ataleoftwomonsters ...hiddenmonsters/talks/robinson.pdfgeometry,$cloud$distribution$etc. 1.0 0.8 0.6...

26
2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 Normalized flux 56500 56000 55500 55000 MJD Optical 3.6 μm 4.5 μm A TALE OF TWO MONSTERS: EMBEDDED AGN IN NGC6418 AND IRAS16399−0937 Andy Robinson Rochester Institute of Technology N E

Upload: dangminh

Post on 09-Sep-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ATALEOFTWOMONSTERS ...hiddenmonsters/talks/robinson.pdfgeometry,$cloud$distribution$etc. 1.0 0.8 0.6 0.4 0.2 0.0 e 0 5 10 15 20 25 Delay 1.8 1.6 1.4 1.2 1.0 0.8 0.6 x 0 5 10 15 20

2.2

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

Norm

aliz

ed fl

ux

56500560005550055000

MJD

Optical 3.6 µm 4.5 µm

50 100 150 200 250

A  TALE  OF  TWO  MONSTERS:  EMBEDDED  AGN  IN  NGC6418  AND  

IRAS16399−0937

Andy  RobinsonRochester  Institute  of  Technology

Photometry Aperture

0 100 200 300

N

E

Figure 3.1: NGC6418 false color image from the Spitzer space telescope at3.6 µm. The white circle has a radius of 6 pixels and represents the aperture(diameter 7.2”) used for the photometry for the cross-correlation analysis.

flux. Therefore, the flux vs. aperture function should plateau with increasing

radii. All Figures for all AGNs can be found in Appendix A.

All the mean flux density plots exhibit, as expected, a rapidly increasing

flux density that plateaus at larger aperture sizes with some exceptions.

NGC6418, UGC10697, MRK885, AKN524 and KAZ163 exhibit aperture

analysis plots that increase in mean flux without reaching a plateau. This

behavior is explained by the extended emission from their host galaxies as

seen in Figures 3.1, A.49, A.41, A.17 and 3.2. In addition, KAZ163 is the

southern member of an interacting galaxy pair. The companion galaxy is

the fainter object visible in 3.2. The companion galaxy is at a distance

greater than 20 pixels (12”). This aperture size is the largest used in the

analysis.

The “knee” of the flux vs. aperture function is used to determine the best

aperture. To determine the “knee”, the simple definition of the intersection

of the slopes of the first two data points with the last two data points is used.

On average, the obtained knee values agree with the ideal aperture found

via visual inspection. It is important to note that there is no significant

di↵erence between the aperture analysis for the 3.6 µm and 4.5 µm channels.

As an example, Figures 3.3 and A.4 show the analysis done for both channels

for NGC6418. There is less than a pixel di↵erence between the two channels.

22

Page 2: ATALEOFTWOMONSTERS ...hiddenmonsters/talks/robinson.pdfgeometry,$cloud$distribution$etc. 1.0 0.8 0.6 0.4 0.2 0.0 e 0 5 10 15 20 25 Delay 1.8 1.6 1.4 1.2 1.0 0.8 0.6 x 0 5 10 15 20

Outline• Two  (contrasting)  examples  of  dust  enshrouded  AGN• NGC6418  – isolated  Seyfert• IR  reverberation  mapping  with  Spitzer• “changing  look”  AGN

• IRAS16399-­‐0937  merger  system• Multiwavelength SED  modeling• Evidence  for  a  deeply  embedded  AGN

Sales et al. 2015, ApJ, 799, 25

Vazquez et al. 2015, ApJ, 801, 127Robinson et al., in preparation

50 100 150 200 250

Billy Vazquez; Michael Richmond; Triana Almeyda; Shawn Foster; + Spitzer reverberation mapping collaboration

Dinalva Sales; Jack Gallimore; Moshe Elitzur +

2

Page 3: ATALEOFTWOMONSTERS ...hiddenmonsters/talks/robinson.pdfgeometry,$cloud$distribution$etc. 1.0 0.8 0.6 0.4 0.2 0.0 e 0 5 10 15 20 25 Delay 1.8 1.6 1.4 1.2 1.0 0.8 0.6 x 0 5 10 15 20

