ate-100 hand held calibrator operating manual · ate-100 hand held calibrator operating manual...

80
ATE-100 HAND HELD CALIBRATOR OPERATING MANUAL REVISION 4.6 3/2004 I&M002-10037-11/00 (AHHC-MAN)

Upload: vodiep

Post on 29-Jun-2018

225 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ATE-100 HAND HELD CALIBRATOR OPERATING MANUAL · ate-100 hand held calibrator operating manual revision 4.6 3/2004 i&m002-10037-11/00 (ahhc-man)

ATE-100HAND HELD CALIBRATOR

OPERATINGMANUAL REVISION 4.6 3/2004

I&M002-10037-11/00 (AHHC-MAN)

Page 2: ATE-100 HAND HELD CALIBRATOR OPERATING MANUAL · ate-100 hand held calibrator operating manual revision 4.6 3/2004 i&m002-10037-11/00 (ahhc-man)

Thank you for your purchase. Please feel free to contact us if we may be of assistance in any way.

Should you require service for this instrument or wish to take advantage of our expert factory recalibration services, please contact the factory for return information:

Ashcroft Inc.250 E. Main Street Stratford, CT 06614-5145

Tel: (203) 378-8281Fax: (203) 385-0402

For the latest product information, please visit our website at:www.ahscroft.com

Page 3: ATE-100 HAND HELD CALIBRATOR OPERATING MANUAL · ate-100 hand held calibrator operating manual revision 4.6 3/2004 i&m002-10037-11/00 (ahhc-man)

- 3 - Revision 4.6 3/2004

Table of Contents

Section Description Page

1.0 Introduction ................................................................................................................................. 41.3 Base Unit Overview ........................................................................................................ 41.4 Quick Select Module Overview ..................................................................................... 41.4.1 The GQS-1 Quick Select Pressure Module ................................................................ 51.4.2 The GQS-2 Quick Select Pressure Module . .............................................................. 51.4.3 The GQS-RT1 Quick Select RTD Temperature Interface Module ............................. 51.4.4 The GQS-TC1 Quick Select Thermocouple Interface Module .................................. 6 2.0 Unpacking .................................................................................................................................... 62.1 Unpacking Product Upon Receipt ................................................................................... 62.2 Product Storage ............................................................................................................... 62.3 Product Cleaning ............................................................................................................ 6

3.0 System Start-Up General Instructions ...................................................................................... 63.1 Battery Installation .......................................................................................................... 63.2 Installation of Quick Select Modules .............................................................................. 73.3 Starting Up HHC System ................................................................................................ 73.4 Optional System Start Up Procedures ............................................................................. 83.4.1 Auto Off – Battery Save Function .............................................................................. 83.4.2 Set Up for Battery Charge Level Indication ............................................................... 93.4.3 Low Battery Icon ........................................................................................................ 103.4.4 Programming Date and Time Information ................................................................. 103.4.5 Input of Owner/Operator Information ........................................................................ 113.5 Removing Quick Select Modules .................................................................................... 12 4.0 Key Function Overview ............................................................................................................... 12

5.0 Port Select Function ................................................................................................................... 13

6.0 Zero Function .............................................................................................................................. 146.1 Zeroing One of Two Installed Quick Select Pressure Module ........................................ 14

7.0 Displaying Current & Voltage Measurements ........................................................................... 14

8.0 Engineering Unit Selection ......................................................................................................... 158.1 Selecting a Factory Programmed Engineering Unit ........................................................ 158.2 Setting Up a Custom (User Defined) Engineering Unit .................................................. 158.3 Using a Custom (User Defined) Engineering Unit .......................................................... 168.4 Display of Two Different Engineering Units, for Two Installed Modules ...................... 178.5 Temperature Selection for H2O Conversion Factor ........................................................ 18

9.0 Tare Function ............................................................................................................................... 19

10.0 Hold Function .............................................................................................................................. 19 10.1 Using the Hold Function ................................................................................................. 19 11.0 Minimum and Maximum Value Tracking .................................................................................... 20

Page 4: ATE-100 HAND HELD CALIBRATOR OPERATING MANUAL · ate-100 hand held calibrator operating manual revision 4.6 3/2004 i&m002-10037-11/00 (ahhc-man)

- 4- Revision 4.6 3/2004

Section Description Page

12.0 Damping Function ....................................................................................................................... 20 12.1 Set Up of Damping Function .......................................................................................... 20 12.2 Activating or Discontinuing Damping ............................................................................ 21

13.0 Percent Function ......................................................................................................................... 21 13.1 Set Up of Percent Function ............................................................................................. 21 13.2 Use of Percent Function .................................................................................................. 22

14.0 Flow Velocity and Flow Volume Measurement Background .................................................... 23 14.1 Set Up for Flow Velocity & Volume Measurement ......................................................... 23 14.2 Flow Velocity Measurement ............................................................................................ 23 14.3 Engineering Unit Selection for Flow Velocity ................................................................ 24 14.4 Flow Volume Measurement ............................................................................................. 24 14.5 Engineering Unit Selection for Flow Volume ................................................................. 25 14.6 Simultaneous Display of Two Flow Measurements in Independent Engineering Units . 25 14.7 Simultaneous Display of Flow (Velocity or Volume) with a Pressure Measurement ...... 26 14.8 Simultaneous Display of Flow (Velocity or Volume) with a Temperature Measurement 27 14.9 Simultaneous Display of Flow Volume and Flow Velocity ............................................. 27 14.10 Simultaneous Display of Flow (Velocity or Volume) and An Electrical Output Measurement ............................................................................ 28

15.0 Leak Detection Function ............................................................................................................. 29 15.1 Leak Rate Function Set Up ............................................................................................. 29 15.2 Pressure Decay Function Set Up ..................................................................................... 30 15.3 Sensor Selection for Performing Leak Rate or Pressure Decay Tests ............................. 30 15.4 Performing Leak Rate or Pressure Decay Tests .............................................................. 30

16.0 Temperature Measurement Using RTD Probes ........................................................................ 16.1 Setting Up the Calibrator for Temperature Measurement with an RTD Probe ............... 31 16.2 Calibrating and Programming of the RTD Interface and Probe ...................................... 33

17.0 Temperature Measurement with Thermocouple Detector ....................................................... 33 17.1 Setting Up Calibrator for Use with Thermocouple Detector .......................................... 34

18.0 Pressure and Temperature Switch Testing ................................................................................ 35 18.1 Setting Up for Pressure and Temperature Switch Testing ............................................... 35 18.2 Trip Point Testing ............................................................................................................ 35 18.3 Deadband Testing ............................................................................................................ 36

19.0 RS232 Interface ........................................................................................................................... 37 19.1 Configuring RS232 Interface for Use With Dumb Terminal ........................................... 37 19.2 RS232 Configuration Options ......................................................................................... 37 19.2.1 RS232 – ISO1745 Mode Functional Overview .......................................................... 37 19.2.2 RS232 – Journal Mode Functional Overview ............................................................ 37 19.2.3 RS232 – Inquiry Mode Functional Overview ............................................................ 38 19.3 RS232 Set Up for Journal Mode Operation .................................................................... 38 19.4 RS232 Set Up for Inquiry Mode Operation .................................................................... 39

20.0 Status .................................................................................................................................... 41 20.1 Reviewing Instrument Status ........................................................................................... 41 20.2 Battery Check Function ................................................................................................... 41

Page 5: ATE-100 HAND HELD CALIBRATOR OPERATING MANUAL · ate-100 hand held calibrator operating manual revision 4.6 3/2004 i&m002-10037-11/00 (ahhc-man)

- 5 - Revision 4.6 3/2004

Section Description Page

21.0 Dual Module Functions ............................................................................................................... 42 21.1 Accuracy of Dual Module Measurements ....................................................................... 42 21.2 Setting Up Dual Module Differential Pressure Measurement ......................................... 42 21.3 Setting Up a Dual Module Summation Pressure Measurement ...................................... 44

22.0 Data Logging Function (Optional) ............................................................................................ 45 22.1 Sequential Data Logging Function (Optional) ................................................................ 45 22.2 Setting Up the Data Logging Function (Optional) .......................................................... 45 22.3 Labeling Function – Standard Data Logging Mode ........................................................ 46 22.4 Automatic Data Logging – Standard Data Logging Mode ............................................. 46 22.5 Manual Data Logging – Standard Data Logging Mode .................................................. 47 22.6 Review of Stored Data – On Instrument Display – Standard Data Logging Mode .................................................................................... 48 22.7 Erasing of Selected Stored Data – Standard Data Logging Mode .................................. 49 22.8 Erasing All Stored Data – Standard Data Logging Mode ............................................... 49

23.0 Certification Generation Enhanced Data Logging Mode ....................................................... 50 23.1 Set Up and Use of Certification Generation Data Logging Mode ............................... 50

24.0 HHC System Set Up for Uploading Stored Data Into an IBM Compatible PC .................................................................................................... 55 24.1 Installing and Operating Upload Software ...................................................................... 56 24.2 Battery Back Up Replacement ........................................................................................ 56

25.0 Event Timer Function ................................................................................................................ 56 25.1 Event Timer Set Up ......................................................................................................... 57 25.2 Data Logging Set Up for Operation with the Event Timer ............................................. 57

26.0 Alarm Function – Overview (Optional Feature) ...................................................................... 58 26.1 Alarm Set Up ................................................................................................................... 59

27.0 Recertification of the Calibrator ............................................................................................... 60 27.1 Calibration/Recertification Overview .............................................................................. 60 27.2 Required Equipment ........................................................................................................ 60 27.3 As Received Readings of the Base Unit Electronics ....................................................... 60 27.4 Adjustment/Calibration Base Unit Electronics ............................................................... 62 27.5 Recertification of Quick Select Pressure Modules .......................................................... 64

— APPEnDICES — Appendix A – Pressure Conversion Factors ..................................................................................................... 67

Appendix B – ASCII Character Set ..................................................................................................................... 69

Appendix C – Product Specifications ................................................................................................................ 72

Table I ................................................................................................................................................................. 74

Table II ................................................................................................................................................................. 74

Appendix D – RTD Probe Connector ................................................................................................................. 75

Appendix E – Certification of the TC1 Thermocouple Interface Module ......................................................... 76

Page 6: ATE-100 HAND HELD CALIBRATOR OPERATING MANUAL · ate-100 hand held calibrator operating manual revision 4.6 3/2004 i&m002-10037-11/00 (ahhc-man)

- 6- Revision 4.6 3/2004

Section 1.0 Introduction

Congratulations! Your purchase of the Hand Held Cali-brator (HHC) calibration system equips you to perform a wide variety of pressure and temperature measurements. The general pressure and temperature measurement capabilities of the HHC are supplemented by application specific firmware as well as the availability of optional data logging capability.

The HHC is a complete pressure calibration system providing: interchangeable pressure ranges, simultane-ous measurement and display of two pressure ranges, measurement and display of current and voltage. The HHC also provides the ability to perform high accuracy temperature measurement. Conversion between tempera-ture and pressure measurement can be done in a matter of seconds and requires no tools.

A standard HHC system consists of a base unit that acts as a host for one or two Quick Select modules. The Quick Select pressure modules are interchange-able and are available in a wide variety of ranges from 0.25 inches of water to 10000 psi. A brief description of the main components of an HHC system follows. In addition, Quick Select modules are available to allow the base unit to work in conjunction with most standard RTD temperature probes and thermocouple temperature detectors.

Section 3 and its various subsections include all the information needed to begin using the HHC system for basic pressure and temperature measurement. Higher level functions are detailed in later sections of this manual. It is strongly recommended that the pertinent sections of this manual be reviewed prior to using the HHC system for higher level and application specific measurement and test activities.

Important: Failure to follow the instructions provided in this manual may result in personal injury and/or damage to the instrument, accessories, products under test or other equipment.

Section 1.3 Base Unit Overview HHC

The base unit functions as the host for the Quick Select pressure and temperature modules designated in this manual by the “GQS” prefix. Each base unit includes a keypad, microprocessor based electronics and a two line LCD display. The base unit displays the measure-ment data transmitted from the Quick Select module(s). Measurement outputs from two installed Quick Select modules can be simultaneously displayed. Quick Select modules for the measurement of either pres-sure or temperature can be plugged into either of the 2 module “bays” in the base unit. Pressure engineering

units can be independently selected from the library of twelve factory programmed or one operator designated engineering unit. Temperature measurement data can be displayed in degrees Celsius, Fahrenheit, Kelvin or Rankine. In addition, when used with the GQS-RT1 Quick Select module for temperature measurement with an RTD temperature probe, the calibrator system can display the RTD measurement in ohms. The GQS-TC1 thermocouple interface module allows measurement of mV inputs from –10 to +100 mV.

In addition to displaying two pressure measurements simultaneously the operator can elect to display pressure and temperature or the measured value from either of the two installed Quick Select modules as well as either a voltage or mA measurement. This allows for the easy calibration and test of pressure and temperature trans-ducers, transmitters and switches.

The base unit includes a wide variety of general and application specific measurement capabilities. These capabilities allow the HHC measurement and calibration system to be used for basic pressure and temperature measurement as well as application specific pressure measurement activities. Basic pressure and tempera-ture measurement capabilities include; max/min recall, operator programmable tare values, display hold, opera-tor programmable damping and user selected engineer-ing units. Application specific capabilities include; flow velocity measurement, flow volume mea-surement, leak detection, leak rate quantification and switch testing. Optional data logging, time delayed data logging and programmable alarms are also available.

Section 1.4 Quick Select Modules Overview

The Quick Select pressure module is a calibrated pres-sure measurement device. Quick Select pressure module units are available in a wide variety of pressure measure-ment ranges. The Quick Select RTD and therm-ocouple interface modules allow the HHC base unit to provide precision temperature measurement data using standard RTD (Resistance Temperature Detector) or thermocou-ple detectors. The GQS-RT1 module allows the HHC to function with most common platinum, nickel and copper RTDs, while the GQS-TC1 supports most common thermocouples.

The Quick Select module communicates with the base unit via a 10 pin connector. Quick Select pressure mod-ules slide into the base unit automatically aligning the female 10 pin connector on the Quick Select pressure module with the male 10 pin connector in the base unit.

All calibration data is stored in Electrically Erasable Programmable Read Only Memory (EEPROM) resident

Page 7: ATE-100 HAND HELD CALIBRATOR OPERATING MANUAL · ate-100 hand held calibrator operating manual revision 4.6 3/2004 i&m002-10037-11/00 (ahhc-man)

- 7 - Revision 4.6 3/2004

in the Quick Select module. As such, any Quick Select module can be used in any base unit and the measure-ment system will provide measurement accuracy in conformance with the published specification.

Section 1.4.1 The GQS-1 Quick Select Pressure Module

GQS-1 Quick Select pressure modules provide special-ized low pressure measurement capabilities. GQS-1 Quick Select pressure modules incorporate a micro-machined silicon variable capacitance sensor.

Inside the sensor there is a micro-machined silicon diaphragm. This diaphragm is between two non-moving plates on which metal has been sputtered. The air between the diaphragm and the non-moving plates acts as an insulator.

As pressure or vacuum is applied to the sensor, the diaphragm moves changing the distance between the diaphragm and the fixed plates. This change in distance changes the capacitance of the sensor. It is this variable capacitance that is measured and correlated to pressure or vacuum during the calibration process.

The sensor is connected to an Application Specific Integrated Circuit (ASIC). This ASIC generates a linear signal ramp and applies this signal to the top plate of the sensor while an equal and opposite signal is applied to the bottom plate.

When the measured pressure is balanced, for example, when both ports are opened to atmosphere, the distance between the diaphragm and both of the fixed plates is the same. When this is the case, the signal to the top plate is capacitively coupled to the equal and opposite signal applied to the bottom plate. As a result, no signal current will flow through the center plate (diaphragm). When the diaphragm is moved off center by the application of pressure or vacuum, the excess current flows through the center plate to an input differentiator in the ASIC. The differentiator translates the frequency of the sensor output into a voltage which is scaled over the full scale range of the instrument.

GQS-1 modules are available in ranges from 0.25 inches of water through 200 inches of water. These modules can be configured to provide differential/gauge or compound pressure measurement capabilities. They are designed for use on clean, dry, noncorrosive and nonconductive gases. A complete listing of the available GQS-1 modules is provided in Appendix C.

Section 1.4.2 The GQS-2 Quick Select Pressure Module

The GQS-2 Quick Select pressure module incorporates a

micro-machined piezoresistive strain gauge sensor. This technology takes advantage of the fact that, when put under stress, (as with the flexing of a diaphragm under pressure or vacuum) the resistive properties of a piece of silicon will change. In the manufacturing process resis-tors are deposited in a silicon substrate. The resistors are typically configured in a wheatstone bridge orienta-tion. When positioned in this fashion, the output will be near zero when no pressure (stress) is applied and will increase in a near linear fashion with the application of pressure or vacuum. The reverse side of the substrate is etched to provide the required diaphragm thickness for the given pressure range.

When power is applied to the sensor the level of resistance across the wheatstone bridge will change in proportion to the level of pressure applied. The output from the sensor is extremely repeatable and has mini-mal hysteresis due to the fact that the sensor substrate is silicon. The sensor output is then amplified by circuitry within the Quick Select pressure module. The amplified output is then calibrated over the operating range of the module. Calibration coefficients for the module are stored in Electrically Erasable Programmable Read Only Memory (EEPROM) within the Quick Select pressure module.

GQS-2 modules are available in ranges from 5 through 10,000 psi. These modules can be configured to provide gauge, compound or absolute pressure measurement, as well as vacuum measurement capabilities. GQS-2 modules in range of 5 psi are designed for use on clean, dry, noncorrosive and nonconductive gases. 316 stainless steel sensor isolation is provided for ranges from 0/10 through 0/10,000 psi. A complete listing of the available GQS-2 modules is provided in Appendix C.

Section 1.4.3 The GQS-RT Quick Select RTD Interface Module

The GQS-RT1 allows the HHC base unit, when used with RTD temperature probes, to provide precision temperature measurement data. The GQS-RT1 plugs directly into the Quick Select interface module bay in the base unit. Any standard RTD probe with a Switch-craft TA4M can be plugged into the Switchcraft TA4F connector on the module. The GQS-RT1 module comes factory programmed with the curves for Pt 100 (385 & 392), Cu 10 and ni 120 RTD probes. It supports RTDs with outputs in the range of 0/400 ohms. The GQS-RT2 is supplied factory programmed to support the Pt1000 ( 385 & 392) RTD. This interface module will support RTDs through an output up to 4000 ohms. The GQS-RT module can be programmed with coefficients for other RTD probes of interest and specific characteristics of a probe already included in the on-board library can be

Page 8: ATE-100 HAND HELD CALIBRATOR OPERATING MANUAL · ate-100 hand held calibrator operating manual revision 4.6 3/2004 i&m002-10037-11/00 (ahhc-man)

- 8- Revision 4.6 3/2004

Section 3.0 System Start-Up General Instructions

The HHC can perform a wide variety of simple and complex temperature and pressure based measurement, test and calibration operations. Due to the menu driven set up procedures the system can be quickly and easily configured for most any of its measurement functions. By following the steps in this section you can be ready to use your HHC to perform basic pressure and tempera-ture measurement functions in a matter of minutes.

Section 3.1 Battery Installation

Step 1 To gain access to the battery compartment, remove the bottom end of the strap assembly by detaching the Velcro connection and pulling the bottom end of the strap from the retaining pin in the bottom of the case of the base unit.

Step 2 Open the battery compartment by sliding the battery enclosure cover out of the compartment opening. To do this press down on the circular, ribbed indentation on the battery cover while pushing the enclosure cover outward with pressure on the two standoffs located near the pin used to retain the strap on the base unit.

Step 3 note the polarity information for installation of the two 9 volt alkaline batteries as outlined on the inside of the battery enclosure.

Step 4 Locate the two 9 volt batteries and the foam retaining spacer provided in a small plastic bag. Install these batteries as shown on the diagram in the battery enclosure. The HHC will operate for approximately 30 hours on the two 9 Vdc batteries. Alkaline batteries are recommended for use in the HHC system.

Step 5 Insert the retaining spacer between the two 9 volt batteries. This will insure that the batteries will not disconnect or be shaken loose during normal operation.

Step 6 Replace battery compartment cover by sliding cover back into position until it locks in place.

Step 7 Replace strap by threading strap through the

programmed into the GQS-RT unit to provide enhanced accuracy. Each GQS-RT interface module can accom-modate up to 8 different programmed RTD calibration curves. Programming of the RT module is accomplished via an optional software package and any PC compat-ible computer with an available standard serial com-munication port. See Appendix E page 75 for probe connector pin out information.

Section 1.4.4 The GQS-TC1 Quick Select Thermocouple Interface Module

The GQS-TC1 allows the HHC base unit, when used with a thermocouple interface module, to perform temperature measurement. The GQS-TC1 plugs directly into the Quick Select module bay in the base unit. The thermocouple is then attactched to the GQS-TC1 module via a male “miniature thermocouple connector.”

Section 2.0 Unpacking & General Care

General instructions for unpacking and calibrator care follow.

Section 2.1 Unpacking Product Upon Receipt

Prior to removing the HHC from the packaging material inspect all cartons for shipping damage. Document any damage evident in the event that a damage claim must be made against the shipper. After inspection, remove the base unit, module(s), manual and any accessories purchased from the packaging material. Retain the packaging for use in returning the HHC to the factory for future recertification or repair.

Section 2.2 Product Storage

The product should be stored in an area that is main-tained in the temperature range indicated in the storage temperature in the product specification. The storage temperature limits are -4 to + 158 degrees Fahrenheit. Storage of product in environments that will exceed these temperature limits results in significant risk of product damage. It is recommended that the product not be left in closed cars or truck cabs as temperature damage can easily occur due to the “greenhouse effect” of closed vehicles or extreme cold temperatures that can result from winter conditions.

Section 2.3 Product Cleaning

The enclosure of the calibrator is not watertight. As such, care should be taken during cleaning to assure liquid does not penetrate the enclosure for the base unit or Quick Select modules. Cleaning of the product should be done with a cloth moistened with a warm, mild deter-gent mixture.

Page 9: ATE-100 HAND HELD CALIBRATOR OPERATING MANUAL · ate-100 hand held calibrator operating manual revision 4.6 3/2004 i&m002-10037-11/00 (ahhc-man)

- 9 - Revision 4.6 3/2004

opening, starting closest to the battery compartment and reattaching Velcro. The strap may be adjusted in this fashion to provide for proper strap length to accommo-date any hand size.

Section 3.2 Installation of Quick Select Module in a Vacant Module Bay

Caution: Quick Select modules should be installed with the power off on the base unit. Failure to turn the base unit off prior to changing pressure measurement mod-ules could damage the instrument or module electron-ics or “lock up” microprocessor operation. If power is inadvertently left on and the base unit locks up (looses communication) after changing Quick Select modules, simply power down the unit and restart.

Refer to Section 3.5 for the procedure to remove a Quick Select module.

To insert a Quick Select module follow the process below.

Step 1 Make certain the power is off on the base unit.

Step 2 Hold the base unit, in one hand, with the keypad side down.

Step 3 Holding the Quick Select module to be installed in the other hand, align the module with the locking tab up, with the module bay on the base unit.

Step 4 Slide the Quick Select module into the base unit until the retaining/release tab pops into the square cutout in the module bay of the base unit. This will lock the Quick Select module into the base unit.

Step 5 Installation of the Quick Select module is now complete. If an GQS-RT1 or GQS-TC1 interface module is to be used plug the appropriate temperature detector into the connector on the module. To set up the HHC and temperature module combination proceed to section 16 for RTDs or section 17 for thermcouple detectors

Important Note: If only one module is to be used, install the Quick Select System Protection module provided. Follow the same procedure to install the system protection module as that used for a standard pressure measurement module. Both module bays of the

base unit should contain a Quick Select module to protect from dirt or other debris getting into the base unit assembly. If only one Quick Select pressure module is needed install the System Protection Module (part number GQS-XS) supplied with your unit at the time of shipment when using the HHC system.

Section 3.3 Starting-Up the HHC System

After the desired Quick Select pressure module(s) or Quick Select temperature measurement interface module and probe has been installed the HHC can be started up as follows:

Turn the system power on by pressing the on/off key on the instrument’s key pad.

ON OFF

During the start up process the HHC will display the fol-lowing information:

First Screen

firmware version xx.xx

where xx.xx is a numerical value representing the firmware revision level installed in the base unit. The firmware version is updated/changed as enhancements are added to the HHC.

Second Screen

Left Mod: Std or enh temperature performance

Third Screen

Range xx and engineering unit

where:

xx = the range of the installed module ngineering unit is the default engineering unit for the module installed in the left bay

Fourth Screen

Right Mod: Std or enh temperature performance

Fifth Screen

Range xx and engineering unit

Page 10: ATE-100 HAND HELD CALIBRATOR OPERATING MANUAL · ate-100 hand held calibrator operating manual revision 4.6 3/2004 i&m002-10037-11/00 (ahhc-man)

- 10- Revision 4.6 3/2004

where:

xx = the range of the installed module engineering unit is the default engineering unit for the module installed in the left bay

note: GQS-2 pressure measurement modules are avail-able with a standard calibration or an optional enhanced temperature performance calibration. Modules calibrated to provide enhanced temperature performance will pro-vide the rated accuracy, without any additional tempera-ture error over an operating temperature range of 20-120 degrees Fahrenheit. These modules will display:

enh temperature performance

when powered up.

The range indication is provided in the primary engi-neering unit for each installed Quick Select module. Upon initial power up an HHC used with an GQS-RT1 temperature module and probe will default to display-ing the ohms (resistance value) for the probe. Once set up this combination will default to the previously used temperature measurement unit, such as Celsius, Fahren-heit, Kelvin or Rankine. The primary engineering unit for a given Quick Select pressure module, along with the measurement range, is included on the module label. The information on the left side of the display corre-sponds with the Quick Select module installed in the left module bay and information on right side of the display corresponds with the Quick Select module installed in the right module bay. If only one module is installed the corresponding side of the display will indicate “no module” on power up.

After the third screen the HHC will commence provid-ing pressure measurement data. The format for display of the measurement data is as follows:

Eng Unit Eng Unit (primary engineering unit) +xx.xxx +xx.xxx (measured value with sign)

When only one module is installed, the side of the dis-play corresponding to the side of the base unit that does not have a module will display “- - - - -”

If necessary, the HHC, used with a Quick Select pres-sure module, may be zeroed by pressing the Zero key prior to beginning measurement activities. Additional details on zeroing the HHC system are provided in Sec-tion 6.0 of this manual.

The HHC is now ready for basic pressure or temperature measurement. Simply connect the pressure port(s) of the

Quick Select pressure module(s) to be used to the pres-sure source to be measured. If a gauge pressure mea-surement is to be made using a differential Quick Select pressure module be sure to connect the pressure to be measured to the high pressure port on the Quick Select pressure module. For temperature measurement, connect the RTD probe to be used to the Switchcraft connec-tor on the interface module and proceed to Section 16 and 17 for instructions on setting up the calibrator for temperature measurement.

Section 3.4 Optional System Start Up Procedures

There are additional set up operations that can be per-formed to increase the overall capabilities of the HHC system; these include:

1 – Auto off function to protect from inadvertently leav-ing the HHC system on.

2 – Setting up battery level indication so that an estimate of the remaining battery life can be viewed at the push of a button.

3 – Programming the current date and time for use in date stamping data logged pressure values and starting delayed data logging activities on HHC systems with the optional data logging capability. Current date and time information is only maintained in units with the data logging option

4- Programming owner/operator information for display on the HHC to facilitate tracking of in-house instrumen-tation.

The following subsections provide information on the above listed start up procedures.

Section 3.4.1 Auto Off- Battery Save Function (BatFunc)

The HHC can be set up to automatically turn itself off if no keypad activity is detected for a 10 minute time period. This capability will protect the two 9 volt batter-ies from being depleted if the HHC is left on inadver-tently.

The following procedure is used to activate or disable the battery save function.

Step 1 With the HHC on and reading pressure press the SET UP key.

SET UP

Step 2 Using the arrow keys select the battery func-tion submenu (designated BatFunc in the set up menu). When selected, the text “BatFunc” will flash on the display.

Page 11: ATE-100 HAND HELD CALIBRATOR OPERATING MANUAL · ate-100 hand held calibrator operating manual revision 4.6 3/2004 i&m002-10037-11/00 (ahhc-man)

- 11 - Revision 4.6 3/2004

BatFunc PerCent UserEng H2Oref

Step 3 With “BatFunc” flashing press the enter key.

ENT

Step 4 Using the up/down arrow keys to select Auto Shut off. When selected the text will flash.

Auto shut off CfgBattIndicator

Step 5 With the words “Auto shut off” flashing press enter to activate the battery save function.

