atol.am.gdynia.platol.am.gdynia.pl/~gorecki/dla_taty_pliki/2019 ed poland dl mq... · title: slide...

68
www.fei.edu.br ED Poland Mini-Colloquium, Rzeszów, June 26th, 2019 Compact Modeling of Junctionless Nanowire Transistors Marcelo Antonio Pavanello [email protected] www.fei.edu.br/~pavanello 1 Full Professor at Department of Electrical Engineering Centro Universitario FEI São Bernardo do Campo, Brazil IEEE Transactions on Electron Devices Editor IEEE Compact Modeling Technical Committee Member IEEE Distinguished Lecturer

Upload: others

Post on 06-Oct-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: atol.am.gdynia.platol.am.gdynia.pl/~gorecki/dla_taty_pliki/2019 ED Poland DL MQ... · Title: Slide sem título Author: Michelly Created Date: 6/26/2019 4:45:12 PM

www.fei.edu.brED Poland Mini-Colloquium, Rzeszów, June 26th, 2019

Compact Modeling of Junctionless

Nanowire Transistors

Marcelo Antonio [email protected]

www.fei.edu.br/~pavanello

1

Full Professor at Department of Electrical Engineering

Centro Universitario FEI

São Bernardo do Campo, Brazil

IEEE Transactions on Electron Devices Editor

IEEE Compact Modeling Technical Committee Member

IEEE Distinguished Lecturer

Page 2: atol.am.gdynia.platol.am.gdynia.pl/~gorecki/dla_taty_pliki/2019 ED Poland DL MQ... · Title: Slide sem título Author: Michelly Created Date: 6/26/2019 4:45:12 PM

www.fei.edu.br | ED Poland Mini-Colloquium, Rzeszów, June 26th, 2019

Introduction & Motivation

Compact Modeling

Conclusion

The Junctionless Nanowire Transistor

Outline

Static Drain Current Model

Dynamic Model

Verilog-A Implementation

Page 3: atol.am.gdynia.platol.am.gdynia.pl/~gorecki/dla_taty_pliki/2019 ED Poland DL MQ... · Title: Slide sem título Author: Michelly Created Date: 6/26/2019 4:45:12 PM

www.fei.edu.br | ED Poland Mini-Colloquium, Rzeszów, June 26th, 2019

Introduction and Motivation

Multiple Gate Transistors (MuGFETs) are recognized as key elements to

sustain the MOSFET scaling

• Improves the MOSFET electrostatics and the endurance

against short-channel effects;

Double gate

MOSFETs are in

commercial

products

Source: Intel website

Page 4: atol.am.gdynia.platol.am.gdynia.pl/~gorecki/dla_taty_pliki/2019 ED Poland DL MQ... · Title: Slide sem título Author: Michelly Created Date: 6/26/2019 4:45:12 PM

www.fei.edu.br | ED Poland Mini-Colloquium, Rzeszów, June 26th, 2019

Page 5: atol.am.gdynia.platol.am.gdynia.pl/~gorecki/dla_taty_pliki/2019 ED Poland DL MQ... · Title: Slide sem título Author: Michelly Created Date: 6/26/2019 4:45:12 PM

www.fei.edu.br | ED Poland Mini-Colloquium, Rzeszów, June 26th, 2019

Conceptually presented in 2008 by B. Sorée et al.[1].

Developed in 2009 by J.P. Colinge et al.[2].

➢ MuGFET MOSFET;

➢ Absence of doping gradients avoids

impurity diffusion into the channel region;

➢ Presents doping concentration in

the order of 1019 cm-3 to reduce the

access resistance.

Junctionless IM Trigate

5

The Junctionless Nanowire Transistor (JNT): MOSFET

Without Junctions

[1] B. Sorée et al., in Journal of Computational Electronics, n.7, pp. 380, 2008.

[2] J. P Colinge et al., in IEEE Int. SOI Conference (2009).

Page 6: atol.am.gdynia.platol.am.gdynia.pl/~gorecki/dla_taty_pliki/2019 ED Poland DL MQ... · Title: Slide sem título Author: Michelly Created Date: 6/26/2019 4:45:12 PM

www.fei.edu.br | ED Poland Mini-Colloquium, Rzeszów, June 26th, 2019

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

0

20

40

60

80

100

120

140

=

=

Overall

Junctionless AND Model

Junctionless AND Circuit

Year

Num

ber

of O

ccurr

ences

Source Scopus@26/06/2019

Papers in Journals, Books, Books Chapters

=

0

20

40

60

80

100

120

140

Page 7: atol.am.gdynia.platol.am.gdynia.pl/~gorecki/dla_taty_pliki/2019 ED Poland DL MQ... · Title: Slide sem título Author: Michelly Created Date: 6/26/2019 4:45:12 PM

www.fei.edu.br | ED Poland Mini-Colloquium, Rzeszów, June 26th, 2019

Conduction in Junctionless

Gate

Substrate

N+ Si

For VT≤VGS≤VFB

Gate

Substrate

Gate

Substrate

For VGS≤VT

Full

depletion

For VGSVFB

Gate

Substrate

Neutral

path

Accumulation

layer

Bulk

Conduction

Accumulation

Conduction

Page 8: atol.am.gdynia.platol.am.gdynia.pl/~gorecki/dla_taty_pliki/2019 ED Poland DL MQ... · Title: Slide sem título Author: Michelly Created Date: 6/26/2019 4:45:12 PM

www.fei.edu.br | ED Poland Mini-Colloquium, Rzeszów, June 26th, 2019 8

Introduction The Junctionless Nanowire Transistor

With respect to inversion mode devices:

Advantages Drawbacks➢ Reduced electric field;

➢ Smaller mobility degradation;

➢ Better analog properties;

➢ Better DIBL;

➢ Reduced low frequency noise.

➢Strong dependence of VTH on the

fin dimensions;

➢ Higher Series Resistance;

➢ Smaller low field mobility.

Page 9: atol.am.gdynia.platol.am.gdynia.pl/~gorecki/dla_taty_pliki/2019 ED Poland DL MQ... · Title: Slide sem título Author: Michelly Created Date: 6/26/2019 4:45:12 PM

www.fei.edu.br | ED Poland Mini-Colloquium, Rzeszów, June 26th, 2019

Performance Comparison: Inversion-Mode and Junctionless nanowire transistors

- Common parameters in JNT and IM:

✓EOT=1.3 nm

✓tSi = 10 nm

✓ Wfin 10 nm

✓ L = down to 10 nm

- JNT Characteristics:

✓ND = 1.1019 cm-3

- IM Characteristics:

✓ NA = 1.1015 cm-3

R. T. DORIA, R. TREVISOLI, M. de SOUZA, M. VINET, M. CASSE, O. FAYNOT, M. A.

PAVANELLO. Experimental comparative analysis between junctionless and inversion mode

nanowire transistors down to 10 nm-long channel lengths. In: 2017 IEEE SOI-3D-

Subthreshold Microelectronics Technology Unified Conference (S3S), 2017, p. 1-3.

Page 10: atol.am.gdynia.platol.am.gdynia.pl/~gorecki/dla_taty_pliki/2019 ED Poland DL MQ... · Title: Slide sem título Author: Michelly Created Date: 6/26/2019 4:45:12 PM

www.fei.edu.br | ED Poland Mini-Colloquium, Rzeszów, June 26th, 2019

Comparison between IM and Junctionless nanowire transistors of similar dimensions

10-13

10-10

10-7

10-4

-0.50 -0.25 0.00 0.25 0.5010

-13

10-10

10-7

10-4

I DS/(

W/L

) [A

]

L = 100 nm

L = 30 nm

L = 10 nm

Junctionless TransistorsExperimental Data

0

1

2

3

ID

S/(

W/L

) [

A]

Nanowire Transistors L = 100 nm

L = 30 nm

L = 10 nmH

fin = 10 nm

Wfin

= 10 nm

VDS

= 50 mVI DS [A

]/(W

/L)

VGS

-VTH

[V]

0

3

6

9

ID

S/(

W/L

) [

A]

Higher IDS

BetterSubthreshold

Swing

Drain current vs. VGT - L down to 10 nm

Page 11: atol.am.gdynia.platol.am.gdynia.pl/~gorecki/dla_taty_pliki/2019 ED Poland DL MQ... · Title: Slide sem título Author: Michelly Created Date: 6/26/2019 4:45:12 PM

www.fei.edu.br | ED Poland Mini-Colloquium, Rzeszów, June 26th, 2019

Comparison between IM and Junctionless nanowire transistors of similar dimensions

Smallerthreshold

voltage roll-off

Nearly ideal Subthreshold

Swing

0.38

0.40

0.42

0.44

10 100-2.00

-1.50

-1.00

-0.50

0.00

0.50

VTH

VT

H [V

]

