atmospheric processing of organic · 2015. 9. 18. · poa soa Þ xed yield not quite state of the...

28

Upload: others

Post on 25-Jan-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • Atmospheric Processing of OrganicParticulate Matter:

    Formation, Properties, Long-RangeTransport, and Removal

    Neil M. Donahue, Spyros N. Pandis, Allen L. Robinson

    Peter J. Adams, Cliff I. Davidson

    Carnegie Mellon UniversityCenter for Atmospheric Particle Studies

    Atmospheric Science Progress Review Meeting22 Jun 2007

    RTP, NC

    1

  • The Center for Atmospheric Particle Studies

    2

  • Organic Aerosol

    Vapor Pressure

    Precursor

    VolatileProducts

    PrimaryEmission

    POA SOAfixed

    yield

    Not quite state of the art, common in models...

    3

  • Organic Aerosol

    Vapor Pressure

    SOAPrecursor

    VolatileProducts

    PrimaryEmission

    POA p1 p2

    α1α2

    semivolatile products(Odum 2-product model)

    State of the art, in some models...

    4

  • Organic Emissions Processing

    Vapor Pressure

    Precursor

    Product Product Product

    Gen

    erat

    ion

    #

    5

  • Continued Processing

    Vapor Pressure

    Precursor

    Product Product Product

    Gen

    erat

    ion

    #

    Product Product Product Product

    t~1 dayt~1 day ?

    6

  • How Far Does it Go??

    Vapor Pressure

    Precursor

    Product Product Product

    Gen

    erat

    ion

    #

    Product Product Product Product

    t~1 dayt~1 day ?

    mean particle age ~ 7 days?

    7

  • α-pinene + Ozone

    !"!#

    !"!!

    !""

    !"!

    !"#

    !"$

    "

    "%"&

    "%!

    "%!&

    "%#

    "%#&

    "%$

    '()*+!,*-

    !$.

    !"*+/01-234567*)610803*9288*:12;14??4= et al.*@!AAAB

    '0;C61 et al.*@#""!BD168

  • Partitioning at Specified COA in Solution

    !3 !2 !1 0 1 2 30

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    log10 C* (µg m!3)

    ! (A

    eros

    ol F

    ract

    ion)COA = 1.0 µg m

    !3

    ξi =1

    1 +C∗i

    COA

    9

  • The Volatility Basis Set

    !3 !2 !1 0 1 2 30

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    log10 C* (µg m!3)

    ! (A

    eros

    ol F

    ract

    ion)COA = 1.0 µg m

    !3

    C∗i ={0.01,0.1,1,10,100,1000,104,105,106

    }µgm−3

    [Donahue et al., ES&T, 2006]10

  • α-pinene and the Basis Set

    !"!#

    !"!!

    !""

    !"!

    !"#

    !"$

    "

    "%"&

    "%!

    "%!&

    "%#

    "%#&

    "%$

    '()*+!,*-

    !$.

    !"*+/01-234567*)610803*9288*:12;

  • α-Pinene + Ozone Partitioning

    0.01 0.1 1 10 100 1000 10^4 10^5 10^60

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    C* (µg m!3)

    Org

    anic

    Mas

    s (µ

    g m!3

    ) COA = 1.0 µg m!3

    a) Low !!pinene (26 µ g m!3)

    0.01 0.1 1 10 100 1000 10^4 10^5 10^60

    20

    40

    60

    80

    100

    120

    140

    160

    180

    200

    C* (µg m!3)

    Org

    anic

    Mas

    s (µ

    g m!3

    ) COA = 100.0 µg m!3

    b) High !!pinene (468 µ g m!3)

    Partitioning changes with mass loading: x18 total loading = x100 COA.Most of the OA compounds at 100µgm−3 are not in the particles at 1.

    [Donahue et al. in prep]

    12

  • α-Pinene + Ozone Mass Balance

    !"!#

    !""

    !"#

    !"$

    !"%

    !"&

    "

    "'#

    "'$

    "'%

    "'&

    !

