atomic-sized contacts and wires. i - capri school · atomic-sized contacts and wires. i ... djukic,...

53
Capri, March 2007 1 Atomic-sized Contacts and Wires. I Jan van Ruitenbeek Kamerlingh Onnes Laboratorium N. Agraït, A. Levy Yeyati and JMvR Physics Reports 377 (2003) 81-380.

Upload: dangdung

Post on 27-Jul-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

  • Capri, March 2007 1

    Atomic-sized Contacts and Wires. I

    Jan van RuitenbeekKamerlingh Onnes Laboratorium

    N. Agrat, A. Levy Yeyati and JMvRPhysics Reports 377 (2003) 81-380.

  • Capri, March 2007 2

    Electrical contacts to a single atom or molecule

    A V

  • Capri, March 2007 3

    In collaboration with

    Leiden: Chris Muller, Martijn Krans, Niko van der Post, Helko van den Brom, Bas Ludoph, Alex Yanson, Yves Noat, Roel Smit, Carlos Untiedt, Darko Djukic, Ancuta Hulea, Annemarie Houkes, Robert Thijssen, Sander Otte, Oren Tal, Christian Martin, Tadashi Shiota, Manabu Kiguchi

    Madrid: Nicolas Agrat, Gabino Rubio, Juan-Carlos Cuevas, Alvaro Martn-Rodero, Alfredo Levy Yeyati, Michael Haeffner

    Saclay: Michel Devoret, Daniel Esteve, Cristian UrbinaKonstanz: Elke ScheerFreiburg: Daniel Urban, Hermann GrabertGteborg: Katja Bratus', Gran Johansson, Vitaly Shumeiko, Gran WendinTU Denmark: Mads Brandbyge, Kristian Thygesen, Sune Bahn, Karsten

    JacobsenTucson, Arizona: Jerome Brki, Charles Stafford

    Universiteit Leiden

  • Outline of Lectures

    I. Atomic-sized contacts Experimental techniques: how to contact a single atom Theory of contact resistance: from classical to quantum limit The concept of eigenchannels Evolution of conductance and force in atomic contacts Conductance histograms Experimental investigation of conductance channels I:

    Superconducting subgap structureII. The conductance channels for a single atom

    Shot noise Conductance fluctuations Thermopower

    III. Shell structure in metallic nanowires IV. Transport through atomic chains and molecules

  • Allow Nature to do the job

    A single atom:physics becomes simple

  • A

    Vtip

    sample

    traced path

    sample

    tip

    piezoelement

    Scanning Tunneling Microscope

  • Capri, March 2007 7

    Contact formation by STM

    Au at 4.2 KImportant problem: Clean surface preparation

  • Capri, March 2007 8

    Combined STM and HRTEM

    T. Kizuka et al. PRB 55 (1997) R7398

  • Capri, March 2007 9

    Images of atomic contacts (room temp.)

    V. Rodrigues et al. PRL 85 (2000) 4124

  • Capri, March 2007 10

    Mechanically Controllable Break Junction

  • Capri, March 2007 11

    Mechanically Controllable Break Junction

  • Conductance for Au contacts at 4.2 K

    0 50 100 150 200 250 300012345678

    Gold, 4.2 K

    Con

    duct

    ance

    (2e2

    /h)

    Piezo-voltage (V)

  • Capri, March 2007 13

    Lithographically fabricated MCBJ

    J.M. van Ruitenbeek et al. Rev. Sci. Instrum. 67 (1995) 108 2

    6Lut

    zI=

    uL

    t

  • Capri, March 2007 14

    Relays

    K. Hansen et al. PRB 56 (1997) 2208

    Touching wires: J.L. Costa-Krmer, et al., Surf. Science 342 (1995) L1144

  • Capri, March 2007 15

    Outline

    Experimental techniques: how to contact a single atom Theory of contact resistance: from classical to quantum limit The concept of eigenchannels Evolution of conductance and force in atomic contacts Conductance histograms Experimental investigation of conductance channels I: shot noise

