assessing the greenhouse impact of natural gas - earth and

38
1 Assessing the greenhouse impact of 1 natural gas 2 L. M. Cathles, June 6, 2012 3 Abstract 4 The global warming impact of substituting natural gas for coal and oil is currently in 5 debate. We address this question here by comparing the reduction of greenhouse warming 6 that would result from substituting gas for coal and some oil to the reduction which could 7 be achieved by instead substituting zero carbon energy sources. We show that substitution 8 of natural gas reduces global warming by 40% of that which could be attained by the 9 substitution of zero carbon energy sources. At methane leakage rates that are ~1% of 10 production, which is similar to today’s probable leakage rate of ~1.5% of production, the 11 40% benefit is realized as gas substitution occurs. For short transitions the leakage rate 12 must be more than 10 to 15% of production for gas substitution not to reduce warming, 13 and for longer transitions the leakage must be much greater. But even if the leakage was so 14 high that the substitution was not of immediate benefit, the 40%‐of‐zero‐carbon benefit 15 would be realized shortly after methane emissions ceased because methane is removed 16 quickly form the atmosphere whereas CO 2 is not. The benefits of substitution are 17 unaffected by heat exchange to the ocean. CO 2 emissions are the key to anthropogenic 18 climate change, and substituting gas reduces them by 40% of that possible by conversion to 19 zero carbon energy sources. Gas substitution also reduces the rate at which zero carbon 20 energy sources must be eventually introduced. 21 Introduction 22 In a recent controversial paper, Howarth et al. (2011) suggested that, because methane is a 23 far more potent greenhouse gas than carbon dioxide, the leakage of natural gas makes its 24 greenhouse forcing as bad and possibly twice as bad as coal, and they concluded that this 25 undermines the potential benefit of natural gas as a transition fuel to low carbon energy 26 sources. Others (Hayhoe et al., 2009; Wigley, 2011) have pointed out that the warming 27 caused by reduced SO 2 emissions as coal electrical facilities are retired will compromise 28 some of the benefits of the CO 2 reduction. Wigley (2011) has suggested that because the 29 impact of gas substitution for coal on global temperatures is small and there would be 30

Upload: others

Post on 09-Feb-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

1

Assessing the greenhouse impact of 1

natural gas  2

L.M.Cathles,June6,20123

Abstract 4

Theglobalwarmingimpactofsubstitutingnaturalgasforcoalandoiliscurrentlyin5debate.Weaddressthisquestionherebycomparingthereductionofgreenhousewarming6thatwouldresultfromsubstitutinggasforcoalandsomeoiltothereductionwhichcould7beachievedbyinsteadsubstitutingzerocarbonenergysources.Weshowthatsubstitution8ofnaturalgasreducesglobalwarmingby40%ofthatwhichcouldbeattainedbythe9substitutionofzerocarbonenergysources.Atmethaneleakageratesthatare~1%of10production,whichissimilartotoday’sprobableleakagerateof~1.5%ofproduction,the1140%benefitisrealizedasgassubstitutionoccurs.Forshorttransitionstheleakagerate12mustbemorethan10to15%ofproductionforgassubstitutionnottoreducewarming,13andforlongertransitionstheleakagemustbemuchgreater.Buteveniftheleakagewasso14highthatthesubstitutionwasnotofimmediatebenefit,the40%‐of‐zero‐carbonbenefit15wouldberealizedshortlyaftermethaneemissionsceasedbecausemethaneisremoved16quicklyformtheatmospherewhereasCO2isnot.Thebenefitsofsubstitutionare17unaffectedbyheatexchangetotheocean.CO2emissionsarethekeytoanthropogenic18climatechange,andsubstitutinggasreducesthemby40%ofthatpossiblebyconversionto19zerocarbonenergysources.Gassubstitutionalsoreducestherateatwhichzerocarbon20energysourcesmustbeeventuallyintroduced.21