Junctionless Transistors

60

62

64

SS

SS

[m

V/d

ec]

Wfin

= 10 nm

VDS

= 50 mV

VT

H [V

]

L [nm]

Nanowire Transistors

60

120

180

240

SS

[m

V/d

ec]

VTH and Subthrehsold Swing (SS) vs. L

Page 12: atol.am.gdynia.platol.am.gdynia.pl/~gorecki/dla_taty_pliki/2019 ED Poland DL MQ... · Title: Slide sem título Author: Michelly Created Date: 6/26/2019 4:45:12 PM

www.fei.edu.br | ED Poland Mini-Colloquium, Rzeszów, June 26th, 2019

10 1000.01

0.1

1

Junctionless

Nanowires

Wfin

= 10 nm

DIB

L [m

V/V

]

L [m]

Comparison between IM and Junctionless nanowire transistors of similar dimensions

VDS1 = 50 mV

VDS2 = 1.0 V

Drain Induced Barrier Lowering (DIBL) vs. L

Page 13: atol.am.gdynia.platol.am.gdynia.pl/~gorecki/dla_taty_pliki/2019 ED Poland DL MQ... · Title: Slide sem título Author: Michelly Created Date: 6/26/2019 4:45:12 PM

www.fei.edu.br | ED Poland Mini-Colloquium, Rzeszów, June 26th, 2019

Comparison between IM and Junctionless nanowire transistors of similar dimensions

ION and IOFF vs. L

10-6

10-5

10-4

10 10010-13

10-11

10-9

10-7

ION

@ VGS

- VTH

= 0.5 V

Closed Symbols - JNTs

Open Symbols - NWs

I ON [A

]

I OF

F [A

]

L [nm]

IOFF

@ VGS

- VTH

= -0.3 VVDS

= 1 V

Wfin

= 10 nm

Hfin

= 10 nm

Smaller ION

Smaller IOFF

Lower carrier mobility

Better electrostatic control

Longer L in subthreshold

Page 14: atol.am.gdynia.platol.am.gdynia.pl/~gorecki/dla_taty_pliki/2019 ED Poland DL MQ... · Title: Slide sem título Author: Michelly Created Date: 6/26/2019 4:45:12 PM

www.fei.edu.br | ED Poland Mini-Colloquium, Rzeszów, June 26th, 2019

Comparison between IM and Junctionless nanowire transistors of similar dimensions

ION/IOFF vs. L

Larger ION/IOFF at all L

Smaller IOFF

10 100101

103

105

107

I ON/I

OF

F

L [nm]

, VDS

= 50 mV

, VDS

= 1 V

Open Symbols - NWs

Closed Symbols - JNTs

Wfin

= 10 nm

Hfin

= 10 nm

Page 15: atol.am.gdynia.platol.am.gdynia.pl/~gorecki/dla_taty_pliki/2019 ED Poland DL MQ... · Title: Slide sem título Author: Michelly Created Date: 6/26/2019 4:45:12 PM

www.fei.edu.br | ED Poland Mini-Colloquium, Rzeszów, June 26th, 2019

Comparison between IM and Junctionless nanowire transistors of similar dimensions

gmmax and RS vs. L

Smaller gmmax at all L

Larger RS

0 50 100 150 20010

-6

10-5

gm

ma

x [

−]

L [nm]

gmmax

,

,

,

0

5

10

15

RS

Nanowires

Junctionless

RS [k

]

Wfin

= 10 nm

VDS

= 50 mV

Lower carrier mobility

Not optimized S/D extensions

Page 16: atol.am.gdynia.platol.am.gdynia.pl/~gorecki/dla_taty_pliki/2019 ED Poland DL MQ... · Title: Slide sem título Author: Michelly Created Date: 6/26/2019 4:45:12 PM

www.fei.edu.br | ED Poland Mini-Colloquium, Rzeszów, June 26th, 2019

Comparison between IM and Junctionless nanowire transistors of similar dimensions

ION,IOFF and ION/IOFF vs. WFinSmaller ION

Smaller IOFF

Lower carrier mobility

Better electrostatic control

Longer L in subthreshold

0 20 40 60 80 100 120

10-10

10-8

10-6

10-4

VDS

= 1 V

L = 100 nm

Hfin

= 10 nm

ION

@ VGS

- VTH

= 0.5 V

IOFF

@ VGS

- VTH

= -0.3 V

I ON, I O

FF [A

]

Wfin

[nm]

Open Symbols - NWs

Closed Symbols - JNTs

104

105

106

107

108

IO

N/I

OF

F

Larger ION/IOFF at all WFin

Page 17: atol.am.gdynia.platol.am.gdynia.pl/~gorecki/dla_taty_pliki/2019 ED Poland DL MQ... · Title: Slide sem título Author: Michelly Created Date: 6/26/2019 4:45:12 PM

www.fei.edu.br | ED Poland Mini-Colloquium, Rzeszów, June 26th, 2019

Comparison between IM and Junctionless nanowire transistors of similar dimensions

SS and DIBL vs. WFin

Better DIBL for Wfin<60 nm

0 20 40 60 80 100 120

60

62

64

66

68

L = 100 nm

Hfin

= 10 nm

Open Symbols - NWs

Closed Symbols - JNTs

SS

[m

V/d

ec]

Wfin

[nm]

10

20

30

40

50

60

DIB

L [m

V/V

]

Better SubthresholdSwing at all WFin

Page 18: atol.am.gdynia.platol.am.gdynia.pl/~gorecki/dla_taty_pliki/2019 ED Poland DL MQ... · Title: Slide sem título Author: Michelly Created Date: 6/26/2019 4:45:12 PM

www.fei.edu.br | ED Poland Mini-Colloquium, Rzeszów, June 26th, 2019 18

Long Channel Drain Current Model

▪ 2D Poisson equation (considering only the depletion charge):

▪ Using the approximation:

Bulk conduction

Poisson equation can be integrated, leading to:

dz

d

dx

d ΦΦ=

and considering the center potential as zero at the source side

dΦNq

dx

dΦd

Si

D

22

2

−=

Si

D

ε

Nq

dz

Φd

dx

Φd−=+

2

2

2

2

SideplSDdeplS εNqE /Φ ,, =

z

y

x

Page 19: atol.am.gdynia.platol.am.gdynia.pl/~gorecki/dla_taty_pliki/2019 ED Poland DL MQ... · Title: Slide sem título Author: Michelly Created Date: 6/26/2019 4:45:12 PM

www.fei.edu.br | ED Poland Mini-Colloquium, Rzeszów, June 26th, 2019 19

Long Channel Drain Current Model

▪ Approximation:dz

d

dx

d ΦΦ=

-6 -4 -2 0 2 4 6

-0.12

-0.08

-0.04

0.00

Left surface

=-0.11 V

Right surface

=-0.11 V

Top surface

=-0.12 V

(x)z=

Pote

ntial [V

]

x,z [nm]

(z)x=

-6 -4 -2 0 2 4 6

0

1

2

3

4

E(x)z=

E(z)x=

Ele

ctr

ic fie

ld [x10

5 V

/cm

]

x,z [nm]

ERight surface

=4.16 x105 V/cm

ETop surface

=4.04 x105 V/cm

ELeft surface

=4.16 x105 V/cm

Page 20: atol.am.gdynia.platol.am.gdynia.pl/~gorecki/dla_taty_pliki/2019 ED Poland DL MQ... · Title: Slide sem título Author: Michelly Created Date: 6/26/2019 4:45:12 PM

www.fei.edu.br | ED Poland Mini-Colloquium, Rzeszów, June 26th, 2019 20

Long Channel Drain Current Model

▪ Relation between depletion charge and electric field:

Bulk conduction

MOS capacitor:

SideplSDS εNqE /Φ ,=

)2(ε FinFinSSiDepl WHEQ +=

DeploxFBGdeplS Q)CVV( =−+,Φ a = Si q ND (2HFin + WFin)2

)(22

2

2

22, FBG

oxoxox

FBGdeplS VVCCC

VV −−

+−−=

aaa

Page 21: atol.am.gdynia.platol.am.gdynia.pl/~gorecki/dla_taty_pliki/2019 ED Poland DL MQ... · Title: Slide sem título Author: Michelly Created Date: 6/26/2019 4:45:12 PM

www.fei.edu.br | ED Poland Mini-Colloquium, Rzeszów, June 26th, 2019 21

Long Channel Drain Current Model

▪ 2D Poisson equation:

Accumulation conduction

Poisson equation can be integrated, leading to:

t

Si

D eε

Nq

dz

Φd

dx

Φd =+

/

2

2

2

2

SitaccStDaccS εNqE /)1)/Φ(exp( ,, −=

−−+=

t

oxaccSFBG

taccS

CVV

a

22

,

,

)Φ(1lnΦ

An exact solution for ΦS,acc can be obtained by the use of the Lambert function.