    !'#

    !'$

    !'%

    ()*+,!-+.

    !/0

    !"+,123.456789+*832:25+;4::+<34=>62?0

    C10=1

    C10O4 = 1.4

    O3+

    O

    O

    OOH

    100 ppt10-7 torr

    1 atm760 torr

    Mass balance for ‘nominal product’ demands ξmax =∑

    i αi ' 1.4.

    13

  • α-pinene + Ozone: UV (no NOx)

    10!2 10!1 100 101 102 1030

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    COA (µg m!3)

    !" (N

    orm

    ali5e

    7 Ae

    roso

    l Mas

    s Fr

    actio

    n) (d)Presto et al. [2005]20 June 2005low!NOx fitUV fit

    α′i = {.004, 0, .05, .09, .12, .18, ...}↓ UV

    α′i(UV) = {.004, 0, .02, .08, .12, .18, ...}

    [Presto et al., ES&T, 2005a]14

  • α-pinene + Ozone: VOC:NOx

    10!2 10!1 100 101 102 1030

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    COA (µg m!3)

    !" (N

    orm

    ali5e

    7 Ae

    roso

    l Mas

    s Fr

    actio

    n) (c)# $ 0.># $ 0.1low!NOx fit

    α′i(HO2) = {.004, 0, .05, .09, .12, .18, ...}↓ NOx β = (VOC : NOx)0/10, (VOC : NOx)0 < 10

    α′i(NOx) = {0, 0, 0, 0, .15, .2, ...}

    [Presto et al., ES&T, 2005b]15

  • RO2 Fate

    hv (+ OH)

    Ox

    (+ NO2)

    NO HO2

    terpene

    RO2

    ROONO ROOH

    RORONO2

    β

    Bottom line – tie SOA module into gas-phase RO2 chemistry:

    {α} = β {α}low−NOx + (1− β) {α}high−NOx

    16

  • α-Pinene + Ozone T Dependence

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    0.4

    0.45

    -10 -5 0 5 10 15 20 25 30 35 40 45

    Temperature ( oC)

    SO

    A M

    ass

    Fra

    ctio

    n

    Low (7.3-8.5 ppb)

    Medium (14.3-17ppb)

    High (33-50ppb)

    Saathoff et al. [2004] (17 ppb)

    Upturn in SOA between 15 and 0oC.

    [Pathak et al., JGR, 2007], [Stanier et al., ACPD, 2007]17

  • α-Pinene + Ozone Total Mass 300 K

    10!2 100 102 104 106 1080

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    COA (µg m!3)

    !" (N

    orm

    alize

    d Ae

    roso

    l Mas

    s Fr

    actio

    n)

    Dark green yields are guesses – total is constrained.

    18

  • α-Pinene + Ozone Total Mass 243 K

    10!2 100 102 104 106 1080

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    COA (µg m!3)

    !" (N

    orm

    alize

    d Ae

    roso

    l Mas

    s Fr

    actio

    n)

    Products shift left by 2.5 orders of magnitude.

    (Note – [Saathoff et al. IAC 2006] saw ∼1 AMF at 100-200 µgm−3 and 243 K.)

    19

  • α-Pinene + Ozone Total Mass 350 K

    10!2 100 102 104 106 1080

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    COA (µg m!3)

    !" (N

    orm

    alize

    d Ae

    roso

    l Mas

    s Fr

    actio

    n)

    Products shift right by 2.5 orders of magnitude.

    20

  • α-Pinene + Ozone Thermodenuder

    Given time, all SOA evaporates at 70C.

    [An et al., AS&T, 2007]21

  • α-Pinene + Ozone Thermodenuder

    !"!#

    !""

    !"#

    !"$

    !"%

    !"&

    "

    "'#

    "'$

    "'%

    "'&

    !

    !'#

    !'$

    !'%

    ()*+,!-+.