ENT

The PTE will respond by displaying the following:

Auto Shut off Disable Enable

If Enable is selected the HHC will automatically turn off if there is no keypad activity detected for a period of 10 minutes. If Disable is selected the HHC will remain on continuously until the battery voltage is no longer sufficient to power the system. The battery save mode selected is stored in Electrically Erasable Programmable Read Only Memory (EEPROM). As such it does not require reprogramming on power up.

note: An optional AC adapter is available for long term continuous measurement activities.

Section 3.4.2 Set Up for Battery Charge Level Indication

If this function is not set up pressing the BAT CK key will provide a measurement of the remaining voltage of the installed batteries.

If the battery check function is set up, the HHC can provide an estimate of the remaining battery life. This estimate is expressed as a percentage of the expected 30 hour life of newly installed alkaline batteries. Use of non-alkaline, lithium or rechargeable batteries will render the life expectancy estimate inaccurate. This function should be set up only when new batteries are installed.

If this function is not set up pressing the BATCK key will provide the measured remaining voltage of the installed batteries.

To have the capability to check the estimated remaining battery life follow the steps below.

Step 1 Press the On/OFF key on the keypad to turn the power on to the base unit.

ON OFF

Step 2 With the HHC on and reading pressure press the battery check key, designated BAT CK.

SET UP

Step 3 Using the arrow keys select the battery save function (designated BatFunc in the set up menu). When selected, the text “BatFunc” will flash on the display.

BatFunc PerCent UserEng H2Oref

Step 4 With the “BatFunc” text flashing press the enter key.

ENT

Step 5 Using the up/down arrow keys to select CfgBat-tIndicator to set battery level. When selected the text will flash.

Auto shut off CfgBattIndicator

In response the HHC will display:

Battery Indicator Disable Enable

Step 6 To Enable the battery level indictor use the arrow keys to select the text Enable

Step 7 With the text Enable flashing, press the enter key.

ENT

The HHC will respond by displaying:

Set BattCapacity XXXXXX

where:

XXXXXXXXXXXXXXXXX is a bar graph represen-tation of the remaining battery life and +X.XXV repre-sents the voltage level of the installed batteries.

Step 8 After installation of new batteries use the right pointing arrow key to index the bar graph to 100%.

>

Step 9 After the bar graph has been refreshed press the enter key.

ENT

Note: The bar graph and the estimate of the percent bat-tery life remaining will now be displayed along with the

Page 12: ATE-100 HAND HELD CALIBRATOR OPERATING MANUAL · ate-100 hand held calibrator operating manual revision 4.6 3/2004 i&m002-10037-11/00 (ahhc-man)

- 12- Revision 4.6 3/2004

battery voltage level when the BATCHK key is pressed.

Section 3.4.3 Low Battery Icon

The HHC provides advanced warning of a low battery condition. The icon, which looks like a miniature battery will appear and flash in the center of the top line of the display when the measured battery voltage drops to 5.7 Vdc. The calibrator will continue to function properly with the low battery icon flashing. To ensure uninter-rupted measurement capability it is recommended that the batteries be replaced as soon as possible after the low battery icon appears. When the measured voltage drops to 5.5 Vdc, the low battery icon will flash on the display and the calibrator will turn itself off after 15 seconds. If the measured voltage drops to 5.4 Vdc the calibrator will not allow power up.

Summary of low battery warnings:

5.7 Vdc: Low battery icon appears

5.5 Vdc: Low battery icon remains on display, unit powers down after 15 seconds.

5.4 Vdc: Power up not allowed

It is estimated that the user will have between 45 and 60 minutes of battery life remaining when the low battery icon initially appears. Actual battery life remaining will vary based on tasks being performed and ambient oper-ating temperature.

Section 3.4.4 Programming Date & Time Information

If the unit does not have the Data Logging option skip this section. The date/time function supports date/time recording capability that can be used in association with the Data Log option.

note: HHC units without the Data Logging option have no requirement for the date time tracking and will not keep track of the date and time when powered down.

For various application oriented functions the use of a real time clock will be required. Setting the real time clock is a simple process and should be done when the HHC is received.

The real time clock may be set by following the steps below.

Step 1 With the HHC on and reading pressure press the SET UP key.

SET UP

Step 2 Using arrow keys move through the menu selections and select “DateTime” on the LCD display.

DateTime will flash on the display when selected.

Owner Alarm DateTime RS232

Step 3 With the words “DateTime” flashing press the enter key.

ENT

This will activate the date time setup screen that looks as follows:

YYMMDDHHMMSS XXXXXXXXXXXX

where:

YY = the last 2 digits of the current year

MM = the month (01 for Jan. through 12 for Dec.)

DD = the day of the month (01-31 depending on day and month)

HH = the current hour using military time where: 0800 = 8:00 AM 1200 = noon 1500 = 3 PM 2000 = 8 PM

MM = minutes (from 0 to 60)

SS = seconds (from 0 to 60)

Setting the current date and time is accomplished by using the keys with the corresponding numerical values.

From left to right enter the appropriate number in each of the field positions using the numeral keys. Once a given field has the appropriate number entered the HHC will automatically index to the next position for entry.

When completed the date/time information should look as follows:

YYMMDDHHMMSS 961003111500

For a date/time of October(10), 3rd day (03), 1996 (96) at a time of 11:15 AM (1115), and 0 seconds (00).

When the correct time/date information has been entered and appears on the display press the enter key to store the time/date information in memory.

ENT

Time/date information is stored in battery backed up Random Access Memory (RAM). This information should only need to be changed or reentered when a time change has occurred, the HHC is to be used in a dif-ferent time zone than the one in which it was in during

Page 13: ATE-100 HAND HELD CALIBRATOR OPERATING MANUAL · ate-100 hand held calibrator operating manual revision 4.6 3/2004 i&m002-10037-11/00 (ahhc-man)

- 13 - Revision 4.6 3/2004

initial setup or when the lithium battery used to back up the RAM needs replacement (every 1-2 years depending on the environmental conditions under which the HHC is used). RAM memory is only supplied if unit is pur-chased with data logging option. Time/date information is not maintained in HHC units without data log option.

Section 3.4.5 Input of Owner/Operator Information

The HHC has the ability to display, on power up, the name of the individual, department or company respon-sible for its use or maintenance.

The following steps are to be followed to input user (owner) data.

Step 1 With the HHC on and reading pressure press the Set Up key, designated SET UP.

SET UP

Step 2 Using the arrow keys, select the Owner function from the setup menu. When selected the word “Owner” will flash on the display.

Owner Alarm DateTime RS232

Step 3 With the word “Owner” flashing press the enter key.

ENT

Step 4 After pressing EnT the display will read:

Access code? 000000

Step 5 A five digit owner access code was provided with your instrument at the time of shipment. Use the number keys on the HHC to enter the Owner Access Code from left to right.

Access code? 123456

Note: Two passwords were provided with your HHC. One password provides access to the owner program-ming field and the other provides access to the calibra-tion data and recertification programming. Please be certain to select the correct password. These passwords are not interchangeable.

If, at any time during the entry process you enter a number in error, press the CE key to clear the entry and restart the access code entry process.

If the password codes have been lost, contact your calibrator supplier. The serial number of the base unit is required for the factory to provide product password

information.

Step 6 With the proper access code displayed press the enter key.

ENT

If an incorrect access code is entered the HHC will respond:

Access denied

To restart the entry process after the “access denied” response re-enter the owner set up function through the setup menu.

Step 7 After entry of the proper access code the display will read:

Enter owner name xxxxxxxxxxxxxxx

To enter a new owner name use the up and down arrows to scroll through the alphanumeric entries and the left and right arrows to move the active entry field (cursor) to the next location.

A blank can be inserted by using the down arrow with the letter A flashing on the display. Continuing to press the down arrow after the blank appears will provide access to numerical values starting at 9 and decreasing to 0. The label may contain alphabetical, numerical or a combination of both types of entries.

To review:

Up/down arrows provide access as follows:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, _, A, B, C, D, E, F, G, H, I, J, K, L, M, n, O, P, Q, R, S, T, U, V, W, X, Y, Z

By maintaining pressure on the up/down arrow the dis-played number or letter will continue to change until the last character has been reached.

By pressing and releasing the up/down arrow a single step from letter or number can be accomplished.

The left/right arrow keys allow for entry of alpha numeric data in any of the available positions.

Step 8 After the desired operator information has been keyed the display will look as follows:

Enter owner name JOHN Q OPERATOR

Step 9 After the desired owner/user information has

Page 14: ATE-100 HAND HELD CALIBRATOR OPERATING MANUAL · ate-100 hand held calibrator operating manual revision 4.6 3/2004 i&m002-10037-11/00 (ahhc-man)

- 14- Revision 4.6 3/2004

been entered and is displayed press the enter key.

ENT

The HHC will respond:

JOHN Q OPERATOR Ent=OK CE=Cancel

Step 10 To store the owner/user information displayed press the EnT key. Pressing the CE key will return the HHC to the pressure measurement mode. If entry of new owner information is still required restart the process as outlined in steps 1-9 above.

Owner information is stored in Electrically Erasable Programmable Read Only Memory (EEPROM). This information should only need to be changed or re-entered when the owner/user changes.

Section 3.5 Removing Quick Select Pressure or Temperature Modules

Changing Quick Select pressure modules, therefore changing the measurement ranges in use, is quick and easy. Simply follow the steps below to change Quick Select pressure modules.

Step 1 Using the on/off key on the keypad of the base unit turn the power to the base unit off.

ON OFF

Step 2 With one hand, hold base unit keypad side down and press down on the square retaining tab located near the upper strap pin on the bottom of the base unit.

Step 3 Maintain pressure on the retaining tab and with your other hand firmly grasp the pressure manifold that extends from the end of the Quick Select pressure module and slide the module out of the module bay.

Important Note: Both module bays of the base unit should contain a pressure module to protect from dirt or other debris getting into the base unit assembly. If only one Quick Select pressure module is needed install the System Protection Module (part number 875X114-01) supplied with your unit at the time of shipment.

Section 4.0 Key Function Overview

The HHC has a great deal of functionality. Many of the product capabilities are activated by dedicated keys on the keypad. Other functions are either activated or set up through a set up menu activated by pressing the set up

key. A brief overview of the function of each key follows

Key

Designation Function

On/Off Turn unit on and off.

Set Up Provides access to set up functions for various on-board firmware functions/capabilities.

PORT SEL Used to select displayed measure-ment data. Selection includes: reading pres-sure from either one or both installed sensors as well as selection of reading pressure and electrical measurements simultaneously. (See Section 5.0 for details.)

ZERO Provides ability to zero, either one or both, Quick Select Modules. (See Sec-tion 6.0 for details.)

BAT CK Provides graphical representation of remaining battery power levels. (SeeSection 3.4.2 for details.)

*ENG UNIT Used to select desired engineering unit from the following: psi, inHg, inWC, ftSW, Bar, mBar, kPa, Mpa, mmHg, cmWC, mmWC, kg/cm, user. Where “user” is an operator programmable engineering unit, allowing the display of any single engineering unit not included in the above list. (See Section 8.0 for details.)

MIN/MAX Displays the minimum and maximum pressure values measured. (See Sec-tion 11.0 for details.)

TARE Allows for subtraction of an operator selected value from the displayed pres-sure measurement value for one or two Quick Select pressure modules. (See Section 9.0 for details.)

FLOW Provides ability to measure the flow of a gas in terms of velocity or volume. (See Section 14.0 for details.)

*LEAK Allows testing for leaks in terms of pressure decay over time or in terms of leak rate. (See Section 15.0 for details.)

DATA LOG Provides set up capability for manual or (OPTIOnAL)automated data log-ging. (SeeSection

Key

Page 15: ATE-100 HAND HELD CALIBRATOR OPERATING MANUAL · ate-100 hand held calibrator operating manual revision 4.6 3/2004 i&m002-10037-11/00 (ahhc-man)

- 15 - Revision 4.6 3/2004

Designation Function

DATA STORE Provides ability to store measured pressure or temperature values. (See Section 22.0 for details.)

HOLD Freezes the displayed pressure and electrical measurements. (See Section 10.0 for details.)

^ Moves cursor up.

*TRIP Provides access to pressure

DETECT switch testing firmware. (See Section 18.0 for details.)

< Moves cursor to the left.

*DAMP Activates or disables dampused to smooth displayed pressure measure-ment data from the effects of low level pressure transients. (See Section 12.0 for details.)

> Moves cursor to the right.

CE Clears previous entry.

mA/V Changes electronic measurement display from mA to V or V to mA and can also be used to deactivate either side of the display. (See Section 7.0 for details.)

v Moves cursor down.

*% Converts display from pressure units to % of f.s. (See Section 13.0 for details.)

ENT Enters input data.

Notes on key functions: * These functions require data input through activation of appropriate input fields in the setup menu. Examples of required input data include:

For Damping: Level of damping desired.

For Engineering Unit Selection: Water reference tem-perature or user (non library) engineering unit entry can be selected.

For Leak: Type of measurement (leak rate vs pressure decay), time to monitor and for leak rate applications the volume of the vessel to be monitored.

For % Readout: Input zero and span, output zero and span and device type (I/P, P/I, P/P, P/E).

The required data is input through the set up functions provided by the corresponding menu options accessed and available by pressing the setup key.

Complete details of each of the above outlined capabili-ties is included in the section referenced after the func-tion summary provided above.

Section 5.0 Port Select Function

The Port Select Key, designated PORT SEL, provides the ability to select either of the two installed Quick Select modules for display, both modules for display or either a pressure/temperature module on one side and a current or voltage measurement on the other side of the display. For example, if the HHC has two pressure mod-ules installed and is reading in psi the standard display for dual pressure readout would be:

psi psi +123456 +123456

Pressing the Port Select key once will result in the fol-lowing display change:

psi mA +123456 +1.234

Pressing the Port Select key a second time will result in the following display change:

mA psi +1.234 +123456

Pressing the Port Select key a third time will result in the display returning to a dual pressure readout mode. As seen below:

psi psi +123456 +123456

If the HHC has a temperature measurement interface module installed the same type of sequence would be followed. For example, if the HHC had an RTD interface module installed in the left module bay the following sequence would be observed as a result of pressing the PORT SEL key: oF psi +72.35 +123456

Pressing the Port Select key once will result in the fol-lowing display change: oF mA +72.35 +1.234

Pressing the Port Select key a second time will result in the following display change:

mA psi +1.234 +123456

Pressing the Port Select key a third time will result in

Page 16: ATE-100 HAND HELD CALIBRATOR OPERATING MANUAL · ate-100 hand held calibrator operating manual revision 4.6 3/2004 i&m002-10037-11/00 (ahhc-man)

- 16- Revision 4.6 3/2004

the display returning to a readout mode featuring the measurement data from both of the installed modules. As seen below: oF psi +72.35 +123456

See 8.4 for display of pressure in two different engineer-ing units.

See Section 7.0 for display of current and voltage mea-surement data.

Section 6.0 Zero Function

This section applies to pressure measurement only. The zero function does not apply to the function of tempera-ture measurement. The tare capability will function in conjunction with temperature measurement modules. This allows for the subtracting of a displayed or operator entered temperature value from the displayed tempera-ture measurement data. See Section 9.0 for information on the tare function.

Pressing the zero key when two Quick Select pressure mod- ules are installed and displayed will simultaneously zero both pressure modules. In addition, each module can be zeroed independently, as outlined in the following section.

It is recommended that the instrument be zeroed prior to use or calibration.

Section 6.1 Zeroing One of Two Installed Quick Select Pressure Modules

If zeroing one of two installed modules is desired the following process should be followed:

In this example we will assume that the left pressure module is to be zeroed and the right pressure module is to be unchanged.

Step 1 Press the port select the number of times required (one or two) to deactivate the display of pres-sure on the side that you wish not to re-zero.

PORT SEL

When set up in accordance with the requirements of this example the HHC will have the following

information on the display:

psi mA +12345 +1234

Step 2 With the pressure display deactivated for the side that is not to be zeroed press the zero key.

ZERO

The HHC will respond by displaying:

psi mA +00000 +1234

Step 3 To resume the display of pressure measurement data, for the pressure module not zeroed, press the port select key the required number of times (one or two) to restore the dual pressure display.

When complete the HHC will display:

psi psi +00000 +12345

normal pressure measurement activity can now be resumed.

Section 7.0 Displaying Current and Voltage Measurements

As outlined in the previous section the port select (PRT SEL) key is used to select the information seen on the display.

The display configurations available are:

Left Side of Display Right Side of Display

pres/temp pres/temp

pres/temp electrical measurement

electrical measurement pres/temp

The pressure/temperature value on the display cor-responds with the measured value of the Quick Select module installed in the module bay on the corresponding side of the calibrator.

To read a current or voltage follow the steps below.

Step 1 With the HHC on and reading pressure/temperature set the display as outlined in Section 5.0 to display the pressure measurement of the desired module.

Step 2 With the pressure measurement, for the desired module, displayed on one side and the electronic measurement on the other press the mA/V key until the desired electrical measurement parameter appears. For example, with a pressure module installed in the left module bay, pressing the mA/V key will produce the following results:

First display when electronic measurement is initiated through the port select function:

psi mA

+123456 +1.234

Result from pressing mA/V key first time:

psi ------ +123456

Page 17: ATE-100 HAND HELD CALIBRATOR OPERATING MANUAL · ate-100 hand held calibrator operating manual revision 4.6 3/2004 i&m002-10037-11/00 (ahhc-man)

- 17 - Revision 4.6 3/2004

Result from pressing mA/V key a second time:

psi volts +123456 +1.234

Result from pressing mA/V key a third time:

psi mA +123456 +1.234

Using the combination of the port select function and the mA/V function any combination of electrical measure-ments and pressure measurements can be produced.

Section 8.0 Engineering Unit Selection-Pressure Measurement

The HHC is factory programmed to provide pressure measurement in 12 engineering units. These include; psi, inches of mercury, inches of water, feet of sea water, bar, mbar, kilopascal, megapascal, millimeters of mercury, centimeters of water, millimeters of water and killograms per square centimeter.

Pressure measurement data may also be displayed in a user programmable non-library engineering unit. Section 8.2 Programming a Custom (User) Defined Engineering Unit provides complete details on setting up an operator defined engineering unit.

Inch, centimeter and millimeter of water engineering units may be set up for conversion at temperatures of 4 degrees and 20 degrees C or 60 degrees F. Consult Section 8.5 H

2O Reference Temperature Selection to pro-

gram the desired temperature for inches or centimeters of water conversions.

Section 8.1 Selecting a Factory Programmed Engineering Unit

To select an engineering unit from the on-board library follow the steps below:

Step 1 With the HHC on and displaying pressure mea-surement data press the engineering unit key. This key is designated EnG UnIT.

ENG UNIT

The HHC will respond by displaying the engineering unit library as follows:

first screen:

psi inHg inWC ftSW Bar mBar kPa mPa

second screen:

mm Hgcm WCmm WCkgcm user

The engineering unit abbreviations correspond to the following engineering units:

psi: pounds per square inch inHg: inches of mercury inH2O: inches of water column* ftSW: feet of sea water Bar: bar mBar: millibar kpa: kiloPascals mPa: megaPascals mmHg: millimeters of mercury cmWC: centimeters of water column* mmWC: millimeters of water column* kgcm: kilograms per square centimeter user: user programmable engineering unit (see Section 8.2 for details)

*Conversion factor is programmable for temperature. Consult Section 8.5 for details.

Step 2 Using the left/right and up/down arrow keys select the desired engineering unit. When selected, the text for the desired engineering unit will flash.

psi inHg,inWCftSW Bar mBar kPa mPa

In the above example mBar is the selected unit.

Step 3 With the desired engineering unit flashing press the enter key.

ENT

The calibrator will respond by displaying the pressure measurement(s) in the newly selected engineering unit. If two Quick Select pressure modules are installed the output of both will be displayed in the selected engi-neering unit. The HHC can also display the measure-ment data of two installed Quick Select pressure modules in independent engineering units. Section 8.4 provides the set up procedures for dual sensor dual engineering unit operation.

Section 8.2 Setting up a Custom or User Defined Engineering UnitThe HHC has a user programmable engineering unit available. This allows for the display of pressure mea-surement data in an engineering unit that is not in the library of the HHC. Any unit of pressure measurement that is linearly proportional to pressure change can be programmed for use in the user engineering unit field.

For this example, the pressure measurement unit of mSW (meters of sea water) will be used as the desired user engineering unit. To set the user engineering unit to provide pressure measurement data in mSW follow

Page 18: ATE-100 HAND HELD CALIBRATOR OPERATING MANUAL · ate-100 hand held calibrator operating manual revision 4.6 3/2004 i&m002-10037-11/00 (ahhc-man)

- 18- Revision 4.6 3/2004

the steps below.

Step 1 With the HHC on and reading pressure press the key designated SET UP.

SET UP

Step 2 Using the arrow keys select the User engi-neering unit option displayed as “UserEng”. The text “UserEng” will flash when selected.

BatFunc PerCent UserEng H2Oref

Step 3 With the text “User Eng” flashing press the enter key.

ENT

Step 4 After pressing the enter key the HHC will respond by displaying:

Conv from psi .000000

Step 5 Enter the conversion factor required to convert from psi to the engineering unit desired. For conversion from psi to mSW the conversion factor is 0.684482. Enter 6 digits to provide the required resolution to sup-port the accuracy of the HHC. A complete list of conver-sion factors is provided in Appendix A.

Use the number keys to enter the desired conversion factor, entering the required factor from left to right. For our example of mSW the conversion factor is 0.684482 and the display should read:

Conv from psi 0.684482

If an incorrect conversion factor is entered press the clear entry key, designated CE, to re-initiate the entry process for the correct factor.

Step 6 When the correct numerical value appears on the display press the enter key.

ENT

After entering the conversion factor the HHC will respond by displaying:

Enter unit’s name _ _ _ _ _ _

Step 7 Enter the name of the engineering unit selected, abbreviated to 6 characters or less. For our example mSW is a 3 character abbreviation for meters of sea water. This abbreviation will fit in the 6 digit field. To enter the mSW engineering unit label use the up and

down arrow keys to increment or decrement through the alphabet/numerical values and the left and right arrows to move the active entry field (cursor) to the next loca-tion.

If needed for the desired engineering unit, a blank can be inserted by using the down arrow with the letter A flash-ing on the display. Continuing to press the down arrow after the blank appears will provide access to numerical values starting at 9 and decreasing to 0. The label may contain alphabetical, numerical or both types of entries.

To review:

Up/down arrows provide access as follows:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, _, A, B, C, D, E, F, G, H, I, J, K, L, M, n, O, P, Q, R, S, T, U, V, W, X, Y, Z

By maintaining pressure on the up/down arrow the display number or letter will continue to change until the last character has been reached.

By pressing and releasing the up/down arrow a single increment or decrement between letters or numbers can be accomplished.

The left/right and up/down arrow keys allow for entry of letters or numbers in any of the available label positions.

Step 8 For this example, after the engineering unit label has been keyed the display will read:

Enter unit’s name mSW

Step 9 With the desired engineering unit label dis-played press the enter key.

ENT

After the enter key has been pressed the HHC will resume normal pressure measurement in the original engineering units. Instructions on how to use the custom engineering units are provided in the following section.

Section 8.3 Using A Custom Engineering Unit

After a custom engineering unit has been programmed it may be used by following the steps below. For informa-tion on programming a custom engineering unit refer to Section 8.2 Setting up a Custom or User Defined Engineering Unit.

To display pressure measurement data in the user engi-neering unit:

Page 19: ATE-100 HAND HELD CALIBRATOR OPERATING MANUAL · ate-100 hand held calibrator operating manual revision 4.6 3/2004 i&m002-10037-11/00 (ahhc-man)

- 19 - Revision 4.6 3/2004

Step 1 With the HHC on and measuring pressure press the engineering unit key. Designated EnG UnIT on the keypad.

ENG UNIT

The HHC will respond by displaying:

first screen:

psi inHg inWC ftSW Bar mBar kPa mPa

second screen

mm Hgcm WCmm WCkgcm user

Step 2 Using the left/right and up/down arrow keys select the word “user”. When selected the word “user” will flash.

mm Hgcm WCmm WCkgcm user

Step 3 With the word “user” flashing press the enter key.

ENT

The HHC will respond by displaying pressure measure-ment data in the following display format:

u_mSW u_mSW xxxxxx xxxxxx

where:

u_ indicates that the engineering unit in use is a user defined unit with a label of mSW

xxxxxx represents the current pressure measurement(s) in the user engineering unit.

See Section 8.4 Display of Two Engineering Units for information on how to simultaneously display the mea-sured values from two Quick Select pressure modules in different engineering units.

Section 8.4 Display of Two Engineering Units

The HHC can display pressure measurement data from two installed Quick Select pressure modules in indepen-dent engineering units. To display two different engi-neering units simultaneously the following procedure should be followed.

Step 1 With the HHC on and displaying pressure mea-surement data from two Quick Select pressure modules press the engineering unit key, designated EnG UnIT on the keypad.

ENG UNIT

Step 2 Using the arrow keys select either of the two desired engineering units. For this example we will select psi as one of the desired units.

With psi selected the text “psi” will flash on the display and the display will look as follows:

psi inHg inWC ftSW Bar mBar kPa mPa

Step 3 Press the enter key to select psi.

ENT

The HHC will respond by returning to the pressure mea-surement mode and will display the measurement data for both Quick Select pressure modules in psi, as follows:

psi psi +12345 +12345

Step 4 next, press the port select to deactivate the dis-play of pressure measurement data on the side that you wish to maintain pressure measurement in terms of psi. A pressure display is deactivated when the correspond-ing side of the display contains milliamp (mA) data, Voltage (V) data or is blank “ ------ ”.See Section 5.0 for details on the port select function.

In this case we will assume that the right side will remain in psi and our goal is to present the measurement data from the left Quick Select pressure module in bar.

Pressing the port select one time will deactivate the left pressure display converting it to a mA measurement field. Pressing the port select a second time will deacti-vate the right side, converting it to a mA measurement field and returning the left side of the display to the function of pressure measurement.

Since we want the right side to remain psi we will deac-tivate it in the psi mode by pressing the port select key once.

PORT SEL

The HHC will respond with the following display:

psi mA +12345 +1234

Step 5 With the right side deactivated from pressure measurement activities press the engineering unit key, designated EnG UnIT on the keypad.

ENG UNIT

Page 20: ATE-100 HAND HELD CALIBRATOR OPERATING MANUAL · ate-100 hand held calibrator operating manual revision 4.6 3/2004 i&m002-10037-11/00 (ahhc-man)

- 20- Revision 4.6 3/2004

The HHC will respond by displaying:

psi inHg inWC ftSW Bar mBar kPa mPa

Using the arrow keys select the desired engineering unit for the left side. In this example we have opted for the engineering unit of Bar. With the Bar engineering unit selected the display will look as follows with the text “Bar” flashing:

psi inHg inWCf tSW Bar mBar kPa mPa

Step 6 With the desired engineering unit selected (flashing) press the enter key.

ENT

The HHC will respond by displaying the following:

Bar mA +12345 +1234

Step 7 Reactivate the right side of the display for pres-sure measurement by pressing the Port Select key, as required.

First press of the port select key.

PORT SEL

HHC will respond by displaying the following:

mA psi +1234 +12345

Second press of the

PORT SEL

HHC will respond by displaying the following:

Bar psi +12345 +12345

Using this process, any engineering unit may be selected for display of the right or left Quick Select pressure module measurement data.

Section 8.5 Temperature Selection for H2O Conversion Factor

The HHC includes a library of 12 factory programmed engineering units. This selection includes the engineer-ing units inH2O, mmH2O and cmH2O. The pressure generated by a column of water will vary with the tem-perature of the water.

Over the years, several temperatures have evolved into industry standards. These are the conversion factors

most commonly used by manufacturers of pressure instruments when calibrating pressure measurement devices in terms of the height of a column of water. To facilitate your calibration and test of these instruments, the HHC includes 3 conversion factors for each of the water column based pressure engineering units. The conversion factors are for the temperatures of 4 and 20 degrees Celsius and 60 degrees Fahrenheit. The factory default setting is 20 degrees C.

The selection of the desired temperature for use in the conversion of water based pressure measurements can be accomplished by following these steps.

Step 1 With the HHC on and reading pressure press the SET UP key.

SET UP

Step 2 Using the up/down and left/right arrow keys select the H2O reference option displayed as “H2Oref” in the set up menu. When selected the text “H2Oref” will flash on the display.

BatFunc PerCent UserEng H2Oref

Step 3 With the text “H2Oref” flashing press the enter key.

ENT

The HHC will respond by displaying:

H2O ref temp 20C 60F 4C

Step 4 Using the left/right arrow keys select the desired temperature for the conversion factor. The selected value will flash on the display.