However, in order to obtain a simplified solution, as ΦS,acc values a few ϕt in

strong accumulation, ΦS,acc can be neglected for VG >> VFB inside the logarithm

term.

Page 22: atol.am.gdynia.platol.am.gdynia.pl/~gorecki/dla_taty_pliki/2019 ED Poland DL MQ... · Title: Slide sem título Author: Michelly Created Date: 6/26/2019 4:45:12 PM

www.fei.edu.br | ED Poland Mini-Colloquium, Rzeszów, June 26th, 2019 22

Long Channel Drain Current Model

▪ Transition between bulk and accumulation conductionto have a continuous transition between both conduction regimes (bulk conduction and both

accumulation layer and bulk conductions), a smooth function has been used to VG [24]:

+

−−−−=

))exp(1ln(

]))/)(1(exp(1ln[1

1

1

2A

VVyVAVV FBG

FBG

where A1SUB controls the smoothness and has been set to 12 and Vy is the voltage at the point y of the channel,

i.e. Vy = 0 at source and Vy = VD at drain for the calculation of the source and drain surface potentials, respectively.

This equation is used to limit the maximum gate voltage in VFB. This

function is used inside the square root term of Φs,depl instead of VG, so that

the depletion charge smoothly tends to zero at the flatband condition.

1 11 1A

41+exp(- ( ) )

SUB LINSUB

GS T

FB T

A AA

V VV V

−= −

1

2A FB

LIN

FB T

V

V V=

Page 23: atol.am.gdynia.platol.am.gdynia.pl/~gorecki/dla_taty_pliki/2019 ED Poland DL MQ... · Title: Slide sem título Author: Michelly Created Date: 6/26/2019 4:45:12 PM

www.fei.edu.br | ED Poland Mini-Colloquium, Rzeszów, June 26th, 2019 23

Long Channel Drain Current Model

▪ Transition between subthreshold and above threshold regimes

This equation limits the minimum gate voltage in the threshold voltage,

such that the conduction charge reduces exponentially.

+

−+−+=

))exp(1ln(

]))/1(exp(1ln[1

2

22

3A

VVAVV TG

TG

where A2 is related to the subthreshold slope, calculated as A2 = VT/(2.n.ϕt),

where n is the body factor which is close to the unity for these devices.

Page 24: atol.am.gdynia.platol.am.gdynia.pl/~gorecki/dla_taty_pliki/2019 ED Poland DL MQ... · Title: Slide sem título Author: Michelly Created Date: 6/26/2019 4:45:12 PM

www.fei.edu.br | ED Poland Mini-Colloquium, Rzeszów, June 26th, 2019 24

Long Channel Drain Current Model

▪ General solution – The effective surface potential

accSdeplSS ,, +=

)(22

32

2

222, FBG

oxoxox

FBGdeplS VVCCC

VyVV −−

+−+−=

aaa

−+=

t

oxGG

taccS

CVV

a

22

2

,

)(1lnΦ

Page 25: atol.am.gdynia.platol.am.gdynia.pl/~gorecki/dla_taty_pliki/2019 ED Poland DL MQ... · Title: Slide sem título Author: Michelly Created Date: 6/26/2019 4:45:12 PM

www.fei.edu.br | ED Poland Mini-Colloquium, Rzeszów, June 26th, 2019 25

Long Channel Drain Current Model

▪ The drain current can be obtained by:

dy

dVyQI nD nμ=

oxSGFBDfn )CV(VHWNqQQQ Φ+−−=+=

−=

ox

DnSn

DC

QQ

LI

2

)(μ2

,

2

,n

Page 26: atol.am.gdynia.platol.am.gdynia.pl/~gorecki/dla_taty_pliki/2019 ED Poland DL MQ... · Title: Slide sem título Author: Michelly Created Date: 6/26/2019 4:45:12 PM

www.fei.edu.br | ED Poland Mini-Colloquium, Rzeszów, June 26th, 2019 26

Long Channel Drain Current Model

Saturation voltage satsatDsat vQI =

The drain current IDsat is obtained by considering Qn,D = Qsat. Therefore, Qsat can be

isolated, reaching:

2

,

2

nn μμSn

oxsat

oxsatsat Q

CLv

CLvQ +

+−=

GFB

oxox

fsat

Dsat VVCC

QQV +−

++−=

22

11

22 aaa

+

−+−=

))exp(1ln(

]))/1(exp(1ln[1

3

3

A

VVAVV DsatD

DsatD

Page 27: atol.am.gdynia.platol.am.gdynia.pl/~gorecki/dla_taty_pliki/2019 ED Poland DL MQ... · Title: Slide sem título Author: Michelly Created Date: 6/26/2019 4:45:12 PM

www.fei.edu.br | ED Poland Mini-Colloquium, Rzeszów, June 26th, 2019 27

Long Channel Drain Current Model

• Three-dimensional simulations were performed in Sentaurus

• Device characteristics

▪ channel length = 1 m

▪ N+ polysilicon gate

▪ tSi = 10 nm

▪ ND = 1 x 1019 cm-3

▪ tox = 2 nm

▪ W = 10 nm

• Low Field Mobility was considered as 100 cm2/V.s

Page 28: atol.am.gdynia.platol.am.gdynia.pl/~gorecki/dla_taty_pliki/2019 ED Poland DL MQ... · Title: Slide sem título Author: Michelly Created Date: 6/26/2019 4:45:12 PM

www.fei.edu.br | ED Poland Mini-Colloquium, Rzeszów, June 26th, 2019

0.0 0.4 0.8 1.2 1.6

-0.8

-0.4

0.0

0.4

0.8

Surface potential at source

lines - model

symbols - simulation

ND = 1 x 10

19 cm

-3

H = 10 nm

W = 10 nm

tox

= 2 nm

L = 1 m

Effective S

urf

ace P

ote

ntial [V

]

Gate voltage [V]

Surface potential at drain

for VD = 0.1, 0.2 and 0.5V > V

D

GoodAgreement

betweensimulated andmodeled data for various VDS

Long Channel Drain Current Model

Page 29: atol.am.gdynia.platol.am.gdynia.pl/~gorecki/dla_taty_pliki/2019 ED Poland DL MQ... · Title: Slide sem título Author: Michelly Created Date: 6/26/2019 4:45:12 PM

www.fei.edu.br | ED Poland Mini-Colloquium, Rzeszów, June 26th, 2019

GoodAgreement

betweensimulated andmodeled data for various VDS

Long Channel Drain Current Model

0.0 0.4 0.8 1.2 1.6

10-18

10-16

10-14

10-12

> VD

ND = 1 x 10

19 cm

-3

H = 10 nm

W = 10 nm

tox

= 2 nm

L = 1 m

Charg

e d

ensity [C

/cm

]

Gate voltage [V]

Charge denstiy at drain

for VD = 0.1, 0.2 and 0.5V

Charge density

at source

lines - model

symbols - simulation

Page 30: atol.am.gdynia.platol.am.gdynia.pl/~gorecki/dla_taty_pliki/2019 ED Poland DL MQ... · Title: Slide sem título Author: Michelly Created Date: 6/26/2019 4:45:12 PM

www.fei.edu.br | ED Poland Mini-Colloquium, Rzeszów, June 26th, 2019 30

Long Channel Drain Current Model

▪ Comparison of the curves ID x VG and gm x VG :

▪ ID and gm are correctly predicted by the model in

both subthreshold and above threshold regions.