Introduction 22

Inarecentcontroversialpaper,Howarthetal.(2011)suggestedthat,becausemethaneisa23

farmorepotentgreenhousegasthancarbondioxide,theleakageofnaturalgasmakesits24

greenhouseforcingasbadandpossiblytwiceasbadascoal,andtheyconcludedthatthis25

underminesthepotentialbenefitofnaturalgasasatransitionfueltolowcarbonenergy26

sources.Others(Hayhoeetal.,2009;Wigley,2011)havepointedoutthatthewarming27

causedbyreducedSO2emissionsascoalelectricalfacilitiesareretiredwillcompromise28

someofthebenefitsoftheCO2reduction.Wigley(2011)hassuggestedthatbecausethe29

impactofgassubstitutionforcoalonglobaltemperaturesissmallandtherewouldbe30

2

somewarmingasSO2emissionsarereduced,thedecisionoffueluseshouldbebasedon31

resourceavailabilityandeconomics,notgreenhousegasconsiderations.32

Someofthesesuggestionshavebeenchallenged.ForexampleCathlesetal.(2012)have33

takenissuewithHowarthetal.forcomparinggasandcoalintermsoftheheatcontentof34

thefuelsratherthantheirelectricitygeneratingcapacity(coalisusedonlytogenerate35

electricity),forexaggeratingthemethaneleakagebyafactorof3.6,andforusingan36

inappropriatelyshort(20year)globalwarmingpotentialfactor(GWP).Neverthelessit37

remainsdifficulttoseeinthepublishedliteraturepreciselywhatbenefitmightberealized38

bysubstitutinggasforcoalandtheuseofmetricssuchasGWPfactorsseemstocomplicate39

ratherthansimplifytheanalysis.Thispaperseekstoremedythesedeficienciesby40

comparingthebenefitsofnaturalgassubstitutiontothoseofimmediatelysubstituting41

low‐carbonenergysources.Thecomparativeanalysisgoesbacktothefundamental42

equationanddoesnotusesimplifiedGWPmetrics.Becauseitisanullanalysisitavoids43

thecomplicationsofSO2,carbonblack,andthecomplexitiesofCO2removalfromthe44

atmosphere.Itshowsthatthesubstitutionofnaturalgasforcoalandsomeoilwould45

realize~40%ofthegreenhousebenefitsthatcouldbehadbyreplacingfossilfuelswith46

lowcarbonenergysourcessuchaswind,solar,andnuclear.Inthelongtermthisgas47

substitutionbenefitdoesnotdependonthespeedofthetransitionorthemethaneleakage48

rate.Ifthetransitionisfaster,greenhousewarmingisless.Iftheleakageisless,the49

reductionofwarmingduringthesubstitutionperiodisgreater,butregardlessoftherateof50