H2O ref temp 20C 60F 4C

In the above example the conversion factor for water at 60 degrees Fahrenheit was selected.

Step 5 With the desired temperature for the conversion factor flashing press the enter key.

ENT

The selected conversion temperature will be activated and will be stored in Electrically Erasable Program-mable Read Only Memory (EEPROM). It will not have to be reentered on power-up unless a change in the refer-ence temperature is desired.

After pressing the enter key the HHC will resume basic pressure measurement.

Page 21: ATE-100 HAND HELD CALIBRATOR OPERATING MANUAL · ate-100 hand held calibrator operating manual revision 4.6 3/2004 i&m002-10037-11/00 (ahhc-man)

- 21 - Revision 4.6 3/2004

Section 9.0 Tare Function

The HHC has the ability to tare (subtract an operator selected value) from the displayed pressure or tempera-ture measurement value of either one or two installed Quick Select modules. This is most commonly required in applications where a pressure pre-load, as in a weigh-ing application, must be subtracted from the displayed pressure measurement.

If the HHC is in use with two Quick Select modules, independent tare values can be entered for each of the pressure modules. If one of two installed Quick Select modules has been deactivated, meaning the measured values are not shown on the display, the calibrator will request a tare value only for the active module. To input a tare value for one or two Quick Select pressure mod-ules follow the steps below:

Step 1 With the HHC on and displaying pressure mea-surement data press the tare key.

TARE

The HHC will respond by displaying the following:

Left tare value +xxxxxx

If a tare value was previously programmed the HHC will display that value. If the previous tare value was zero the HHC will display the last pressure measurement value displayed prior to pressing the TARE key.

Step 2 Use the number keys to input a tare value other than the default value or to change the existing tare value. If no tare value is desired input zero (0).

Warning: Failure to enter the zero (0) will result in the HHC automatically accepting the last displayed value as the desired tare value.

Left tare value +12345

Step 3 With the desired value displayed press the enter key.

ENT

The HHC will respond by displaying the following:

Right tare value +xxxxx

Step 4 Use the number keys to input a tare value other than the default value or to change the existing tare value. If no tare value is desired input zero (0).

Warning: Failure to enter the zero (0) will result in the HHC automatically accepting the last displayed value as the desired tare value.

Right tare value +12345

Step 5 With the desired value displayed press the enter key.

ENT

Note: The measurement data on the display will flash if the HHC is operating in the tare mode.

After pressing the enter key the HHC will resume normal pressure measurement activities. Tare values may be reviewed at any time by pressing the TARE key. If the HHC is being used with two Quick Select modules and only one module has a nonzero tare value the display will only flash on the side that corresponds to the Quick Select module with the nonzero tare value.

Step 6 To exit the tare mode follow the procedures out-lined in steps 1 through 5 and at the tare value prompt enter zero (0). When the tare values for both modules have been reset to zero tare mode operation will be dis-continued and the display will stop flashing.

Section 10.0 Hold Function

The hold function provides the ability to freeze the dis-played pressure, flow or electrical measurement values. In addition, pressing the hold key will result in an H appearing in the RS232 output data stream and will also result in a flashing H appearing on the left side of the top line of the instrument display.

The RS232 output will look as follows for a dual sensor measurement:

Normal Operation +1.2345 inH2O +1.2345 inH2O Left Min: +0.00000 Max: +1.2345 Right Min: +0.0000 Max: +1.2345 With Hold Function Invoked +1.2345 H inH2O +1.2345 inH2O Left Min: +xxxxx.x Max: +xxxxx.x Right Min: +xxxxx.x Max: +xxxxx.x

Section 10.1 Using the Hold Function

Step 1 To invoke the hold function press the hold key.

HOLD

The HHC will respond by freezing the displayed values and adding a flashing “H” that will appear in the left most position on the top line of the display.

Page 22: ATE-100 HAND HELD CALIBRATOR OPERATING MANUAL · ate-100 hand held calibrator operating manual revision 4.6 3/2004 i&m002-10037-11/00 (ahhc-man)

- 22- Revision 4.6 3/2004

Step 2 To exit the hold function press any key.

Note: While in the hold mode, if the RS232 interface is enabled, the HHC will continue to transmit the displayed values.

Section 11.0 Minimum and Maximum Value Tracking

The HHC monitors and stores in memory both the minimum and maximum pressure or temperature values measured. The following procedure will allow review of these values.

Step 1 To recall the minimum and maximum values simply press the key labeled:

MIN MAX

The HHC will respond by displaying:

+2345 +12345 -12345 -12345

where: maximum values are displayed on the top line and +12345 represents the maximum value(s) measured. Minimum values are displayed on the bottom line and 12345 represents the minimum value(s) measured.

If two Quick Select modules are installed, the min/max function recalls and displays the minimum and maxi-mum values for both modules simultaneously.

Step 2 To clear the stored minimum and maximum value press the clear entry key:

CE

Pressing any key other than the CE key will maintain the stored values in memory.

Pressing any key on the keypad will return the HHC to normal pressure measurement activities.

Section 12.0 Damping

Damping provides the ability to stabilize the displayed or transmitted pressure value by minimizing the effects of low level transients and electronic instability. Damp-ing is most commonly used with Quick Select pressure modules to overcome the effects of pressure pulsation and vibration transmitted through the measurement media. The level of damping is established in the set up menu. Activation of the damping process is accom-plished through a dedicated key on the keypad.

Damping accomplishes the stabilization of the pressure measurement value by producing an averaged pressure value which is shown on the display and available for transmission over the RS232 interface. When damping is

not activated the HHC takes a new pressure value every 130 to 240mS (~8 times per second) and updates the display. If required, this same measurement data is also transmitted over the RS232 interface.

When damping is activated the value displayed and/or transmitted is an average value. The average consists of the average of from 1-16 consecutive readings. The higher the number of readings averaged the greater the stabilization effect of the damping. The number of consecutive readings averaged is programmable, allow-ing the damping function to be tailored to the specific requirements of most any application.

Section 12.1 Set Up of the Damping Function

The following steps should be used to set up the level of damping desired.

Step 1 With the HHC on and reading pressure press the SET UP key.

SET UP

Step 2 Using the arrow keys move through the set up menu and select “Dampen” on the display of the HHC. The word “Dampen” will flash on the display when selected.

EvntTimr Dampen LeakRate Status

Step 3 With the word Dampen flashing press the enter key.

ENT

Step 4 In response to the activation of the dampening set up menu the HHC will respond by displaying the fol-lowing:

fast <------- > slow X

Where the left most position represents zero damping (averaging of 1) and the right most position represents maximum damping (averaging of 16 readings). Starting from the left each movement of the highlighted box to the right increases the number of samples being aver-aged by one (1). By moving the highlighted field to the left the level of damping can be reduced.

The level of damping desired will likely vary from appli-cation to application and sensor range to sensor range. For best results, select the minimum amount of damping necessary to provide a stable display value. It is impor-tant to recognize that while damping will stabilize the displayed and/or transmitted value it will also slow down the response rate to a true pressure change. The slow

Page 23: ATE-100 HAND HELD CALIBRATOR OPERATING MANUAL · ate-100 hand held calibrator operating manual revision 4.6 3/2004 i&m002-10037-11/00 (ahhc-man)

- 23 - Revision 4.6 3/2004

down results from the fact that an averaged value will be displayed. If the damping level is set to 16 the displayed value will represent the average pressure measurement over the previous ~2 seconds (16 readings times 130 mS/reading). Therefore, the greater the level of damp-ing in use the greater the time lag will be between the displayed measurement and the true (not averaged) pres-sure measurement value.

Use the left/right arrow keys to set the desired damping level, for example, averaging 8 readings as shown here.

fast <------------------> slow _ _ _ _ _ _ _ X _ _ _ _ _ _ _ _

Step 5 With the desired level of damping shown press the enter key to store the damping level in EEPROM.

ENT

The level of damping has now been set. Proceed to Sec-tion 12.2 for instructions on how the damping process is activated.

Section 12.2 Activating or Discontinuing the Damping Function

The following process provides step by step instructions on how to activate or discontinue the damping function.

Step 1 Once established in the set up menu the damp-ing process may be enabled or disabled through the use of the DAMP key on the keypad. To activate/deactivate the damping function press the DAMP key on the key-board.

DAMP

In response to pressing the DAMP key the HHC will respond by displaying:

damping function Disable Enable

Step 2 Using the left or right arrow select “Disable” to turn damping off or “Enable” to initiate damping. When the desired option is selected (flashing) press the enter key.

ENT

On power up the HHC will default to damping disabled. Damping must be re-initiated via the keyboard after the instrument has been turned back on. The level of damp-ing, established in the set up menu is stored in EEPROM and, therefore, does not need to be reprogrammed after power up unless the level of damping desired has changed.

Section 13.0 Percent Function

The percent function allows the calibrator to display the output from a device under test in terms of percent error at a given percentage of the total range. This func-tion applies to the calibration of both temperature and pressure transmitters. For example, if the HHC is being used to calibrate a 0-100 psi transmitter with a 4/20 mA output the HHC can be programmed to display the fol-lowing data:

Display Pressure normal Applied Mode 0 psi 4 mA 25 psi 8 mA 50 psi 12 mA 75 psi 16 mA 100 psi 20 mAThe percent mode of operation allows for quick and easy determination of the level of inaccuracy of the device under calibration. For example:

If 50 psi was applied to a 100 psi device with a 0-10 Vdc output but instead of 5 Vdc the transmitter being cali-brated had an output of 4.995 Vdc the HHC, when used in the percent mode, would display the following:

% scale % error +50 -0.05

Therefore, the percent mode of operation eliminates the need for operator calculations to determine the level of accuracy of the device under test.

If the HHC is equipped with the data logging option the percent error and percent full scale information can be stored in the calibrator on-board memory. To do this follow the set up instruction provided in Section 22.5 Manual Data Logging.

Section 13.1 Set Up of the Percent Function

The percent function is set up as follows:

Step 1 With the HHC on and reading pressure press the SET UP key.

SET UP

Step 2 Using the arrow keys select the text “PerCent” from the setup menu. When selected the text “PerCent” will flash on the display.

BatFunc PerCent UserEng H2ORef

Step 3 With the text “PerCent” flashing press the enter key.

Page 24: ATE-100 HAND HELD CALIBRATOR OPERATING MANUAL · ate-100 hand held calibrator operating manual revision 4.6 3/2004 i&m002-10037-11/00 (ahhc-man)

- 24- Revision 4.6 3/2004

ENT

The HHC will respond by displaying:

Enter Input Zero .000000

Step 4 Using the number keys enter the lowest calibra-tion point for the device to be tested.

For example:

For a 0-100 inH2O range instrument enter zero. For a 3-15 psi transmitter enter 3. For a -5 to 0 to + 5 inH2O transducer enter -5. For a 0-200 degree RTD enter 0

When the desired “zero” value has been entered the display will look as follows for the testing of a 0-100 in H2O transducer.

Enter Input Zero .000000

If an incorrect value is entered use the CE key to clear the entry and re-key the zero value.

With the desired “zero” value displayed press the enter key.

ENT

The HHC will respond by displaying:

Enter Input FS .000000

Step 5 Using the number keys enter the full scale range (F.S.) of the device to be calibrated. For our example of a 0-100 in H2O range instrument the display will look as follows:

Enter Input FS 100

Step 6 With the desired input full scale displayed press the enter key.

ENT

The HHC will respond by displaying:

Enter output Zero 0.0000

As with input zero, the output zero is the lowest output the device being calibrated will produce.

For example:

For a 0-10 Vdc output device enter zero. For a 4/20mA output device enter 4. For a 1-5 Vdc output device enter 1.

Step 7 With the desired output “zero” keyed in and displayed press the enter key.

ENT

The HHC will respond by displaying:

Enter output FS 0.0000

Step 8 Using the number keys enter the full scale output of the device being calibrated. For a 0-10 Vdc output device the display will look as follows:

Enter output FS 10

Step 9 With the desired full scale output displayed press the enter key.

ENT

The HHC will respond by displaying the following:

Device type I/P P/I P/P P/E

Using the left/right arrow keys select the appropriate device type where:

I/P is a current to pressure device P/I is a pressure or temperature to current device P/P is a pressure to pressure device P/E is a pressure or temperature to voltage device

In this case we are testing a 0-100 inH2O range trans-ducer that produces a 0-10 Vdc output from zero to F.S. Therefore, the appropriate selection is P/I and the display will look as follows:

Device type I/P P/I P/P P/E

Step 10 With the desired device type flashing press the enter key.

ENT

At this time the HHC will return to basic measurement activities.

Section 13.2 Use of the Percent Function

Note: The HHC must be set up so that the desired Quick Select module is active and so that the desired electronic measurement is displayed prior to entering the % mode. Consult Sections 5.0 Port Select and 7.0 Current & Volt-age Measurements for setup details.

Step 1 With the percent function set up, press the % key on the keypad of the HHC to activate the percent mode

Page 25: ATE-100 HAND HELD CALIBRATOR OPERATING MANUAL · ate-100 hand held calibrator operating manual revision 4.6 3/2004 i&m002-10037-11/00 (ahhc-man)

- 25 - Revision 4.6 3/2004

of operation.

%

Step 2 Connect the output lines from the device under test to the miniature banana jack inputs on the front of the HHC. Use the mA and COM jacks for current devices and the V and COM jacks for voltage output devices.

Step 3 Make the necessary plumbing connections using a Tee fitting to allow input of applied pressure to both the HHC and the device under test.

Step 4 Perform testing in accordance with the number of calibration points required for the device to be tested.

Step 5 To exit the percent mode press the percent key.

%

The HHC will respond by returning to basic pressure or temperature measurement activities.

Section 14.0 Flow Velocity and Flow Volume Measurement Background

The HHC used in conjunction with a pitot tube or an annubar has the ability of measuring the flow volume or flow velocity of a clean, dry gas. The HHC must be used in with a GQS-1 low differential pressure Quick Select module to perform the flow measurement function.

The accuracy of a flow measurement is a function of a number of contributing factors. These are; the basic accuracy of the differential pressure measurement, accu-racy of the pitot tube or annubar in use as it relates to the K factor supplied by the manufacturer of the device and the accuracy of the correction being made for the air density. It is not possible to provide an all inclusive accuracy statement for flow measurement activities. Steps that can be taken to maximize system flow mea-surement accuracy include:

1 – Calculation and input of the actual air density for the media to be measured. The air density is a function of temperature, humidity, barometric pressure.

The velocity equation (ft/min) is as follow:

where:

dpw = differential pressure in inches of water Adw = the air density

The air density can further be calculated through employing the following equation:

dpwV = 1097 x K x √Adw

Ad = 0.07649 x ( Pa/14.73) x [520/(T+460)]

where:

Paa = the absolute pressure in duct in psia T = air temperature in duct in degrees Fahrenheit Flow Volume = (velocity x duct area)/144

2 – Purchase of a characterized and certified pitot tube or annubar with a K factor determined for the specific probe to be used.

3 – Purchase of the highest accuracy differential pres-sure Quick Select module available.

Section 14.1 Set Up for Flow Velocity and Flow Volume Measurement

In preparation to perform flow velocity and volume measurements the operator should have the following information available for entry during the set up of the application on the HHC.

K factor Provided by the manufacturer of the flow probe to be used.

Air density A default value has been programmed into the HHC in the event that a more accurate one cannot be calculated.

Duct area For air volume measurement the area of the duct in which measurements are to be taken must be calculated.

A GQS-1 differential type (dual process connection) Quick Select pressure module must be used for flow measurement activities.

Basic keypad functions such as damping, tare, min/max recall, mA/V measurement display, battery check, dis-play hold, data logging, zero and port select are avail-able for use during flow measurement activities. Consult the appropriate sections of this manual for information on the set up and use of these product functions.

For flow measurement follow the steps outlined in the sections corresponding to the type of flow measurement (velocity or volume) to be performed.

Section 14.2 Flow Velocity Measurement

Step 1 With the HHC on and displaying pressure mea-surement values press the flow key.

FLOW

The HHC will respond by displaying:

Flow Velocity Volume

Step 2 To perform flow velocity measurements select the word velocity using the left/right arrow keys. When selected the word velocity will flash.

Flow Velocity Volume

Page 26: ATE-100 HAND HELD CALIBRATOR OPERATING MANUAL · ate-100 hand held calibrator operating manual revision 4.6 3/2004 i&m002-10037-11/00 (ahhc-man)

- 26- Revision 4.6 3/2004

Step 3 With the word Velocity flashing press the enter key:

ENT

The HHC will respond by displaying:

Enter Air Density lbs/ft3 .07480

Step 4 Using the number keys input the required air density value or press enter to use the 0.07480 default value.

Step 5 With the required air density value displayed press the enter key.

ENT

The HHC will respond by displaying:

EnterFlowCoef(K) x.xxx

The flow coefficient or K factor is a value specific to the pitot tube or annubar to be used. Consult the manufac-turer of the annubar or pitot tube for the K factor for your flow probe. A default value of 0.6 is factory programmed into the HHC firmware. This value can be overwritten, with a K factor for the specific flow measurement probe, to optimize flow measurement accuracy.

Step 6 Connect the pitot tube or annubar to the Quick Select pressure module, as indicated in the manufactur-ers manual for the flow probe, high side to the high pres-sure port on the Quick Select pressure module and low side to the low pressure port on the Quick Select module.

Place the probe in the duct as instructed in the probe manual. The HHC will now display the measured dif-ferential pressure in terms of flow velocity (ft/min).

To Exit Flow Velocity Measurement and Return to Basic Pressure Measurement Press the Clear Entry Key (CE).

Section 14.3 Engineering Units for Flow Velocity

As with standard pressure measurement the HHC can provide flow velocity in a variety of units of measure. To select a unit of measure for flow velocity follow the steps below.

Step 1 With the HHC operating in the flow velocity mode (refer to Section 14.1 for instructions on entering the flow velocity mode) press the engineering unit key.

ENG UNIT

The HHC will respond by displaying the following:

ft/min ft/sec MPH MeterSec

These are the 4 units of measure available for display of flow velocity.

Step 2 Using the left/right and up/down arrow keys select the desired unit of measure. When selected the unit of measure will flash. In this example the engineer-ing unit of ft/sec has been selected.

ft/min ft/sec MPH MeterSec

Step 3 With the desired unit of measure flashing, press the enter key.

ENT

After pressing the enter key the HHC will resume mea-suring flow velocity in the selected unit of measure.

Section 14.4 Flow Volume Measurement

Note: In order to do flow volume measurement you must first set up the measurement parameters required for flow velocity. Failure to do this will result in the calibrator accessing the previously stored input data on air density and K factor in the generation of the flow volume measurement.

Step 1 With the HHC on and displaying pressure mea-surement data press the flow key.

FLOW

The HHC will respond by displaying:

Flow Velocity Volume

Step 2 Using the left/right arrow keys select the word volume. When selected the word volume will flash.

Flow Velocity Volume

Step 3 With the word Volume flashing press the enter key.

ENT

The HHC will respond by displaying:

Enter Duct Area sq.in. xxxxxx

Step 4 Calculate the area of the duct for which flow volume is to be determined. The equations for area cal-culations are as follows:

For rectangular or square ducts:

area (square inches) = W x H

where:

Page 27: ATE-100 HAND HELD CALIBRATOR OPERATING MANUAL · ate-100 hand held calibrator operating manual revision 4.6 3/2004 i&m002-10037-11/00 (ahhc-man)

- 27 - Revision 4.6 3/2004

Step 3 With the desired unit of measure flashing, press the enter key.

ENT

After pressing the enter key the HHC will resume mea-suring flow volume in the selected unit of measure.

Section 14.6 Simultaneous Display of Two Flow Measurements in Independent Engineering Units

The HHC can display flow measurement data from two installed Quick Select pressure modules in independent engineering units. In order to display two different engi-neering units simultaneously the following procedure should be followed. In this example we will assume the operator is in the flow velocity mode and would like to present the measured values in ft/min on the right side of the display and meters/second on the left side of the display.

Step 1 With the HHC on and displaying flow (velocity or volume) measurement data from two Quick Select pressure modules press the engineering unit key, desig-nated EnG UnIT.

ENG UNIT

When in the flow velocity mode the engineering unit selection is:

ft/min ft/sec MPH MeterSec

When in the flow volume mode the engineering unit selection is:

ft3/min ft3/sec m3/min m3/Sec

Step 2 Using the arrow keys select either of the two desired engineering units. For this example we will select ft/min first.

ft/min ft/sec MPH MeterSec

Step 3 With one of the two engineering units to be used selected and flashing, in this example ft/min, press the enter key.

ENT

The HHC will respond by returning to the flow measure-ment mode and will display the measurement data as follows:

ft/min ft/min +12345 +12345

W = width of the duct in inches H = height of the duct in inches

For round ducts:

area (square inches) = (π/4 )D2

where:

π = 3.141592 D = diameter of the duct in inches

Step 5 Using the number keys input the area value calculated in Step 4.

Enter Duct Area sq.in. 123456

Step 6 With the appropriate area value displayed press the enter key.

ENT

If an incorrect area value is keyed press the clear entry (CE) key to reenter the required data.

The HHC will now be set up to provide flow volume measurement data for the desired duct.

To Exit Flow Volume Measurement and Return to Basic Pressure Measurement Press the Clear Entry Key (CE).

Section 14.5 Engineering Units for Flow Volume

As with standard pressure measurement the HHC can provide flow volume measurements in a variety of units of measure. To select a unit of measure for flow velocity follow the steps below.

Step 1 With the HHC operating in the flow volume mode (refer to Section 14.4 for instructions on entering the flow volume mode) press the engineering unit key, designated EnG UnIT on the keypad.

ENG UNIT

The HHC will respond by displaying the following:

ft3/min ft3/sec m3/min m3/Sec

These are the 6 units of measure available for display of flow volume.

Step 2 Using the arrow keys select the desired unit of measure. When selected the unit of measure will flash. In this example the engineering unit of ft3/sec unit has been selected.

ft3/min ft3/sec m3/min m3/sec

Page 28: ATE-100 HAND HELD CALIBRATOR OPERATING MANUAL · ate-100 hand held calibrator operating manual revision 4.6 3/2004 i&m002-10037-11/00 (ahhc-man)

- 28- Revision 4.6 3/2004

Step 4 next, press the port select to deactivate the display of flow measurement data on the side that you wish to maintain displayed measurement data in terms of ft/min. A pressure display is deactivated when it is replaced by a milliamp (mA), Voltage (V) or a blank (------).

See Section 5.0 for details on the port select function.

In this case we have decided that the left side of the display will be in meters/second and the right side will remain in ft/min.

Pressing the port select one time will deactivate the left pressure display converting it to an mA measurement field. Pressing the port select a second time will deacti-vate the right side, converting it to an mA measurement field and returning the left side of the display to the function of flow measurement.

Since we want the right side to remain ft/min we will deactivate it in the ft/min mode by pressing the port select key once.

PORT SELThe HHC will respond with the following display:

ft/min mA +12345 +1234

Step 5 With the right side deactivated from flow mea-surement activities press the engineering unit key.

ENG UNIT

The HHC will respond by displaying:

ft/min ft/sec MPH MeterSec

Step 6 Using the arrow keys select the desired engi-neering unit for the data on the left side of the display. In this example we have opted to display the flow measure-ment data on the left side in terms of meters/second rep-resented by MeterSec on the display. With the MeterSec engineering unit selected the display will look as follows with the text “MeterSec” flashing:

ft/min ft/sec MPH MeterSec

Step 7 With the text “MeterSec” selected and flashing press the enter key.

ENT

The HHC will respond by displaying the following:

MeterSec mA +12345 +1234

Step 8 Reactivate the right side of the display for flow measurement by pressing the Port Select key, as required.

First press of the

PORT SEL

HHC will respond by displaying the following:

mA ft/min +1234 +123456

Second press of the

PORT SEL

HHC will respond by displaying the following:

MeterSec ft/min +1234 +123456

To Exit Flow Measurement and Return to Basic Pressure Measurement Press the Clear Entry Key (CE).

Using this process, any engineering unit may be selected for display of the right or left Quick Select module mea-surement data.

Section 14.7 Simultaneous Display of Measurement Data for Flow (Volume or Velocity) and Pressure

The HHC can simultaneously display a flow measure-ment from one installed Quick Select pressure module and a pressure measurement from a second installed Quick Select Pressure module. For example, the mea-surement of flow can be displayed in ft/min for one installed Quick Select pressure module and the second installed pressure module can be used to simultaneously display the measured value in terms of inches of water. This ability eliminates the need for “on-the-fly” change between flow and pressure measurement functions when doing airflow testing.

To set the HHC up to present simultaneous display of pressure and flow (velocity or volume) data follow the steps below.

Step 1 With the HHC on and displaying pressure measurement data from both modules, if necessary, select the desired engineering unit to be displayed for the pressure measurement. This is done by activating the Engineering Unit library accessed by pressing the EnG

Page 29: ATE-100 HAND HELD CALIBRATOR OPERATING MANUAL · ate-100 hand held calibrator operating manual revision 4.6 3/2004 i&m002-10037-11/00 (ahhc-man)

- 29 - Revision 4.6 3/2004

UnIT key. Details on engineering unit selection are provided in Section 8.0 of this manual.

Important Note: The HHC must be set up for pressure measurement first. With pressure measurement set up, deactivate the side of the display to remain in pressure mode prior to setting up the desired flow measurement parameters. If flow measurement is set up before pres-sure measurement access to pressure engineering units will be lost. When set up to measure both pressure and flow engineering units for both measurements can be accessed as outlined in Section 8.4.

Step 2 Use the port select key to deselect the displayed output of pressure from the module which is to be left in the pressure readout mode of operation. When a module is deselected the corresponding side of the display on the HHC will read milliamp (mA), blank “---- ’’ or Volts (V).

Press the port select key one time to deselect the right module. Press the port select two times to deselect the left module.

PORT SEL

Step 3 With the desired pressure module deselected follow the procedure outlined in Section 14.2 if the flow measurement is to be flow velocity or Section 14.4 if the flow measurement is to be a flow volume measurement.

Step 4 As outlined in Section 14.2 for flow velocity or Section 14.4 for flow volume select the desired engineer-ing unit.

Step 5 With the display for the active flow measure-ment correct, reactivate the deactivated port using the port select function.

PORT SEL

Note: The units used to express flow measurement may be changed at any time while the HHC is displaying any flow measurement data. Simply use the engineering unit select function as described in Section 14.2 for flow velocity and Section 14.4 for flow volume.

To Exit Flow Measurement and Return to Basic Pressure Measurement Press the Clear Entry Key (CE).

Section 14.8 Simultaneous Display of Measurement Data for Flow (Volume or Velocity) and Temperature

The HHC can simultaneously display a flow measure-ment from one installed Quick Select pressure module and a temperature measurement from a second installed

Quick Select module. For example, the measurement of flow can be displayed in ft/min for one installed Quick Select pressure module and the second installed pres-sure module can be used to simultaneously display the temperature measurement value in degrees Celsius or Fahrenheit. This ability eliminates the need for “on-the-fly” change between flow and temperature measurement functions when doing airflow testing.

To set the HHC up to present simultaneous display of temperature and flow (velocity or volume) data follow the steps below.

Step 1 With the HHC turned off install the required differential pressure module and temperature measure-ment interface module.

Step 2 Turn the HHC on.

Step 3 As outlined in Section 16 or 17 set up the temperature measurement function via the submenu accessed via the main Set Up menu. See Section 16 or 17 for instructions on setting up the HHC for tempera-ture measurement using an RTD temperature probe.

Step 4 With the side of the display to be used for flow measurement active and reading the measured pressure from a dual process connection type Quick Select pres-sure module press the FLOW key.

FLOW

Proceed as directed in Section 14.2 for flow velocity and 14.4 for flow volume measurement.

Note 1: The units used to express flow measurement may be changed at any time while the HHC is displaying any combination of flow and temperature measurement data. Simply use the engineering unit select function as described in Section 14.2 for flow velocity and Section 14.4 for flow volume.

Note 2: Units for display of temperature measurement data can be changed at any time via the “RTmodule” menu in the setup menu of the calibrator.

To Exit Flow Measurement and Return to Basic Pressure Measurement Press the Clear Entry Key (CE).

Section 14.9 Simultaneous Display of Flow Volume and Flow Velocity

The HHC can simultaneously display flow measurement data from two installed differential low pressure Quick Select modules with one output displayed in terms of flow volume and the other pressure measurement dis-played in terms of flow velocity. For example, the measure-ment of flow can be displayed in ft/min for one installed Quick Select module and ft3/min for the second installed

Page 30: ATE-100 HAND HELD CALIBRATOR OPERATING MANUAL · ate-100 hand held calibrator operating manual revision 4.6 3/2004 i&m002-10037-11/00 (ahhc-man)

- 30- Revision 4.6 3/2004

module. This ability eliminates the need for “on-the-fly” change between flow volume and flow velocity measure-ment functions when doing airflow testing.