Spitzer  monitoring  campaign

2.5-­‐year  IR  – optical  monitoring  campaign  Aug.  2011  – Jan.  2014• 12  type  1  AGN  monitored  at  3.6  and  4.5  µm  with  Spitzer• Optical  data  from  Liverpool  Telescope,  CSS,  PTF• Some  results  presented  in  Billy  Vazquez’s  talk  (Tuesday)• Triana Almeyda poster  on  reverberation  models

����

��

����

��

����

��

����

������ ������ ����� ����� ����� ����� ����� �� �� ����� ���� ����� �����

���������� �������

����������

B.  Vazquez,  2015  PhD3

Page 4: ATALEOFTWOMONSTERS ...hiddenmonsters/talks/robinson.pdfgeometry,$cloud$distribution$etc. 1.0 0.8 0.6 0.4 0.2 0.0 e 0 5 10 15 20 25 Delay 1.8 1.6 1.4 1.2 1.0 0.8 0.6 x 0 5 10 15 20

Dust  reverberation  mapping• Response  of  torus  dust  emission  to  UV-­‐optical  variations  depends  on  size,  geometry,  cloud  distribution  etc.

1.0

0.8

0.6

0.4

0.2

0.0

Relat

ive am

plitu

de

2520151050Delay

1.8

1.6

1.4

1.2

1.0

0.8

0.6

Rela

tive

flux

302520151050

Time

optical dust emission

At short wavelengths, IR lag ~ inner radius of torus, usually taken to be dust sublimation radius

Rd ≈ 0.4L

1045erg−1#

$%

&

'(

0.51500KTsub

#

$%

&

'(

2.6

pc

Transfer function encodes torus properties…

…convolution with driving optical light curve → IR light curve

(Nenkova et al. 2008b, Barvainis 1987)4

Almeyda et  al.,  in  prep.

Page 5: ATALEOFTWOMONSTERS ...hiddenmonsters/talks/robinson.pdfgeometry,$cloud$distribution$etc. 1.0 0.8 0.6 0.4 0.2 0.0 e 0 5 10 15 20 25 Delay 1.8 1.6 1.4 1.2 1.0 0.8 0.6 x 0 5 10 15 20

NGC6418  optical  &  IR  light  curves

2.2

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

Norm

aliz

ed fl

ux

56500560005550055000

MJD

Optical 3.6 µm 4.5 µm

Seyfert 1 in Sab host; z = 0.0285

Cycle  8  (3  days) Cycle  9  (30  days)

Vazquez  et  al.  2015

5

Page 6: ATALEOFTWOMONSTERS ...hiddenmonsters/talks/robinson.pdfgeometry,$cloud$distribution$etc. 1.0 0.8 0.6 0.4 0.2 0.0 e 0 5 10 15 20 25 Delay 1.8 1.6 1.4 1.2 1.0 0.8 0.6 x 0 5 10 15 20

NGC6418  optical  &  IR  light  curves

2.2

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

Norm

aliz

ed fl

ux

56500560005550055000

MJD

Optical 3.6 µm 4.5 µm

Seyfert 1 in Sab host; z = 0.0285

Cycle  8  (3  days) Cycle  9  (30  days)

6

Page 7: ATALEOFTWOMONSTERS ...hiddenmonsters/talks/robinson.pdfgeometry,$cloud$distribution$etc. 1.0 0.8 0.6 0.4 0.2 0.0 e 0 5 10 15 20 25 Delay 1.8 1.6 1.4 1.2 1.0 0.8 0.6 x 0 5 10 15 20

��

�����

����

�����

����

�����

����

�����

����

�� �� �� �� �� � � ��

������������ ���

� ���� ���

Cross-­‐correlation  analysis

• Increase  in  IR– optical  lags  following  flare

��

�����

�����

�����

�����

����

�����

�����

�����

��� �� �� � ��� �� ��

������������ ���

�� �������

3.6 µm vs optical

��

�����

�����

�����

�����

����

�����

�����

�� � ��� �� �� �

������������ ���

�� �������

��

�����

�����

�����

�����

����

�����

�����

�����

�����

����

�� �� �� ��� ��� ��� ��� ��� ��

������������ ���

�� �������

𝜏 = 33.3%&.'('.)

𝜏 = 64.5%-..(-.)

𝜏 = 41.4%&.0(&.)

𝜏 = 41.4%&.0(&.)

𝜏 = 80.3%'.0('..