leakageorthespeedofsubstitution,naturalgasachieves~40%ofthebenefitsoflow51

carbonenergysubstitutionafewdecadesaftermethaneemissionsassociatedwithgas52

productioncease.Thebenefitofnaturalgassubstitutionisadirectresultofthedecrease53

inCO2emissionsitcauses.54

ThecalculationmethodsusedherefollowWigley(2011),butarecomputedusing55

programsofourowndesignfromtheequationsandparametersgivenbelow.Parameters56

aredefinedthatconvertscenariosfortheyearlyconsumptionofthefossilfuelstothe57

yearlyproductionofCO2andCH4.Thesegreenhousegasesarethenintroducedintothe58

atmosphereandremovedusingacceptedequations.Radiativeforcingsarecalculatedfor59

thevolumetricgasconcentrationsastheyincrease,theequilibriumglobaltemperature60

3

changeiscomputedbymultiplyingthesumoftheseforcingsbytheequilibriumsensitivity61

factorcurrentlyfavoredbytheIPCC,andtheincrementsofequilibriumtemperature62

changeareconvertedtotransienttemperaturechangesusingatwolayeroceanthermal63

mixingmodel.64

Emission Scenarios 65

GreenhousewarmingisdrivenbytheincreaseintheatmosphericlevelsofCO2,CH4and66

othergreehousegasesthatresultfromtheburningoffossilfuels.Between1970and2002,67

worldenergyconsumptionfromallsources(coal,gas,oil,nuclear,hydroandrenewables)68

increasedattherateof2.1%peryear.Intheyear2005sixandahalfbillionpeople69

consumed~440EJ(EJ=exajoules=1018joules,1joule=1.055Btu;EIA,2011)ofenergy.70

Oilandgassupplied110EJeach,coal165EJ,andothersources(hydro,nuclear,and71

renewablessuchawindandsolar)55EJ(MiniCAMscenario,Clark,2007).In2100the72

worldpopulationisprojectedtoplateauat~10.5billion.Iftheperpersonconsumption73

thenisattoday’sEuropeanaverageof~7kWp‐1,globalenergyconsumptionin210074

wouldbe2300EJperyear(74TW).Westartwiththefuelconsumptionpatternat200575

ADandgrowitexponentiallysothatitreaches2300EJperyearattheendofa“transition”76

period.Attheendofthetransitiontheenergyissuppliedalmostentirelybylowcarbon77

sourcesinallcases,butinthefirsthalfofthetransition,whichwecallthegrowthperiod,78

hydrocarbonconsumptioneitherincreasesonthecurrenttrajectory(the“business‐as‐79

usual”scenario),increasesatthesameequivalentratewithgassubstitutedforcoalandoil80

(a“substitute‐gasscenario),ordeclinesimmediately(thelow‐carbon‐fastscenario).Coal81

useisphasedoutatexactlythesamerateinthesubstitute‐gasandlow‐carbon‐fast82

scenarios,sothatthereductionofSO2andcarbonblackemissionsisexactlythesamein83

thesetwoscenariosandthereforisnotafactorwhenwecomparethereductionin84

greenhousewarmingforthesubstitute‐gasandthelow‐carbon‐fastscenarios.85

Figure1showsthethreefuelscenariosconsideredfora100yeartransition:86

Infirsthalf(growthperiod)ofthebusiness‐as‐usualscenario(AinFigure1),fossil87

fuelconsumptionincreases2.9foldfrom440EJ/yrin2005to1265EJ/yroverthe88

4

50yeargrowthperiod,andthendeclinesto205.6EJ/yrafterthefulltransition.The89

mixofhydrocarbonsconsumedattheendofthetransitionproducesCO2emissions90

atthesame4.13GtC/yrrateasattheendoftheotherscenarios.Thetotalenergy91

consumptiongrowsat2.13%peryearinthegrowthperiod,andat1.2%overthe92

declineperiod.Thegrowthperiodisashifted(tostartin2005),slightlysimplified,93

exponentialversionoftheMiniCAMscenarioinClark(2007).Weincreasethe94

hydrocarbonconsumptionbythesamefactorsasintheMiniCAMscenario,and95

determinetherenewablegrowthbysubtractingthehydrocarbonenergy96

consumptionfromthistotal.Thegrowth‐declinecombinationissimilartothebase97

scenariousedbyWigley(2011).98

Inthesubstitute‐gasscenario(BinFigure1),gasreplacescoalandnewoil99

consumptionoverthegrowthperiod,andisreplacedbylowcarbonfuelsinthe100

declineperiod.Gasreplacescoalonanequalelectricity‐generationbasis101

(∆Hgas=∆HcoalRcoal/Rgas=234EJy‐1,seeTable1),andgasreplacesnewoil(165EJy‐1)102

onanequalheatcontentbasis.Gasuseattheendofthegrowthperiodisthus729103

EJy‐1,ratherthan330EJy‐1inthebusiness‐as‐usualscenario.Thegrowthof104

renewableenergyconsumptionisgreaterthanin(A).Overtheensuingdecline105

period,oilconsumptiondropsto75EJy‐1andgasto175EJy‐1.106

Inthelow‐carbon‐fastscenario(CinFigure1),lowcarbonenergysourcesreplace107

coal,newgas,andnewoiloverthegrowthperiod,andgasusegrowsandoiluse108

decreasessothattheconsumptionattheendisthesameasinthesubstitute‐gas109

scenario.110

Thesescenariosareintendedtoprovideasimplebasisforassessingthebenefitsof111

substitutinggasforcoal;theyareintendedtobeinstructiveandrealisticenoughtobe112

relevanttofuturesocietaldecisions.Thequestiontheyposeis:Howfarwillsubstituting113