To set the HHC up to present simultaneous display of flow velocity and flow volume follow the steps below.

Step 1 Set the HHC up to display flow velocity or volume (refer to Sections 14.2 and 14.4 for informa-tion on setting up the HHC to perform flow velocity or flow volume testing). In this example, we will assume the HHC is starting from the simultaneous display of two flow velocity measurements. In this mode the HHC display will look as follows:

ft/min ft/min +12345 +12345

Step 2 Using the port select key, deactivate the side of the display that you wish to maintain in the current flow measurement mode. In this case we will display flow in terms of ft/min on the left side and ft3/min on the right side of the display.

PORT SEL

Pressing port select once will deactivate the right side of the display from flow or pressure measurement and convert it to an mA measurement function.

ft/min mA +12345 +1234

Pressing port select a second time will deactivate the left side of the display from flow or pressure measurement, converting it to an mA measurement function. The right side of the display will resume flow/pressure measure-ment activities. The second press of the port select key will result in the following data display.

m/A ft/min +12345 +12345

In this example, since we will be leaving the left side of the display in terms of ft/min the port select key should be pressed two times to produce the display:

m/A ft/min +12345 +12345

Step 3 With the desired side of the display deactivated press the flow key on the keypad of the HHC.

FLOW

The HHC will respond by displaying:

Flow Velocity Velocity Volume

Step 4 Using the left/right arrow keys select the desired measurement function.

In this case we have decided that the left side of the dis-play will remain in the velocity mode and the right side will be changed to measure flow in terms of volume. Therefore, volume should be selected for this example.

Flow Velocity Velocity Volume

Step 5 With the word volume flashing press the enter key.

ENT

The HHC will respond by displaying:

m/A ft3/min* +12345 +12345

*Refer to engineering unit selection, Section 14.5, if an alternate unit of expressing flow volume is desired.

Step 6 Press the port select key to reactivate the left side of the display for flow or pressure measurement.

PORT SEL

The left side of the display will have remained in terms of ft/min. When reactivated the display will look as fol-lows:

ft/min ft3/min +12345 +12345

The HHC is now set up for simultaneous display of flow volume and flow velocity.

To Exit Flow Measurement and Return to Basic Pressure Measurement Press the Clear Entry Key (CE).

Section 14.10 Simultaneous Display of Flow and Electrical Output Measurements

As outlined previously, the HHC can present pressure measurement data from one or two Quick Select pres-sure modules simultaneously. This ability also extends to the HHC’s ability to display flow measurement data. In addition, the HHC can simultaneously display a flow measurement on one side of the display and a current or voltage measurement on the other side of the display. This capability can be useful in calibrating transducers and transmitters that are calibrated in terms of flow, such as 0-200 ft/minute.

To take a flow measurement and monitor the electrical output from the device under test follow the procedures below:

Step 1 Set the HHC up to function in the desired flow

Page 31: ATE-100 HAND HELD CALIBRATOR OPERATING MANUAL · ate-100 hand held calibrator operating manual revision 4.6 3/2004 i&m002-10037-11/00 (ahhc-man)

- 31 - Revision 4.6 3/2004

measurement (velocity or volume) mode of operation. Refer to Section 14.2 for information on setting up the HHC for velocity measurement or Section 14.4 for infor-mation on setting up the HHC for volume measurement.

Step 2 Select the desired engineering units as outlined in Sections 14.3 for flow velocity and 14.5 for flow volume.

Step 3 Press the port select key.

PORT SEL

The HHC will respond by changing the right side of the display from pressure/flow measurement to the display of an mA measurement. The display will continue to display the output from the left Quick Select module in terms of flow.

To read the output of the right Quick Select module in terms of flow and the electrical measurement output from the device under test press the Port Select key a second time.

Step 4 With the flow and electrical measurements appearing in the desired locations on the display the cur-rent measurement can be changed to a voltage measure-ment by pressing the mA/V key.

mA V

Pressing the mA/V key once will change the display to “------“.

Pressing the mA/V key a second time will change the display to “volts”.

Step 5 Connect the Quick Select pressure module to be used to the pressure source to be measured.

Step 6 Connect the output of the device to the minia-ture banana jacks on the keypad of the HHC as follows:

For current output devices: use the mA and com jacks.

For voltage output devices: use the V and com jacks.

Percent mode operation is also available for flow test and calibration of measurement instruments. Refer to Section 13.0 for percent function set up and use information.

Section 15.0 Leak Detection Function

The HHC provides the ability to detect and quantify leaks in terms of pressure decay over time (psi change per unit of time) or in terms of leak rate (cc/sec).

In the pressure decay over time mode the HHC will monitor the desired pressure vessel for the programmed time interval and, at the end of the monitoring time period, display the measured change in pressure. In the

leak rate mode the HHC will monitor the pressure vessel over the programmed time interval and display the leak rate in terms of cc/seconds.

Use of the leak detection function requires the setup of the leak test parameters. The following procedures should be followed to set up and perform a leak test using the HHC.

Section 15.1 Leak Rate Function Setup

Step 1 With the HHC on and displaying pressure press the set up key.

SET UP

Step 2 Using the arrow keys, locate and select the words “LeakRate” in the set up menu. When selected the words “LeakRate” will flash.

EvntTimr Dampen LeakRate Status

Step 3 With the words LeakRate flashing press the enter key.

ENT

The HHC will respond by displaying:

Leak Mode Rate Decay

Step 4 Using the left/right arrow select the word Rate.

Leak Mode Rate Decay

Step 5 With the word Rate flashing press the enter key.

ENT

The HHC will respond by displaying:

Vessel Volume cu.in. .000000

Step 6 Using the number keys enter the volume of the vessel to be tested in cubic inches.

Vessel Volume cu.in. 12324

Step 7 With the HHC displaying the required vessel volume press the enter key.

ENT

Step 8 The HHC will respond by displaying:

Time to Monitor sec. xxxxx

Page 32: ATE-100 HAND HELD CALIBRATOR OPERATING MANUAL · ate-100 hand held calibrator operating manual revision 4.6 3/2004 i&m002-10037-11/00 (ahhc-man)

- 32- Revision 4.6 3/2004

Step 9 Using the number keys enter the time inter-val, in seconds, over which the leak rate test is to be performed. The time interval may be from 1 to 65,000 seconds.

Time to Monitor sec. 12345

Step 10 With the desired test interval displayed press the enter key.

ENT

At this point the HHC will return to basic pressure measurement.

See Sections 15.3 and 15.4 for information on perform-ing leak rate testing.

Section 15.2 Pressure Decay Test Function Setup

Step 1 With the HHC on and displaying pressure press the set up key.

SET UP

Step 2 Using the arrow keys, locate and select the words “LeakRate” in the set up menu. When selected the words “LeakRate” will flash.

EvntTimr Dampen LeakRate Status

Step 3 With the words LeakRate flashing press the enter key.

ENT

The HHC will respond by displaying:

Leak Mode Rate Decay

Step 4 Using the left/right arrow select the word Decay.

Leak Mode Rate Decay

Step 5 With the word Decay flashing press the enter key.

ENT

Step 6 The HHC will respond by displaying:

Time to Monitor sec. xxxxx

Step 7 Using the number keys enter the time interval, in seconds, over which the pressure decay test is to be performed. The time interval may be from 1 to 65,000 seconds.

Time to Monitor sec. 12345

Step 8 With the desired test interval displayed press the enter key.

ENT

At this point the HHC will return to basic pressure measurement.

See Sections 15.3 and 15.4 for information on perform-ing leak rate testing.

Section 15.3 Sensor Selection; Rate or Pressure Decay Tests

In order to perform leak testing the desired Quick Select pressure module must be monitored by the HHC system. The following provides information on activating the desired pressure module for leak test applications: With Two Quick Select Pressure Modules Installed

If two pressure modules are installed and the output of both are displayed, the HHC will default to the left pres-sure module.

If two Quick Select pressure modules are installed and one of the two modules is deselected, meaning the measurement values of that module are not shown on the display, leak testing will use the active pressure module to perform the leak test measurements.

The port select key (PORT SEL) is used to select or deselect a module. When a pressure module is dese-lected the corresponding side of the display will indicate one of the following: mA, Volts or “------“.

If only one Quick Select pressure module is installed the HHC will default to the installed pressure module for leak test measurements.

Section 15.4 Performing Leak Rate or Pressure Decay Tests

Leak rate and pressure decay tests can be performed as follows:

Step 1 With the HHC on and reading pressure connect the pressure port of the selected pressure module to the vessel to be monitored. If the pressure module incorpo-rates a differential pressure sensor use the High pressure port for the test procedure.

Step 2 For Pressure Decay Select the desired engi-neering unit to be used as described in Section 8.

For Leak Rate All leak rate measurements are made in cc/seconds and require no selection at this point.

Step 3 Pressurize the vessel to the required level for the test and allow vessel pressure to stabilize from the effects of sudden pressure increase or decrease.

Step 4 Press the key designated LEAK on the keypad

Page 33: ATE-100 HAND HELD CALIBRATOR OPERATING MANUAL · ate-100 hand held calibrator operating manual revision 4.6 3/2004 i&m002-10037-11/00 (ahhc-man)

- 33 - Revision 4.6 3/2004

of the HHC.

LEAK

The HHC will display:

Timing eng unit sec xxxxx

where:

Timing indicates that the HHC is timing the desired monitoring interval.

sec = the remaining time left to be monitored.

eng unit = the engineering unit in use for the selected module.

xxxxx = the current pressure measured by the selected pressure module.

For Pressure Decay Testing – at the end of the test the HHC will display the following:

Eng Unit Decay cccc xxxx

where:

Eng Unit = the engineering unit of the measured value.

cccc = current pressure measurement for the selected pressure module.

xxxx = the measured pressure change during pres-sure decay test.

For Leak Rate Testing – at the end of the test the HHC will display the following:

Eng Unit cc/sec cccc xxxx

where:

Eng Unit = the engineering unit of the current pressure measurement value.

cccc = current pressure measurement for the selected pressure module.

xxxx = the measured leak rate over the test interval.

To resume basic pressure measurement press the clear entry (CE), enter (E) key or any of the four arrow keys. Pressing any function key will activate that selection. For example, pressing the engineering unit select key (EnG UnIT) will activate the engineering unit selection program.

Important Note: After completing leak testing the HHC will display pressure measurement data for the module that was used in the testing process and will display “--

--- “ on the other side of the display. If a second module is installed in the other sensor bay it can be re-selected using the port select function (PORT SEL) as detailed in Section 5.0.

Section 16.0 Temperature Measurement using RTD Probes

The HHC can be used with most standard RTDs (Resis-tance Temperature Detectors) to provide precision tem-perature measurements. An GQS-RT type Quick Select module is needed in order for the HHC to perform temperature measurement with an RTD. The GQS-RT provides the interface between the calibrator base unit and the RTD probe. There are two GQS-RT Quick Select modules available in order to provide support for the most common RTD resistance levels.

The capabilities of the modules are summarized below:

GQS-RT1 Quick Select Module

Pt 100 (385 & 392): –200 to 550° C: +0.15° C 550 to 850° C: +0.2° C

Ni 120: 80 to 260° C: +0.1° C

Cu 10: 70 to 150° C: +0.6° C

Ohms: +0.01% reading +0.02 ohms

GQS-RT2 Quick Select Module

Pt 1000: 184 to 275° C: +0.15° C

Ohms: +0.01% reading +0.2 ohms

Engineering Units: Fahrenheit, Celsius, Kelvin, Rankine or ohms

Ohms Measurement Range: GQS-RT1 module: 0/400 ohms GQS-RT2 module: 0/4000 ohms

The interface module incorporates a Switchcraft TA4M type connector and requires an RTD with the appropriate Switchcraft TA4F meeting connector. The connector is available through the supplier of your calibrator.

Section 16.1 Setting Up the Calibrator for RTD Temperature Measurement

Step 1 With the instrument off install the appropriate GQS-RT Quick Select RTD interface module. Instruc-tions for installation of a Quick Select module

Step 2 Connect the desired RTD probe to the Switch-craft connector on the module

Step 3 Turn the calibrator on by pressing the On/Off key.

Page 34: ATE-100 HAND HELD CALIBRATOR OPERATING MANUAL · ate-100 hand held calibrator operating manual revision 4.6 3/2004 i&m002-10037-11/00 (ahhc-man)

- 34- Revision 4.6 3/2004

ON OFF

Step 4 To access the temperature setup menu press the Set up key.

SET UP

Step 5 Use the downward pointing arrow to access the following selection screen

Calib RTmodule dp Meas* TCmodule

* dp Meas is an optional feature that allows for the subtraction or addition of the measurement value of one sensor from the measurement value of the other sensor. If the calibrator was not ordered with this option it will nOT appear on the screen.

Step 6 As required, using the left/right and up/down arrows select the text “RTmodule”. The text RTmodule will flash when selected.

Calib RTmodule dp Meas

Step 7 With the text “RTmodule” flashing press the enter key.

ENT

The calibrator will respond by displaying:

Probe Connection 2W 3W 4W

This represents the configuration of the RTD to be used, where the number equals the number of wires the RTD uses. note: The use of a 4 wire RTD is recommended for optimum accuracy.

Step 8 Using the left/right arrow keys select the appro-priate configuration for the RTD probe to be used. In the example below the 4 wire configuration was selected.

Probe Connection 2W 3W 4W

Step 9 With the desired wiring configuration selected press the enter key.

ENT

The calibrator will respond by displaying the available units of measure as follows:

Engnring units: oC oF K oR

Step 10 Using the left/right arrow keys select the desired engineering unit for the measurements to be made. In the example here the measurements will be

made in degrees Celsius.

Engnring units: oC oF K oR

Step 11 With the desired engineering unit selected and flashing press the enter key.

ENT

The calibrator will respond with the following display:

Probe: 12345678 P&a = 385 RO = 1000

On initial use the first selection and the corresponding probe will appear selected. Use the arrow keys to select the desired coefficients from the available factory pro-grammed curves. The GQS-RT1 is pre-preprogrammed for the following RTDs:

Position Probe 1 α385 –200/850 2 α392 ∠200/850 3 ni Minco (ni 120Ω) 4 Cu 10 ohm 5-8 available for programming using the optional calibration and programming software for the GQS-RT1 module.

Important Note: The GQS-RT1 is compatible with RTD probes with output resistance values of between 0 and 400 ohms. Use of the module with higher resistance RTD probes will result in diminished accuracy and pos-sible damage to the module electronics.

The GQS-RT2 is pre-preprogrammed for the following RTDs:

Position Probe

1 α385 –200/850 1 PT 1000 2-8 available for programming using the optional calibration and programming software for the GQS-RT2 module.

Important Note: The GQS-RT2 is compatible with RTD probes with output resistance values of between 1000 and 4000 ohms. Whereas this module will function with lower resistance RTDs accuracy will be greatly dimin-ished. In addition, use of the module with higher resis-tance RTD probes will result in diminished accuracy and possible damage to the module electronics.

Step 12 Using the left/right arrow keys select the RTD probe type for the measurements to be made. In the example here the measurements will be made in using the PT 100 type 385

Page 35: ATE-100 HAND HELD CALIBRATOR OPERATING MANUAL · ate-100 hand held calibrator operating manual revision 4.6 3/2004 i&m002-10037-11/00 (ahhc-man)

- 35 - Revision 4.6 3/2004

Probe: 12345678 P&a385 RO = 100

Step 13 With the desired probe type selected and flash-ing press the enter key.

ENT

The calibrator will respond by displaying the following:

Resolution: 1 .1 .01 0.001

The maximum resolution that the combination of the Calibrator base unit, RTD interface module and probe can support can be determined as follows:

The resolution of the RTD module is 0.001% of the full scale resistance of the reference resistor used in the module. The GQS-RT1 incorporates a 400 ohm refer-ence resistor and the GQS-RT2 incorporates a 4000 ohm reference resistor.

Using the GQS-RT1 as the example the maximum reso-lution is:

0.001% of 400 ohms = 0.00001 x 400 = 0.004 ohms

For a PT 100 the temperature resolution can be deter-mined as follows:

0.004 ohms/(100 ohms x 0.00385 ohms/degree C) = 0.008 degrees C (approx 0.005 degrees F)

Therefore, rounding to the next highest digit results in a resolution of 0.01 degrees C.

The resolution supported for the factory programmed RTDs can be found below:

Using the RT-1

Probe Type ResolutionPt 100 0.01 degrees C or F (385 & 392)

ni 120 0.1 degrees C or F

Cu 10 0.1 degrees C or F

Using the RT-2

Probe Type Resolution Pt 1000 1.0 degrees C or F

Resolution must be selected in conjunction with the full scale ohms output for the RTD probe to be used.

Step 14 Select the desired resolution using the left/right arrow keys. In this case, since we are using the Pt100 RTD with a maximum resolution of 0.01 degrees C the 0.01 option has been selected

Resolution: 1 .1 01 0.001

Step 15 With the desired resolution selected and flash-ing press the enter key.

ENT

The calibrator will briefly show internal limit settings and will then commence temperature measurement.

The measurement parameters can be changed at any time through the activation of the RTmodule set up menu.

Section 16.2 Calibrating/Programming the GQS-RT RTD Interface ModuleThe GQS-RT can be programmed in the field. Program-ming, calibration adjustment or recertification can be accomplished with the Calibration Programming Utility disk. Please note, in order to improve the accuracy of the measurement system it will be necessary to gener-ate a significant number of very accurate temperature calibration points using precision temperature baths. In general, the simplest way to enhance the accuracy of the temperature measurement is to simply re-zero the probe while immersed in an ice bath.

Section 17.0 Thermocouple Interface Module

The Thermocouple Interface Module allows the hand-held calibrator base unit (equipped with firmware version 3.01 or later) to read the input from a thermocouple temperature measuring device. The calibrator offers the following features for thermocouple measurement:

• Selectable units of measure

• Direct millivolt readout for any type of thermocouple

• Choice of internal or external refernce junction

• Selectable resolution, or “auto” mode

• Programming to allow readout in temperature units for the following 8 thermocouple types:

Type Materials J Iron & Copper-nickel (Constantan) K nickel-Chromium & nickel-Aluminum T Copper & Copper-nickel (Constantan) E nickel-Chromium & Copper-nickel (Constantan) R Platinum-13% Rhodium & Platinum S Platinum-10% Rhodium & Platinum B Platinum-30% Rhodium & Platinum – 6% Rhodium n nickel-Chromium-Silicon & nickel-Silicon- Magnesium

Page 36: ATE-100 HAND HELD CALIBRATOR OPERATING MANUAL · ate-100 hand held calibrator operating manual revision 4.6 3/2004 i&m002-10037-11/00 (ahhc-man)

- 36- Revision 4.6 3/2004

Section 17.1 Thermocouple Measurement Set Up

Step 1 To begin measurement with a thermocouple, first attatch the thermocouple to a male “miniature ther-mocouple connector.” Please note that connectors are specifically manufactured for each thermocouple type and will be marked accordingly. Failure to use the prop-erly mated connector will result in additional inaccuarcy.

Step 2 Turn the calibrator off. Install the thermo-couple interface module into either of the modules bays in the top of the calibrator. now install the thermo-couple into the interface by inserting the male blades of the miniature connector into the slots in the receptacle located on the top of the thermocouple interface module.

Step 3 Turn the base unit on

When the display has completed the “power up” cycle, press the “set up” key.

SET UPUsing the arrow keys, select the words “TC Module”

TC Module

press the “enter” key.

ENTIf two thermocouple interface modules have been installed, the calibrator will require a selection as to which side (left or right) the current programming cycle is to be applied. The display will read:

SELECT MODULE LEFT RIGHT

Using the left or right arrow keys, select the module to be programmed and press the “enter” key.

ENT(Note: If only one thermocouple interface module is installed, the left/right selection identified in the previ-ous step will not appear. The process will begin with the selection of engineering units identified below.)

The calibrator will display:

Engnring units: ºC ºF ºK ºR mV

Using the left or right arrow keys, select the desired unit of measure, and press enter. (Selection of the millivolt readout will instruct the calibrator to display the voltage within the thermocouple circuit. The internal reference junction cannot be applied in this mode.)

no further base unit programming will be required. If

the millivolt mode has been selected, the programming cycle will end when the “enter” key is pressed, and the calibrator will begin to display the real-time millivolt measurement from the thermocouple circuit.

ENTThe top display will now indicate the choices for the thermocouple types. In addition, the lower line of the display will indicate the 2 types of metal which com-prise the thermocouple type which is currently flashing. (By selecting a thermocouple type, the calibrator will access the factory programmed coefficients which will allow the calibrator to display in a unit of temperature measurement).

TC: JKTERSBN Fe - Cu/Ni

Using the left or right arrow keys, select the type of thermocouple that has been installed,and press the “enter” key.

ENTThe display will now indicate the resolution choices.

Resolution 1 .1 .01 auto

Using the left or right arrow keys, select the degree of resolution closest to the working tolerance for the type of thermocouple that has been installed or select the “auto” mode (which will allow the calibrator to auto-matically adjust the display to the greatest significant resolution), and press the “enter” key.

ENTThe calibrator will now display the choices for the refer-ence junction.

Ref junction: auto manual

By selecting the “auto” mode, the calibrator will utilize the internal thermistor/resistor based on the reference junction that is resident inside the interface module.

The “manual” mode allows for the use of an external reference junction. A stable temperature reference, usu-ally in the form of an ice bath, is required.

Using the left or right arrow keys, select the desired reference junction and press the “enter” key.

ENTIf the “auto” mode was selected, the calibrator will now return to real-time measurement mode, displaying the temperature measurement from the thermocouple and

Page 37: ATE-100 HAND HELD CALIBRATOR OPERATING MANUAL · ate-100 hand held calibrator operating manual revision 4.6 3/2004 i&m002-10037-11/00 (ahhc-man)

- 37 - Revision 4.6 3/2004

deactivate (convert the display to mA, “------” or Volts) the other side of the display.

PORT SEL

Step 2 Press the mA/V key as required to change the electrical measurement parameter to that to be used for the switch test. Switch to Volts if the change of state will be greater than 2 Volts; switch to mA if the change of state will be greater than 2 mA.

mA V

Step 3 Connect the switch electronics with a current or voltage source, as required, to provide the required greater than 2 Vdc or greater than 2 mA change in state. Be certain that the change in state to be generated cor-responds to the electrical measurement (mA or V) set up on the display of the HHC.

Step 4 Connect the output signal of the switch to the miniature banana jacks on the front of the HHC as out-lined below.

For voltage: volts (V) jack and common (COM).

For current: milliamps (mA) jack and common.

Step 5 Connect the switch to a controlled pressure/vacuum source to generate the required level of pressure or vacuum to trip the switch.

Step 6 Proceed to Section 18.2 for trip detect testing or to Section 18.3 for deadband testing.

Section 18.2 Test of Switch Trip Point

Step 1 With the HHC on and reading pressure or tem-perature press the trip detect key on the keypad.

TRIP DET

The HHC will respond by displaying the following:

Disable Manual Deadband

Step 2 Using the left/right and up/down arrow keys selected the word manual will flash.

Disable Manual Deadband

Step 3 With the word “manual” flashing press the enter key.

ENT

Step 4 Gradually increase the pressure, vacuum or temperature until the display of the HHC indicates that a

the reading from the other module bay, if a module or an interface module has been installed.

If the “manual” mode was selected, the calibrator must be programmed with the reference temperature of the external reference junction. the display will read”

Ref temperature

(A value may already be programmed, or the calibrator may display “.0000.” Entering a new value will over write these existing numbers.)

Program in the new temperature value of the exter-nal reference junction, using the number keys on the keypad. (The value that is being programmed should be referenced to the same unit of measure that was selected for the readout).

Press the “enter” key.

ENTThe calibrator will now return to the real-time measurement.

When the base unit is turned off and turned on again, it will have “remembered” the selections that were made during the previous entry process, and default to those parameters (refer to Appendix C for specifications).

Section 18.0 Pressure and Temperature Switch Testing

The HHC can be used to test pressure and tempera-ture switches. On board firmware provides the ability to verify switch trip points, reset point and to test the deadband of a pressure switch. To perform these type of tests follow the procedures as outlined in the subsections of Section 18.

The switch testing process incorporated in the HHC firmware looks for a change of state that produces a change of greater than either 2 volts or a 2 mA across the corresponding miniature banana jacks. The banana jacks are located on the bottom of the keypad on the HHC. Prior to initiating these test procedures the required electrical set up should be configured to provide the necessary signal levels.

Section 18.1 Setting Up the HHC for Testing of Pressure and Temperature Switches

The following procedure outlines the set up require-ments for the test of pressure and temperature switches.

Step 1 With the HHC on and reading pressure or temperature, in accordance with the type of switch to be tested, press the Port Select key, designated PORT SEL, the required number of times to leave activated the Quick Select module being used for the test function and

Page 38: ATE-100 HAND HELD CALIBRATOR OPERATING MANUAL · ate-100 hand held calibrator operating manual revision 4.6 3/2004 i&m002-10037-11/00 (ahhc-man)

- 38- Revision 4.6 3/2004

change of state has been detected. When the switch has tripped the HHC will display:

Eng Unit Tripped +12345 +vvvvv

where:

• Eng Unit is the pressure or temperature engineering unit in use • Tripped indicates the pressure switch has tripped • +12345 represents the pressure or temperature at which the switch tripped • +vvvvv is voltage value

Step 5 To perform additional trip tests press any key and the trip detect system will be rearmed.

Step 6 To discontinue the switch testing process press the trip detect key.

TRIP DET

The HHC will respond by displaying:

Disable Manual Deadband

Step 7 Using the left/right and up/down arrow keys select the word disable in the menu selection. When selected the word disable will flash.

Disable Manual Deadband

Step 8 With the word “disable” flashing press the enter key.

ENT

The switch test operation has now been terminated.

Section 18.3 Switch Deadband Testing

Step 1 With the HHC on and reading pressure or tem-perature press the trip detect key on the keypad.

TRIP DET

The HHC will respond by displaying the following:

Disable Manual Deadband

Step 2 Using the left/right and up/down arrow keys select the word deadband in the menu selection. When selected the word deadband will flash.

Disable Manual Deadband

Step 3 With the word “Deadband” flashing press the enter key.

ENT

Step 4 Gradually increase or decrease, as required, pressure, vacuum or temperature until the display of the HHC indicates that a change of state has been detected. When the switch has tripped the HHC will display:

Eng Unit Tripped +12345 +vvvvv

where:

• Eng Unit is the pressure or temperature engineering unit in use • Tripped indicates the pressure or temperature switch has tripped • +12345 pressure at which the switch tripped • +vvvvv is voltage value

Step 5 To perform a deadband test, maintain the pressure/ vacuum or temperature and power applied to the switch and press any key to rearm the trip detection system.

TRIP DET

Step 6 Gradually allow the pressure/vacuum or temper-ature level applied to the switch to return to the starting point.

Step 7 When the HHC detects a reset of the switch the HHC will respond by displaying:

Deadband +xxxxxxx +yyyyyyy +zzzzzz

where:

xxxxxx is the measured trip point zzzzzz is the measured reset point yyyyyy is the measured deadband value

Step 8 To perform additional deadband tests press any key and the trip detect system will be rearmed.

Step 9 To discontinue switch testing press the trip detect key.

TRIP DET

The HHC will respond by displaying:

Disable Manual Deadband

Step 10 Using the left/right and up/down arrow keys select the word disable in the menu selection. When selected the word disable will flash.

Page 39: ATE-100 HAND HELD CALIBRATOR OPERATING MANUAL · ate-100 hand held calibrator operating manual revision 4.6 3/2004 i&m002-10037-11/00 (ahhc-man)

- 39 - Revision 4.6 3/2004

Disable Manual Deadband

Step 11 With the word “Disable” flashing press the enter key.

ENT

The switch deadband test operation has now been termi-nated.

Section 19.0 RS232 Interface General Information

To simplify the interface of the HHC with your com-puter, recorder, data acquisition hardware or dumb terminal two standard operating modes for the RS232 interface are available. A third RS232 operating mode, ISO1745, is included on the menu options. This mode is only used in uploading data from the optional data logging memory and in factory calibration, set up and repair activities.

To configure the RS232 interface on the HHC for the requirements of your input device, first determine the interface requirements of the device. Then using the RS232 setup feature configure the RS232 interface on the HHC, following the steps below:

Pin out information follows. A standard RS232 cable, to connect the calibrator to a 9 pin serial port on a computer, is available from your calibrator supplier. An adaptor to connect the calibrator to a 25 pin serial connection on a computer is also available. The RS232 connector is located above the AC adapter input on the right side of the calibrator when looking down at the calibrator with the keypad up in the normal operating orientation.