4.5 µm vs optical

Cycle 9

Cycle 8

7

Page 8: ATALEOFTWOMONSTERS ...hiddenmonsters/talks/robinson.pdfgeometry,$cloud$distribution$etc. 1.0 0.8 0.6 0.4 0.2 0.0 e 0 5 10 15 20 25 Delay 1.8 1.6 1.4 1.2 1.0 0.8 0.6 x 0 5 10 15 20

��

�����

����

�����

����

�����

����

�����

�� � ��� ��� ��� ��� �� ��� ���

������������ ���

� ���� ���

Cross-­‐correlation  analysis

• 4.5  µm  lags  3.6  µm;  lag  increased  following  flare

Implications of the Full Campaign on NGC6418

!"

!"#$

!"#%

!"#&

!"#'

!"#(

!"#)

!"#*

!"#+

!"#,

!$

-'" -&" -%" -$" !" !$" !%" !&" !'" !(" !)" !*" !+"

!"##$%&'(")*+&!'"#

./0!12/345

Figure 6.14: An instance of the CCF (⌧) of the 4.5 vs 3.6 µm light curves.

!"

!"#"$

!"#%

!"#%$

!"#&

!"#&$

!"#'

!%" !%$ !&" !&$ !'"

!"#$%$&'&()*+,-.&()

()*!+,)-./

Figure 6.15: 3.6 µm and 4.5 µm CCCD for Spitzer Cycle 9. The centroid ofthe CCCD is 20.3+1.0

�1.0 days.

116

Cycle 9

Cycle 8

𝜏 = 20.3%'.-('.-

𝜏 = 12.4%'.-(-.4

4.5 µm vs 3.6 µm

For dust grains in radiative equilibrium: 𝑅6 𝑅7~ 𝑇:;< 𝑇6⁄ >⁄ ; a ≈ 2.6 for ISM composition

Expect: t4.5/t3.6 ~ 1.8

Measured: t4.5/t3.6 ≈ 1.2(in both cycles)

Favours clumpy dust distribution

8

Page 9: ATALEOFTWOMONSTERS ...hiddenmonsters/talks/robinson.pdfgeometry,$cloud$distribution$etc. 1.0 0.8 0.6 0.4 0.2 0.0 e 0 5 10 15 20 25 Delay 1.8 1.6 1.4 1.2 1.0 0.8 0.6 x 0 5 10 15 20

�����

����

���� ���� ���� ���� ����

��������������

������� ���������

����������������� ��� ������������������������

������������������� !������������� !����

�����"����

Torus  radius-­‐luminosity  relation

Opt. – IR lags small compared to predicted sublimation radius for standard ISM dust composition, but…

increase in lags following flare ~ consistent with increase in dust sublimation radius,R ~ L0.5

9

Page 10: ATALEOFTWOMONSTERS ...hiddenmonsters/talks/robinson.pdfgeometry,$cloud$distribution$etc. 1.0 0.8 0.6 0.4 0.2 0.0 e 0 5 10 15 20 25 Delay 1.8 1.6 1.4 1.2 1.0 0.8 0.6 x 0 5 10 15 20

Optical  spectra:  2001

2.2

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

Rela

tive

Flux

575005700056500560005550055000MJD

Optical 3.6 µm 4.5 µm

120

100

80

60

40

20

Relat

ive F

λ

7000600050004000Wavelength (Å)

SDSS Apr 2001

Broad line Ha/Hb ≥ 6; AV ≥ 2

11

Page 11: ATALEOFTWOMONSTERS ...hiddenmonsters/talks/robinson.pdfgeometry,$cloud$distribution$etc. 1.0 0.8 0.6 0.4 0.2 0.0 e 0 5 10 15 20 25 Delay 1.8 1.6 1.4 1.2 1.0 0.8 0.6 x 0 5 10 15 20

Optical  spectra:  Jan.  2014

2.2

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

Rela

tive

Flux

575005700056500560005550055000MJD

Optical 3.6 µm 4.5 µm

80

60

40

20

Rela

tive

F λ

7000600050004000

Wavelength (Å)

APO Jan 2014

Broad line Ha/Hb ≈ 3; AV ≈ 0

12

Page 12: ATALEOFTWOMONSTERS ...hiddenmonsters/talks/robinson.pdfgeometry,$cloud$distribution$etc. 1.0 0.8 0.6 0.4 0.2 0.0 e 0 5 10 15 20 25 Delay 1.8 1.6 1.4 1.2 1.0 0.8 0.6 x 0 5 10 15 20