gasforcoalandsomeoiltakeustowardthegreenhousebenefitsofanimmediateandrapid114

conversiontolowcarbonenergysources.115

5

0

500

1000

1500

2000

2500

A. Business as Usual

0

500

1000

1500

2000

2500

EJperyear

B. Subst iute Gas

no C

Coal

Gas

Oil

0

500

1000

1500

2000

2500

0 25 50 75

C. Low Carbon Fast

100

years af er 2005

55

110

165110

330

330

440

165

55.67575

2094.4

2050

2050

729

371

165175

75

110165 175

75

Growth

Period

Declin

e Perio

d

990440 EJ

1265 EJ

2300 EJ

116

Figure1Threefuelconsumptionscenarioscomparedinthispaper:(A)Fossilfueluseinthebusiness‐as‐usual117scenariocontinuesthepresentgrowthinfossilfuelconsumptionintheinitial50yeargrowthperiodbeforelow118carbonenergysourcesreplacefossilfuelsinthedeclineperiod.(B)Inthesubstitute‐gasscenario,gasreplaces119coalsuchthatthesameamountofelectricityisgenerated,andsubstitutesfornewoilonanequalheatenergy120basis.(C)Inthelow‐carbon‐fastscenario,lowcarbonenergysourcesimmediatelysubstituteforcoalandnewoil121andgasinthegrowthperiod,andgasusedeclinesandsubstitutesforoilinthedeclineperiod.Numbersindicate122theconsumptionofthefuelsinEJperyearatthestart,midpoint,andendofthetransitionperiod.Thetotal123energyuseisthesameinallscenariosandisindicatedatthestart,midpoint,andendbytheboldblacknumbers124in(C).125

6

Table1.Parametersusedinthecalculations.Iistheenergycontentofthefuel,Rtheefficiencyofconversionto126electricity,andandthecarbonandmethaneemissionsfactors.Seetextfordiscussion.127

I[EJGt‐1] R[EJeEJ‐1] ξ[GtCEJ‐1] ζ[GtCH4EJ‐1]

Gas 55 0.6 0.015 1.8x10‐4foraleakageof1%ofproduction

Oil 43 0.020

Coal 29 0.32 0.027 1.2x10‐4for5m3/t

128

Computation Method and Parameters 129

Table1summarizestheparametersusedinthecalculations.I[EJGt‐1],givestheheat130

energyproducedwheneachfossilfuelisburnedinexajoules(1018joules)pergigaton(109131

tons)ofthefuel.Thevaluesweusearefromhttp://www.natural‐132

gas.com.au/about/references.html.Theenergydensityofcoalvariesfrom25‐37GJ/t,133

dependingontherankofthecoal,but29GJ/tisconsideredagoodaveragevaluefor134

calculations.135

R[EJeEJ‐1]istheefficiencywithwhichgasandcoalcanbeconvertedtoelectricityin136

exajoulesofelectricalenergyperexajouleofheat.Gascangenerateelectricitywithmuch137

greaterefficiencythancoalbecauseitcandriveagasturbinewhoseeffluentheatcanthen138

beusedtodriveasteamgenerator.Lookingforward,olderlowefficiencycoalplantswill139

likelybereplacedbyhigherefficiencycombinedcyclegasplantsofthiskind.Theelectrical140

conversionefficienciesweadoptinTable1arethoseselectedbyHayhoeetal.(2002,their141

TableII).142

Thecarbonemissionfactorsingigatonsofcarbonreleasedtotheatmosphereperexajoule143

ofcombustionheat,ξ[GtCEJ‐1],listedinthefourthcolumnofTable1arethefactors144

compiledbytheEPA(2005)andusedbyWigley(2011).145

Finally,themethaneemissionfactors,ζ[GtCH4EJ‐1]inthelastcolumnofTable1are146

computedfromthefractionofmethanethatleaksduringtheproductionanddeliveryof147

naturalgasandthevolumeofmethanethatisreleasedtotheatmosphereduringmining148

andtransportofcoal:149

7

]Gt EJ[]Gt Gt[]EJ Gt[ -1burned-CH4

-1burned-CH4vented-CH4

-1CH4 ILgas (1a)150

]Gt EJ[]m [] tm[]EJ Gt[ -1burned-coal

-3CH44CH4

-1mined-coal

3CH4

-1CH4 ItV CHcoal . (1b)151

Thedensityofmethanein(1b)CH4=0.71x10‐3tonsperm3.Wetreatthemethanevented152

totheatmosphereduringtheproductionanddistributionofnaturalgas,L,parametrically153