0.0 -0.4 -0.8 -1.2 -1.6

0.0

-0.4

-0.8

-1.2

-1.6

-2.0

-2.4

0.0 -0.4 -0.8 -1.2 -1.6

0

1

2

3

4V

D = -0.05 and -1 V A

bsolu

te d

rain

curre

nt [A

]

Dra

in c

urr

ent [

A]

Gate voltage [V]

L = 1 m

W = H = 10 nm

tox

= 2 nm

NA = 1 x 10

19 cm

-3

symbols - simulation

lines - model

VD = -0.05, -0.1

-0.2, -0.5 and -1 V

(A)

10-19

10-17

10-15

10-13

10-11

10-9

10-7

10-5

(B)

VD = -0.05, -0.1

-0.2, -0.5 and -1 V

Tra

nsconducta

nce [S

]

Gate voltage [V]

0.0 -0.4 -0.8 -1.2 -1.6

0.0

-0.4

-0.8

-1.2

-1.6

-2.0

-2.4

0.0 -0.4 -0.8 -1.2 -1.6

0

1

2

3

4V

D = -0.05 and -1 V A

bsolu

te d

rain

curre

nt [A

]

Dra

in c

urr

ent [

A]

Gate voltage [V]

L = 1 m

W = H = 10 nm

tox

= 2 nm

NA = 1 x 10

19 cm

-3

symbols - simulation

lines - model

VD = -0.05, -0.1

-0.2, -0.5 and -1 V

(A)

10-19

10-17

10-15

10-13

10-11

10-9

10-7

10-5

(B)

VD = -0.05, -0.1

-0.2, -0.5 and -1 V

Tra

nsconducta

nce [S

]

Gate voltage [V]

Page 31: atol.am.gdynia.platol.am.gdynia.pl/~gorecki/dla_taty_pliki/2019 ED Poland DL MQ... · Title: Slide sem título Author: Michelly Created Date: 6/26/2019 4:45:12 PM

www.fei.edu.br | ED Poland Mini-Colloquium, Rzeszów, June 26th, 2019 31

Long Channel Drain Current Model

▪ Comparison of the curves ID x VD and gD x VD :

▪ The dependence on VD is also adequately

modeled

0.0 -0.4 -0.8 -1.2 -1.6

10-9

10-8

10-7

10-6

10-5

0.0 -0.4 -0.8 -1.2 -1.6

0.0

-0.5

-1.0

-1.5

-2.0(B)(A)

VGT

= -0.2, -0.4,

-0.6, -0.8 and -1 V

Dra

in c

onducta

nce [S

]

Drain voltage [V]

L = 1 m

tox

= 2 nm

W = H = 10 nm

NA = 1 x 10

19 cm

-3

Dra

in c

urr

ent [

A]

Drain voltage [V]

symbols - simulation

lines - model VGT

= -0.2, -0.4,

-0.6, -0.8 and -1 V

0.0 -0.4 -0.8 -1.2 -1.6

10-9

10-8

10-7

10-6

10-5

0.0 -0.4 -0.8 -1.2 -1.6

0.0

-0.5

-1.0

-1.5

-2.0(B)(A)

VGT

= -0.2, -0.4,

-0.6, -0.8 and -1 V

Dra

in c

onducta

nce [S

]

Drain voltage [V]

L = 1 m

tox

= 2 nm

W = H = 10 nm

NA = 1 x 10

19 cm

-3

Dra

in c

urr

ent [

A]

Drain voltage [V]

symbols - simulation

lines - model VGT

= -0.2, -0.4,

-0.6, -0.8 and -1 V

Page 32: atol.am.gdynia.platol.am.gdynia.pl/~gorecki/dla_taty_pliki/2019 ED Poland DL MQ... · Title: Slide sem título Author: Michelly Created Date: 6/26/2019 4:45:12 PM

www.fei.edu.br | ED Poland Mini-Colloquium, Rzeszów, June 26th, 2019 32

Short Channel Effects

▪ To obtain an analytical expression for SCE, the 3D Poisson equation must be solved:

which is given by:

Si

ANq

dy

d

dz

d

dx

d

ε

ΦΦΦ2

2

2

2

2

2

=++

▪ Using the superposition principle, the solution of the 2D Poisson equation can be added to the solution of the 3D Laplace equation for the minimum potential:

0ΦΦΦ2

2

2

2

2

2

=++dy

d

dz

d

dx

d

)/sinh(

)/)sinh(()/sinh(Φ minmin

min

L

yLUyV −+=

ymin is the point of the minimum potential given by:

−−

−=

)/exp(

)/exp(ln

2min

LUV

VLUy

is the characteristic length

Page 33: atol.am.gdynia.platol.am.gdynia.pl/~gorecki/dla_taty_pliki/2019 ED Poland DL MQ... · Title: Slide sem título Author: Michelly Created Date: 6/26/2019 4:45:12 PM

www.fei.edu.br | ED Poland Mini-Colloquium, Rzeszów, June 26th, 2019 33

Short Channel Effects

where:

▪ The minimum potential in the channel is obtained by:

)/sinh(

)/)sinh(()/sinh(Φ minmin

min

L

yLUyV −+=

−−

−=

)/exp(

)/exp(ln

2min

LUV

VLUy

▪ To calculate the drain current with the short channel effects correction:

12

2

2

1 2

11

+

=

2

14

12

+

=

oxSi

ox

ox

oxSi

t

WtW

2

22

14

+

=

oxSi

ox

ox

oxSi

t

HtH

and

min+= GG VV

Page 34: atol.am.gdynia.platol.am.gdynia.pl/~gorecki/dla_taty_pliki/2019 ED Poland DL MQ... · Title: Slide sem título Author: Michelly Created Date: 6/26/2019 4:45:12 PM

www.fei.edu.br | ED Poland Mini-Colloquium, Rzeszów, June 26th, 2019 34

Short Channel Effects

▪ Comparison of the curves ID x VG and gm x VG for a device with L = 40 nm:

▪ ID and gm are correctly predicted by the model in

both subthreshold and above threshold regions.

0.0 -0.4 -0.8 -1.22

0

-2

-4

-6

-8

-10

-12

0.0 -0.4 -0.8 -1.2

0

5

10

15

20

Dra

in c

urr

ent [

A]

Gate voltage [V]

10-19

10-17

10-15

10-13

10-11

10-9

10-7

10-5

VD = -0.05, -0.1

-0.2 and -0.5 V

VD = -0.05 and -0.5 V

Absolu

te d

rain

curre

nt [A

]

symbols - simulation

lines - model

VD = -0.05, -0.1

-0.2 and -0.5 V

L = 40 nm

W = H = 10 nm

tox

= 2 nm

NA = 1 x 10

19 cm

-3

Tra

nsconducta

nce [S

]

Gate voltage [V]

(A) (B)

0.0 -0.4 -0.8 -1.22

0

-2

-4

-6

-8

-10

-12

0.0 -0.4 -0.8 -1.2

0

5

10

15

20

Dra

in c

urr

ent [

A]

Gate voltage [V]

10-19

10-17

10-15

10-13

10-11

10-9

10-7

10-5

VD = -0.05, -0.1

-0.2 and -0.5 V

VD = -0.05 and -0.5 V

Absolu

te d

rain

curre

nt [A

]

symbols - simulation

lines - model

VD = -0.05, -0.1

-0.2 and -0.5 V

L = 40 nm

W = H = 10 nm

tox

= 2 nm

NA = 1 x 10

19 cm

-3

Tra

nsconducta

nce [S

]

Gate voltage [V]

(A) (B)

Page 35: atol.am.gdynia.platol.am.gdynia.pl/~gorecki/dla_taty_pliki/2019 ED Poland DL MQ... · Title: Slide sem título Author: Michelly Created Date: 6/26/2019 4:45:12 PM

www.fei.edu.br | ED Poland Mini-Colloquium, Rzeszów, June 26th, 2019 35

Short Channel Effects

▪ The dependence on VD is also adequately

modeled

0.0 -0.4 -0.8 -1.2

0

-2

-4

-6

-8

-10

-12

0.0 -0.4 -0.8 -1.2

10-7

10-6

10-5

10-4

VGT

= -0.2, -0.4,

and -0.6 V

Dra

in c

urr

ent [

A]

Drain voltage [V]

L = 40 nm

W = H = 10 nm

tox

= 2 nm

NA = 1 x 10

19 cm

-3

symbols - simulation

lines - model

VGT

= -0.2, -0.4,

and -0.6 V

Dra

in c

onducta

nce [S

]

Drain voltage [V]

(A) (B)

0.0 -0.4 -0.8 -1.2

0

-2

-4

-6

-8

-10

-12

0.0 -0.4 -0.8 -1.2

10-7

10-6

10-5

10-4

VGT

= -0.2, -0.4,

and -0.6 V

Dra

in c

urr

ent [

A]

Drain voltage [V]

L = 40 nm

W = H = 10 nm

tox

= 2 nm

NA = 1 x 10

19 cm

-3

symbols - simulation

lines - model

VGT

= -0.2, -0.4,

and -0.6 V

Dra

in c

onducta

nce [S

]

Drain voltage [V]

(A) (B)

▪ Comparison of the curves ID x VD and gD x VD for a device with L = 40 nm:

Page 36: atol.am.gdynia.platol.am.gdynia.pl/~gorecki/dla_taty_pliki/2019 ED Poland DL MQ... · Title: Slide sem título Author: Michelly Created Date: 6/26/2019 4:45:12 PM

www.fei.edu.br | ED Poland Mini-Colloquium, Rzeszów, June 26th, 2019 36

Short Channel Effects

▪ Comparison of the curve gm/ID x |ID|:

▪ The plateau in the weak inversion regime is inversely proportional to the subthreshoold slope

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

0

-10

-20

-30

-40

lines - model

symbols - simulation

W = H = 10 nm

tox

= 2 nm

NA = 1 x 10

19 cm

-3

VD = -0.05

and -0.5 V

L = 40 nm

VD = -0.05

and -0.5 V

gm/I

D [

V-1]