Optical  spectra:  Aug.  2015

2.2

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

Rela

tive

Flux

575005700056500560005550055000MJD

Optical 3.6 µm 4.5 µm

50

40

30

20

10

Rela

tive

F λ

7000600050004000

Wavelength (Å)

APO Aug 2015

Broad line Ha/Hb ≈ 6; AV ≈ 2

13

Page 13: ATALEOFTWOMONSTERS ...hiddenmonsters/talks/robinson.pdfgeometry,$cloud$distribution$etc. 1.0 0.8 0.6 0.4 0.2 0.0 e 0 5 10 15 20 25 Delay 1.8 1.6 1.4 1.2 1.0 0.8 0.6 x 0 5 10 15 20

Optical  spectra:  Feb.  2016

2.2

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

Rela

tive

Flux

575005700056500560005550055000MJD

Optical 3.6 µm 4.5 µm

80

70

60

50

40

30

20

10

Rela

tive

F λ

7000600050004000

Wavelength (Å)

WHT 17 Feb 2016

14

Page 14: ATALEOFTWOMONSTERS ...hiddenmonsters/talks/robinson.pdfgeometry,$cloud$distribution$etc. 1.0 0.8 0.6 0.4 0.2 0.0 e 0 5 10 15 20 25 Delay 1.8 1.6 1.4 1.2 1.0 0.8 0.6 x 0 5 10 15 20

NGC6418  as  a  “changing  look”  AGN

• Factor  ≥  2  increase  in  optical  luminosity  accompanied  by  similar  increase  in  IR  luminosity  and  followed  by…• Emergence  of  Sy 1  spectrum• Increase  in  optical  -­‐ IR  lags,  consistent  with  L0.5,  suggesting  increase  in  sublimation  radius• Line-­‐of-­‐sight  extinction  to  BLR  decreased  from  AV ≥  2  →  ≈0• Timescales:  opt.-­‐IR  flare  ~  100  days;  change  in  spectrum  ≤  1  year• Seems  to  be  returning  to  low  activity  state  (Jan  2014  – present)  

Change  in  “look”

Flare  in  accretion  disk  luminosity

Increase  in  BLR  

luminosity

Increase  in  torus  inner  radius

Destruction  of  line-­‐of-­‐sight  dust 15

Page 15: ATALEOFTWOMONSTERS ...hiddenmonsters/talks/robinson.pdfgeometry,$cloud$distribution$etc. 1.0 0.8 0.6 0.4 0.2 0.0 e 0 5 10 15 20 25 Delay 1.8 1.6 1.4 1.2 1.0 0.8 0.6 x 0 5 10 15 20

OH  Megamaser Galaxies

~  20%  of  (U)LIRGs  contain  extremely  luminous  OH  masers  • emitting  primarily  in  the  1667  and  1665  MHz  lines  • luminosities  ∼102–4 L⊙• Represent  distinct  evolutionary  phase  in  gas-­‐rich  mergers?• Probe  of  high  z  star  formation?

• Multiwavelength study  of  ~80  OHMG• Optical  – NIR:  HST  observations  archive  data;  Gemini  integral  field  spectroscopy• IR-­‐sub  mm:  Spitzer  +  Herschel  archive  data• Radio:  VLA  observations  +  archive  data

IRAS  16399-­‐0937  (z  =  0.027)• LIRG  (LFIR ≈  1011.2 L⊙;  LOH ≈  101.7 L⊙)  • mid-­‐late  stage  merger

19

Page 16: ATALEOFTWOMONSTERS ...hiddenmonsters/talks/robinson.pdfgeometry,$cloud$distribution$etc. 1.0 0.8 0.6 0.4 0.2 0.0 e 0 5 10 15 20 25 Delay 1.8 1.6 1.4 1.2 1.0 0.8 0.6 x 0 5 10 15 20

Double nuclei in common, tidally distorted envelope è mid-stage major, gas rich, merger.