  • Capri, March 2007 16

    Classical limit: Maxwell resistance

    Classical limit

    hyperbolic constriction

    Oblate spheroidal coordinates

    sinsinhsincoscoshcoscoscosh

    azayax

    ===

    F,, llL >>charge neutral conductor

    0)(2 = rV

    solution

    )arctan()( 02021

    eVVV +=

    total current obtained from Ohms law and by integrating:

    )sin1(2 0M = aG

    00 =For an orifice

    aG 2M = (J.C. Maxwell)

  • Capri, March 2007 17

    Semiclassical approximation: Sharvin resistance

    Semiclassical ballistic contact llL ,F

  • Capri, March 2007 18

    Corrections to the Sharvin resistance

    Modes in a cavity (Weyl 1911)

    For cylindrical wire with hard walls:

    For small sizes integration over k introduces edge errors

    ( )[ ]L++= 61F212F212

    S2 akakheG

    Sharvinperimeter correction

    topological correction

    C. Hppler and W. Zwerger, PRL 80 (1998) 1792

  • Capri, March 2007 19

    Quantum conductance: Landauer formula

    As a first step: assume 1D conductor, single channel

    eV= RL

    L R

    ( ) ( )

    ( )

    =

    ==

    )()(

    )()()()(

    RL

    1

    RLRL

    kkk

    kkkk

    kkk

    ffvdkdde

    ffvdkeffvLeI

    kvdkd

    h=

    he

    VIG

    22==and taking T = 0,

  • Capri, March 2007 20

    Quantum conductance: Landauer formula

    Scattering problem

    L RLN RNS

    etc. matrix, a is ,

    LR NNtrttr

    S

    =

    ==n

    nThett

    heG

    2

    2 2)Tr(2

  • Capri, March 2007 21

    2DEG experiments

    B. Van Wees et al., PRL 60 (1988) 848D.A. Wharam et al., J. Phys. C 21 (1988) L209

  • Atomic contacts

  • Capri, March 2007 23

    Eigenchannel decomposition

    lir

    Incoming waves

    ror

    Outgoing waves

    Matrix of transmission ampl.

    lr itorr =

    Landauer:

    ==n

    nThett

    heG

    2

    2 2)Tr(2

    Mesoscopic PIN code

  • Capri, March 2007 24

    Eigenchannels

    Element Type ofatomNumber of

    modesConductance for

    one atom

    Au s 1 1 G0

    Al s-p 3 ~0.8-1.2 G

    Pb s-p 3 ~2.5-3 G

    Nb s-d 5 ~2.5-3 G

    J.C. Cuevas, A. Levy Yeyati & A.Martin-Rodero, PRL 80 (1998) 1066

  • Capri, March 2007 25

    Outline

    Experimental techniques: how to contact a single atom Theory of contact resistance: from classical to quantum limit The concept of eigenchannels Evolution of conductance and force in atomic contacts Conductance histograms Experimental investigation of conductance channels I: shot noise

  • Capri, March 2007 26

    Jump to contact and tunneling regime

    J.M. Krans et al. PRB 48 (1993) 14721

  • Capri, March 2007 27

    Conductance for Au contacts at 4.2 K

    0 50 100 150 200 250 300012345678

    Gold, 4.2 K

    Con

    duct

    ance

    (2e2

    /h)

    Piezo-voltage (V)

  • Capri, March 2007 28

    force and conductance

    Gold at room temperature

    G. Rubio, N. Agrat and S. Vieira,PRL 76 (1996) 2302

  • Capri, March 2007 29

    sp-metal

    75 100 125 150012345678

    Aluminium, 4.2 K

    Con

    duct

    ance

    (2e2

    /h)

    Piezo-voltage (V)

  • Capri, March 2007 30

    d-metal

    120 140 160 1800

    2

    4

    6

    8

    10

    12

    Platinum, 4.2 K

    Con

    duct

    ance

    (2e2

    /h)

    Piezo-voltage (V)