inourcalculations.Thenaturalgasleakage,L,isdefinedasthemassfractionofnaturalgas154

thatisburned.155

Weassumeinourcalculationsthat5m3ofmethaneisreleasedpertonofcoalmined.The156

leakageofmethaneduringcoalmininghasbeenreviewedindetailbyHowarthetal.157

(2011)andWigley(2011).Combiningleakagesfromsurfaceanddeepmininginthe158

proportionsthatcoalisextractedinthesetwoprocesses,theyarriveat6.26m3/tand4.88159

m3/trespectively.Thevalueweuseliesbetweenthesetwoestimates,andappearstobea160

reasonableestimate(e.g.,seeSaghafietal.,1997),althoughsomehaveestimatedmuch161

highervalues(e.g,Hayhoeetal.,2002,suggest~23m3/t).162

TheyearlydischargeofCO2(measuredintonsofcarbon)andCH4totheatmosphere,163

QC[GtCy‐1]andQCH4[GtCH4y‐1],arerelatedtotheheatproducedinburningthefuels,H[EJy‐164

1]inFigure1:165

]EJ Gt[]y EJ[]yGt[ -1C

-1-1C HQC (2a)166

]EJ Gt[]y EJ[]yGt[ -1CH4

-1-1C4 HQCH (2b)

167

ThevolumefractionsofCO2andCH4addedtotheatmosphereinyeartiby(1)are:168

tM

V

V

W

W

W

WQ

yppmvtXatm

air

CO

CO

air

C

COC

iCO

2

2

2151-C

12

10]yGt[

][ (3a)169

tM

V

V

W

WQ

yppbvtXatm

air

CH

CH

airCH

iCH

4

4

181-CH44

14

10]yGt[

][ . (3b)170

8

HereMatm[t]=5.3x1015tonsisthemassoftheatmosphere,WCO2isthemolecularweightof171

CO2(44g/mole),andVCO2isthemolarvolumeofCO2,etc.In(2a)thefirstmolecularweight172

ratioconvertstheyearlymassadditionofcarbontotheyearlymassadditionofCO2,and173

thesecondmassfractionratioconvertsthistothevolumefractionofCO2inthe174

atmosphere.WeassumethegasesareidealandthusVCO2=Vair.175

Eachyearlyinputofcarbondioxideandmethaneisassumedtodecaywithtimeasfollows:176

186.151.189.172

2

222

186.0338.0259.0217.0ttt

CO

COiCOiCO

eeetf

tftXttX

(4a)177

12

4

444

t

CH

CHiCHiCH

etf

tftXttX

, (4b)178

wheretistimeinyearsaftertheinputofayearlyincrementofgasatti.Thesedecayrates179

arethoseassumedbytheIPCC(2007,Table2.14).The12yeardecaytimeformethanein180

(4b)isaperturbationlifetimethattakesintoaccountchemicalreactionsthatincrease181

methane’slifetimeaccordingtotheIPCC(2007,§2.10.3.1).ThedecayofCO2describedby182

(4a)doesnotaccountforchangeswithtimeinthecarbonate‐bicarbonateequilibrium183

(suchasdecreasingCO2solubilityasthetemperatureoftheoceansurfacewaters184

increases)whichbecomeimportantathigherconcentrationsofatmosphericCO2(seeNRC,185

2011;Ebyetal.,2009).Equation(4a)thusprobablyunderstatestheamountofCO2that186

willberetainedintheatmospherewhenwarminghasbecomesubstantial.187

Theconcentrationofcarbondioxideandmethaneintheatmosphereasafunctionoftimeis188

computedbysummingtheadditionseachyearandthedecayedcontributionsfromthe189

additionsinpreviousyears:190

1

14444

1

12222

i

jjiCHjCHiCHiCH

i

jjiCOjCOiCOiCO

ttftXtXtX

ttftXtXtX

, (5)191

9

where iCO tX 2 and iCH tX 4 arevolumetricconcentrationofCO2andCH4inppmvandppbv192