Multiwavelength Morphology  of  IRAS16399-­‐0937

HST/ACS 0.4 µm HST/ACS 0.8 µm HST/NICMOS 1.6 µm

HST/ACS Hα+[NII] Spitzer/IRAC 8.0 µm PAH VLA 1.49 GHz

z = 0.027012 => 111.5 Mpc

21

Page 17: ATALEOFTWOMONSTERS ...hiddenmonsters/talks/robinson.pdfgeometry,$cloud$distribution$etc. 1.0 0.8 0.6 0.4 0.2 0.0 e 0 5 10 15 20 25 Delay 1.8 1.6 1.4 1.2 1.0 0.8 0.6 x 0 5 10 15 20

50 100 150 200 250

Optical  spectrum

• Nucleus  separation  ≈3.4  kpc

5

10

15

20

25

30 IRAS 15268-7757

0.00.5

1.0

1.5

2.0

2.5

3.0 IRAS 15361-0313

0

5

10

15 IRAS 15437+0234 obj 1

01

2

3

4

5

6 IRAS 15437+0234 obj 2

0.5

1.0

1.5

2.0

2.5

3.0 IRAS 15456-1336

0.00

0.10

0.20

0.30

0.40IRAS 16399-0937 obj 1

0.0

0.2

0.4

0.6

0.8 IRAS 16399-0937 obj 2

0

1

2

3

4IRAS 16504+0228

0.00.20.40.60.81.01.21.4 IRAS 17138-1017

0.0

0.5

1.0

1.5

2.0

2.5 IRAS 17324-6855

2

4

6

8IRAS 17467+0807

20

40

60

80

100 IRAS 18078-5815

5000 5500 6000 650002

4

6

8

10

12 IRAS 18093-5744 obj 1

5000 5500 6000 650002468

101214 IRAS 18093-5744 obj 2

FIG. 2.ÈContinued

53

5

10

15

20

25

30 IRAS 15268-7757

0.00.5

1.0

1.5

2.0

2.5

3.0 IRAS 15361-0313

0

5

10

15 IRAS 15437+0234 obj 1

01

2

3

4

5

6 IRAS 15437+0234 obj 2

0.5

1.0

1.5

2.0

2.5

3.0 IRAS 15456-1336

0.00

0.10

0.20

0.30

0.40IRAS 16399-0937 obj 1

0.0

0.2

0.4

0.6

0.8 IRAS 16399-0937 obj 2

0

1

2

3

4IRAS 16504+0228

0.00.20.40.60.81.01.21.4 IRAS 17138-1017

0.0

0.5

1.0

1.5

2.0

2.5 IRAS 17324-6855

2

4

6

8IRAS 17467+0807

20

40

60

80

100 IRAS 18078-5815

5000 5500 6000 650002

4

6

8

10

12 IRAS 18093-5744 obj 1

5000 5500 6000 650002468

101214 IRAS 18093-5744 obj 2

FIG. 2.ÈContinued

53

5

10

15

20

25

30 IRAS 15268-7757

0.00.5

1.0

1.5

2.0

2.5

3.0 IRAS 15361-0313

0

5

10

15 IRAS 15437+0234 obj 1

01

2

3

4

5

6 IRAS 15437+0234 obj 2

0.5

1.0

1.5

2.0

2.5

3.0 IRAS 15456-1336

0.00

0.10

0.20

0.30

0.40IRAS 16399-0937 obj 1

0.0

0.2

0.4

0.6

0.8 IRAS 16399-0937 obj 2

0

1

2

3

4IRAS 16504+0228

0.00.20.40.60.81.01.21.4 IRAS 17138-1017

0.0

0.5

1.0

1.5

2.0

2.5 IRAS 17324-6855

2

4

6

8IRAS 17467+0807

20

40

60

80

100 IRAS 18078-5815

5000 5500 6000 650002

4

6

8

10

12 IRAS 18093-5744 obj 1

5000 5500 6000 650002468

101214 IRAS 18093-5744 obj 2

FIG. 2.ÈContinued

53

5

10

15

20

25

30 IRAS 15268-7757

0.00.5

1.0

1.5

2.0

2.5

3.0 IRAS 15361-0313

0

5

10

15 IRAS 15437+0234 obj 1

01

2

3

4

5

6 IRAS 15437+0234 obj 2

0.5

1.0

1.5

2.0

2.5

3.0 IRAS 15456-1336

0.00

0.10

0.20

0.30

0.40IRAS 16399-0937 obj 1

0.0

0.2

0.4

0.6

0.8 IRAS 16399-0937 obj 2

0

1

2

3

4IRAS 16504+0228

0.00.20.40.60.81.01.21.4 IRAS 17138-1017

0.0

0.5

1.0

1.5

2.0

2.5 IRAS 17324-6855

2

4

6

8IRAS 17467+0807

20

40

60

80

100 IRAS 18078-5815

5000 5500 6000 650002

4

6

8

10

12 IRAS 18093-5744 obj 1

5000 5500 6000 650002468

101214 IRAS 18093-5744 obj 2

FIG. 2.ÈContinued

53

l (Å)

“North” nucleus: Low Ionization nuclear emission region – weak AGN(?)

