre de Kalman étendu, Courrier

du Savoir – N°07, pp.37-43, Décembre 2006.

[26] Abdel Ghani Aissaoui, Hamza Abid, Mohamed Abid, Fuzzy sliding mode control

for a self-controlled synchronous motor drives, Electronic Journal «Technical

Acoustics»,2005

[27] V. I.UTKIN, G. BARTOLINI, A. FERRARA, Adaptive sliding mode control in discrete-time systems,

AUTOMATICA, Vol . 31, No. 5, PP. 769-773, science direct, 1995.

Ouvrages

[28]: Pierre Lopez et Ahmed Saïd Nouri, Théorie élémentaire et pratique de la commande par les

régimes glissants, Mathématiques & Applications, Volume 55, DOI: 10.1007/3-540-34480-2_2,

springerlink, 2006.

[29] Eddie Smigiel et Guy Sturtzer, Modélisation et commande des moteurs triphasés, édition : Ellipses,

Collection : Technosup ,Année 2000.

Encyclopédie

[30] François LEPRINCE-RINGUET, Techniques de l’Ingénieur D2 100, aimants permanents matériaux et

applications.