respectively,irunsfrom1tottotwherettotisthedurationofthetransitioninyears,andthe193

sumtermsontherighthandsidesdoesnotcontributeunlessi≥2.194

Theradiativeforcingsforcarbondioxideandmethane,∆FCO2[Wm‐2]and∆FCO2[Wm‐2]are195

computedusingthefollowingformulaegivenintheIPCC(2001,§6.3.5):196

52.11555

44444442

4

2

2222

31.51001.21ln47.0,

,0,000036.0

0

0ln35.5

NMMMNMNNMf

NXfNXtXfXXtXmWF

tX

tXtXmWF

oCHoCHiCHCHCHiCHCHCH

CO

COiCOCO

(6)197

Westartourcalculationswiththeatmosphericconditionsin2005:XCO2[t=0]=379ppmv,198

XCH4[t=0]=1774ppbv,andtheN2Oconcentration,No=319ppbv.ψCH4isafactorthat199

magnifiesthedirectforcingofCH4totakeintoaccounttheindirectinteractionscausedby200

increasesinatmosphericmethane.TheIPCC(2007)suggeststheseindirectinteractions201

increasethedirectforcingfirstby15%andthenbyanadditional25%,withtheresultthat202

ψCH4=1.43.Shindelletal.(2009)havesuggestedadditionalindirectinteractionswhich203

increaseψCH4to~1.94.ThereiscontinuingdiscussionofthevalidityofShindelletal.’s204

suggestedadditionalincrease(seeHultmanetal.,2011).WegenerallyuseψCH4=1.43in205

ourcalculations,butconsidertheimpactofψCH4to~1.94whereitcouldbeimportant.206

Theradiativeforcingofthegreenhousegasadditionsin(6)drivesglobaltemperature207

change.Theultimatechangeinglobaltemperaturetheycauseis:208

421

42 CHCOSCHCOequil FFTTT , (7)209

where 1S istheequilibriumclimatesensitivity.WeadopttheIPCC,2007value 8.01

S ,210

whichisequivalenttoassumingthatadoublingofatmosphericCO2[ppmv]causesa3°C211

globaltemperatureincrease.212

Theheatcapacityoftheoceandelaysthesurfacetemperatureresponsetogreenhouse213

forcing.Assuming,followingSolomonetal(2011),atwolayeroceanwherethemixed214

layerisinthermalequilibriumwiththeatmosphere:215

10

deepmixmix

deep

deepmixmixequil

mixsmix

mix

TTt

TC

TTTTt

TC

. (8)216

Hereistheheattransfercoefficientfortheflowofheatfromthemixedlayerintothedeep217

layerinWK‐1m‐2,andsistheheattransfercoefficientintothemixedlayerfromthe218

atmosphere(andtheinverseoftheequilibriumclimatesensitivity).CmixandCdeeparethe219

heatstoragecapacitiesperunitsurfaceareaofthemixedanddeeplayersinJK‐1m‐2.220

Defining mixequil

mixmix TTT , deepequil

mixdeep TTT , mixtt ,and 1 smixmix C ,wecan221

write:222

deep

mix

deepmixsdeepmixs

ss

deep

mix

T

T

CCCCT

T

t 1111

11 1

. (9)223

Fortheimpositionofasuddenincreaseingreenhouseforcingthatwillultimatelyproduce224

anequilibriumtemperaturechangeof equilmixT asdescribedby(7),thesolutionto(8)is:225

mixdmixm

equilmixmix e

tae

taTT 11 exp1exp1 . (10)226

Hereemandedarethemagnitudesoftheeigenvaluesofthematrixin(9),andthe227

coefficient,a,isdeterminedbytheinitialconditionthatthelayersarenotthermally228

perturbedbeforetheincrementofgreenhouseforcingisimposed.229

Insightisprovidedbynotingthattheeigenvaluesandparameterain(10)arefunctionsof230

theratiosofheattransferandheatstorageparameters 1s and 1

mixdeepCC only,andcanbe231

approximatedtowithin±10%:232

7.01

11

111

11

2

1

12.0,1344.0483.0

s

mixdeepd

sm

ss

CCe

e

a

. (11)233

11

Itisunlikelythatthatheatwillbetransferredoutthebaseofthemixedlayermore234

efficientlythanitisintothetopofthemixedlayerbecausethetransferwillbemostly235

drivenbywindsandcoolingoftheoceansurface.Forthisreasontheheattransfer236

coefficientratio 1s isalmostcertainly≤1andthereductionoftemperatureisgreatestfor237