  • Capri, March 2007 31

    Outline

    Experimental techniques: how to contact a single atom Theory of contact resistance: from classical to quantum limit The concept of eigenchannels Evolution of conductance and force in atomic contacts Conductance histograms Experimental investigation of conductance channels I: shot noise

  • Capri, March 2007 32

    Conductance histogram for Au at 4.2K

    0 1 2 3 40

    10

    20

    30

    40

    50

    G [2e2/h]

    # po

    ints

    (x 1

    03)

  • Capri, March 2007 33

    Conductance histogram for aluminum

    0 1 2 3 4 5 6 7

    0,05

    0,10

    0,15

    0,20

    0,25

    0,30

    0,35Aluminum4.2 K

    C

    ount

    Conductance (2e2/h)

  • Capri, March 2007 34

    Conductance histogram for niobium

    0 1 2 3 4 50

    500

    1000

    1500

    2000

    Cou

    nts

    G (2e2/h)

    Nb13 K

  • Capri, March 2007 35

    Semimetal Bi, 4 K

    J.G. Rodigo et al. Phys. Rev. Lett. 88 (2002) 246801

  • Capri, March 2007 36

    Semimetal Bi, 77K

    J.G. Rodigo et al. Phys. Rev. Lett. 88 (2002) 246801

  • Capri, March 2007 37

    MCBJ for alkali metals

  • Capri, March 2007 38

    Conductance traces for sodium

    10 15 20 25 30 35 40012345678

    Sodium, 4.2 K

    Con

    duct

    ance

    (2e2

    /h)

    Piezo-voltage (V)

  • Capri, March 2007 39

    Conductance histogram for potassium

    0 1 2 3 4 5 6 7 80.0

    0.1

    0.2

    0.3

    0.4

    0.5Potassium, 4.2 K

    Nor

    mal

    ized

    nr.

    coun

    ts

    Conductance [2e2/h]

  • Capri, March 2007 40

    Eigenchannels in a cylindrical contact:

    0 1 2 3 4 5 6 7-0.6-0.4-0.20.00.20.40.60.81.01.2

    Bessel functions

    m=3m=2m=1

    m=0

    Ampl

    itude

    0 1 2 3 4 5 6 70123456789

    Con

    duct

    ance

    kFR

    +

    + +

    ++

    ++

    +

    m, n

    0, 1

    1, 1

    2, 1

    0, 2

  • Capri, March 2007 41

    Local Density calculation for sodium contact

    Nakamura, Brandbyge, Hansen & Jacobsen, Phys. Rev. Lett. 82, 1538 (1999).

  • Capri, March 2007 42

    Outline

    Experimental techniques: how to contact a single atom Theory of contact resistance: from classical to quantum limit The concept of eigenchannels Evolution of conductance and force in atomic contacts Conductance histograms Experimental investigation of conductance channels

    I. Superconducting subgap structureII. Shot noiseIII. Conductance fluctuations as a function of bias voltageIV. Thermopower

  • Capri, March 2007 43

    Superconducting contacts: Niobium

    15 20 25 300

    2

    4

    6tunnelling regimecontact regime

    G (2

    e2/h

    )

    VP (V)

    0,01

    0,1

    1

  • Capri, March 2007 44

    Tunneling regime. Niobium

    0 2 4 60

    20

    40

    60C

    urre

    nt [n

    A]

    Voltage [/e]

  • Capri, March 2007 45

    Subgap structure

    0 1 2 3 40.01

    0.1

    1

    10

    100

    NbR=146kT= G/G0=0.0707

    curr

    ent

    [nA

    ]

    eV []

    N. van der Post et al., Phys. Rev. Lett. 73, 2611 (1994)

  • Capri, March 2007 46

    Principle of Multiple Andreev Reflection

    eV >2

    Ef

    eV >

    eV > 23

    T T2

    a b c

    T3

    leftelectrode

    rightelectrode

  • Capri, March 2007 47

    Subgap structure in tunneling regime

    0 1 2 3 40.01

    0.1

    1

    10

    100

    NbR=146kT= G/G0=0.0707

    curr

    ent

    [nA

    ]

    eV []0 1 2 3 4

    0.01

    0.1

    1

    10

    100

    NbR=146kT= G/G0=0.0707

    curr

    ent

    [nA

    ]

    eV []