RS 232 Connector

Pin Function

1 Relay 1 common (for alarm option) 2 Transmit data 3 Read data 4 Data set ready 5 Ground

6 Data transfer ready 7 Relay 1 normally open (for alarm option) 8 Relay 2 common (for alarm option) 9 Relay 2 normally open (for alarm option)

Section 19.1 Configuring RS232 Interface for Use with a Dumb Terminal

To communicate with the HHC through the use of a dumb terminal set the terminal up as follows:

Select baud rate to be used: 300, 1200, 2400 or 9600 Select communications (com) port: 1 or 2 Set data bits to: 8 Set stop bits to: 2 Set parity to: none Flow control: none

Section 19.2 RS232 Configuration Options

The HHC has two communication formats for operator use. These communication formats will appear as selec-tion options during the set up of the RS232 interface. A third mode of RS232 communication, ISO1745, is listed in the menu selections and is only used for up loading data stored in the optional data logging memory to a computer and factory calibration, setup and repair activi-ties. An overview of the features of these formats follows.

Section 19.2.1 RS232 Interface ISO1745 Operating Mode Overview

The ISO1745 mode of operation is used to interface the HHC with the upload program provided to export data logged values into a P.C. compatible computer. If your calibrator is equipped with the optional data logging capability, consult Section 24 of this manual and supple-mental manual provided with the software package for directions on the use of the ISO1745 mode for data trans-fer to an IBM compatible personal computer. Units not equipped with the data logging option are not supplied with the upload program disk or supplemental manual.

Section 19.2.2 RS232 Interface Journal Mode Overview

This mode allows the HHC to be interfaced to an RS232 compatible printer or other device where a steady, timed data output is required. When the journal mode is selected the HHC will transmit the current pressure measurement(s) as shown below:

+0.005 in.H2O +0.0000 psi Left Min: +0.0045 Max: +0.0053 Right Min: +0.0000 Max: +0.0000

+0.003 in.H2O +0.0000 psi Left Min: +0.0032 Max: +0.0049 Right Min: +0.0000 Max: +0.0000

Page 40: ATE-100 HAND HELD CALIBRATOR OPERATING MANUAL · ate-100 hand held calibrator operating manual revision 4.6 3/2004 i&m002-10037-11/00 (ahhc-man)

- 40- Revision 4.6 3/2004

+0.003 in.H2O +0.0000 psi Left Min: +0.0033 Max: +0.0035 Right Min: +0.0000 Max: +0.0000

Each data set consists of three (3) lines. The first line displays the current measurement data as seen on the instrument display. This line will display the pressure, flow, temperature or electrical measurement in the selected units of measure. Engineering units may be changed from the keypad as outlined in the engineering unit section of this manual, Section 8.0, while the RS232 interface is in use. In addition, the HHC can be changed from pressure to flow measurement while the RS232 interface is in use.

The second line displays the minimum and maximum values stored in memory for the left sensor module since the last time the memory locations were cleared.

The third line displays the minimum and maximum values measured by the right sensor since the last time the minimum and maximum pressure values were cleared from memory.

In the journal mode the RS232 interface will output the data as outlined above at a regular interval. The interval is selected in the RS232 setup procedure and may be from 1 second to 65,000 seconds.

Section 19.2.3 RS232 Interface Inquiry Mode Overview

When the RS232 interface of the HHC is set up in the inquiry mode the HHC transmits the data string shown be-low in response to an operator selected inquiry character.

+0.003 Eng Unit +0.0000 Eng Unit

The first value represents the measurement value dis-played on the left side of the display and includes the selected unit of measure. The second value represents the measurement value displayed on the right side of the display, including the selected unit of measure.

Section 19.3 Setup of the RS232 Interface in the Journal Mode

To use the RS232 interface in the Journal Mode follow the steps below.

Step 1 With the HHC on and reading pressure press the set up key.

SET UP

Step 2 Using the arrow keys move through the menu selections and select “RS232” on the display of the HHC. The text “RS232” will flash on the display when selected.

Owner Alarm DateTime RS232

Step 3 With the text RS232 flashing press the enter key.

ENT

This will activate the RS232 setup options sub menu.

The first screen that appears after selection of RS232 from the main setup menu is:

RS232 interface Disable Enable

The RS232 interface must be enabled (activated) for the HHC to communicate with any RS232 device.

When the RS232 is not in use it is recommended that the RS232 interface be disabled to conserve on power use and maximize battery life.

Step 4 Use the arrow keys to select Enable (activate) and press the enter key.

RS232 interface Disable Enable

Step 5 With the word Enable flashing press the enter key.

ENT

Step 6 After selecting “Enable” the HHC will respond with the following display.

Baud Rate 9600 2400 1200 300

The current baud rate selection will flash on the display.

Step 7 Using the left/right arrow keys select the desired baud rate. The selected baud rate will flash on the display.

Baud Rate 9600 2400 1200 300

In the above example the baud rate 9600 has been selected.

Step 8 With the desired baud rate flashing press the enter key.

ENT

After the desired baud rate has been entered theHHC will display:

Disable ISO1745 Journal Inquiry

Step 9 Using the arrow keys select the word Journal. When selected the word Journal will flash.

Page 41: ATE-100 HAND HELD CALIBRATOR OPERATING MANUAL · ate-100 hand held calibrator operating manual revision 4.6 3/2004 i&m002-10037-11/00 (ahhc-man)

- 41 - Revision 4.6 3/2004

Disable ISO1745 Journal Inquiry

Step 10 With the word Journal flashing press the enter key.

ENT

The HHC will respond by displaying the following:

Report Interval xxxxxxx

Step 11 Using the number keys enter the desired inter-val, in seconds, between data transmissions. The interval may be any value from 1 second to 65000 seconds. In the example below the HHC is being instructed to trans-mit a set of readings every 600 seconds (10 minutes).

Report Interval 600

Step 12 With the desired time interval displayed press the enter key.

ENT

The HHC will respond by displaying:

End of message CrLf Prog

Step 13 Select the desired end of message character. For data transmission to a screen on a dumb terminal the CrLf (carriage return/line feed) is the most common option. If the data output is to be transmitted into a data-base or spreadsheet program the end of message charac-ter must be selected in accordance with the requirements of the application software. Proceed to Step 16 to input a custom end of message character.

Step 14 To use CrLf as the end of message charac-ter use the arrow keys to select the text “CrLf”. When selected the text “CrLf” will flash.

End of message CrLf Prog

Step 15 With the text CrLf flashing press the enter key.

ENT

The HHC will return to pressure temperature measure-ment and will transmit data to the terminal, acquisition device, computer or recorder as programmed. While communicating, engineering units may be changed or the HHC may be changed between basic pressure mea-surement and flow measurement.

Important Note: Invoking set up functions or dedicated keypad functions will temporarily suspend the transmis-

sion of data during the setup process. For most functions data transmission will resume when the set up is com-plete. However, the RS232 interface must be re-enabled via the RS232 set up process to re-initiate data transmis-sion after either automatic data logging or leak detection functions are activated.

Step 16 To select a programmable end of message character use the arrow keys to select the text “Prog”.

End of message CrLf Prog

Step 17 With the text Prog flashing press the enter key

ENT

The HHC will respond by displaying:

EOM character xx.xx

Step 18 Using the number keys enter the decimal code for the desired end of message character. A list of the decimal codes for the available ASCII characters can be found in Appendix B.

Step 19 With the decimal representation of the desired ASCII character displayed press the enter key.

ENT

The HHC will return to the operation of pressure mea-surement and will transmit data to the terminal, acquisi-tion device, computer or recorder as programmed. While communicating, engineering units may be changed or the HHC may be changed between basic pressure mea-surement and flow measurement.

Important Note: Invoking set up functions or dedicated keypad functions will temporarily suspend the transmis-sion of data during the setup process. For most functions data transmission will resume when the set up is com-plete. However, the RS232 interface must be re-enabled via the RS232 set up process to re-initiate data transmis-sion after either automatic data logging or leak detection functions are activated.

Section 19.4 Setup of the RS232 Interface in the Inquiry Mode

To use the RS232 interface in the Inquiry Mode follow the steps below.

Step 1 With the HHC on and reading pressure press the set up key.

SET UP

Step 2 Using the up/down and left/right arrow keys

Page 42: ATE-100 HAND HELD CALIBRATOR OPERATING MANUAL · ate-100 hand held calibrator operating manual revision 4.6 3/2004 i&m002-10037-11/00 (ahhc-man)

- 42- Revision 4.6 3/2004

move through the menu selection and highlight the text “RS232” so that is flashes on the display.

Owner Alarm Date Time RS232

Step 3 With the text “RS232” flashing press the enter key.

ENT

This will activate the RS232 setup options sub menu.

The first screen that appears after the selection of RS232 from the main setup menu is:

RS232 interface Disable Enable

The RS232 interface must be enabled (activated) for the HHC to communicate with any RS232 device. When the RS232 is not in use it is recommended that the RS232 interface be disabled to conserve on power use and maximize battery life.

Step 4 Use the arrow keys to select the word Enable. When selected the word Enable will flash.

RS232 interface Disable Enable

Step 5 With the word Enable flashing press the enter key.

ENT

Step 6 After entering the Enable option the HHC will respond with the following display.

Baud Rate 9600 2400 1200 300

The currently selected baud rate will be flashing.

Step 7 Using the left/right arrow keys select the desired baud rate. The selected baud rate will flash on the dis-play of the HHC.

Baud Rate 9600 2400 1200 300

In this above example the baud rate 9600 has been selected.

Step 8 With the desired baud rate selected and flashing press the enter key.

ENT

Step 9 After the desired baud rate has been entered the HHC will display:

Disable ISO1745 Journal Inquiry

Step 10 Using the arrow keys select the word “Inquiry,” when selected the word will flash.

Disable ISO1745 Journal Inquiry

Step 11 With the word Inquiry flashing press the enter key.

ENT

The HHC will respond by displaying the following:

Inquiry Char. xx.x

Step 12 Using the number keys enter the desired end of message character in decimal code. A list of the avail-able ASCII characters and their corresponding decimal codes is provided in Appendix B. The inquiry character acts as a signal to the HHC to transmit a data set. The inquiry character is transmitted to the HHC from the computer or other device controlling the data transmis-sion activities. Select an inquiry character to be used in programming as the transmission prompt.

Step 13 With the decimal representation for the desired inquiry character displayed press the enter key.

ENT

The HHC will respond by displaying:

End of message CrLf Prog

Step 14 Select the desired end of message character. For data transmission to a screen on a dumb terminal the CrLf (carriage return/line feed) is the most common option. If the data output is to be transmitted into a data-base or spreadsheet program the end of message charac-ter must be selected in accordance with the requirements of the application software.

Using the number keys enter the decimal code for the selected end of message character. A list of the decimal codes for the available ASCII characters can be found in Appendix B.

Step 15 With the desired decimal representation for the ASCII character entered and displayed press the enter key.

ENT

The HHC will return to pressure measurement and will transmit data to the terminal, acquisition device, computer or recorder as programmed.

While communicating, engineering units may be changed or the HHC may be changed between basic pressure measurement and flow measurement.

Important Note: Invoking set up functions or dedicated keypad functions will temporarily suspend the transmis-

Page 43: ATE-100 HAND HELD CALIBRATOR OPERATING MANUAL · ate-100 hand held calibrator operating manual revision 4.6 3/2004 i&m002-10037-11/00 (ahhc-man)

- 43 - Revision 4.6 3/2004

sion of data during the setup process. For most functions data transmission will resume when the set up is com-plete. However, the RS232 interface must be re-enabled in the RS232 set up process to re-initiate data transmis-sion after either automatic data logging or leak detection functions are activated.

Section 20.0 Status

The status selection provides a means to query the HHC as to the revision of firmware, hardware and the last calibration date of the sensor(s) installed. The hardware and firmware revision numbers are for factory use in determining the level of firmware and hardware in the HHC . In addition, the ability to check calibration dates for installed Quick Select pressure modules simplifies the tracking of recertification requirements for the Quick Select pressure modules.

Section 20.1 Reviewing Instrument Status

To invoke the status selection follow the steps below.

Step 1 With the HHC on and reading pressure press the set up key.

SET UP

Step 2 Using the left/right and up/down arrow keys select the “Status” function from the setup menu. When selected the word Status will flash on the display.

EvntTimr Dampen LeakRate Status

Step 3 With the word Status flashing press the enter key.

ENT

Step 4 After pressing EnT the display will read:

snXXXXXXdd/dd/dd fw=XX.XXhw=XX.XX

where:

snXXXXXX: serial number of the base unit. dd/dd/dd: provides the date of calibration of the base unit. fw: revision level of the firmware hw: revision level of the hardware

After reviewing this display and recording any desired information press the enter key to call up the second status screen.

ENT

Step 5 After pressing the enter key a second time, the HHC will respond by displaying the following:

LeftMod dd/dd/dd Type x

where:

dd/dd/dd: the date of the last calibration of the left module. Type: provides information on the type of Quick Select pressure module.

Step 6 After reviewing this display and recording any desired information press the enter key to call up the third status screen. After pressing the enter key the HHC will respond by displaying the following:

RightMod dd/dd/dd Type x where:

dd/dd/dd: date of the last calibration of the left module. Type: provides information on the type of Quick Select pressure module.

Review the displayed information and record any desired information.

Step 7 Press the enter key to return to the basic pres-sure measurement mode.

ENT

Section 20.2 Battery Power Status Check

The battery check key, designated BAT CK, allows for easy tracking of the power level remaining in the 9 Volt dc batteries that power the HHC.

To check the battery power level press the BAT CK key. The HHC will respond by displaying the following

+x.xxV +xx% _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

where:

+x.xx V: battery voltage level.

+xx %: estimated battery life remaining as a percent of the 30 hours standard battery life provided by 2 fresh 9 Vdc batteries.

Note: Only a battery voltage reading will be displayed if the % battery life function is not enabled as detailed in section 3.4.2.

Two 9 Volt alkaline batteries will power the HHC for approximately 30 hours. The HHC display of percentage of battery life remaining is the % of 30 hours remaining. Use of non-alkaline batteries will render this percent value inaccurate. The bottom line of the display is a bar graph of the remaining battery life.

Important Notes:

1 – The bar graph must be reset when new batteries are installed. To reset the bar graph follow the steps outlined in section 3.4.2 of this manual.

Page 44: ATE-100 HAND HELD CALIBRATOR OPERATING MANUAL · ate-100 hand held calibrator operating manual revision 4.6 3/2004 i&m002-10037-11/00 (ahhc-man)

- 44- Revision 4.6 3/2004

2 – The percent life remaining is based on the character-istics of standard 9 Vdc alkaline batteries. Use of other batteries types, such as; zinc, lithium or rechargeable niCad batteries, will result in inaccurate estimation of remaining battery life in both percent indication and bar graph indication.

Step 1 Install new batteries as outlined in the base unit start up section of this manual (Section 3.1).

Step 2 Turn the HHC on.

Step 3 With the HHC operating and displaying pres-sure press the battery check key, designated BAT CK:

BAT CK

The HHC will respond by displaying:

+x.xxV +xx%

Note: Installation of two new 9 Vdc alkaline batteries will produce an initial voltage measurement of 9.0-9.5 Volts on the calibrator. If the value measured is signifi-cantly below this level it is likely that the batteries have degraded in storage and that they will provide less than the 30 hours of operation expected from a set of fresh, fully charged batteries.

Step 4 Use the right arrow key to restore the bar graph to the full scale. The percentage value displayed will reflect the adjustments made to the bar graph.

The number of highlighted segments in the bar graph will automatically reduce as the remaining battery life is reduced through the use of the HHC.

Important Note: It is recommended that batteries be re-placed when the low voltage icon appears on the instru- the low battery icon appears is approximately 1 hour.

****WARnInG****Batteries must be changed in a non-hazardous environ-ment for all HHC units.

Section 21.0 Dual Sensor Functions

The calibrator is equipped with firmware that can auto-matically add the measured pressure values from two installed Quick Select pressure modules or to subtract the value measured by the Quick Select module installed in the right module bay from the measured value of the Quick Select value in the left module bay. This optional firmware allows for the following:

The ability to subtract the measured value from the left module of the measured value derived from the right module allows for simplified measurement of what are commonly referred to as high-line” or elevated static differential pressures. A complete description of this

capability is provided in Section 21.2 entitled Dual Sensor Differential Pressure Measurement.

2 – The ability to add the measured values of the two installed Quick Select pressure module allows for the addition of a measured barometric pressure from an absolute pressure module to the measured pressure from a gauge or differential pressure. This capability can come in handy and save money by allowing the use of gauge measurement Quick Select pressure modules for absolute pressure measurement activities.

Section 21.1 Accuracy of Dual Module Measurements

The accuracy of measurements made using the differ-ence or sum of 2 modules is a function of the full scale range of the Quick Select pressure modules used and, in the case of differential pressure measurements, the magnitude of the dp range.

For dual sensor summation measurements: The worst case inaccuracy would be the sum of the inaccuracies of the two Quick Select modules used for the measurement. For example, if the measurement is made with two +0.1% full scale modules the maximum inaccuracy would be +0.2%. In actual use, it is gen-erally acceptable to use the Root Sum of the Square (RSS) method of determining the accuracy of a multiple component measurement system. Using the RSS method the accuracy of the dual module summation is approxi-mately +0.14% of span.

For dual module differential pressure measurement: The accuracy of the dual module differential pressure measurement is a function of the full scale range of the Quick Select pressure modules used in the measurement process and the magnitude of the dp range. In general, the accuracy for the dp measurement for dp ranges less than 10% of the rated range of the Quick select modules used is ±0.37% of dp range ±1 count. For dp ranges greater than 10% of the range of the Quick Select pressure module installed, the accuracy of the dp measurement is ±0.37 % of the dp range x 0.1(R1) where R1 equals the ratio of the module full scale to the dp full scale (Sensor full scale/dp full scale).

Section 21.2 Setting Up Dual Module Differential Pressure Measurement

Step 1 With the calibrator off, install the two Quick Select pressure modules in the calibrator. Be certain to install the module so that the modules are in the desired module bays. The subtraction process is always defined as the subtraction of the measured value of the right module from that of the measured value of the left module (d/p = Left measurement value – right measure-ment value)

Page 45: ATE-100 HAND HELD CALIBRATOR OPERATING MANUAL · ate-100 hand held calibrator operating manual revision 4.6 3/2004 i&m002-10037-11/00 (ahhc-man)

- 45 - Revision 4.6 3/2004

Step 2 With the modules installed, turn the calibrator on by pressing the on/off key.

ON OFF

Step 3 With the calibrator on and displaying pressure measurement data from the two installed Quick Select modules press the Set Up key.

SET UP

Step 4 Using the up/down and left/right arrow keys locate the section of the set up menu that includes dp measurement set up. This menu will appear on the cali-brator screen as follows:

Calib Rtmodule dp Meas

Step 5 Use the arrow keys to highlight the text “dp Meas”. When highlighted the text will flash on the dis-play.

Calib Rtmodule dp Meas

Step 6 With the text “dp Meas” flashing press the enter key.

ENT

The calibrator will respond with the following display.

dp Meas Mode: NONE L-R L+R

Step 7 To perform dual module differential pressure measurement select “L-R”; to exit this dp set up and return to basic pressure measurement select “nOnE”. To proceed, use the arrow keys to select the text “L-R” dp Meas Mode: NONE L-R L+R

Step 8 With the text “L-R” flashing press the enter key.

ENT

After pressing the enter key the calibrator will return to basic pressure measurement.

Step 9 To activate the dual sensor dp mode of opera-tion press the port select key one time after the set up has been complete. The calibrator will display the fol-lowing text

L-R PSI PSI xxxx xxxx

for a calibrator displaying measurement values in the psi engineering unit.

When the dual sensor differential firmware is active the following measurement sequence will result from press-ing the PORT SELECT (PORT SEL) key.

First press of the port select key:

L-R PSI PSI xxxx xxxx

Second press of the port select key: PSI L-R PSI xxxx xxxx

Third press of the port select key: PSI mA xxxx xxxx

Fourth press of the port select key: mA PSI xxxx xxxx

Fifth press of the port select key: PSI PSI xxxx xxxx

The sixth press of the port select key will return to the first dp screen as shown below and allow repeating the choice of available port select configurations:

L-R PSI PSI xxxx xxxx

****IMPORTAnT****When static pressure is being applied to both modules at zero differential pressure press the TARE Key to eliminate any offset caused by the elevated static to optimize measurement accuracy. notes on interpreting the displayed measurement values:

1 – On a display set up with an L-R indication on one side of the display and a straight engineering unit designation on the other side of the display the value under the L-R designation is the resulting valuefrom the subtraction of the right Quick Select measurement from that of the left Quick Select measurement. The value on the opposite side of the display, under the engineer-ing unit without the L-R prefix represents the pressure measurement from the Quick Select pressure module installed in the corre-sponding side of the calibrator. By using the port select function it is possible to read the differential pressure measurement value as well as either of the inputs independently.

2 – Due to the length of the engineering unit designation when the d/p is expressed in a user engineering unit the L-R indication will be not be present on the display. The display is limited to 16 characters/line and cannot display both the L-R and a _XXXXXX engineering unit label.

Page 46: ATE-100 HAND HELD CALIBRATOR OPERATING MANUAL · ate-100 hand held calibrator operating manual revision 4.6 3/2004 i&m002-10037-11/00 (ahhc-man)

- 46- Revision 4.6 3/2004

Section 21.3 Setting Up Dual Module Summation Pressure Measurement

Step 1 With the calibrator off, install the two Quick Select pressure modules in the calibrator. As this is a summation process the modules may be in either sensor bay.

Step 2 With the modules installed, turn the calibrator on by pressing the on/off key.

ON OFF

Step 3 With the calibrator on and displaying pressure measurement data from the two installed Quick Select modules press the Set Up key.

SET UP

Step 4 Using the up/down and left/right arrow keys locate the section of the set up menu that includes dp measurement set up. This menu will appear on the cali-brator screen as follows:

Calib Rtmodule dp Meas

Step 5 Use the arrow keys to highlight the text “dp Meas”. When highlighted the text will flash on the dis-play.

Calib Rtmodule dp Meas

Step 6 With the text “dp Meas” flashing press the enter key.

ENT

The calibrator will respond with the following:

dp Meas Mode: NONE L-R L+R

Step 7 To perform pressure measurement using the dual sensor summation mode select “L+R”; to exit this dp set up and return to basic pressure measurement select “nOnE”. To proceed, with use the arrow keys to select the text “L+R”

dp Meas Mode: NONE L-R L+R

Step 8 With the text “L+R” flashing press the enter key.

ENT

After pressing the enter key the calibrator will return to basic pressure measurement.

Step 9 To activate the dual sensor dp mode of opera-

tion press the port select key one time after the set up has been complete. The calibrator will display the fol-lowing text

L+R PSI PSI xxxx xxxx

for a calibrator displaying measurement values in the psi engineering unit.

When the dual module summation firmware is active the following measurement sequence will result from press-ing the PORT SELECT key

First press of the port select key: L+R PSI PSI xxxx xxxx

Second press of the port select key: PSI L+R PSI xxxx xxxx

Third press of the port select key: PSI mA xxxx xxxx

Fourth press of the port select key: mA PSI xxxx xxxx

Fifth press of the port select key: PSI PSI xxxx xxxx

The Sixth press of the port select key will return to the first dp screen as shown below and allow repeating the choice of available port select configurations

L+R PSI PSI xxxx xxxx

notes on interpreting the displayed measurement values:

1 – On a display set up with an L+R indication on one side of the display and a straight engineering unit des-ignation on the other side of the display the value under the L+R designation is the resulting measurement for the summation product of the left Quick Select measure-ment added to the measurement value of the right Quick Select module. The value on the opposite side of the dis-play, under the engineering unit without the L+R prefix, represents the pressure measurement from the Quick Select pressure module installed in the corresponding side of the calibrator. By using the port select function it is possible to read the summation pressure measurement value as well as either of the inputs independently.

2 – Due to the length of the engineering unit designa-tion when the d/p is expressed in a user engineering unit

Page 47: ATE-100 HAND HELD CALIBRATOR OPERATING MANUAL · ate-100 hand held calibrator operating manual revision 4.6 3/2004 i&m002-10037-11/00 (ahhc-man)

- 47 - Revision 4.6 3/2004

the L+R indication will be not be present on the display. The display is limited to 16 characters/line and cannot display both the L+R and a U_XXXXXX engineering unit label.

Section 22.0 Data Logging Function (Optional)

There are two basic ways to perform data logging with the HHC system. These are

• sequentially ungrouped storage • grouped for certification generation of an instrument under test.

Sequential data logging is detailed in this section (Sec-tion 22.1) of this manual.

Data logging with the enhanced certification generation data logging is detailed in Section 23 of this manual.

Note: Base units equipped with optional data logging include a lithium battery to back up the Random Access Memory (RAM) used to store data logged values. If the battery voltage is low the following message will appear on the DATA LOG key pressed.

Data Log Backup Battery is Low

When this message appears on the display the battery should be replaced as soon as possible. Consult Section 24.2 for details on battery replacement. Acceptable bat-teries are listed in section 24.2.

Section 22.1 Sequential Data Logging Function (Optional)

The sequential data logging function provides three means of capturing and storing measurement data. These are:

• automatically at a defined time interval • automatically with delayed start • manually at the push of the data store key

In the automatic data logging mode, data logging can be programmed to occur at a time interval of from 0.1 to 65,000 seconds. The manual mode of data logging allows storage of the displayed measurement data at the push of a key.

In the sequential data logging mode the HHC has the capacity to store a maximum of 714 data sets with the time/date stamp function disabled. If the time date stamp is enabled the HHC system data logging memory can store a maximum of 387 data sets. Each data set includes the following; the record number, the measured value and the engineering units of the measurement value. If the time/date stamp is enabled the time (hours/minutes/seconds) and date (Year/Month/Day) are included with the logged measurement data.

When used in conjunction with the Event Timer function (see Section 24) the HHC system can be set up to take data during a selected future time period at an operator programmed time interval. For example, the combina-tion of data logging and event timer provides the ability to set up the HHC system to take pressure measurements from 9:00 PM to 11:00 PM at a timed interval of one data set every 10 seconds, without operator intervention.

Section 22.2 Setting up the Data Logging Function (Optional)

The setup menu for the data logging function is accessed through a dedicated key on the keypad of the HHC system. This key has the designation DATA LOG. Press-ing the data log key provides access to the complete data logging set up menu.

DATA LOG

When the data log key is pressed the HHC system will respond with one of two prompt screens. If the unit is not equipped with the certification generation enhance-ment the calibrator will display:

Line 1 Auto Manual Line 2 Review Off Line 3 Label Erase

If the HHC system is equipped with the certification gen-eration data logging enhancement the response will be:

Select Mode Std CertGen

To perform “standard” sequential manual or time based data logging highlight the text “Std” and with it flashing on the display press the enter key.

ENT

To access the certification generation capability of the HHC, using the right pointing arrow key highlight the text CertGen and with it flashing press the enter key.

ENT

The up/down and left/right arrows can be used to choose the desired selection from the data log set up menu. Information on the function of each of the above menu options follows.

Proceed to Section 23 of this manual for details on the certification generation mode of data logging.

Proceed through the balance of Section 22 for details on the use of the capabilities provided by the standard sequential data logging operation mode.

Page 48: ATE-100 HAND HELD CALIBRATOR OPERATING MANUAL · ate-100 hand held calibrator operating manual revision 4.6 3/2004 i&m002-10037-11/00 (ahhc-man)

- 48- Revision 4.6 3/2004

Section 22.3 Labeling Function – Standard Data Logging Mode

The label option allows the input of an alphanumeric label of up to 16 characters in length. Multiple labels can be used. For example, a label can be entered and data taken to be stored under the label. After completion of the measurement activities to be included under the first label another label may be entered and the next data set will follow that label in the data storage and transmis-sion sequence. Label information can be viewed on the HHC system display and is transmitted when stored values are reviewed via the computer upload program detailed in Section 24.

To enter a label follow the steps below.

Step 1 With the HHC system on and reading pressure/temperature, press the data log key on the HHC system keypad.

DATA LOG

In response the HHC system display will respond:

THE LAST DATA LOG MEnU SCREEn USED

Step 2 Using the up/down and right/left arrows browse through the data log menu and locate the word “label”. The menu line that contains the label function appears as:

Label Erase

Step 3 Using the left/right arrow keys select the word Label. When selected the word label will flash.

Label Erase

Step 4 With the word Label flashing press the enter key.

ENT

The HHC system will respond by displaying:

Enter Label - - - - - - - - - - - - - - -

Step 5 Use the Up/down arrows to enter letters, num-bers or a blank and the right/left arrows to move the cursor to the position in which the character is to be entered. When the label information is displayed press the enter key.

ENT

The label is now stored and will appear in sequence with the corresponding data logged values when the stored information is viewed on the display or uploaded to a computer.