Absolute drain current [A]

L = 1 m

Page 37: atol.am.gdynia.platol.am.gdynia.pl/~gorecki/dla_taty_pliki/2019 ED Poland DL MQ... · Title: Slide sem título Author: Michelly Created Date: 6/26/2019 4:45:12 PM

www.fei.edu.br | ED Poland Mini-Colloquium, Rzeszów, June 26th, 2019

Drain Current Model – Devices with L=30 nm

0

25

50

75

100

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

0

40

80

120

Dra

in c

urre

nt [A

]

D

rain

cu

rre

nt

[A

]

symbols - experimental

lines - model

T = 300, 360

and 420 K

T = 300, 360

and 420 K

10-14

10-12

10-10

10-8

10-6

10-4

ND = 1 x 10

19 cm

-3

EOT = 1.5 nm

W = 20 nm

H = 12 nm

L = 30 nm

VD = 40 mV

50 fins

Tra

nsco

nd

ucta

nce

[S

]

Gate voltage [V]

T = 300, 360

and 420 K

Page 38: atol.am.gdynia.platol.am.gdynia.pl/~gorecki/dla_taty_pliki/2019 ED Poland DL MQ... · Title: Slide sem título Author: Michelly Created Date: 6/26/2019 4:45:12 PM

www.fei.edu.br | ED Poland Mini-Colloquium, Rzeszów, June 26th, 2019

0.0 0.2 0.4 0.6 0.8 1.0

0

200

400

600

800 V

GT = 0.6 V

VGT

= 0.4 V

VGT

= 0.2 V

H = 10 nm

W = 20 nm

L = 30 nm

EOT = 1.5 nm

ND = 1 x 10

19 cm

-3

symbols - experimental

lines - model

Dra

in c

urr

ent

[A

]

Drain voltage [V]

, T = 300 K

, T = 420 K

TREVISOLI, R.. D ; DORIA, R. T. ; DE SOUZA, M. ; DAS, S. ; FERAIN, I. ; PAVANELLO, M. A. . Surface

Potential-Based Drain Current Analytical Model for Triple-Gate Junctionless Nanowire Transistors. IEEE

Transactions on Electron Devices, v. 59, p. 3510-3518, 2012.

Drain Current Model – Devices with L=30 nm

PAVANELLO, M. A.; TREVISOLI, R.. D ; DORIA, R. T. ; DE SOUZA, M. . Static and dynamic compact

analytical model for junctionless nanowire transistors. J. Phys.: Condens. Matter, v. 30, p. 334002, 2018.

Page 39: atol.am.gdynia.platol.am.gdynia.pl/~gorecki/dla_taty_pliki/2019 ED Poland DL MQ... · Title: Slide sem título Author: Michelly Created Date: 6/26/2019 4:45:12 PM

www.fei.edu.br | ED Poland Mini-Colloquium, Rzeszów, June 26th, 2019

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

0

5

10

15

20

25

30

35

40

45

Dra

in c

urr

ent [

A]

Gate Voltage [V]

20 0C

50 0C

80 0C

110 0C

140 0C

170 0C

200 0C

VDS

= 40 mV

L = 100 nm

W = 20 nm (50 parallel fins)

H = 10 nm

ND

= 5x1018

cm-3

Lines - Model

Symbol - Measurements

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.010

-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

Dra

in c

urr

ent [A

]

Gate Voltage [V]

20 0C

50 0C

80 0C

110 0C

140 0C

170 0C

200 0C

VDS

= 40 mV

L = 100 nm

W = 20 nm (50 parallel fins)

H = 10 nm

ND

= 5x1018

cm-3

Lines - Model

Symbol - Measurements

-0.2 0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

Dra

in c

urr

ent [m

A]

Gate Voltage [V]

20 0C

50 0C

80 0C

110 0C

140 0C

170 0C

200 0C

VDS

= 1 V

L = 100 nm

W = 20 nm (50 parallel fins)

H = 10 nm

ND

= 5x1018

cm-3

Lines - Model

Symbol - Measurements

-0.2 0.0 0.2 0.4 0.6 0.8 1.010

-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

Dra

in c

urr

ent [A

]

Gate Voltage [V]

20 0C

50 0C

80 0C

110 0C

140 0C

170 0C

200 0C

VDS

= 1 V

L = 100 nm

W = 20 nm (50 parallel fins)

H = 10 nm

ND

= 5x1018

cm-3

Lines - Model

Symbol - Measurements

Page 40: atol.am.gdynia.platol.am.gdynia.pl/~gorecki/dla_taty_pliki/2019 ED Poland DL MQ... · Title: Slide sem título Author: Michelly Created Date: 6/26/2019 4:45:12 PM

www.fei.edu.br | ED Poland Mini-Colloquium, Rzeszów, June 26th, 2019

0.0 0.2 0.4 0.6 0.8 1.00

50

100

150

200

250

300

350

, 20 0C

, 110 0C

, 200 0C

L = 100 nm

W = 20 nm (50 parallel fins)

H = 10 nm

ND

= 5x1018

cm-3

VGT

= 500 mV

Dra

in c

urr

ent [

A]

Drain Voltage [V]

VGT

= 200 mV

0.0 0.2 0.4 0.6 0.8 1.010

-6

10-5

10-4

10-3

10-2

L = 100 nm

Wfin

= 20 nm (50 parallel fins)

Hfin

= 10 nm

ND

= 5x1018

cm-3

, t=20C

, t=110C

, t=200C

Outp

ut C

onducta

nce [S

]

Drain Voltage [V]

VGT

= 500 mV

VGT

= 200 mV

Page 41: atol.am.gdynia.platol.am.gdynia.pl/~gorecki/dla_taty_pliki/2019 ED Poland DL MQ... · Title: Slide sem título Author: Michelly Created Date: 6/26/2019 4:45:12 PM

www.fei.edu.br | ED Poland Mini-Colloquium, Rzeszów, June 26th, 2019 41

Long Channel Drain Current Model

▪ Relation between depletion charge and electric field:

Substrate Bias Influence

MOS capacitor:

SideplSDS εNqE /Φ ,=

DeploxFBGdeplS Q)CVV( =−+,Φ a = Si q ND (2Heff + WFin)2

)(22

2

2

22, FBG

oxoxox

FBGdeplS VVCCC

VV −−

+−−=

aaa

−+

+−−= )(

ε

ε

ε

ε2

BSFBs

D

Si

ox

BoxSi

ox

BoxSiFineff VV

Nq

ttHH

( )Si D Fin eff Box FBs BSQ qN W H C V V= − −

This approximation neglects the

cross-dependence between the gate

and the substrate biases on the

channel potential.

Page 42: atol.am.gdynia.platol.am.gdynia.pl/~gorecki/dla_taty_pliki/2019 ED Poland DL MQ... · Title: Slide sem título Author: Michelly Created Date: 6/26/2019 4:45:12 PM

www.fei.edu.br | ED Poland Mini-Colloquium, Rzeszów, June 26th, 2019

0.0

0.1

0.2

0.3

-0.5 0.0 0.5 1.0 1.5

0

1

2

3

4

5 Dra

in c

urre

nt [A

]D

rain

curre

nt [A

]L = 1 m

Dra

in c

urr

ent [

A]

tox

= 2 nm

H = 10 nm

W = 10 nm

ND = 1 x 10

19 cm

-3

VBS

= -40, -20,

0, 20 e 40 V

Dra

in c

urr

ent [

A]

Gate Voltage [V]

VBS

= -40, -20,

0, 20 e 40 V

Symbols - Simulations

Lines - Model

L = 30 nm

10-14

10-11

10-8

10-5

10-15

10-12

10-9

10-6

TREVISOLI, R. D. ; DORIA, R. T. ; DE SOUZA, M. ; PAVANELLO, M. A. . Substrate Bias Influence on the

Operation of Junctionless Nanowire Transistors. IEEE Transactions on Electron Devices, v. 61, p. 1575-1582, 2014.

Page 43: atol.am.gdynia.platol.am.gdynia.pl/~gorecki/dla_taty_pliki/2019 ED Poland DL MQ... · Title: Slide sem título Author: Michelly Created Date: 6/26/2019 4:45:12 PM

www.fei.edu.br | ED Poland Mini-Colloquium, Rzeszów, June 26th, 2019

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

0

10

20

30

40

50

60

70D

rain

curr

ent [

A]

Gate Voltage [V]

, VBS

= 0 V

, VBS

= 10 V

, VBS

= -10 V

VDS

= 50 mV

L = 100 nm

W = 20 nm (50 parallel fins)

H = 10 nm

ND

= 1x1019

cm-3

Lines - Model

Symbol - Measurements

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.010

-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

VDS

= 50 mV

L = 100 nm

W = 20 nm (50 parallel fins)

H = 10 nm

ND

= 1x1019

cm-3

Dra

in c

urr

en

t [

A]

Gate Voltage [V]

, VBS

= 0 V

, VBS

= 10 V

, VBS

= -10 V

PAVANELLO, M. A.; TREVISOLI, R.. D ; DORIA, R. T. ; DE SOUZA, M. . Static and dynamic compact

analytical model for junctionless nanowire transistors. J. Phys.: Condens. Matter, v. 30, p. 334002, 2018.