“South” nucleus: starburst

(Spectra from Kewley et al. 2001)

22

Page 18: ATALEOFTWOMONSTERS ...hiddenmonsters/talks/robinson.pdfgeometry,$cloud$distribution$etc. 1.0 0.8 0.6 0.4 0.2 0.0 e 0 5 10 15 20 25 Delay 1.8 1.6 1.4 1.2 1.0 0.8 0.6 x 0 5 10 15 20

Green: Hα+[NII] (HST ACS)Red: 1.49 GHz VLAContours: ISM PAH-dust 8µm emission (fromSpitzer IRAC 8.0 & 3.6 µm images)

1''

Red: 1.49 GHz VLA Blue: Chandra 0.5–2 keV X-ray

Multiwavelength Morphology of IRAS16399-­‐0937

23

Extended  and compact  components  of  radio  emission  consistent  with  star  formation

Compact  X-­‐ray  source  associated  with  N  nucleus,  but  weak:  Lx(0.5–2  keV)  ~  5x1040 erg/s

Page 19: ATALEOFTWOMONSTERS ...hiddenmonsters/talks/robinson.pdfgeometry,$cloud$distribution$etc. 1.0 0.8 0.6 0.4 0.2 0.0 e 0 5 10 15 20 25 Delay 1.8 1.6 1.4 1.2 1.0 0.8 0.6 x 0 5 10 15 20

Mid-­‐Infrared Spectrum (nuclei not resolved)

Low-resolution Spitzer IRS spectrum. Vertical solid lines indicateabsorption bands of water ice (6.0µm) and HACs (6.85µm and7.25µm)

[NeV], [OIV] not detected

24

Page 20: ATALEOFTWOMONSTERS ...hiddenmonsters/talks/robinson.pdfgeometry,$cloud$distribution$etc. 1.0 0.8 0.6 0.4 0.2 0.0 e 0 5 10 15 20 25 Delay 1.8 1.6 1.4 1.2 1.0 0.8 0.6 x 0 5 10 15 20

Spectral  energy  distribution  fits

• SED  fits  using  MCMC  code  clumpyDREAM (Gallimore)• Simultaneous  fits  to  both  nuclei,  unresolved  points  at  l >14  µm  treated  as  upper  limits

Clumpy torus model (Nenkovaet al. 2008a,b)

ISM dust/PAH model (Draine & Li 2007)

Stellar population model (GRASIL Silva et al. 1998)

27

Page 21: ATALEOFTWOMONSTERS ...hiddenmonsters/talks/robinson.pdfgeometry,$cloud$distribution$etc. 1.0 0.8 0.6 0.4 0.2 0.0 e 0 5 10 15 20 25 Delay 1.8 1.6 1.4 1.2 1.0 0.8 0.6 x 0 5 10 15 20

ModelLAGN(erg/s)

3.4x1044

LISM(erg/s)

2.9x1044  erg/s

SFRFIR(M¤/yr)

11.6

Bayes informationcriterion (BIC) = 872

Measured (M¤/yr)SFRX-­ray 10.3±3.7SFR8μm 4.2±0.6SFR1.4GHz 6.0±0.7

SED  fit  – North  nucleus  with  AGN

28

Page 22: ATALEOFTWOMONSTERS ...hiddenmonsters/talks/robinson.pdfgeometry,$cloud$distribution$etc. 1.0 0.8 0.6 0.4 0.2 0.0 e 0 5 10 15 20 25 Delay 1.8 1.6 1.4 1.2 1.0 0.8 0.6 x 0 5 10 15 20

ModelLISM(erg/s)

5.1x1044

SFRFIR(M¤/yr)

20.3

Bayes informationcriterion (BIC) = 1225

Measured(system)

(M¤/yr)