    !/0

    !"+,123.456789+*832:25+;4::+<34=>62?0

    transfer function (16 sec)

    transfer function (1.6 sec)

    Denuding is a function of evaporation timescales.

    [Pierce et al., in prep, 2007]22

  • α-pinene + O3 Dilution0.4

    0.3

    0.2

    0.1

    0.0

    No

    rmalized

    AM

    F

    10 100

    COA ( g m-3

    )

    Chamber Dilution Experiments: Experiment # 1: DR = 3, then 8; Total Time: 1 hr

    Experiment # 2: DR = 80; Total Time: 4.8 hrs

    Experiment # 3: DR = 31; Total Time: 3.7 hrs

    !!Yield Experiment

    Curve

    Dilution Sampler Data

    !""#!

    $%&'()!*+!,-./0(%1-2!-3!%2!&014/0(5%67)!/0(5%5%-2%2&!.)01'()8!8'(%2&!8%7'5%-2!-3!!4/%2)2)!""*!

    9:;!-71?!@%5A!0!3%5!-3!=%)78!8050!3(-.!5(08%5%-207!9:;!)B/)(%.)251!(%'.!1505)1!@%5A!5A)!1.077)(!1=.>-71!""M!

    1A-@%2&!5A)!/0(5%67)!)N-7N%2&!035)(!8%7'5%-2C!O06A!1.077!1=.>-7!()/()1)251!-2)!9GP9!""Q!

    1602!0(1!-2!,:;!()/()1)25!""R!

    '26)(50%25=!8')!5-!@07747-11)1!%2!5A)!6A0.>)(S!;G$!)((-(!>0(1!0()!>01)8!-2!)15%.05)8!""T!

    '26)(50%25=!%2!5A)!=%)78!/0(0.)5)(%F05%-2C!!""U!

    Generate high SOA and then flush 90% of chamber air.Particles shrink slowly to expected size. [Grieshop et al., GRL 2007]

    23

  • Implications: Vapors

    !"!#

    !""

    !"#

    !"$

    !"%

    !"&

    "

    "'#

    "'$

    "'%

    "'&

    !

    !'#

    !'$

    !'%

    ()*+,!-+.

    !/0

    !"+,123.456789+*832:25+;4::+<34=>62?0

    Condensed Phase

    Vapor Phase

    The mass not seen in the particles is in the gas phase, very low vapor pressure.

    24

  • Limonene + Ozone Mass Balance

    !"!#

    !""

    !"#

    !"$

    !"%

    !"&

    "

    "'#

    "'$

    "'%

    "'&

    !

    !'#

    !'$

    !'%

    ()*+,!-+.

    !/0

    !"+,123.456789+*832:25+;4::+<34=>62?0

    @6.2?8?8A+52B!1)C+,943D0

    E:>6.4>89+F434.8>83:

    +F434.8>83:

    G38=H3:23+I254>656>J

    +=H3I8

    #!F6?8?8+K4:6:!:8>+L6>

    O

    O

    O

    OOH

    HOO

    C10=1C9O7 = 1.6

    O3+

    D-limonene + O3 makes more SOA than α-pinene (2nd generation of oxidation).

    [J. Zhang et al., JPC, 2006]25

  • Implementing Basis Set in PMCAMx

    July 2001 Biogenic SOA

    Old ∼constant yield New Basis set yields Multi-generation aging

    New basis set parameters cause most SOA to evaporate at ambient COA.Adding aging (gas-phase OH oxidation) can generate lots of SOA.Aging parameters are not yet known (these are a reasonable guess).

    [Lane et al. in prep]

    26

  • Conclusions Picture

    C*(µg m3)

    log

    Emiss

    ions

    10910610310010-3

    biogenic

    anthropogenic

    ‘POA’ condensed at ambient COA

    ‘POA’ condensed at source

    log

    Conc

    entra

    tion

    Fresh

    Aged ‘Traditional’ SOA

    ‘New’ SOA

    Het Aging

    OOA Decomposition

    HOA

    OOA

    0:11:1

    0:11:1

    27