Page 44: atol.am.gdynia.platol.am.gdynia.pl/~gorecki/dla_taty_pliki/2019 ED Poland DL MQ... · Title: Slide sem título Author: Michelly Created Date: 6/26/2019 4:45:12 PM

www.fei.edu.br | ED Poland Mini-Colloquium, Rzeszów, June 26th, 2019

Page 45: atol.am.gdynia.platol.am.gdynia.pl/~gorecki/dla_taty_pliki/2019 ED Poland DL MQ... · Title: Slide sem título Author: Michelly Created Date: 6/26/2019 4:45:12 PM

www.fei.edu.br | ED Poland Mini-Colloquium, Rzeszów, June 26th, 2019 45

Dynamic Model - Formulation

oxGSGFBBoxSBBFBsFinFinDC )CVyVV(V)CV(VHWqNQ ),(ΦΦ +−−+−−=

Fixed

Charges

Substrate induced

Charges

Gate induced

Charges

▪ Conduction charge density per unit of length:

Gate

Substrate

N+ Si

Page 46: atol.am.gdynia.platol.am.gdynia.pl/~gorecki/dla_taty_pliki/2019 ED Poland DL MQ... · Title: Slide sem título Author: Michelly Created Date: 6/26/2019 4:45:12 PM

www.fei.edu.br | ED Poland Mini-Colloquium, Rzeszów, June 26th, 2019 46

Dynamic Model - Formulation

▪ Total Conduction charge at the channel:

==D

S

V

V

C

D

L

Ct dVyQI

dyQQ2

0

)(3

3

,

3

,

2,

,

DCSC

Dox

Q

Q

CC

Dox

t QQIC

dQQIC

QDC

SC

−=−=

▪ Integrating the conduction charge density:

Charges density at

source-side

Charges density at drain-side

QG = Qt – L(qNDWH – CBox(VFBs – VB + SB)))

▪ Total charge at the gate:

−=

ox

DCSC

DC

QQ

LI

2

)(2

,

2

,

Page 47: atol.am.gdynia.platol.am.gdynia.pl/~gorecki/dla_taty_pliki/2019 ED Poland DL MQ... · Title: Slide sem título Author: Michelly Created Date: 6/26/2019 4:45:12 PM

www.fei.edu.br | ED Poland Mini-Colloquium, Rzeszów, June 26th, 2019 47

Dynamic Model - Formulation

▪ Total charge at drain node:

▪ Following Ward–Dutton scheme:

QS = –QG –QD

▪ Total charge at source node:

−−=

−−=

D

S

V

V

f

CSCC

Dox

Lf

CD

LQdVyQQQ

ILC

LQdyQ

L

yQ

2)(

22

22

,

2

2

2

0

25

)(

3

)(

)(2

5

,

5

,

3

,

3

,

2

,

2

2fDCSCDCSCSC

Dox

D

LQQQQQQ

ICLQ −

−−

−=

Page 48: atol.am.gdynia.platol.am.gdynia.pl/~gorecki/dla_taty_pliki/2019 ED Poland DL MQ... · Title: Slide sem título Author: Michelly Created Date: 6/26/2019 4:45:12 PM

www.fei.edu.br | ED Poland Mini-Colloquium, Rzeszów, June 26th, 2019 48

Dynamic Model - Formulation

▪ Substituting the drain current into the charges equation:

QS = –QG –QD

f

DCSC

DCDCSCSC

G LQQQ

QQQQLQ −

+

++=

)(

)(

3

2

,,

2

,,,

2

,

2)2(15

)3642(22

,,,

2

,

3

,

2

,,,

2

,

3

, f

DCDCSCSC

DCDCSCDCSCSC

D

LQ

QQQQ

QQQQQQLQ +

++

+++−=

All charges are written in terms of the charge densities at source- and drain-side of the channel

Page 49: atol.am.gdynia.platol.am.gdynia.pl/~gorecki/dla_taty_pliki/2019 ED Poland DL MQ... · Title: Slide sem título Author: Michelly Created Date: 6/26/2019 4:45:12 PM

www.fei.edu.br | ED Poland Mini-Colloquium, Rzeszów, June 26th, 2019 49

Dynamic Model - Formulation

▪ Transcapacitances:The transcapacitances are obtained by the node

charges derivatives:

+

++−

+

+

+

+

++−

+

+

=

2

,,

2

,,,

2

,

,,

,,,

2

,,

2

,,,

2

,

,,

,,,

)(

2

3

2

)(

2

3

2

DCSC

DCDCSCSC

DCSC

SCDC

k

DC

DCSC

DCDCSCSC

DCSC

DCSC

k

SC

k

G

QQ

QQQQ

QQ

QQ

V

QL

QQ

QQQQ

QQ

QQ

V

QL

V

Q

+++

++

+++

++

−=

3

,

2

,,

2

,,

3

,

2

,,

2

,,

3

,,

3

,

2

,,

2

,,

3

,

2

,,

2

,,

3

,,

33

983

15

2

33

3

15

4

DCDCSCSCDCSC

DCSCSCDCDC

k

DC

DCDCSCSCDCSC

DCSCSCDCSC

k

SC

k

D

QQQQQQ

QQQQQ

V

QL

QQQQQQ

QQQQQ

V

QL

V

Q

k

D

k

G

k

S

V

Q

V

Q

V

Q

−=

Box

k

SB

k

Box

k

GS

k

G

k

C CVV

VC

V

VyV

V

V

V

Q

+

=

Φ),(Φ

As the surface potentials are obtained analytically, their

derivatives are also analytical

All the transcapacitances are written in terms of QC

Cjk = – ∂Qj/∂Vk

Page 50: atol.am.gdynia.platol.am.gdynia.pl/~gorecki/dla_taty_pliki/2019 ED Poland DL MQ... · Title: Slide sem título Author: Michelly Created Date: 6/26/2019 4:45:12 PM

www.fei.edu.br | ED Poland Mini-Colloquium, Rzeszów, June 26th, 2019 50

Dynamic Model - Formulation

▪ Transconductances:

The transconductances are also written in terms of QC:

−=

k

DC

DC

k

SC

SC

oxk

D

V

QQ

V

QQ

LCV

I ,

,

,

, 222

▪ Quantization:

QM effects are considered by the addition of QM to S

)()(4

)(88

63.0

3/1

2

2

2

2

DS

Si

D

yx

QM NEqkT

NHm

h

Wm

+

++=

Accounts for electrical and structural confinements

k

S

S

Si

D

k

QM

V

E

EqkTN

V

Φ

=

37.0

3/1

63.0

4)(

Page 51: atol.am.gdynia.platol.am.gdynia.pl/~gorecki/dla_taty_pliki/2019 ED Poland DL MQ... · Title: Slide sem título Author: Michelly Created Date: 6/26/2019 4:45:12 PM

www.fei.edu.br | ED Poland Mini-Colloquium, Rzeszów, June 26th, 2019

Dynamic Model – Comparison against 3D simulations

0 1 2 3

-0.5

0.0

0.5

1.0

-0.5 0.0 0.5 1.0 1.5 2.0

-6

-3

0

3

6

Ch

arg

e [

fC]

Gate voltage [V]

QG

QS

QD

tBox

= 100 nm

ND = 10

19 cm

-3

W = 10 nm

H = 10 nm

EOT = 2 nm

L = 1 m

VDS

= 1 V

Lines - Model

Symbols - Simulation

gDD

= dID/dV

D

gDS

= dID/dV

S

Co

nd

ucta

nce

s [S

]

Gate voltage [V]

tBox

= 100 nm

ND = 10

19 cm

-3

W = 10 nm

H = 10 nm

EOT = 2 nm

L = 1 m

VDS

= 1 V

gDG

= dID/dV

G

Page 52: atol.am.gdynia.platol.am.gdynia.pl/~gorecki/dla_taty_pliki/2019 ED Poland DL MQ... · Title: Slide sem título Author: Michelly Created Date: 6/26/2019 4:45:12 PM

www.fei.edu.br | ED Poland Mini-Colloquium, Rzeszów, June 26th, 2019

Dynamic Model – Comparison against 3D simulations

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.0 0.5 1.0 1.5 2.0 2.5

0.00

0.02

0.04

0.06

CSD

CGDC

DS

Ca

pa

cita

nce

s [fF

]