Section 22.4 Automatic Data Logging – Standard Data Logging Mode

The automatic data logging function allows for the automatic, unattended logging of measurement data. The data logging process commences immediately after the completion of the set up of the automatic data function to be performed. Automatic data logging can be accom-plished by the following procedure.

Step 1 With the HHC system on and reading pressure press the data log key on the keypad.

DATA LOG

The HHC system will respond by displaying:

THE LAST DATA LOG MEnU SCREEn USED.

Step 2 Using the up/down and right/left arrows browse through the data log menu and locate the word “Auto” The menu line with the word “Auto” appears as:

Auto Manual

To initiate automatic, time interval, data logging select the word “Auto” by using the arrow keys. When selected the word “Auto” will flash on the display. For manual, operator controlled, data entry proceed to Section 22.5.

Auto Manual

Step 3 With the word “Auto” flashing press the enter key.

ENT

The HHC system will respond by displaying:

Enter Interval sec. xxxxxx

Step 4 Using the number keys enter the desired time interval in seconds. The interval may be from 0.1 sec-onds to 65,000 seconds.

Enter Interval sec. 12345

Step 5 After the desired time interval is shown on the display press the enter key.

ENT

Step 6 The HHC system will respond by displaying the following:

Readings to Log None Left Rght Both

Step 7 Using the arrow key select the desired Quick

Page 49: ATE-100 HAND HELD CALIBRATOR OPERATING MANUAL · ate-100 hand held calibrator operating manual revision 4.6 3/2004 i&m002-10037-11/00 (ahhc-man)

- 49 - Revision 4.6 3/2004

Select pressure modules to be monitored and logged.

Readings to Log None Left Rght Both

In this example we have opted to log the output from both Quick Select pressure modules.

Step 8 With the Quick Select module(s) to be moni-tored selected and flashing press the enter key.

ENT

The HHC system will respond by displaying:

Date/Time Stamp Disable Enable

Note: If data storage is done with the time/date stamp option activated, the HHC system can store 387 sets of pressure measurements. If data storage is done without the time/date stamp option activated the HHC system can store 714 sets of pressure measurements. A data set is the full package of information defining the logged output from one module.

Using the arrow keys select the desired storage format. The desired format will flash when selected.

Date/Time Stamp Disable Enable

In this example we have opted to forego the date/time stamp of the stored data values.

Step 9 With the desired format displayed press the enter key.

ENT

The HHC system will immediately begin storing the pressure data requested at the desired interval until instructed to stop the data logging process.

Step 10 To stop the data logging process press the Data Log key. The HHC system will respond by displaying:

Auto Manual Review Off

Step 11 Using the arrow keys select the word off. When selected the word “Off” will flash.

Auto Manual Review Off

Step 12 With the word “Off” flashing press the enter key to disable the data log function.

ENT

Automatic, time interval based, data logging has now been terminated.

Section 22.5 Manual Data Logging – Standard Data Logging Mode

Follow the procedure below to conduct manual, operator controlled, data logging.

Step 1 With the HHC system on and reading pressure press the data log key.

DATA LOG

The HHC system will respond by displaying:

THE LAST DATA LOG MEnU SCREEn USED

Step 2 Using the up/down and right/left arrows browse through the data log menu and locate the word “Manual.” The menu line with the word “Manual” appears as:

Auto Manual

To initiate manual data logging select the word “Manual” using the arrow keys. When selected the word “Manual” will flash on the display.

Auto Manual

Step 3 With the word “Manual” flashing press the enter key.

ENT

The HHC system will respond by displaying:

Readings to Log None Left Rght Both

Step 4 Using the arrow key select the desired Quick Select modules to be monitored.

Readings to Log None Left Rght Both

In this example we have opted to log the output from both Quick Select pressure modules.

Step 5 With the Quick Select module(s) to be monitored and logged selected and flashing press the enter key.

ENT

The HHC system will respond by displaying:

Date/Time Stamp Disable EnableNote: If data storage is done with the time/date stamp option activated the HHC system can store 387 sets of pressure measurements. If data storage is done without the time/date stamp option the HHC system can store 714 sets of pressure measurements. Sets of pressure measurement data include all the data stored to define the output of one module.Using the arrow keys select the

Page 50: ATE-100 HAND HELD CALIBRATOR OPERATING MANUAL · ate-100 hand held calibrator operating manual revision 4.6 3/2004 i&m002-10037-11/00 (ahhc-man)

- 50- Revision 4.6 3/2004

desired storage format. The desired format will flash on the display when selected.

Date/Time Stamp Disable Enable

In this example we have opted to forego the date/time stamp of the stored data values.

Step 6 With the desired format selected and flashing press the enter key.

ENT

Step 7 The HHC system is now ready to log data on command. To store a measured pressure, flow, leak test, switch test, min/max data set, current or voltage value press the data store key.

DATA STORE

Step 8 To disable the manual data logging capability press the Data Log key.

DATA LOG

The HHC system will respond by displaying:

Auto Manual Review Off

Step 9 Using the arrow keys select the word “Off”. When selected the word “Off” will flash.

Auto Manual Review Off

Step 10 With the word “Off” flashing press the enter key to disable the data log function.

ENT

Manual, operator initiated, data logging has now been terminated.

Section 22.6 Review of Stored Data – On Instrument Display Standard Data Logging Mode

Data stored in either the manual or automatic data log-ging functions can be reviewed on the display of the HHC system or up loaded to an IBM compatible PC. For information regarding uploading of stored data to a personal computer skip to Section 24.0.

The HHC system provides the ability to review, on the display, the data logged measurement values. To review stored values follow the procedure below.

Step 1 With the HHC system on and reading pressure

press the data log key on the keypad.

DATA LOG

The HHC system will respond by displaying the follow-ing:

THE LAST DATA LOG MEnU SCREEn USED

Step 2 Using the up/down and right/left arrows browse through the data log menu and locate the word “Review”. The menu line with the word “Review” appears as:

Review Off

To initiate the review process select the word “Review” using the arrow keys. When selected the word “Review” will flash.

Review Off

Step 3 With the word “Review” flashing press the enter key.

ENT

Step 4 The HHC system will respond by displaying the last data logged value stored in memory. The display of the data logged value will appear as follows:

+xxx time +123456 eng

where:

+xxx = the 1-3 digit number representing the record number for the data point in the sequence of logged data.

+12345 = stored measurement value.eng = is the engineering unit of the stored value.time = time pressure measurement taken, when date/

time stamp was enabled.

Important Note: If both the left and right pressure/flow or electrical measurements are logged the HHC system will store the data from the left module or side of the display in the odd numbered records and the data from the right module or right side of the display in the even numbered records. There is no stored indication of right or left module for the stored data values.

Step 5 To review data logged values use the arrow keys to browse through the stored values. Pressing the cor-responding arrow key will result in the following action in the data log review process.

Key Result < brings the next lowest stored address value to the display.

Page 51: ATE-100 HAND HELD CALIBRATOR OPERATING MANUAL · ate-100 hand held calibrator operating manual revision 4.6 3/2004 i&m002-10037-11/00 (ahhc-man)

- 51 - Revision 4.6 3/2004

> brings the next highest stored address value to the display. ^ skips 10 stored values in increasing address direction. v skips 10 stored values in decreasing address direction. % brings first data point to display. mA/V brings last data point to display.

Step 6 When the review process is complete press the data log key to return to normal pressure measurement.

DATA LOG

Section 22.7 Erasing of Selected Stored Data – Standard Data Logging Mode

In some instances the ability to delete specific stored data points can be useful. In particular, this can be the case when data of questionable integrity has been stored in the data log memory. The HHC system allows for the deletion of specific operator selected stored data points. There are limitations to this capability.

These limitations are as follows:

1) The remaining data will stay in the original sequence with blank data fields left where the stored data points have been deleted.

2) The HHC system will not compress the data to the new, smaller data set.

3) The newly erased fields cannot be used for the stor-age of new data values until a complete data erase has been done.

The process to delete selected data points is as follows:

Step 1 With the HHC system on and reading pressure press the datalog key on the HHC system keypad.

DATA LOG

In response the HHC system will display:

THE LAST DATA LOG MEnU SCREEn USED

Step 2 Using the up/down and right/left arrows browse through the data log menu and locate the word “Review” The menu line with the word Review appears as:

Review Off

Using the arrow keys select the word Review. When selected the word Review will flash.

Auto Manual Review Off

Step 3 With the word review flashing press the enter key.

ENT

Step 4 Data points may be browsed through by using the keys as indicated below:

Key Result > brings the next lowest stored address

value to the display. < brings the next highest stored address value to

the display. ^ skips 10 stored values in increasing address

direction. v skips 10 stored values in decreasing address

direction. % brings first data point to display. mA/V brings last data point to display.

To erase a stored data value press the clear entry key, designated CE, while the data to be deleted is displayed.

CE

The HHC system will respond by displaying:

Erase This Entry Ent if OK

Step 5 To delete the displayed stored data point press the enter key.

ENT

The HHC system will respond by displaying:

+ xxx Erased Entry

Step 6 Using the arrow keys additional data points can be reviewed and kept or deleted as desired.

Step 7 To exit this function press the data log key.

DATA LOG

The HHC system will now resume normal pressure measurement activities.

Section 22.8 Erasing All Stored Data – Standard Data Logging Mode

Step 1 With the HHC system on and reading pressure press the data log key.

DATA LOG

In response the HHC system will display:

THE LAST DATA LOG MEnU SCREEn USED

Page 52: ATE-100 HAND HELD CALIBRATOR OPERATING MANUAL · ate-100 hand held calibrator operating manual revision 4.6 3/2004 i&m002-10037-11/00 (ahhc-man)

- 52- Revision 4.6 3/2004

Step 2 Using the up/down and right/left arrows browse through the data log menu and locate the word “Erase”. The menu line with the word Erase appears as:

Label Erase

Step 3 Using the left/right arrow keys select the word Erase. When selected the word Erase will flash.

Label Erase

Step 4 With the word Erase flashing press the enter key.

ENT

The HHC system will respond by displaying:

Erase ALL Entrys Cancel Erase

The word cancel will be flashing. Select the word erase using the arrow keys to erase stored data.

Step 5 Using the right arrow select the word Erase and press the enter key.

ENT

***WARNING***

Pressing the enter key with the erase command flashing will irrevocably erase all stored data. If it is required that any of the stored data be retained select the word “cancel” and press the enter key on the keypad.

Erase ALL Entrys Cancel Erase

Step 6 To erase all stored data press the enter key.

ENT

The HHC system will now resume standard pressure measurement activities.

Section 23.0 Certification Generation Enhanced Data Logging Mode

The certification generation operating mode is designed to simplify the capture of measurement data taken during the calibration for easy generation of calibra-tion certification sheets. The certification generation mode of data logging will simplify calibration activities. Performance of calibrations will be facilitated through operator prompts provided by the HHC when used in the enhanced certification generation mode. Further, the manipulation and use of calibration data is facilitated by the enhanced data labeling capability provided by this mode of operation.

Section 23.1 Set Up and Use of Certification Generation Data Logging Mode

Step 1 With the HHC on and displaying measurement data press the data log key.

DATA LOG

The HHC will respond to the data log entry by display-ing the following.

Select Mode Std CertGen

“Std” represents standard sequential data logging with-out the benefit of formatting to aid in the calibration pro-cess. Standard data logging is most commonly used for time based data logging of processes or system controls or sampling of such things as HVAC ducts.

“CertGen” represents the Certification Generation mode of data logging. This is the mode that is detailed here. To review or use standard data logging refer to Section 22 of the users manual.

To access the “CertGen” capabilities use the arrow keys to highlight the text “CertGen” .

Select Mode Std CertGen

Step 2 With the text “CertGen” flashing press the enter key.

ENT

The HHC will respond by displaying:

CertGen Exit Erase

The text “CertGen” will be flashing, indicating that pressing the enter key will activate the “CertGen” data logging process.

Selecting and entering the “Exit” option will return the calibrator to standard measurement activities.

Selecting the text “Erase” will allow deletion of any previous data logged information. The “Erase” selection deletes all data logged information, including any infor-mation stored from either “Std” or “CertGen” operating modes. If “Erase” is selected the HHC will respond by displaying:

Erase All Entrys Cancel Erase

Selecting “Cancel” will result in the HHC reverting to basic measurement activities. Selecting “Erase” will result in the deletion of ALL stored data logging information.

Page 53: ATE-100 HAND HELD CALIBRATOR OPERATING MANUAL · ate-100 hand held calibrator operating manual revision 4.6 3/2004 i&m002-10037-11/00 (ahhc-man)

- 53 - Revision 4.6 3/2004

Step 3 Using the arrow keys, highlight the text “CertGen to proceed with the certification generation process ”.

CertGen Exit Erase

Step 4 With the text “CertGen” flashing on the display press the enter key.

ENT

The HHC will respond by displaying the following:

xxx Rec Used xxx% xxx Points left

This display provides an indication of the approximate data logging memory available for storage of additional measurement and calibration data. The number of actual points that may be stored will vary based on the length of tag names assigned and whether or not the ambient temperature logging option has been exercised.

The percent indication is the percent of data logging memory used. As data is added to the data log memory during the data acquisition process the percent level will increase. This will be seen on the display as each data set is added to the data log memory. In addition the complete memory available summary as shown above will be dis-played each time the “CertGen” process is initiated.

The HHC can store a minimum of 10 complete calibra-tions including: 10 “as received” data points, 10 “as left” data points, tag name, ambient temperature at time of “as found” tests, ambient temperature at time of “as left tests”and the indication of the action taken.

Step 5 Pressing any key will clear the memory avail-able summary from the display and allow continuation of the “CertGen” process.

After pressing any key the HHC will respond by display-ing the following.

New Tag Previous Tag

The text “new Tag” will automatically be selected and be flashing on the display when the “CertGen” process is initiated.

Step 6 To initiate the data logging of measurement information for the generation of a certification sheet press the Enter key with the text “new Tag” flashing.

ENT

The HHC will respond by displaying the following.

Enter Tag Name - - - - - - - - - - - - - - - -

Use the up and down arrow keys to enter letters and or numbers to define an instrument tag name. The entry/selection sequence is as follows:

Up/down arrows provide access as follows:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, _, A, B, C, D, E, F, G, H, I, J, K, L, M, n, O, P, Q, R, S, T, U, V, W, X, Y, Z

By maintaining pressure on the up/down arrow the dis-played number or letter will continue to change until the last character has been reached.

By pressing and releasing the up/down arrow a single step from letter or number can be accomplished.

The left/right arrow keys allow for entry of alpha numeric data in any of the 16 available positions.

The tag name can be any combination of alphabetical or numeric entries. The maximum entries per tag name is 16 characters.

The tag name is the key designation under which all subsequent calibration for this calibration data set will be organized. Tag names or tag numbers are routinely identifiers assigned to measurement instruments when put into service within a facility. If no tag identifier is assigned to the device to be tested it is recommended that one be created by combining some abbreviation for the manufacturer’s name and the instrument serial number for the device to be tested. The use of the “Cert-Gen” firmware requires the entry of a tag name for each device to be calibrated.

Use the up/down and left/right arrows to enter a tag name, as shown here.

Enter Tag Name AB12345 - - - - - -

Step 7 With the desired tag name displayed press the enter key

ENT

The HHC will respond by displaying:

Collect Readings AsFound AsLeft

The text “AsFound” will be flashing when this screen appears. Select “AsFound” to store the initial (uncorrected/unadjusted) calibration data. To collect “as found” data press the enter key with the text “AsFound” flashing on the display.

ENT

Page 54: ATE-100 HAND HELD CALIBRATOR OPERATING MANUAL · ate-100 hand held calibrator operating manual revision 4.6 3/2004 i&m002-10037-11/00 (ahhc-man)

- 54- Revision 4.6 3/2004

The HHC will respond by prompting the operator to enter the number of “as found” data points to be taken. A data point consists of the pressure measurement as read on the calibrator and the current or voltage output from the device under test as measured on the calibrator. Therefore, each data point is actually two (2) measure-ment values. The prompt appears as follows.

Enter#of Testpts .000000

The number of test points can be any value from 1 to 21.

Important Note: The HHC can store sufficient mea-surement data to calibrate 10 devices each with 10 “as found” and 10 “as left” data points (corresponding to 200 test points. Each test point includes both pressure/temperature and electrical measurement data). In addi-tion to storing the measurement test data the heading or label information for each calibration is also stored in memory. This information includes: tag name, ambient temperature, “as found” label, “as left” label and action taken.

Prior to initiating the calibration process the base unit will prompt the operator with a screen providing the remaining storage capacity for data in terms of number of data points. If the operator enters a number of test points that exceeds the available memory the following message will be displayed:

Value exceeds # remaining points

Pressing any key will return the prompt requesting entry of the number of test points to be run. The number of test points entered must be less than or equal to the remaining test points available. Memory requirement for the calibration heading information are already factored into the information provided regarding the number of test points remaining. The number displayed may be completely allocated to measurement data without worry about leaving space for needed labelling.

Step 8 Using the numeral keys enter the desired number of “as found” data points to be logged. In this example 10 data sets will be stored in the calibrator’s data logging memory.

Enter#of Testpts

10

Step 9 With the desired number of test points entered and displayed press the enter key.

ENT

The HHC will respond by returning basic measurement

operation.

Step 10 Prior to beginning the collection of data the HHC should be set up to display the information to be logged in the HHC’s memory. For example, in standard transmitter calibration the calibrator display will rou-tinely display the measured value from the Quick Select pressure module being used as the pressure standard and the measured current (mA) value output from the transmitter (input to the mA and COMM jacks on the calibrator front panel) as a result of the pressure input applied to the transmitter.

Therefore the HHC will typically be displaying either of the two following sets of information when performing the calibration process.

mA PSI xxxxx yyyy

or

PSI mA yyyy xxxxx

where: yyyy= the pressure measurement value xxxx= the current measurement value (output from the device under test)

Step 11 With the data to be logged shown on the dis-play, introduce the first pressure/temperature measure-ment to be logged. After the system has stabilized press the data store key.

DATA STORE

The HHC will briefly show the following information on the display each time a measurement set is logged to memory.

xx yy% 1234 1234

where:

xx = the number of data points (records) and data fields used for calibration labelling information stored in this calibration data set.

yy = the percent of data logging memory allocated to stored data.

1234 = the measured values in the engineering units chosen.

Step 12 Repeat the process, subjecting the HHC and the device under test to the controlled pressure/temperature input for each test point to be taken and store the measured values by pressing the data store key for each measurement set to be logged.

Page 55: ATE-100 HAND HELD CALIBRATOR OPERATING MANUAL · ate-100 hand held calibrator operating manual revision 4.6 3/2004 i&m002-10037-11/00 (ahhc-man)

- 55 - Revision 4.6 3/2004

DATA STORE

After the last set of data to be logged has been stored the HHC will prompt the operator with the following display.

AsFound readings View Done Redo

The options available are as follows:

View: Allows operator to scan through the stored values using the arrow keys. Use the leftpointing arrow to move in decreasing order from data point to data point. Use the down-ward pointing arrow to move in decreasing order 10 data points at a time. Use the right pointing arrow to move in increasing order from data point to data point. Use the upward pointing arrow to move in increasing order 10 data points at a time.

Done: Completes the collection of “AsFound” measure-ment data. See step 13 for continuation of the “CertGen” process.

Redo: Provides the ability to discard all the “As Found” data taken under the tag name being tested. Prior to deleting the data the operator will be prompted by the query.

ERASE all data Yes No

Selecting yes will result in the deletion of the just taken “as found data”.

Step 13 After selecting “Done” the HHC will offer the opportunity to enter the ambient (environmental) tem-perature at the time the calibration is being done. This is accomplished by the display of the following.

Ambient Temperature Skip Enter

To skip the act of logging the ambient temperature value select the text “Skip” and press the enter key.

ENT

To “capture” the ambient temperature and make it part of the calibration record use the arrow keys to select the text “Enter”.

Ambient Temperature Skip Enter

Step 14 To proceed with the entry/recording of the ambient temperature value with the text “Entry” flashing press the enter key.

ENT

Step 15

Note: If the HHC has an GQS-RT or TC temperature module and the probe is installed it will automatically offer the opportunity to store the measured tempera- ture value.

If a different value is to be entered or if the HHC is not equipped with a temperature module the temperature can be entered via the numeral keys on the keypad. With manual temperature entry completed the display will look as follows

Enter Amb Temp oF 73.4

for an ambient temperature of 73.4 degrees Fahrenheit.

Step 16 With the desired temperature value displayed press the enter key.

ENT

The HHC will respond by displaying:

Action Taken None Recal Repl

Using the arrow keys select the desired course of action. Select:

none: if no action is required and the device under test is performing satisfactorily.

Recal: If adjustments are to be made to the device under test.

Repl: If it has been determined that the tested device must be taken off line and replaced. The selected entry will become part of the stored data for the calibration being done against the previously entered tag name.

Step 17 With the desired selection highlighted press the enter key.

ENT

The HHC will respond by displaying:

Collect As Left Yes No AsFnd

Use the arrow keys to highlight the desired selection. The typical selections are:

Yes: If recalibration is selected as the action taken. Proceed to Step 18 for details on taking “As Left” data

no: If replace is selected as the action taken.AsFnd: If no action is taken because the device under

test was found to be within specification.

Selecting “AsFnd “ will result in the following com-

Page 56: ATE-100 HAND HELD CALIBRATOR OPERATING MANUAL · ate-100 hand held calibrator operating manual revision 4.6 3/2004 i&m002-10037-11/00 (ahhc-man)

- 56- Revision 4.6 3/2004

ment being added to the calibration record for the device under test:

“Use AF for AL”

Step 18 To take “As Left” data and store the measured values in the HHC’s memory use the arrow key to high-light the text “yes” under the “As Left” data prompt screen.

Collect As Left Yes No AsFnd

Step 19 With the text “yes” flashing press the enter key

ENT

The HHC will respond by displaying:

Enter # of Test pts .000000

Step 20 Use the numeral keys to enter the number of “as left” data records to be stored. The number selected can be any value between 1 and 21. In this example 5 “As Left” data records will be taken and stored in the HHC’s memory.

Enter # of Test pts 5

Step 21 Be certain that the desired data to be logged is shown on the HHC’s display. With the data to be logged shown on the display, apply the first pressure/temperature measurement to be logged. After the system has stabilized, press the data store key.

DATA STORE

The HHC will briefly show the following display.

xx yy% 1234 1234

where:

xx = the number of data sets (records) stored in this calibration data set.

yy = the percent of data logging memory allocated

to stored data.1234 = the measured values in the engineering units

chosen.

Step 22 Repeat the process, subjecting the HHC and the device under test to the controlled pressure/temperature input for each test point to be taken and store the measured values by pressing the data store key for each measurement set to be logged.

DATA

STORE

After the last set of data to be logged has been stored the HHC will prompt the operator with the following display.

AsLeft readings View Done Redo

The options available are as follows:

View: Allows operator to scan through the stored values using the arrow keys. Use the left pointing arrow to move in decreasing order from data point to data point. Use the downward pointing arrow to move in decreasing order 10 data points at a time. Use the right pointing arrow to move in in-creasing order from data point to data point. Use the upward pointing arrow to move in increasing order 10 data points at a time.

Done: Completes the collection of “As Found” mea-surement data. See step 13 for continuation of the “CertGen” process.

Redo: Provides the ability to discard all the “As Found” data taken under the tag name being tested. Prior to deleting the data the operator will be prompted by the query.

ERASE all data Yes No

Selecting yes will result in the deletion of the just taken “as left” data.

Step 23 After selecting “Done” the HHC will offer the opportunity to enter the ambient temperature at the time the “as Left” calibration is done. This is accomplished by the display of the following prompt screen.

Ambient Temp Skip Enter

To skip the logging of the temperature information select the text “Skip” and press the enter key.

ENT

To “capture” the ambient temperature and make it part of the calibration record use the arrow keys to select the text “Enter”.

Ambient Temp Skip Enter

Step 24 To proceed with the entry/recording of the ambient temperature value with the text “Enter” flashing press the enter key.

ENT

Step 25

Page 57: ATE-100 HAND HELD CALIBRATOR OPERATING MANUAL · ate-100 hand held calibrator operating manual revision 4.6 3/2004 i&m002-10037-11/00 (ahhc-man)

- 57 - Revision 4.6 3/2004

Note: If the HHC has a GQS-RT or GQS-TC1 tempera-ture module installed, it will automatically offer the opportunity to store the measured value the base unit is receiving from the RTD or thermocouple.

If a different value is to be entered or if the HHC is not equipped with a temperature module the temperature can be entered via the numeral keys on the keypad. With manual temperature entry completed the display will look as follows:

Enter Amb Temp oF 73.4

for an ambient temperature of 73.4 degrees Fahrenheit.

Step 26 With the desired temperature value displayed press the enter key.

ENT

The HHC will respond by displaying the following:

Action Taken None Recal Repl

Using the arrow keys select the desired course of action. Select:

none: if no action is required and the device under test is performing satisfactorily.

Recal: If adjustments are to be made to the device under test.

Repl: If it has been determined that the tested device must be taken off-line and replaced.

The selected entry will become part of the stored data for the calibration being done against the previously entered tag name.

Step 27 With the desired selection highlighted press the enter key

ENT

After completion the HHC will once again display the memory available summarization screen as follows:

xxx Rec Used xxx% Points left

This display provides an indication of the approximate data logging memory available for storage of additional measurement and calibration data.

Step 28 Press any key to return to the first “CertGen” Screen as follows:

new Tag Previous Tag

Highlighting and selecting:

new Tag: will result in initiating a new calibration certification process.

Previous Tag: will allow the review of data previ-ously taken for specific tag names.

Press the clear entry key to return to standard HHC mea-surement and test activities.

CE

Section 24.0 HHC System Set Up for Uploading Stored Data Into an IBM Compatible PC

The following steps will allow you to upload stored data to an IBM compatible PC.

Step 1 Turn the power off on the base unit.

Step 2 Connect a 9 pin RS232 cable to the HHC system and to a serial port on the PC.

Step 3 Turn the power to the base unit on and with the HHC system on and reading pressure press the setup key.

SET UP

Step 4 Using the arrow keys locate and select the text RS232. When selected the text RS232 will flash.

Owner Alarm DateTime RS232

Step 5 With the text RS232 flashing, press the enter key.

ENT

The HHC system will respond by displaying:

RS232 interface Disable Enable

Step 6 Using the arrow keys select the word Enable. When selected the word Enable will flash.

RS232 interface Disable Enable

Step 7 With the word Enable flashing press the enter key.

ENT

The HHC system will respond by displaying:

Baud Rate 9600 2400 1200 300

Step 8 Using the left/right arrow keys select the desired baud rate. When selected the baud rate will flash.

Baud Rate 9600 2400 1200 300

In the above example 9600 baud has been selected.

Page 58: ATE-100 HAND HELD CALIBRATOR OPERATING MANUAL · ate-100 hand held calibrator operating manual revision 4.6 3/2004 i&m002-10037-11/00 (ahhc-man)

- 58- Revision 4.6 3/2004

Step 9 With the desired baud rate flashing press the enter key.

ENT

The HHC system will respond by displaying:

Disable ISO1745 Journal Inquiry

Step 10 In order to use the upload software provided with the HHC system use the arrow keys to select the text ISO1745. When selected the text ISO1745 will flash.

Disable ISO1745 Journal Inquiry

Step 11 With the text ISO1745 flashing press the enter key.

ENT

The HHC system is now set up for data logging. next, the computer to be used for uploading must be prepared.

Section 24.1 Installing and Operating Upload Software

Important Note: Information regarding the installation and use of the upload utility software is provided in the supplemental software manual provided with the prod-uct. Please consult the User’s Manual for the Upload Utility shipped with the HHC system.

Section 24.2 Battery Back Up Replacement

When the display indicates that the battery back up is low the lithium battery should be replaced as soon as possible. The battery is a standard 3 volt lithium battery. Replacement should be made with a Panasonic BR1225 or CR1220 battery.

***WARNING***

Replace battery with recommended batteries only. Use of another battery may present a risk of fire or explo-sion. Replacement batteries are available through most industrial supply and electronic supply distributors. Cau-tion, battery may explode if mistreated. Do not recharge, disassemble or dispose of in fire.

note: 1 – Installation category 1 2 – Pollution degree 2

***CAUTION***

This procedure should only be performed by a trained electronic technician. The HHC incorporates CMOS components that can be damaged by electrostatic discharge. Technicians performing battery replacement must be properly grounded to avoid damaging sensitive electronic components.

Follow the procedures below to change the battery back up unit.

Note: The HHC system should be turned off prior to initiating battery replacement procedure.

Step 1 Turn the HHC indicator bottom side up and locate the four (4) phillips head screws that secure the upper and lower case halves together.