SFR8μm 19.4±2.9SFR24μm 23.2±3.2SFR1.4GHz 13.7±1.5

SED  fit  – North  nucleus  without  AGN

Measured (M¤/yr)SFRX-­ray 10.3±3.7SFR8μm 4.2±0.6SFR1.4GHz 6.0±0.7

29

Page 23: ATALEOFTWOMONSTERS ...hiddenmonsters/talks/robinson.pdfgeometry,$cloud$distribution$etc. 1.0 0.8 0.6 0.4 0.2 0.0 e 0 5 10 15 20 25 Delay 1.8 1.6 1.4 1.2 1.0 0.8 0.6 x 0 5 10 15 20

Measured (M¤/yr)SFR8μm 3.0±0.4SFR1.4GHz 2.7±0.2

SED  fit  – South  nucleus  (no  AGN)

ModelLAGN(erg/s)

LISM(erg/s)

8.9x1043  erg/s

SFRFIR(M¤/yr)

3.6

30

Page 24: ATALEOFTWOMONSTERS ...hiddenmonsters/talks/robinson.pdfgeometry,$cloud$distribution$etc. 1.0 0.8 0.6 0.4 0.2 0.0 e 0 5 10 15 20 25 Delay 1.8 1.6 1.4 1.2 1.0 0.8 0.6 x 0 5 10 15 20

North  nucleus  – “torus”  parameters

On the other hand, the torus dominates the emission at shortwavelengths; at 2 !m, more than 80% of the flux measuredwith apertures!100 comes from the torus even though its imagesize is less than 0.04 00 (Weigelt et al. 2004).

These difficulties highlight a problem that afflicts all IR stud-ies of AGNs. The torus emission can be expected to dominate theAGN observed flux at near-IR because such emission requireshot dust that exists only close to the center. But longer wave-lengths originate from cooler dust, and the torus contribution canbe overwhelmed by the surrounding regions. Unfortunately, thereare not toomany sources like NGC 1068. No other AGN has beenobserved as extensively and almost no other observations havethe angular resolution necessary to identify the torus component,making it impossible to determine in any given source which arethe wavelengths dominated by torus emission. There are no easysolutions to this problem. One possible workaround is to forgofitting of the spectral energy distribution (SED) in individualsources and examine instead the observations of many sourcesto identify characteristics that can be attributed to the torus sig-nature. One example for the removal of the starburst componentis the Netzer et al. (2007) composite SED analysis of the Spitzerobservations of PG quasars. Netzer et al. identify two subgroupsof ‘‘weak FIR’’ and ‘‘strong FIR’’ QSOs and a third group of far-IR (FIR) nondetections. Assuming a starburst origin for the FIR,they subtract a starburst template from the mean SED of eachgroup. The residual SEDs are remarkably similar for all threegroups, and thus can be reasonably attributed to the intrinsicAGN contribution, in spite of the many uncertainties. However,while presumably intrinsic to the AGN, it is not clear what frac-tion of this emission originates from the torus as opposed to theionization cones. An example of a sample analysis that may haveidentified the torus component is the Hao et al. (2007) compi-lation of Spitzer IR observations. In spite of the large aperture ofthese measurements, Seyfert 1 and 2 galaxies show a markedlydifferent behavior for the 10 !m feature, both in their mean IRSEDs and in their distributions of feature strength. Furthermore,ultraluminous IR galaxies (ULIRGs) that are not associated withAGNs show yet another, entirely different behavior, indicatingthat the observed mean behavior of Seyfert galaxies is intrinsicto the AGN. Accepting the framework of the unification scheme,the differencesHao et al. find between the appearances of Seyfert 1and 2 galaxies can be reasonably attributed to the torus contribu-

tion; the ionization cones’ dust is optically thin, and therefore itsIR emission is isotropic and cannot generate the observed differ-ences between types 1 and 2.

Here we invoke both approaches in comparing our model pre-dictions with observations. We start by assembling dusty cloudsinto complete models of the torus, as described in x 2. Our modelpredictions for torus emission and the implications for IR obser-vations are presented in xx 3Y5, while in x 6 we discuss aspectsof clumpiness that are unrelated to the IR emission, such as thetorus mass and unification statistics. In x 7 we conclude with asummary and discussion.

2. MODEL OF A CLUMPY TORUS

Consider an AGN with bolometric luminosity L surroundedby a toroidal distribution of dusty clouds (Fig. 1). The ‘‘naked’’AGN flux at distance D is FAGN ¼ L/4"D2 at any direction, butbecause of absorption and reemission by the torus clouds the ac-tual flux distribution is anisotropic, with the level of anisotropystrongly dependent on wavelength. The grain mix has standardinterstellar properties (see x 3.1.1 of Paper I for details), and theoptical depth of each cloud is #V at visual.