CGG

, CGD

,CDS

,CSD

ND = 1 x 10

19 cm

-3

W = 10 nm

H = 10 nm

tox

= 2 nm

CGS

,CSG

, CDG

L = 1 m

VDS

= 1 V

tBox

= 10 nm

Lines - Model

Symbols - Simulation

CGB

, CSB

, CDB

CGG

CGS

CSG

CDG

Ca

pa

cita

nce

s [fF

]

CDB

CSB

CGB

Ca

pa

cita

nce

s [fF

]

Gate voltage [V]

Page 53: atol.am.gdynia.platol.am.gdynia.pl/~gorecki/dla_taty_pliki/2019 ED Poland DL MQ... · Title: Slide sem título Author: Michelly Created Date: 6/26/2019 4:45:12 PM

www.fei.edu.br | ED Poland Mini-Colloquium, Rzeszów, June 26th, 2019

Dynamic Model – Comparison against 3D simulations

0 1 2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

CGD

CGS

VDS

= 1 V

L = 1 m

Ca

pacitances [fF

]

Gate voltage [V]

Symbols - Simulation

Lines - Model

ND = 10

19 cm

-3

tBox

= 10 nm

W = 15 nm

H = 10 nm

tox

= 2 nm

VBS

= 2, 0

and -2 V

CGG

Page 54: atol.am.gdynia.platol.am.gdynia.pl/~gorecki/dla_taty_pliki/2019 ED Poland DL MQ... · Title: Slide sem título Author: Michelly Created Date: 6/26/2019 4:45:12 PM

www.fei.edu.br | ED Poland Mini-Colloquium, Rzeszów, June 26th, 2019

Dynamic Model – Comparison against 3D simulations

0.00

0.01

0.02

0 1 20.00

0.01

0.02

W = 10 nmCGD

CGS

Capacitances [

fF] Dashed lines - Model neglecting SCEs

Solid lines - Model including SCEs

Symbols - Simulations

ND = 1 x 10

19 cm

-3

tBox

= 100 nm

H = 10 nm

tox

= 2 nm

L = 30 nm

VDS

= 0.5 V

CGG

W = 20 nm

CGD

CGS

CGG

Capacitance

s [fF

]

Gate voltage [V]

Page 55: atol.am.gdynia.platol.am.gdynia.pl/~gorecki/dla_taty_pliki/2019 ED Poland DL MQ... · Title: Slide sem título Author: Michelly Created Date: 6/26/2019 4:45:12 PM

www.fei.edu.br | ED Poland Mini-Colloquium, Rzeszów, June 26th, 2019

Dynamic Model – Comparison against 3D simulations

0.0

0.1

0.2

0.3

0.4

0.5

0 1 2 3

0.0

0.1

0.2

0.3

0.4

0.5

CGG

CGD

Ca

pa

cita

nce

s [fF

]

L = 1 m

VDS

= 1 V

tBox

= 100 nm

ND = 1 x 10

19 cm

-3

W = 10 nm

H = 5 nm

, Neglecting QM - tox

= 2 nm

, Including QM - tox

= 2 nm

Neglecting QM - tox

= 2.4 nm

CGS

CGG

CGS

CGD

Ca

pa

cita

nce

s [fF

]

Gate voltage [V]

Symbols - Simulation

Lines - Model

ND = 1 x 10

19 cm

-3

H = 10 nm

W = 5 nm

L = 1 m

VDS

= 1 V

tBox

= 100 nm

Page 56: atol.am.gdynia.platol.am.gdynia.pl/~gorecki/dla_taty_pliki/2019 ED Poland DL MQ... · Title: Slide sem título Author: Michelly Created Date: 6/26/2019 4:45:12 PM

www.fei.edu.br | ED Poland Mini-Colloquium, Rzeszów, June 26th, 2019

Dynamic Model – Comparison against 3D simulations

0.0

0.20.4

0.60.8

1.01.2

0.0

0.4

0.8

1.2

1.6

2.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 1 2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

W = 5, 20 and 50 nm

CGG

CGS

CGD

Ca

pa

cita

nce

s [fF

]

ND = 1 x 10

19 cm

-3

Symbols - Simulation

Lines - Model

tox = 2 nm

H = 10 nm

L = 1 m

VDS

= 1 V

tox = 2 nm

W = 10 nm

L = 1 m

VDS

= 1 V

H = 5, 20 and 50 nm

CGG

CGS

CGD

Ca

pa

cita

nce

s [fF

]N

D = 1 x 10

19 cm

-3

Symbols - Simulation

Lines - Model

(D)

(C)

(B)

CGG

CGS

CGD

Ca

pa

cita

nce

s [fF

]

Opened symbols - tox

= 1 nm

Closed symbols - tox

= 3 nm

ND = 1 x 10

19 cm

-3

W = 10 nm

H = 10 nm

L = 1 m

VDS

= 1 V

(A)

VDS

= 1 V

tox = 2 nm

W = 10 nm

H = 10 nm

L = 1 m

CGG

CGS

CGD

Ca

pa

cita

nce

s [fF

]

Gate voltage [V]

ND = 0.5, 2 and 3 x10

19 cm

-3

Symbols - Simulation

Lines - Model

Page 57: atol.am.gdynia.platol.am.gdynia.pl/~gorecki/dla_taty_pliki/2019 ED Poland DL MQ... · Title: Slide sem título Author: Michelly Created Date: 6/26/2019 4:45:12 PM

www.fei.edu.br | ED Poland Mini-Colloquium, Rzeszów, June 26th, 2019

Dynamic Model – Comparison against Experimental data

TREVISOLI, R.; DORIA, R. T. ; DE SOUZA, M.; BARRAUD, S.; VINET, M.; PAVANELLO, M. A. . Analytical

Model for the Dynamic Behavior of Triple-Gate Junctionless Nanowire Transistors. IEEE Transactions on Electron

Devices, v. 63, p. 856-863, 2016.

0.0

0.2

0.4

0.6

-0.8 -0.4 0.0 0.4 0.8 1.2

0.0

0.2

0.4

0.6

0.8

B

CGS

Cap

acita

nces [p

F]

tBox

= 145 nm

VDS

= 0 V

VBS

= 0 V

EOT = 1.5 nm

H = 9 nm

L = 10 mOpened Symbols, dashed lines - Wmask

= 40 nm

Closed Symbols, solid lines - Wmask

= 20 nm

CGG

A

CGG

VBS

= -10,0, 10,

20 and 30 V

Cap

acita

nces [p

F]

Gate Voltage [V]

W = 40 nm

L = 10 m

Symbols - Experimental

Lines - Model

Page 58: atol.am.gdynia.platol.am.gdynia.pl/~gorecki/dla_taty_pliki/2019 ED Poland DL MQ... · Title: Slide sem título Author: Michelly Created Date: 6/26/2019 4:45:12 PM

www.fei.edu.br | ED Poland Mini-Colloquium, Rzeszów, June 26th, 2019 58

Implementation in VERILOG-AThe development of the code follows the recommendations of a good

practices [i], such as:

• all input parameters in SI and with defined limits;

• utilize versioned constants;

• compartmented code;

• factoring the formulas for faster calculations;

• all the non-changeable parameters are defined at the beginning of the code;

• the used constants are defined only if not available in Verilog-AMS language.

The code has been tested with Mentor Graphics ELDO and Cadence Spectre

simulators as an external model.[i] C. C. McAndrew, G. J. Coran, K. K. Gullapalli, J. R. Jones, L. W. Nagel, A. S. Roy, J. Roychowdhury, A. J. Scholten, G. D. J. Smit, X. Wang and S. Yoshitomi, "Best

Practices for Compact Modeling in Verilog-A," Journal of The Electron Device Society, vol. 3, no. 5, p. 383–396, 2015.

Page 59: atol.am.gdynia.platol.am.gdynia.pl/~gorecki/dla_taty_pliki/2019 ED Poland DL MQ... · Title: Slide sem título Author: Michelly Created Date: 6/26/2019 4:45:12 PM

www.fei.edu.br | ED Poland Mini-Colloquium, Rzeszów, June 26th, 2019 59

Implementation in VERILOG-A

The same code serves the nMOS and pMOS transistors

Adjust the signals of currents and voltages, as well as the

constants to interface with the SPICE simulator

The implemented model code in Verilog-A language is found on GitHub

webpage:

https://github.com/clavmbr/JNT

C. V. MOREIRA, R. TREVISOLI, M. A. PAVANELLO. Verilog-A Implementation of Static and Dynamic Trigate

Junctionless Nanowire Transistor Compact Model. In: 2019 Latin American Electron Devices Conference

(LAEDC), 2019. p. 1-4.