Step 2 Remove and place aside the four Phillips head screws

Step 3 Holding the two case halves together, turn the instrument over (right side up) and slip off the top of the case.

Step 4 note the orientation of the cables and the con-nector used for each cable. Then, carefully disconnect the two ribbon cables. One cable connects the keypad to the main board and the second connects the display to the main board.

Step 5 Locate battery to be replaced. The battery unit is near connection P6, immediately to the right of pin 10.

Step 6 Remove depleted battery and install replace-ment unit. Be certain to install appropriate 3 volt lithium battery as outlined in introduction to this section.

Step 7 Remove jumper on connection P6 between pin 7 and pin 8. Wait 2-3 seconds and reinstall jumper in original location.

Step 8 Carefully reconnect cable between printed circuit board and keypad.

Step 9 Carefully reconnect cable between printed circuit board and display.

Step 10 Replace top half of case.

Step 11 Holding the two case halves together, turn the unit over (bottom side up).

Step 12 Reinstall four (4) screws used to connect the top and bottom sections of case.

Step 13 Follow steps in Section 3.5 to reinstall the desired Quick Select pressure modules.

Step 14 Power unit up and down three (3) times to enable the battery backup logic.

Battery replacement is now complete.

Section 25.0 Event Timer Function

The Event Timer allows for unattended data logging during a desired time period. For example, if it is neces-sary to monitor the pressure levels of a flue or HVAC duct during a specific time period the Event Timer, used in combination with the data logging function, can sat-

Page 59: ATE-100 HAND HELD CALIBRATOR OPERATING MANUAL · ate-100 hand held calibrator operating manual revision 4.6 3/2004 i&m002-10037-11/00 (ahhc-man)

- 59 - Revision 4.6 3/2004

isfy this requirement.

Delayed initiation of unattended measurement activities requires the set up of both the Event Timer and data logging function.

Section 25.1 Event Timer Set-Up

To program the HHC system for delayed monitoring and data logging follow the steps below.

The event timer sets the starting and ending times for unattended monitoring to be performed during a future time period. The Event Timer function is programmed as follows.

Step 1 With the HHC system on and measuring pres-sure press the set up key.

SET UP

Step 2 Using the arrow keys select the event timer, designated EvntTimr, option on the set up menu. When selected the text “EvntTimr” will flash on the display.

EvntTimr Dampen LeakRate Status

Step 3 With the text EvntTimr selected and flashing on the display press the enter key.

ENT

The HHC system will respond by displaying:

HHMMSS Start XXXXXX

where:

HH = hours in military time MM = minutes (0-60) SS = seconds (0-60)

Use the number keys to enter the hours, minutes and seconds in the corresponding entry fields to establish the start time.

Step 4 When entered the start time will look as follows for a time of 9:30 PM.

213000 Start XXXXXX

Step 5 When the desired start time has been input and appears on the display press the enter key.

ENT

The HHC system will respond by displaying:

HHMMSS Stop XXXXXX

Step 6 Enter the desired stop time using the number keys. When properly entered a stop time of 11:30 PM will look as follows:

HHMMSS stop 233000

Step 7 When the desired stop time has been input and appears on the display of the HHC system press the enter key.

ENT

The HHC system will respond by displaying:

Event Timer Disable Enable

Step 8 Use the right arrow key to select the word Enable. When selected the word Enable will flash on the display.

Event Timer Disable Enable

Step 9 With the word Enable flashing press the enter key.

ENT

Section 25.2 Data Log Set Up for Operation with the Event Timer

Automatic data logging must be set up to control the data logging parameters to be followed in time delayed data logging. For delayed data logging the logging func-tion must be set up as follows.

Step 1 With the HHC system on and reading pressure press the data log key.

DATA LOG

The HHC system will respond by displaying the following:

THE LAST DATA LOG MEnU SCREEn USED

Step 2 To program the HHC system for time delayed data logging use the arrow keys to locate and select the word “Auto” in the data log menu. When selected the word Auto will flash on the display.

Auto Manual Review Off

Step 3 With the word Auto flashing press the enter key.

ENT

The HHC system will respond by displaying:

Page 60: ATE-100 HAND HELD CALIBRATOR OPERATING MANUAL · ate-100 hand held calibrator operating manual revision 4.6 3/2004 i&m002-10037-11/00 (ahhc-man)

- 60- Revision 4.6 3/2004

Enter Interval sec. xxxxxx

Step 4 Using the number keys enter the desired time interval in seconds. The interval may be from 0.1 sec-onds to 65,000 seconds.

Enter Interval sec. 600

The above example shows an interval of 600 seconds or 10 minutes.

Step 5 After the desired time interval is entered and shown on the display press the enter key.

ENT

The HHC system will respond by displaying the follow-ing:

Readings to Log None Left Rght Both

Step 6 Using the arrow key select the desired Quick Select Modules to be monitored.

Readings to Log None Left Rght Both

In the above example the left module has been desig-nated as the Quick Select Module to be monitored for data logging.

Step 7 With the Quick Select module(s) to be moni-tored selected and flashing press the EnT key.

ENT

After the Quick Select pressure module(s) to be moni-tored has been entered the HHC system will respond by displaying:

Date/Time Stamp Disable Enable

Note: If data storage is done with the time/date stamp option the HHC system can store 387 sets of pressure measurements. Sets of pressure measurement data include pressure measurement from the left, right or both modules.

If data storage is done without the time/date stamp option the HHC system can store 714 sets of pressure measurements. Sets of pressure measurement data include pressure measurement from the left, right or both modules.

Step 8 Using the arrow keys select the desired stor-

age format. The desired format will flash on the display when selected.

Date/Time Stamp Disable Enable

In the above example the date time stamp function has been enabled and the stored data will be labeled with time date information in the database.

Step 9 With the desired format displayed press the enter key.

ENT

After pressing the enter key immediately turn the HHC system off.

When the event timer and data log functions are set up as outlined in Section 25, the HHC system will automat-ically turn itself on and make the programmed measure-ments over the desired time interval. At the conclusion of the programmed monitoring period the HHC system will automatically turn itself off.

To review logged data or perform any other data log-ging functions such as data labeling or uploading to a personal computer see the main data logging section (Section 22) of this manual.

Section 26.0 Alarm Function – Overview (Optional Feature)

Important Note: This feature is not functional in FM Approved Units. In order for the base unit to meet the re-quirements of Class 1, Division 1, Groups A, B, C & D hazardous areas it was necessary to disable this function.

The HHC can be equipped with a set of single pole single throw (SPST) relays for use in triggering annun- ciator lights, fans, sirens, etc. The relays have the fol-lowing specifications:

Relay Specifications

Parameter SpecificationSwitch Arrangement: Form C Resistance (max): 50 micro ohms Switching Power (max): 30 W, 62.5 VA (resistive load) Switching Voltage (max): 110 V dc, 125 Vac Switching Current (max): 1 Amp Switching Capability (min): 10 micro amp, 10 mVdc

The relay contact closures are accessed through the 9 Pin female D connector on the right side of the HHC. Pin out information for set point contacts is as follows

Pin 1 Relay 1 common Pin 7 Relay 1 (normally open or normally closed)

Page 61: ATE-100 HAND HELD CALIBRATOR OPERATING MANUAL · ate-100 hand held calibrator operating manual revision 4.6 3/2004 i&m002-10037-11/00 (ahhc-man)

- 61 - Revision 4.6 3/2004

Pin 8 Relay 2 commonPin 9 Relay 2 (normally opened or normally closed)

Section 26.1 Alarm Set Up

The alarm level trip points can be programmed from the keypad as follows.

Step 1 With the HHC on and reading pressure press the SET UP key.

SET UP

Step 2 Using arrow keys select the alarm function from the setup menu. When selected the word “Alarm” will flash on the display.

Owner Alarm DateTimeRS232

Step 3 With the word Alarm flashing press the enter key.

ENT

This is an optional feature, if the option is not installed the HHC system will respond with:

Option not installed

If this message appears press any key to resume normal operation.

Step 4 After pressing the enter key the display will read:

Alarm Relay Enable Disable

To set alarm levels, using the arrow keys, select the word Enable.

Alarm Relay Enable Disable

Step 5 With the word “Enable” flashing press the enter key.

ENT

Step 6 After pressing the enter key the HHC will respond:

High Setpoint ????????

Important Note: Set points must be entered for the spe-cific engineering unit to be monitored. For example if a setpoint of 10 is entered the alarm relay will trip when measured and displayed pressure exceeds the numerical value of 10. The HHC will not automatically convert the entered trip point to a new value to reflect a change in engineering units.

Open Close

If Open is selected, the low limit contact will be open when the measured pressure exceeds the setpoint value. If Close is selected, the contact will close if the setpoint is exceeded.

Step 7 Using the arrow keys select the desired mechanical configuration. In this example we have con-figured the system to close the relay contact when the alarm value is exceeded.

Low Contact Open Close

Step 8 When the desired configuration has been selected and the text is flashing on the display, press the enter key.

ENT

Step 9 After the enter key has been pressed the HHC will respond by displaying:

Monitor Function Left Right

This will determine whether the HHC is monitoring the left or right Quick Select pressure or temperature module. Using the arrow keys select the desired pressure module to be monitored.

Step 10 Use the left/right arrow keys to select the desired module to be monitored. In this example the left module has been identified for monitoring.

Monitor Function Left Right

Step 11 With the desired module selected and flashing, press the enter key.

ENT

The alarm function is now armed and operating. This function is automatically disabled when the HHC is turned off and must be re-initiated by enabling the alarms via the set up menu.

Page 62: ATE-100 HAND HELD CALIBRATOR OPERATING MANUAL · ate-100 hand held calibrator operating manual revision 4.6 3/2004 i&m002-10037-11/00 (ahhc-man)

- 62- Revision 4.6 3/2004

Section 27.0 Recertification of the Calibrator

Both the base unit and the pressure modules can be recalibrated and recertified in the field. The base unit includes a firmware based, menu driven procedure that provides operator prompts to facilitate the recalibration process. The procedure encompasses both the acquisi-tion of “as found” data and performing adjustment and recalibration of the base unit and modules. The recertifi-cation program is accessed via the set up menu key.

Access Code

The calibration data is password protected with an access code. The recalibration access code is different than the owner access code. Both of the access codes are provided with the calibrator at time of shipment and are located on the base unit calibration certificate. If the access code has been lost contact the factory and be prepared to provide the serial number of the base unit. The serial number is located on the product label in the module bay of the base unit. To locate the product label remove any installed pressure modules, hold the base unit keypad side down and look into the module bays. The label is located on the underside of the keypad/front panel section of the base unit.

Section 27.1 Calibration/Recertification Overview

The base unit calibration firmware provides a means of linearization and recertification of pressure modules and the base unit’s electrical input (Vdc/mA) calibration reference. In addition, the base unit employs a preci-sion 1 VDC reference for interfacing with the modules which can be calibrated. The calibration of this reference is critical to ensure the combined output of pressure module and base unit is within rated accuracy.

Section 27.2 Required Equipment

The following equipment is required to perform recali-bration or recertification of the calibrator.

1. A precision voltage supply capable of providing 1 Vdc ± 50 microvolts (±0.00005 Vdc)

2. Primary pressure standard with an accuracy rating of 4:1 compared to the rating of the pressure module to be tested.

3. Test leads with banana jacks and mini clips.

4. Recommended – Model CQS calibration quick select module. Although recalibration and recertifica-tion work can be performed with out it, this module will greatly simplify the process and reduce risk of damage to the base unit.

Section 27.3 As Received Readings of the Base Unit Electronics

Please note. The following convention is used when referring to modules or module bays in this procedure.

Step 1 Remove any installed measurement modules. If the CQS calibration module is to be used, install it in module bay #1 at this time.

Step 2 Turn power on and allow for at least 15 minutes warm up time.

Step 3 With the calibrator powered up and displaying a dashed line across the display, press the set up key.

SET UP

Step 4 Using the arrow keys locate the text “Calib” in the set up menu.

Calib RTmodule

Using the arrow keys select the text “Calib” from the set up menu. When the calibration function has been selected it will flash on the display.

Step 5 With the text “Calib” displayed and flashing press the enter key.

ENT

Step 6 The calibrator will respond by displaying:

Access code ? .00000

Step 7 Enter the 5 digit calibration access code pro-vided with the base unit.

Access code ? 12345

Note: The access code is specific for the base unit being used. The code is provided on the certification sheet that

Module Bay #1 Module Bay #2

Page 63: ATE-100 HAND HELD CALIBRATOR OPERATING MANUAL · ate-100 hand held calibrator operating manual revision 4.6 3/2004 i&m002-10037-11/00 (ahhc-man)

- 63 - Revision 4.6 3/2004

accompanied the product shipment from the factory. See section 27.0 “Access Code” for information on lost passwords.

Step 8 With the correct access code displayed press the enter key.

ENT

The calibrator will respond by displaying:

Electrical Pressure

The electrical calibration process allows for the cali-bration of the current and voltage input measurement capability of the base unit and calibration of the 0/1 vdc analog component of the interface between the base unit and the Quick Select module in use.

Step 9 When this screen appears, the word “Electrical” for electrical recertification is already flashing. There-fore, press the enter key to commence the electrical calibration.

ENT

The calibrator will respond by displaying:

Calibration Reference Check

Step 10 To perform “as received” readings use the down arrow key to select Reference Check. When selected the text “Reference Check” will flash on the display.

Calibration Reference Check

Step 11 With text Reference Check Flashing press the Enter Key.

ENT

The calibrator will respond by displaying:

——— 1.0V -.xxxxx RefCheck

*****WARnInG*****

If the voltage standard is set to a level in excess of the recommended calibration input or is connected to incor-rect pins or in contact with pins adjacent to the specified input pins during the calibration process the base unit electronics may be damaged. Use extreme caution when connecting test leads and applying test voltage inputs.

The Model CQS Calibration Quick Select module is available to simplify connection of the voltage stan-dard to the base unit. The module provides banana jack

connections for the input of the voltage standard to the calibrator base unit.

Step 12 To check the measured voltage using a preci-sion voltage source apply 1.00000 volt ±50 microvolts. Do not use a voltage less than or greater than 1 volt ± 50 microvolts. When the calibrator is ready to mea-sure the reference voltage it will display:

Apply 1.00000V to J3 pin 7

These pins are located in the connector in module bay #1 as shown below.

To apply the 1 Vdc signal to the calibrator connect the precision voltage generator so that the positive line is connected to Pin 7 and the ground is connected to Pin 6.

Step 13 The value displayed under the dashed line rep-resents the as received reading for the 1 Vdc measure-ment. The reading will look as follows:

——–––— 1.0V +.99998 RefCheck

(Reading must be between 0.99995 and 1.00005 for base unit to be within specification.)

After taking note of the reading press the enter key to proceed to the next as received reading. The calibrator will respond by displaying the following:

——–––— 0.1V -.xxxxx RefCheck

This is used for calibration of the 20mA measurement capability. The measured value must be within 0.03% of the applied voltage for the current measurement to be within the 0.03% of full scale specification.

Step 14 To check the measured voltage using a preci-sion voltage source:

Apply 0.100000V to J3 pin 7

Pin 7

Pin 6

Page 64: ATE-100 HAND HELD CALIBRATOR OPERATING MANUAL · ate-100 hand held calibrator operating manual revision 4.6 3/2004 i&m002-10037-11/00 (ahhc-man)

- 64- Revision 4.6 3/2004

To apply the 0.1 Vdc signal use the same procedure as outlined in steps 10 and 11 of this section.

Step 15 The value displayed under the dashed line rep-resents the as received reading for the .1 Vdc measure-ment. The reading will look something like follows:

——–––— 0.1V +.099998 RefCheck

Take note of the measured value.

Step 16 To repeat taking the as received readings press the enter key to return to the 1.0 Vdc as received reading screen. To exit the as received readings mode press the CE key.

CE

As received readings for the mA and voltage measure-ments performed through the miniature banana jacks on the instrument keypad can be done by simply setting the base unit up to measure the electrical parameter (cur-rent or voltage) to be tested and inputting a series of known values to the correct jacks. Refer to Section 7.0 to determine the set up procedure for the measurement of current and/or voltage inputs. As received readings are now completed.

Section 27.4 Adjustment/Calibration Base Unit Electronics

Step 1 With the calibrator on and displaying pressure measurement data press the set up key.

SET UP

Step 2 Using the arrow keys locate the text “Calib” in the set up menu:

Calib RTmodule

Using the appropriate arrow keys select the text “Calib” from the set up menu.

Step 3 When the calibration function has been selected it will flash on the display:

Calib RTmodule

Step 4 With the text “Calib” displayed and flashing press the enter key.

ENT

Step 5 The calibrator will respond by displaying:

Access code? .000000

Step 6 Enter the 5 digit calibration access code pro-

vided with the calibrator base unit:

Access code? 12345

Step 7 With the correct access code displayed press the enter key.

ENT

The calibrator will respond by displaying:

Electrical Pressure

The electrical calibration process allows for the calibra-tion of the current and voltage input measurement capa-bility of the base unit as well as the calibration of the 0/1 Vdc analog component of the interface between the base unit and the Quick Select module in use.

Step 8 Use the arrow keys to select the word “electri-cal.” When selected the word will flash on the instru-ment display:

Electrical Pressure

Step 9 When this screen appears, the word “Electrical” for electrical recertification is already flashing. There-fore, press the enter key to commence the electrical calibration.

ENT

The calibrator will respond by displaying:

Calibration Reference Check

Step 10 Select the text “Calibration.” When selected the word calibrate will flash on the display of the calibrator:

Calibrate Reference Check

Step 11 With the text “Calibrate” flashing press the enter key.

ENT

Step 12 Using the precision voltage source apply 1.00000 volt ±50 microvolts to Module Bay #1.

To apply the 1 Vdc signal to the calibrator connect the precision voltage generator so that the positive line is connected to Pin 7 and the ground is connected to Pin 6.

These pins are located in the connector in Module Bay #1 as shown below.

Page 65: ATE-100 HAND HELD CALIBRATOR OPERATING MANUAL · ate-100 hand held calibrator operating manual revision 4.6 3/2004 i&m002-10037-11/00 (ahhc-man)

- 65 - Revision 4.6 3/2004

*****WARnInG*****

If the voltage standard is set to a level in excess of the recommended calibration input or is connected to incor-rect pins or in contact with pins adjacent to the specified input pins during the calibration process the base unit electronics may be damaged. Use extreme caution when connecting test leads and applying test voltage inputs.

The Model CQS Calibration Quick Select module is available to simplify connection of the voltage standard to the base unit. This module provides banana jack connections for the input of the voltage standard to the calibrator base unit.

Step 13 The calibrator will display the following:

Apply 1.00000V to J3 pin 7

With 1.00000 volt (±50 microvolts) applied press the enter key.

ENT

The calibrator will respond by displaying:

xxxxx working

The word “working” flashes as the calibrator makes the necessary internal adjustment to calibrate the voltage measurement electronics to 1.0000 volts. The reading must be between 0.99995 and 1.00005 for base unit to be within specification. The reference check mode can be used to verify calibration accuracy.

After completion of the adjustments for the 1.00000 volt input the calibrator will display:

Apply 0.100000V to J3 pin 7

With .100000 volt (±50 microvolts) applied press the enter key.

ENT

The calibrator will respond by displaying:

xxxxx working

After the calibrator completes auto-adjusting the mea-sured value it will display:

Apply 10.0000V to volts jack

Step 14 Using a precision voltage generator apply a 10.0000 volt (±500 microvolts) input to the miniature recessed banana jacks. Use the COM and V jacks on the calibrator keypad.

Step 15 When the proper voltage is being applied press the enter key.

ENT

The calibrator will respond by displaying:

xxxxx working

After completion of the adjustments for the 10.0000 volt input the calibrator will display:

Apply 30.0000V to volts jack

Step 16 Using a precision voltage generator apply a 30.0000 volt (±3 millivolts) input to the voltage jacks. Use the COM and V jacks on the calibrator.

Step 17 When the proper voltage is being applied press the enter key.

ENT

When the proper voltage is being applied press the enter key.

The calibrator will respond by displaying:

xxxxx working

After completion of the adjustments for the 30.0000 volt input the calibrator will display:

Apply 20.0000 mA to mA jack

Step 18 Using a precision current generator apply a 20.0000 mA (±5 microamps) input to the mA jacks.

Use the COM and mA jacks on the calibrator keypad.

Step 19 When the proper current is being applied press the enter key.

ENT

The calibrator will respond by displaying:

xxxxx working

After completion of the 20 mA recertification the cali-brator will display:

Pin 7

Pin 6

Page 66: ATE-100 HAND HELD CALIBRATOR OPERATING MANUAL · ate-100 hand held calibrator operating manual revision 4.6 3/2004 i&m002-10037-11/00 (ahhc-man)

- 66- Revision 4.6 3/2004

Calibration done Save Cancel

Step 20 Using the left/right arrow keys select “Save” to write the new data to the EEPROM calibration storage. To discard the electrical readings select Cancel.

***WARnInG***

Selecting and entering the word “Save” will overwrite the calibration data previously stored in EEPROM memory. Previously stored calibration data will be per-manently destroyed.

Step 21 With the desired selection flashing (Save or Cancel) press the enter key.

ENT

Step 22 If “cancel is selected the calibrator will exit the calibration mode. If “save” is selected the calibrator will prompt you to enter the date of the new calibration as follows:

mmddyy - - - - - -

Step 23 Using the number keys enter the current date such as:

mmddyy 031196

For March (03), eleventh (11), 1996

Step 24 With the desired date entered and displayed, press the enter key.

ENT

Step 25 Turn off the calibrator and install the desired Quick Select module.

Step 26 Turn on the calibrator to resume general pres-sure measurement activities.

Note: During electrical recertification any of the calibra-tion ranges may be skipped by pressing the clear entry (CE) key. When the clear entry key is pressed during the electrical calibration process the calibrator will advance to the next electrical input in the calibration sequence.

Section 27.5 Recertification of Quick Select Pressure Modules

The calibrator is available in a selection of accuracies from ±0.1% of span through ±0.025% of span, covering ranges from 0.25 inches of water to 10,000 psi. Whereas, the calibrator can be calibrated in the field, appropriate pressure standards must be used to assure the accuracy

of the calibrator system is not degraded by the calibra-tion process. As recommended by standards organiza-tions such as A.S.M.E., n.I.S.T and various U.S. and world government agencies calibration standards should be at least 4 times more accurate than the device to be calibrated.

Therefore, if you will be calibrating a ±0.1% of span Quick Select pressure module, a standard of equiva-lent range would have to have an accuracy of at least ±0.025% of span. If the standard to be used is of a higher range than the Quick Select pressure module to be calibrated, even greater accuracy is required. For example, if a ±0.1% of span Quick Select pressure module with a range of 50 psi is to be calibrated with a 100 psi standard, the calibrating standard should have a minimum accuracy of ±0.0125% of span.

To recertify a Quick Select pressure module follow the procedure outlined below.

Step 1 With the power to the calibrator off install the Quick Select pressure module to be calibrated in the left module bay (looking down on the unit with the keypad up and the display at the top).

Step 2 Power up the calibrator system by pressing the on/off key.

ON OFF

Step 3 Set the left side of the display for the engineer-ing units to be used for the calibration process. Informa-tion on engineering unit selection is provided in Section 8, Engineering Unit Selection.

Step 4 With the calibrator on and displaying pressure measurement data press the set up key.

SET UP

Step 5 Using the arrow keys locate the text “Calib” in the set up menu.

Calib RTmodule

Select the text “Calib”. When selected the text will flash on the display.

Step 6 With the text “Calib” displayed and flashing press the enter key.

ENT

Step 7 The calibrator will respond by displaying:

Access code ? .000000

Page 67: ATE-100 HAND HELD CALIBRATOR OPERATING MANUAL · ate-100 hand held calibrator operating manual revision 4.6 3/2004 i&m002-10037-11/00 (ahhc-man)

- 67 - Revision 4.6 3/2004

Step 8 Enter the 5 digit calibration access code pro-vided with the calibrator base unit.

Access code ? 12345

Step 9 With the correct access code displayed press the enter key.

ENT

The calibrator will respond by displaying:

Electrical Pressure

Step 10 Using the down arrow key select the word “Pressure”. When selected, the word Pressure will flash on the display:

Electrical Pressure

Step 11 With the word “Pressure” flashing press the enter key.

ENT

The calibrator will respond by displaying:

Zero Cal Yes No

Step 12 To perform zero calibration (adjustment) select Yes and press the enter key.

ENT

To skip zero adjustment and proceed to full scale cali-bration (adjustment) select no and press the enter key.

Step 13 With the pressure module at zero pressure, press the enter key.

ENT

note: The following should be done to zero each type of pressure module:

Pressure Type Zero Source Absolute – Apply absolute zero using vacuum pump. Gauge – Vent to atmosphere Compound – Vent to atmosphere Differential – Vent both ports to atmosphere Vacuum – Vent to atmosphere

The calibrator will respond by displaying:

xxxxx working

Where xxxxxx is the voltage being read from the Quick

Select pressure module and the flashing word “working” indicates that the calibrator is making the internal adjust-ments necessary for the recalibration.

After approximately 3 seconds the calibrator will dis-play:

Full Scale Cal Yes No

Step 14 To perform full scale calibration (adjustment) select Yes and press the enter key.

ENT

To skip full scale adjustment and proceed to re-lineariza-tion process select no and press the enter key.

Important Note: If full recalibration of the pressure module is desired the zero and span adjustment must be reset through these procedures prior to entering the linearization mode. The zero and span values established in these procedures will be used for the zero and span values of the new calibration data. If zero and span are not reset at this time the recalibration will use the values for zero and span stored in memory from the previous zero and span activities.

Step 15 Apply the full scale pressure for the Quick Select pressure module being calibrated.

(Coming as close as possible to the full scale measure-ment range of the pressure module being calibrated) with the pressure applied press the enter key.

ENT

The calibrator will respond by displaying:

Enter pressure applied .00000

Step 16 Using the keypad enter the exact value of the pressure applied to the Quick Select pressure module. Be certain to use the engineering unit in use for the left Quick Select module when calibration activities com-menced.

Enter pressure applied 100.01

In the above example a pressure of 100.01 is being applied to the left Quick Select pressure module.

Step 17 With the full scale (F.S.) pressure applied and the corresponding value shown on the display, press the enter key.

ENT

The calibrator will respond by displaying:

Page 68: ATE-100 HAND HELD CALIBRATOR OPERATING MANUAL · ate-100 hand held calibrator operating manual revision 4.6 3/2004 i&m002-10037-11/00 (ahhc-man)

- 68- Revision 4.6 3/2004

Linearity Cal Yes No

Step 18 If calibration activity is to be limited to zero and span, using the arrow keys select the word no (when selected the word “no” will flash on the display). If lin-earity adjustment is to be performed proceed to Step 21.

Linearity Cal Yes No

Step 19 With the word no flashing press the enter key.

ENT

The calibrator will respond by displaying:

Calibration done Save Cancel

Step 20 To save the new zero and span values to memory, thereby overwriting the previously stored values in the EEPROM, select the word “Save” and press the enter key. To discard information and retain the information currently in the EEPROM of the calibra-tor select “Cancel” and press the enter key . If the save option is selected proceed to Step 21. To re-linearize module proceed to Step 26.

Step 21 If “cancel” is selected the calibrator will exit the calibration mode. If “save” is selected the calibrator will prompt you to enter the date of the new calibration as follows:

mmddyy - - - - - -

Step 22 Using the number keys enter the current date such as:

mmddyy 031196

For March (03), eleventh (11), 1996

Step 23 With the desired date entered and displayed, press the enter key.

ENT

Step 24 Turn off the calibrator and install the desired Quick Select module.

Step 25 Turn on the calibrator to resume general pres-sure measurement activities.

Step 26 To re-linearize a Quick Select pressure module select the word “Yes” to the linearity query.

Important Note: If full recalibration of the pressure module is desired the zero and span adjustment must be reset through these procedures prior to entering the

linearization mode. The zero and span values established in these procedures will be used for the zero and span values of the new calibration data. If zero and span are not reset at this time the recalibration will use the values for zero and span stored in memory from the previous zero and span activities.

Linearity Cal Yes No

Step 27 With the word “Yes” flashing press the enter key.

ENT

The calibrator will respond by displaying:

Clr Old Lin Data Cancel Proceed

Step 28 Use the arrow keys to select “Proceed” to con-tinue the linearization process. Select “Cancel” using the arrow keys to discontinue the re-linearization process.

***WARnInG***

Entering “Proceed” will erase linearization data in the EEPROM of the calibrator.

Clr Old Lin Data Cancel Proceed

Step 29 To continue the linearization process, with the word “Proceed” flashing press the enter key.