    N. van der Post et al., Phys. Rev. Lett.73, 2611 (1994)

    Theory:E.N. Bratus, V.S. Shumeiko, and G. Wendin , Phys. Rev. Lett.74, 2110 (1995)

  • Capri, March 2007 48

    Full theory for single channel

    Theory to all orders in transmission T

    D. Averin and A. Bardas, Phys. Rev. Lett. 75, 1831 (1995).

    J.C. Cuevas, A. Martin-Rodero and A. Levy Yeyati, Phys. Rev. B 54, 7366 (1996).

    E.N. Bratus, V.S. Shumeiko, E.V. Bezuglyiand G. Wendin, Phys. Rev. B 55, 12666 (1997).

    0 1 2 30

    2

    4

    eI/G

    ev/

    T = 10.99

    0.90.8 . .

    ... .

    0.1

  • Capri, March 2007 49

    Contact regime: one atom for Al

    0 1 2 3 4 50

    2

    4

    Aluminium, T=100 mK

    eI/G

    eV/

    1 20

    2

    4

    E. Scheer et al., Phys. Rev. Lett. 78, 3535 (1997)

    G = 1.747 T1 = 0.997, T2 = 0.46, T3 = 0.29

    G = 0.85 T1 = 0.74, T2 = 0.11

    G = 0.88 T1 = 0.46, T2 = 0.35, T3 = 0.07

    G = 0.025 T1 = 0.025

  • Capri, March 2007 50

    d-metal Niobium

    0 1 2 30

    2

    4

    6

    8

    10 Nb

    5432

    I (2e/

    h)

    eV/

    2 3 4 5 60.001

    0.01

    0.1

    1

    2 (a.u.)

    # channels

    B. Ludoph et al., Phys. Rev. B 61, 8561 (2000)

  • Capri, March 2007 51

    Monovalent metal: Au

    E. Scheer et al., Nature 394, 154 (1998)

  • Capri, March 2007 52

    Monovalent metal: Au

    E. Scheer et al., Phys. Rev. Lett. 86, 284 (2001)

  • Capri, March 2007 53

    Conclusions

    Single-atom contacts can be produced by simple techniques for any metal

    A single atom contact forms a nice, well-defined mesoscopic test sytem The number conductance modes through a single atom is determined by

    the number of valence orbitals. Conductance is usually NOT quantized The number of channels can be obtained from SSGS

    Next lecture: other techniques for analyzing the channels of an atomic contact

    Atomic-sized Contacts and Wires. IElectrical contacts to a single atom or moleculeIn collaboration withOutline of LecturesAllow Nature to do the jobScanning Tunneling MicroscopeContact formation by STMCombined STM and HRTEMImages of atomic contacts (room temp.)Mechanically Controllable Break JunctionMechanically Controllable Break JunctionConductance for Au contacts at 4.2 KLithographically fabricated MCBJRelaysOutlineClassical limit: Maxwell resistanceSemiclassical approximation: Sharvin resistanceCorrections to the Sharvin resistanceQuantum conductance: Landauer formulaQuantum conductance: Landauer formula2DEG experimentsAtomic contactsEigenchannel decompositionEigenchannelsOutlineJump to contact and tunneling regimeConductance for Au contacts at 4.2 Kforce and conductancesp-metald-metalOutlineConductance histogram for Au at 4.2KConductance histogram for aluminumConductance histogram for niobiumSemimetal Bi, 4 KSemimetal Bi, 77KMCBJ for alkali metalsConductance traces for sodiumConductance histogram for potassiumEigenchannels in a cylindrical contact:Local Density calculation for sodium contactOutlineSuperconducting contacts: NiobiumTunneling regime. NiobiumSubgap structurePrinciple of Multiple Andreev ReflectionSubgap structure in tunneling regimeFull theory for single channelContact regime: one atom for Ald-metal NiobiumMonovalent metal: AuMonovalent metal: AuConclusions