Page 60: atol.am.gdynia.platol.am.gdynia.pl/~gorecki/dla_taty_pliki/2019 ED Poland DL MQ... · Title: Slide sem título Author: Michelly Created Date: 6/26/2019 4:45:12 PM

www.fei.edu.br | ED Poland Mini-Colloquium, Rzeszów, June 26th, 2019 60

Implementation in VERILOG-A

1

1

2

2

JNT Model

Qc,s calculation

SCE calculation

Qc,d calculation

IDS calculation

Adjust of results

according to transistor

type

Serie resistance

calculation

ni calculation

Calculation of VFB

Substrate influence

calculation

Calculation of COX,

γpot e QSI

Calculation of VTH

Transistor type

analysis

VDSSAT calculation

END

Mobility calculation

3

3

Intrinsic Capacitances

calculation

Page 61: atol.am.gdynia.platol.am.gdynia.pl/~gorecki/dla_taty_pliki/2019 ED Poland DL MQ... · Title: Slide sem título Author: Michelly Created Date: 6/26/2019 4:45:12 PM

www.fei.edu.br | ED Poland Mini-Colloquium, Rzeszów, June 26th, 2019 61

Results

nMOS

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

VDS

= 50mV, 100mV,

200mV, 500mV and 1V

VDS

= 50mV, 100mV,

200mV, 500mV and 1V

I DS (

A)

VGS

(V)

ND = 110

19cm

-3

L = 1m

W = 10nm

H = 10nm

tox

= 2nm

symbols - simulation

lines - model

· ·

1E-14

1E-13

1E-12

1E-11

1E-10

1E-9

1E-8

1E-7

1E-6

I DS (

A)

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

symbols - simulation

lines - model

VDS

= 50mV, 100mV,

200mV, 500mV and 1V

L = 1m

W = 10nm

H = 10nm

tox

= 2nm

ND = 110

19cm

-3

gM (

S)

VGS

(V)

For 1μm transistor, the Pearson

correlation coefficient for IDS*VGS is

r=1.

For 1μm transistor, the Pearson

correlation coefficient for gM *VGS is

r=0.9994.

Page 62: atol.am.gdynia.platol.am.gdynia.pl/~gorecki/dla_taty_pliki/2019 ED Poland DL MQ... · Title: Slide sem título Author: Michelly Created Date: 6/26/2019 4:45:12 PM

www.fei.edu.br | ED Poland Mini-Colloquium, Rzeszów, June 26th, 2019 62

Results

nMOS

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

VDS

= 50mV, 500mV,

1V and1.5V

symbols - 3D simulation

lines - SPICEL = 100nm

H = 10nm

W = 20nm

ND = 510

18cm

-3

I DS(

A)

VGS

(V)

VDS

= 50mV, 500mV,

1V and1.5V

1E-14

1E-13

1E-12

1E-11

1E-10

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

I DS (

A)

0.2 0.4 0.6 0.8 1.0 1.2 1.4

0

5

10

15

20

25

30

symbols - 3D simulation

lines - model

L = 100nm

H = 10nm

W = 20nm

ND = 510

18cm

-3

gM(

S)

VGS

(V)

VDS

= 50mV, 500mV,

1V and1.5V

For 100nm transistor, the

Pearson correlation coefficient for

IDS*VGS is r=0.9996.

For 100nm transistor, the Pearson

correlation coefficient for gM *VGS is

r=0.9802.

Page 63: atol.am.gdynia.platol.am.gdynia.pl/~gorecki/dla_taty_pliki/2019 ED Poland DL MQ... · Title: Slide sem título Author: Michelly Created Date: 6/26/2019 4:45:12 PM

www.fei.edu.br | ED Poland Mini-Colloquium, Rzeszów, June 26th, 2019 63

Results

pMOS

0.0 -0.2 -0.4 -0.6 -0.8 -1.0 -1.2 -1.4 -1.6

0.0

-0.2

-0.4

-0.6

-0.8

-1.0

-1.2

-1.4

-1.6

-1.8

VDS

= -50mV, -100mV,

-200mV, -500mV

and -1V

symbols - 3D simulation

lines - SPICE

VDS

= -50mV, -100mV,

-200mV, -500mV and -1V

NA = 110

19cm

-3

L = 1m

W = 10nm

H = 10nm

t = 2nm

I DS(

A)

VGS

(V)

1E-14

1E-13

1E-12

1E-11

1E-10

1E-9

1E-8

1E-7

1E-6

1E-5

I SD (

A)

0.0 -0.2 -0.4 -0.6 -0.8 -1.0 -1.2 -1.4 -1.6

0

1

2

3

4

VDS

= -50mV, -100mV,

-200mV, -500mV and -1V

symbols - 3D simulation

lines - SPICEL = 1m

W = 10nm

H = 10nm

tox

= 2nm

NA = 110

19cm

-3

gM(

S)

VGS

(V)

For 1μm transistor, the Pearson

correlation coefficient for IDS*VGS is

r=0.9995.

For 1μm transistor, the Pearson

correlation coefficient for gM *VGS is

r=0.9959.

Page 64: atol.am.gdynia.platol.am.gdynia.pl/~gorecki/dla_taty_pliki/2019 ED Poland DL MQ... · Title: Slide sem título Author: Michelly Created Date: 6/26/2019 4:45:12 PM

www.fei.edu.br | ED Poland Mini-Colloquium, Rzeszów, June 26th, 2019 64

Results

Capacitances

0.0 0.5 1.0 1.5 2.0 2.5

0.0

0.1

0.2

0.3

0.4

0.5

0.6 symbols - simulation

lines - model

ND = 1 10

19 cm

-3

W = 10 nm

H = 10 nm

tox

= 2 nm

L = 1 m

VDS

= 0 V

tBox

= 100 nm

Ca

pacita

nce

s (

fF)

VGS

(V)

CGG

CGS

, CGD

, CSG,

CDG

CDS

, CSD

For 1μm transistor, the

worst Pearson correlation

coefficient for

Capacitances*VGS is

r=0.9897.

Page 65: atol.am.gdynia.platol.am.gdynia.pl/~gorecki/dla_taty_pliki/2019 ED Poland DL MQ... · Title: Slide sem título Author: Michelly Created Date: 6/26/2019 4:45:12 PM

www.fei.edu.br | ED Poland Mini-Colloquium, Rzeszów, June 26th, 2019

•The Junctionless Nanowire Transistor is an interesting alternative for MOSFET

downscaling with respect to IM nanowires.

• Smaller IOFF and higher ION/IOFF at similar L (down to 10 nm).

•The analytical models presented show good agreement with experimental and

simulated data.

• Accounted for terminal voltages variations;

• Symmetric in the vininity of VDS=0 V;

• Transconductances and transcapacitances.

Conclusion

Page 66: atol.am.gdynia.platol.am.gdynia.pl/~gorecki/dla_taty_pliki/2019 ED Poland DL MQ... · Title: Slide sem título Author: Michelly Created Date: 6/26/2019 4:45:12 PM

www.fei.edu.br | ED Poland Mini-Colloquium, Rzeszów, June 26th, 2019

• Transfer the models to VERILOG-A

• Compact modeling of Low Frequency Noise

Tasks Ongoing

101

102

103

104

10-11

10-10

10-9

10-8

10-7

10-6

VDS

= 0.05 V

EOT = 1.5 nm

W = 10 nm

H = 9 nm

ND = 5x10

18 cm

-3

L = 100 nmV

GT = 0 V

VGT

= 0.6 V

VBS

= 0 V

VBS

= 20 V

VBS

= -20V

SId/I

D

2 [H

z-1]

Frequency [Hz]

Page 67: atol.am.gdynia.platol.am.gdynia.pl/~gorecki/dla_taty_pliki/2019 ED Poland DL MQ... · Title: Slide sem título Author: Michelly Created Date: 6/26/2019 4:45:12 PM

www.fei.edu.br | ED Poland Mini-Colloquium, Rzeszów, June 26th, 2019

Acknowledgements

Jean-Pierre Colinge

Olivier Faynot

Maud Vinet

Sylvain Barraud

Antonio CerdeiraRodrigo Doria

Renan Trevisoli

Genaro Mariniello

Bruna Cardoso Paz

Michelly de Souza

Flávio Bergamaschi

Claudio Vilela Moreira

Page 68: atol.am.gdynia.platol.am.gdynia.pl/~gorecki/dla_taty_pliki/2019 ED Poland DL MQ... · Title: Slide sem título Author: Michelly Created Date: 6/26/2019 4:45:12 PM

www.fei.edu.br | ED Poland Mini-Colloquium, Rzeszów, June 26th, 2019

Acknowledgements