2.1. Dust Sublimation

The distribution inner radius Rd is set by dust sublimation attemperature Tsub. From x 3.1.2 in Paper I,

Rd ’ 0:4L

1045 erg#1

! "1=2 1500 K

Tsub

! "2:6

pc: ð1Þ

Barvainis (1987) derived an almost identical relation for Rd. Hisequation (5) has the same normalization and only a slight dif-ference in the power of Tsub (2.8 instead of 2.6); this differencereflects the more detailed radiative transfer calculations we per-form. Here the distance Rd is determined from the temperatureon the illuminated face of an optically thick cloud of compositedust representing the grain mixture. The sharp boundary we em-ploy is an approximation. In reality, the transition between thedusty and dust-free environments is gradual because individualcomponents of the mix sublimate at slightly different radii, withthe largest grains surviving closest to the AGN (Schartmann et al.2005). From near-IR reverberation measurements, Minezaki et al.

Fig. 1.—Model geometry. Dusty clouds, each with an optical depth #V at visual, occupy a toroidal volume from inner radius Rd , determined by dust sublimation(eq. [1]), to outer radius Ro ¼ YRd . The radial distribution is a power law r#q, and the total number of clouds along a radial equatorial ray is N 0. Various angulardistributions, characterized by a width parameter $, were considered. The angular distribution has a sharp edge on the left and a smooth boundary (e.g., a Gaussian) onthe right.

AGN DUSTY TORI. II. OBSERVATIONAL IMPLICATIONS 161

From Nenkova et al. 2008

Parameter Value

“Size” (Ro) 20 pc

Angular height (σ) ≥ 66°

Inclination (i) ≥ 60°

N° clouds (Nd) ≥ 14

Opt. depth (τV) ≈30

Covering frac. (Cf) ≥ 0.998

Quasi-spherical

distribution of optical

thick clouds

31

Page 25: ATALEOFTWOMONSTERS ...hiddenmonsters/talks/robinson.pdfgeometry,$cloud$distribution$etc. 1.0 0.8 0.6 0.4 0.2 0.0 e 0 5 10 15 20 25 Delay 1.8 1.6 1.4 1.2 1.0 0.8 0.6 x 0 5 10 15 20

Origin  of  optical  line  emission?

• North  nucleus  covering  fraction  =>  ≈  0.1%  of  AGN  photons  (QAGN)  escape

• LINER  spectrum  not  due to  AGN  photoionization  – probably  results  from  shock  ionization

Qesc = (1–Cf)QAGN ≈ 3.6x1053 ionizing photons/s

Hα luminosity due to AGN photoionization:

LHα,AGN ≈ CISM pHα hνHα Qesc ≤ 4.9x1039 erg/s

(since CISM ≤ 1)

…only 2% of observed Hα luminosity of N nucleus (LHα,obs ≈ 3x1041 erg/s)

CISM = fraction ionizing photons absorbed by ISM

pHα ≈ 0.45, probability Hα photon emitted per H recombination

33

Page 26: ATALEOFTWOMONSTERS ...hiddenmonsters/talks/robinson.pdfgeometry,$cloud$distribution$etc. 1.0 0.8 0.6 0.4 0.2 0.0 e 0 5 10 15 20 25 Delay 1.8 1.6 1.4 1.2 1.0 0.8 0.6 x 0 5 10 15 20

Summary

NGC6418

• Isolated  Seyfert galaxy• Changing  look  AGN  “caught  in  the  act”• Intrinsic  increase  in  AGN  luminosity  AND  decrease  in  extinction• Evidence  for  increase  in  torus  inner  radius,  following  optical  flare• Timescale  <  1  yr

IRAS16399-­‐0937

• Gas-­‐rich,  mid-­‐stage,  major  merger,  nuclei  separated  by  ≈3  kpc• North  nucleus  contains  moderately  luminous  AGN,  embedded  in  ~spherical  dust  cloud  distribution  • Embedded  AGN  cannot  produce  LINER  spectrum;  probably  shocks  associated  with  merger  driven  gas  flows  

35

Torus  covering  fraction  may  not  scale  simply  with  instantaneous  

luminosity

LINER  spectrum  does  not  necessarily  indicate  

presence  of  AGN