ENT

The calibrator will respond by displaying:

Apply and enter value 1.00000

Step 30 Apply the pressure required for point one and enter the numerical value, using the number keys of the exact pressure level applied. (Use the engineering unit in use for the left pressure module at the time the calibra-tion process was started). When point 1 has been applied and entered the display will look as follows for calibra-tion point of 10.002.

Apply and enter value 10.002

Page 69: ATE-100 HAND HELD CALIBRATOR OPERATING MANUAL · ate-100 hand held calibrator operating manual revision 4.6 3/2004 i&m002-10037-11/00 (ahhc-man)

- 69 - Revision 4.6 3/2004

Step 31 With the applied pressure displayed press the enter key.

ENT

The calibrator will respond by displaying:

+xxxxx working

After 3-5 seconds the calibrator will request the next calibration point by displaying.

Apply and enter value 2.00000

Step 32 Apply the pressure required for the next cali-bration point and enter the applied pressure value with the number keys. For the second point a pressure of 20.003 has been applied.

Apply and enter value 20.003

Step 33 With the required pressure level applied and shown on the display press the enter key.

ENT

Step 34 Repeat steps 23-26 as many times as required to produce the desired number of linearization points. Points must be in sequence (low to high).

A maximum of 18 linearization points plus the zero and span points may be programmed for Quick Select pres-sure modules. Factory calibration consists of a 10 point linearization combined with a 10 point upscale and 10 point down scale linearization and hysteresis check.

Important Note: The number of calibration points needed to assure adequate correction for non-linearity is as follows:

Sensor Accuracy number of Points

0.025% & 0.05% 20 including temperature (5% increments)

0.025-0.07% 11 (10% increments and zero)

0.1% 6 (20% increments and zero)

0.25% 5 (25% increments and zero)

Step 35 When the final linearization point to be per-formed has been completed press the clear entry key.

CE

The calibrator will respond by displaying:

Calibration done Save Cancel

Step 36 To save the new linearization data to memory, thereby overwriting the previously stored values in the EEPROM, select “Save” and press enter. To discard the newly generated calibration information select “Cancel” and press enter.

Step 37 If “cancel” is selected the calibrator will exit the calibration mode. If the enter key is pressed with the word “save” flashing the calibrator will prompt entry of the date of the new calibration as follows:

mmddyy - - - - - -

Step 38 Using the number keys enter the current date such as:

mmddyy 031196

For March (03), eleventh (11), 1996

Step 39 With the desired date entered and displayed, press the enter key.

ENT

Step 40 Turn off the calibrator and install the desired Quick Select module.

Step 41 Turn on the calibrator to resume general pres-sure measurement activities.

Page 70: ATE-100 HAND HELD CALIBRATOR OPERATING MANUAL · ate-100 hand held calibrator operating manual revision 4.6 3/2004 i&m002-10037-11/00 (ahhc-man)

- 70- Revision 4.6 3/2004

APPEnDIX A. – PRESSURE COnVERSIOn FACTORS COnVERSIOn FACTORS FOR UnITS OF PRESSURE

TO

CON

VERT

cm

H 2O

in.

H 2O

ftH2O

mm

Hg

in.Hg

in.

sea

ft se

a m

sea

FR

OM

TO

psi

mbar

ba

r at

m Pa

kP

a @

20°

C @

20°

C @

20°

C @

0°C

@

0°C

gm

/cm1

kg/c

m2 wa

ter

wate

r wa

ter

ps

i 1

68.9

476

0.06

8947

6 0.

0680

460

6894

.76

6.89

47

70.4

33

27.7

30

2.31

08

51.7

149

2.03

602

70.0

3069

6 0.

0703

0686

26

.948

4 2.

2457

.6

8448

2

mb

ar

0.01

4503

8 1

0.00

1 9.

8692

3 10

0 0.

100

1.02

15

0.40

218

0.03

352

0.75

006

0.02

9530

0 .0

0101

972

0.00

1019

72

.390

85

.032

571

.009

9276

ba

r 14

.503

8 10

00

1 0.

9869

23

1000

00

100

1021

.5

402.

18

33.5

2 75

0.06

29

.530

0 10

19.7

16

1.01

9716

39

0.85

32

.571

9.

9276

at

m 14

.695

9 10

13.2

5 1.

0132

5 1

1013

25

101.

325

1035

.08

407.

511

35.9

59

760.

0 29

.921

3 10

33.2

27

1.03

3227

39

6.03

1 33

.002

10

.059

1

Pa

1.

4503

8 0.

01

0.00

001

9.86

923

1 0.

001

0.01

0215

0.

0040

218

3.35

2 7.

5006

2.

9530

0 .0

1097

16

1.01

9716

3.

9085

3.

2571

9.

9276

kP

a 0.

1450

38

10.0

0.

010

0.00

9869

2 10

00

1 10

.215

4.

0211

8 0.

3352

7.

5006

0.

2953

00

10.1

9716

0.

0101

972

3.90

85

0.32

571

.099

276

cm

H 2O

@ 2

0°C

0.01

4198

0.

9789

1 9.

7891

9.

6610

5 97

.891

0.

0978

91

1 0.

3937

0.

0352

81

0.73

424

0.02

8907

.9

9821

9.

9821

.3

8261

3 0.

0318

84

.009

7182

in.

H 2O

@ 2

0°C

0.03

6063

2.

4864

0.

0024

864

2.45

392

248.

64

0.24

864

2.54

00

1 0.

0833

33

1.86

50

0.07

3424

2.

5354

0.

0025

354

.971

840

0.08

0986

.0

2468

4

ftH

2O @

20°

C 0.

4327

56

29.8

368

0.02

9836

8 0.

0294

470

2983

.68

2.98

368

30.4

80

12

1 22

.380

0.

8810

89

30.4

25

0.03

0425

11

.662

1 0.

9718

3 .2

9621

mm

Hg @

0°C

0.

0193

368

1.33

322

0.00

1332

2 0.

0013

1579

13

3.32

2 0.

1333

22

1.36

19

0.53

620

0.04

468

1 0.

0393

7 1.

3595

1 1.

3595

1 .5

2109

6 0.

0434

24

.013

236

in.

Hg @

0°C

0.

4911

54

33.8

639

0.03

3863

9 0.

0334

211

3386

.39

3.38

639

34.5

93

13.6

19

1.13

491

25.4

00

1 34

.531

6 0.

0345

316

13.2

3581

1.

1030

.3

3619

gm

/cm1

.014

2233

.9

8066

5 9.

8066

5 9.

6784

2 98

.066

5 .0

9806

65

1.00

18

.394

1 .0

3286

8 .7

3555

9 .0

2895

9 1

.001

.3

8329

2 .0

3194

10

.009

7355

kg

/cm2

14.2

233

980.

665

0.98

0665

0.

9678

42

9806

0.5

98.0

665

1001

.8

394.

41

32.8

68

735.

559

28.9

59

1000

1

383.

292

31.9

410

9.73

55

in.

sea w

ater

.0

3710

8 2.

5585

1 2.

5585

1 2.

5250

5 25

5.85

1 .2

5585

1 2.

6136

1.

0290

0 .0

8575

1.

9190

8 .0

7555

2.

6089

6 2.

6089

5 1

.083

33

.025

4

ft

sea w

ater

0.

4453

30

.702

0.

0307

02

0.03

0301

30

70.2

3.

0702

31

.363

8 12

.348

2 1.

0290

0 23

.029

0.

9066

4 31

.308

0.

0313

08

12

1 .3

048

m

sea w

ater

1.

4609

6 10

0.73

1 .1

0073

0 .0

9940

9 10

073.

0 10

.073

0 10

2.90

40

.512

3.

3760

75

.553

2.

9745

10

2.71

6 .1

0271

6 39

.370

07

3.26

06

1

10-4

10-4

10-6

10-4

10-3

10-4

10-5

10-4

10-4

10-4

10-4

10-3

10-3

10-3

10-4

10-4

10-3

Page 71: ATE-100 HAND HELD CALIBRATOR OPERATING MANUAL · ate-100 hand held calibrator operating manual revision 4.6 3/2004 i&m002-10037-11/00 (ahhc-man)

- 71 - Revision 4.6 3/2004

0 00000000 00 (nUL) 1 00000001 01 (SOH) 2 00000010 02 (SRX) 3 00000011 03 (ETX) 4 00000100 04 (EOT) 5 00000101 05 (EnQ) 6 00000110 06 (ACK) 7 00000111 07 (BEL) 8 00001000 08 (BS) 9 00001001 09 CI) 10 00001010 0A (LF) 11 00001011 0B (VT) 12 00001100 0C (FF) 13 00001101 0D (CR) 14 00001110 0E (SO) 15 00001111 0F (SI) 16 00010000 10 (DLE) 17 00010001 11 (DCI) 18 00010010 12 (DC2) 19 00010011 13 (DC3) 20 00010100 14 (DC4) 21 00010101 15 (nAK) 22 00010110 16 (SYn) 23 00010111 17 (SRX) 24 00011000 18 (CAn) 25 00011001 19 (EM) 26 00011010 1A (SUB) 27 00011011 1B (ESC) 28 00011100 1C FS) 29 00011101 1D (GS) 30 00011110 1E (RS) 31 00011111 1F (115) 32 00100000 20 (SP) 33 00100001 21 ! 34 00100010 22 ’’ 35 00100011 23 # 36 00100100 24 $ 37 00100101 25 % 38 00100110 26 Et 39 00100111 27 ‘ 40 00101000 28 ( 41 00101001 29 ) 42 00101010 2A * 43 00101011 2B + 44 00101100 2C ’ 45 00101101 2D - 46 00101110 2E . 47 00101111 2F / 48 00110000 30 0 49 00110001 31 1 50 00110010 32 2 51 00110011 33 3 52 00110100 34 4 53 00110101 35 5 54 00110110 36 6 55 00110111 37 7

APPEnDIX B – ASCII CHARACTER CODEThis chart shows the ASCII character set and corresponding code numbers in decimal, hexadecimal and binary form.

Hexa- ASCII Decimal Binary decimal Character

Hexa- ASCII Decimal Binary decimal Character

56 00111000 38 8 57 00111001 39 9 58 00111010 3A : 59 00111011 3B ; 60 00111100 3C < 61 00111101 3D = 62 00111110 3E > 63 00111111 3F ? 64 01000000 40 @ 65 01000001 41 A 66 01000010 42 B 67 01000011 43 C 68 01000100 44 D 69 01000101 45 E 70 01000110 46 F 71 01000111 47 G 72 01001000 48 H 73 01001001 49 I 74 01001010 4A J 75 01001011 4B K 76 01001100 4C L 77 01001101 4D M 78 01001110 4E n 79 01001111 4F O 80 01010000 50 P 81 01010001 51 Q 82 01010010 52 R 83 01010011 53 S 84 01010100 54 T 85 01010101 55 U 86 01010110 56 V 87 01010111 57 W 88 01011000 58 X 89 01011001 59 Y 90 01011010 5A Z 91 01011011 5B [ 92 01011100 5C / 93 01011101 5D ] 94 01011110 5E ^ 95 01011111 5F - 96 01100000 60 ‘ 97 01100001 61 a 98 01100010 62 b 99 01100011 63 c 100 01100100 64 d 101 01100101 65 e 102 01100110 66 f 103 01100111 67 g 104 01101000 68 h 105 01101001 69 1 106 01101010 6A j 107 01101011 6B k 108 01101100 6C l 109 01101101 6D m 110 01101110 6E n 111 01101111 6F o

Page 72: ATE-100 HAND HELD CALIBRATOR OPERATING MANUAL · ate-100 hand held calibrator operating manual revision 4.6 3/2004 i&m002-10037-11/00 (ahhc-man)

- 72- Revision 4.6 3/2004

Hexa- ASCII Decimal Binary decimal Character

Hexa- ASCII Decimal Binary decimal Character

112 01110000 70 p 113 01110001 71 q 114 01110010 72 r 115 01110011 73 s 116 01110100 74 t 117 01110101 75 u 118 01110110 76 v 119 01110111 77 w 120 01111000 78 x 121 01111001 79 y 122 01111010 7A z 123 01111011 7B 124 01111100 7C | 125 01111101 7D 126 01111110 7E ~ 127 01111111 7F (DEL) 128 10000000 80 129 10000001 81 130 10000010 82 131 10000011 83 132 10000100 84 133 10000101 85 134 10000110 86 135 10000111 87 136 10001000 88 137 10001001 89 138 10001010 8A 139 10001011 8B 140 10001100 8C 141 10001101 8D 142 10001110 8E 143 10001111 8F 144 10010000 90 145 10010001 91 146 10010010 92 147 10010011 93 148 10010100 94 149 10010101 95 150 10010110 96 151 10010111 97 152 10011000 98 153 10011001 99 154 10011010 9A 155 10011011 9B 156 10011100 9C 157 10011101 9D 158 10011110 9E 159 10011111 9F 160 10100000 AO 161 10100001 A1 162 10100010 A2 163 10100011 A3 164 10100100 A4 165 10100101 A5 166 10100110 A6 167 10100111 A7

168 10101000 A8 169 10101901 A9 170 10101010 AA 171 10101011 AB 172 10101100 AC 173 10101101 AD 174 10101110 AE 175 10101111 AF

Page 73: ATE-100 HAND HELD CALIBRATOR OPERATING MANUAL · ate-100 hand held calibrator operating manual revision 4.6 3/2004 i&m002-10037-11/00 (ahhc-man)

- 73 - Revision 4.6 3/2004

176 10110000 B0 177 10110001 B1 178 10110010 B2 179 10110011 B3 180 10110100 B4 181 10110101 B5 182 10110110 B6 183 10110111 B7 184 10111000 B8 185 10111001 B9 186 10111010 BA 187 10111011 BB 188 10111100 BC 189 10111101 BD 190 10111110 BE 191 10111111 BF 192 11000000 C0 193 11000001 C1 194 11000010 C2 195 11000011 C3 196 11000100 C4 197 11000101 C5 198 11000110 C6 199 11000111 C7 200 11001000 C8 201 11001001 C9 202 11001010 CA 203 11001011 CB 204 11001100 CC 205 11001101 CD 206 11001110 CE 207 11001111 CF 208 11010000 D0 209 11010001 D1 210 11010010 D2 211 11000011 D3 212 11010100 D4 213 11010101 D5 214 11010110 D6 215 11010111 D7 216 11011000 D8 217 11011001 D9 218 11011010 DA 219 11011011 DB 220 11011100 DC 221 11011101 DD 222 11011110 DE

223 11011111 DF 224 11100000 E0 225 11100001 E1 226 11100010 E2 227 11100011 E3 228 11100100 E4 229 11100101 E5 230 11100110 E6 231 11100111 E7 232 11101000 E8 233 11101001 E9 234 11101010 EA 235 11101011 EB 236 11101100 EC 237 11101101 ED 238 11101110 EE 239 11101111 EF 240 11110000 F0 241 11110001 F1 242 11110010 F2 243 11110011 F3 244 11110100 F4 245 11110101 F5 246 11110110 F6 247 11110111 F7 248 11111000 F8 249 11111001 F9 250 11111010 FA 251 11111011 FB 252 11111100 FC 253 11111101 FD 254 11111110 FE 255 11111111 FF

Hexa- ASCII Decimal Binary decimal Character

Hexa- ASCII Decimal Binary decimal Character

Page 74: ATE-100 HAND HELD CALIBRATOR OPERATING MANUAL · ate-100 hand held calibrator operating manual revision 4.6 3/2004 i&m002-10037-11/00 (ahhc-man)

- 74- Revision 4.6 3/2004

APPENDIX C - PRODUCT SPECIFICATIONS*

BASE UNIT PHYSICAL SPECIFICATIONSDimensions 7.88 in. (L) x 4.24 in. (W) x 3.25 in. (H)Weight Max. 2.2 lbs. w/2 pressure modules installedCase Material High impact ABSSensor Module Capacity 2 bays for GQS “Quick Select®” sensor modulesDisplay 2 line LCD, 0.037 in. height per line. Can display simultaneous readings from 2 modulesElectrical Connection Miniature recessed banana jacks (one set of test leads provided with each base unit)

BASE UNIT OPERATING SPECIFICATIONSOperating Temperature Range Standard: 32° to 120°F Optional: –4 to 120°FStorage Temperature –4° to 158°FUpdate Rate 130 ms (nominal) with one sensor installedResolution ±0.002% of span, 60,000 count (max)Warm-Up 5 minutes for rated accuracyDamping (Measurement Averaging) Programmable averaging from zero through 16 consecutive readingsElectrical Measurements 0-50 mA or 0-30 VdcInput (volts) Accuracy 0/10 Vdc ±0.025% FS 0/30 Vdc ±0.10% FS 0/20mA ±0.03% FS 0/50mA ±0.05% FS Auto Ranging 10/30 Vdc and 20/50mATemperature Effect Electrical Measurement ±.001% of Span per °F over compensated rangeSerial Interface Type: RS-232 Baud Rate: 300, 1200, 2400 or 9600 selectableField Calibration Both Quick Select pressure modules and base unit electronics can be calibrated in the field via prompted keypad commandsOptions Datalogging with Hi-Lo Relay Feature – Datalogging manually or automatically stores up to 715 mea-sured values for upload to PC. Includes upload utility software. Hi-Lo relay feature allows programming of setpoints for activation of alarms or control valves. (Hi-Lo not available with FM approval.) Enhanced LCD – For –4 to 120°F operating range FM Approval – Class 1, Div. 1, Groups A,B,C & D (Not available with CE Mark) CE Mark – EMI/RFI immunity rating (not available with FM approval)Power Requirements Standard: (2) 9Vdc Alkaline Batteries (provides up to 30 hours operation per set) Optional: 110 or 220 Vac transformer to power calibrator from line powerCertification N.I.S.T. Traceable certification document provided for base display unit and sensor modules

PRESSURE SENSOR MODULE SPECIFICATIONS GQS-1 Pressure Types Gauge, differential & compoundAvailable Ranges (See Chart)Available Accuracies ±0.06 (0/2-0/200 in. H2O), ±0.07 (0/0.25-0/1 in. H2O) or 0.1% of SpanCompensated Temperature Range 20°F to 120°FTemperature Effect ±.004% of Span per °F over compensated range (from reference temperature range of 70° ±3°)Repeatability ±0.01% of span (range 0/1 in. H2O or higher) ±0.02% of span (ranges below 0/1 in. H2O)Sensitivity ±0.002% of span (typical)Media Compatibility Clean, dry, non-conductive, non-corrosive gas Under/Overpressure Capability –15 to 50 psiMaximum Static (line) Pressure 100 psiProcess Connection Standard: 1/8 NPT female Optional: G 1/8 British standard Other Options FM Approved (for use with FM approved base unit) CE Mark (for use with CE Mark rated base unit)GQS-2Pressure Types Gauge, absolute, compound & vacuumAvailable Ranges (See Chart)Available Accuracies ±0.025, 0.05 or 0.1 % of Span (±0.025 & 0.05% not available on 0/10,000 psi range)Compensated Temperature Range 20°F to 120°FTemperature Effect Standard: ±.004% of Span per °F over the compen-sated range (from reference temperature of 70° ±3°) Optional: No additional error due to temperature over the compensated range Repeatability ±0.01% of span Sensitivity ±0.002% of span (typical)Media Compatibility 0/5 psi range only: Clean, dry, non-conductive, non-corrosive gas 0/10-0/10,000 psi ranges: Any medium compatible with 316 SS. Optional: Cleaned for Oxygen Service (0/10-0/10,000 psi ranges only)Overpressure Capability 200% for ranges up to 1000 psi 150% for ranges over 1000 psiProcess Connection Standard: 1/8 NPT female Optional: 1/8 NPT female with flush port (ranges 10 psi and over)

G 1/8 British standard G 1/8 British standard with flush port (ranges 10 psi and over) Welded VCR fitting with standard finish Other Options FM Approved (for use with FM approved base unit) CE Mark (for use with CE Mark rated base unit)

TEMPERATURE INTERFACE MODULES GQS-RT Series (RTD)GQS-RT1 and GQS-RT2 interface modules allow the PTE-1 to measure temperature with an RTDGQS-RT1: Accommodates Pt100, Ni120, Cu10 and other common 2, 3 or 4 wire probes with resis-tance outputs of 400 ohms or less. GQS-RT2: Accommodates Pt1000 and other common 2, 3 or 4 wire probes with resistance outputs of 4000 ohms or less.Selectable Units of Measure °C, °F, °K, °R and ohmsInput Receptacle Accepts TA4F type RTD connectorRTD Probes Pt-100 probes, 6˝ or 12˝ length, with or without handle. DIN Class A accuracy. Includes mating TA4F connector.Options FM approved (for use with FM approved base unit) (CE) not availableGQS-TC1 (Thermocouple)Compatibility Programmed to provide direct temperature readout from types J, K, T, E, R, S, B & N ther-mocouples or direct millivolt readout from any thermocouple.Reference Junction Automatic internal or manual external Resolution Automatic or manually selectable, up to .01°Units of Measure Selectable; °C, °F, °K, °R and millivoltsReceptacle Accepts “miniature thermocouple connector”, Omega® type SMPOptions FM approved (for use with FM approved base unit) (CE) not available

ACCESSORIES110Vac/60 Hz ac Adapter 220Vac/50 Hz ac Adapter Contoured protective case Soft carrying case Hard carrying case LPSIIa External 24vdc Loop Power Supply – to power transducers and pressure switch test circuit SM-1 Voltage Adapter – provides ability to check “live” pressure switches

*Specifications subject to change without notice

Page 75: ATE-100 HAND HELD CALIBRATOR OPERATING MANUAL · ate-100 hand held calibrator operating manual revision 4.6 3/2004 i&m002-10037-11/00 (ahhc-man)

- 75 - Revision 4.6 3/2004

DIMENSIONS

PRODUCT SPECIFICATIONS*

*5 10 15 20 25 30 50 60 100 150 200 250 300 500 600 1000 1500 2000 2500 3000 5000 6000 7500 10,000

vacuum

5 10 15

compound

±5 ±10 ±15 –15/+30 –15/+60

* Non-isolated, for clean dry gas only

0.25* 0.5* 1.0* 2.0* 3.0* 5.0* 10* 15* 25* 50* 100* 150* 200*

psi in. H2O in. Hg ftSW Bar

mBar kPa mPa

mmHg cmH2O mmH2O kg/cm2

User Selectable

**Note: Engineering units identified above are accessible through the unit select feature. However, readout will default to the pri-mary unit of measure on start-up. Sensor modules scaled in primary units other than in. H

2O (GQS-1) or psi (GQS-2) are also

available. Consult factory.

±0.125* ±0.25* ±0.5* ±1.0* ±1.5* ±2.5* ±5.0* ±7.5* ±12.5* ±25* ±50* ±75* ±100*

STANDARD RANGES

GQS-2 GQS-1 psi ˝H2O (gauge and (gauge/ Other Engineering Units** absolute differential pressure) pressure)

PTE-1

4.24

3.25

7.88

.43/.58

1.73

3.25

Page 76: ATE-100 HAND HELD CALIBRATOR OPERATING MANUAL · ate-100 hand held calibrator operating manual revision 4.6 3/2004 i&m002-10037-11/00 (ahhc-man)

- 76- Revision 4.6 3/2004

SYSTEM ACCURACY WITH GQS-TC1 THERMOCOUPLE InTERFACE

TABLE ISystem Accuracy (reading in temperature units): Includes the HHC base unit and GQS-TC1 interface module. (Does not include inaccuracy of the thermocouple device. Consult thermocouple manufacturer or ISA MC96.1 for thermocouple accuracy specifications. Typical inaccuracies range from ±1 to ±2.2°C.)

Max. additional error Accuracy @ 25°C Accuracy @ 25°C due to ambient Thermocouple Measurement Range Ambient (not Including Ambient (Including temperature deviation Type (°C) Internal Reference Internal Reference from 25°C. Expressed Junction) Expressed as ±°C Junction) Expressed as ±°C as additional C error per each C deviation from 25°C

J –210 to –151 0.7 1.1 0.02 –150 to 1200 0.3 0.4 0.01 K –240 to –201 1.5 2.2 0.05 –200 to –101 1.0 1.5 0.03 –100 to 999 0.5 0.8 0.02 T –250 to –201 1.5 2.2 0.05 –200 to –101 0.8 1.2 0.03 –100 to 400 0.5 0.8 0.02 E –250 to –201 1.2 2.0 0.04 –200 to –101 0.6 1.1 0.02 –100 to 400 0.3 0.6 0.01 R&S –50 to 299 3.4 3.6 0.10 300 to 1768 1.2 1.3 0.04 B 100 to 199 14.0 14.0 0.44 200 to 499 5.0 5.0 0.16 500 to 999 3.0 3.0 0.08 1000 to 1820 1.2 1.2 0.04 n –250 to –226 4.3 5.7 0.14 –225 to –101 2.1 2.8 0.07 –100 to 1300 1.0 1.4 0.02

Conversion Factors (to convert °C specifications to other units of measure):To convert from °C to °F: °F = (1.8 x °C) +32To convert from °C to °K: °K = °C +273.15To convert from °C to °R: °R = (1.8 x °C) +427.67

TABLE IISystem Accuracy (based on direct millivolt reading from thermocouple – includes MDI base unit and GQS-TC1 interface module. (Does not include inaccuracy due to the thermocouple device. Reference junction not applicable to direct millivolt readings.)

Input Range of Accuracy @ 25°C Max. additional error due to ambient temperature deviation from 25°C. Expressed as additional millivolt error per each °C deviation from 25°C

–10 to 100 millivolt ± 0.0125 millivolts .001

Page 77: ATE-100 HAND HELD CALIBRATOR OPERATING MANUAL · ate-100 hand held calibrator operating manual revision 4.6 3/2004 i&m002-10037-11/00 (ahhc-man)

- 77 - Revision 4.6 3/2004

APPEnDIX D

RTD PROBE CONNECTOR

SWITCHCRAFT TINI QG (TA4F)

2 WIRE RTD

TA4F123

4

3 WIRE RTD

TA4F1234

4 WIRE RTD

TA4F1234

PIN FUNCTION 1 2W+ 2 4W+ 3 4W– 4 2W–

Page 78: ATE-100 HAND HELD CALIBRATOR OPERATING MANUAL · ate-100 hand held calibrator operating manual revision 4.6 3/2004 i&m002-10037-11/00 (ahhc-man)

- 78- Revision 4.6 3/2004

APPEnDIX E

Certification of the TC1 Thermocouple Interface Module

ThEORy

With the TC1 module installed in the base unit (set-up to display in mV), a precision millivolt calibrator/supply will apply a known mV signal to the module/base unit system (simulating the Seebeck voltage) in place of a thermocouple. The applied mV signal can then be read on the base unit display and compared to the nominal input provided by the precision millivolt calibrator/supply. The TC1 module cannot be adjusted. If the module will not meet the specified ac-curacy, contact the factory or instrument supplier.

CERTIfICaTION PROCEDuRE

1. Remove all existing modules from the base unit (handheld calibrator firmware rev. 3.01 or later, digital indicator firmware 2.00 or later) and install the TC1 in the either module bay.

2. Attach copper wire to the + and - terminal posts of a precision millivolt calibrator/source, rated at .0025% or better.

3. Wire the opposite end of the wires to a miniature “U” type (copper-copper) thermocouple connector, and plug the connector into the receptacle located in the top of the TC1 module.

4. Turn on the millivolt calibrator/source and adjust until it is supplying 0mV to the TC1 module.

5. Turn on the base unit by pressing the on-off switch. Allow the base unit to complete its startup routine.

6. Press the “Setup” button.

7. Using the arrow key, toggle once to the right and down 7 times until “TCmodule” is flashing.

8. Press enter.

9. Set engineering unit to “millivolt” by pushing the right arrow button until “mV” is flashing.

10. Press enter.

11. While the precision millivolt calibrator/source is providing 0mV to the module, read the mV display on the base unit.

12. If the reading is within ± .01 millivolts, the base unit/TC1 system is within specification and may be certified.

13. Repeat the certification procedure at 50 and 100 mV.

Page 79: ATE-100 HAND HELD CALIBRATOR OPERATING MANUAL · ate-100 hand held calibrator operating manual revision 4.6 3/2004 i&m002-10037-11/00 (ahhc-man)

- 79 - Revision 4.6 3/2004

Page 80: ATE-100 HAND HELD CALIBRATOR OPERATING MANUAL · ate-100 hand held calibrator operating manual revision 4.6 3/2004 i&m002-10037-11/00 (ahhc-man)

- 80- Revision 4.6 3/2004

I&M002-10037-11/00 (AHHC-MAN) .5CDPS3/04 1P6/00

All specifications are subject to change without notice. All sales subject to standard terms and conditions. © Ashcroft Inc. 7/01

Visit our web site www.ashcroft.com Ashcroft Inc.250 E. Main StreetStratford, CT 06614-5145Tel: (203) 378-8281Fax: (203) 385-0357