11 s .For 11

s ,theinitialtemperaturechangeinthemixedlayerwillbeabouthalf238

thechangethatwilloccurwhentheoceanlayersarefullywarmed,andtheresponsetime239

requiredtoreachthisequilibriumchange(thetimerequiredtoreach2/3rdsofthe240

equilibriumvalue)willbeabout½oftheresponsetimeofthemixedlayer(e.g., 211

mixe ).241

For 11 s ,theresponsetimeofthedeeplayeristwicetheheatstoragecapacityratio242

timestheresponsetimeofthemixedlayer: mixmixdeepCC 12 .243

Thetransienttemperaturechangecanbecomputedfromtheequilibriumtemperature244

changein(7)byconvolvinginafashionsimilartowhatwasdonein(5):245

1

111

exp1exp1i

j mixd

ji

mixm

jij

equili e

tta

e

ttatTtT

, (12)246

wherei≥j.Wedonotusetheapproximationsofequation(11)whenwecarryoutthe247

convolutionin(12).Ratherwesolvefortheactualvaluesoftheeigenvaluesand248

parameterafromthematrixin(9)ateachyearlyincrementintemperaturechange.For249

mix=5years,Tmixwillreach0.483Tmixequilwithadecaytimeof2.5yearsandriseto250

Tmixequilwithadecaytimeof200years.251

Thecurrentconsensusseemstobethat 11 s andthetransientthermalresponseis252

abouthalfthefullequilibriumforcingvalue(NRC,2011,§3.3).Theratiooftheheatstorage253

capacityofthedeeptomixedlayer, 1mixdeepCC isprobablyatleast20,avalueadoptedby254

Solomonetal.(2011).Schwartz(2007)estimatedthethermalresponsetimeofthemixed255

layerat~5yearsfromthetemporalautocorrelationofseasurfacetemperatures.Thismay256

bethebestestimateofthisparameter,butSchwartznotesthatestimatesrangefrom2to257

30years.Fortunatelythemoderationoftemperaturechangebytheoceansdoesnot258

12

impactthebenefitofsubstitutinggasforcoalandoilatall.Itisofinterestindefiningthe259

coolingthatsubstitutionwouldproduce,however.Wecalculatethetransienttemperature260

changesforthefullrangeofoceanmoderationparameters.261

Equations(1)to(10)plus(12),togetherwiththeparametersjustdiscusseddefine262

completelythemethodsweusetocalculatetheglobalwarmingcausedbythefueluse263

scenariosinFigure1.264

0 100 200

Conc

entr

atio

nCh

ange

[ppm

vca

rbon

diox

ide]

0

500 Carbon Dioxide [ppmv]434 ppmv

327

190

Business as usual

Substitute gas

Low carbon fast

Low carbon fast

Substitute gasBusiness as usual

404

470 ppbv

120

0 100 200

time [years] since 2005

Conc

entr

atio

nCh

ange

[ppb

vm

etha

ne]

0

500 Methane [ppbv]

258

194

113

368

428 ppbv

115

397

359

108

154

115

66

50 yeartransition

100 yeartransition

200 yeartransition

A

B

265

Figure2Changesin(A)carbondioxideand(B)methaneconcentrationscomputedforthethreefuelscenarios266showninFigure1andthreedifferenttransitionintervals(50100and200years).Inthisandsubsequentfigures267thebluecurvesindicatethebusiness‐as‐usualfuelusescenario,thegreencurvesindicatethesubstitute‐gas268scenario,andtheredcurvesthelow‐carbon‐fastscenario.Thenumbersindicatethechangeinconcentrationsof269

13

CO2andmethanefromthe379ppmvforCO2and1774ppbvforCH4levelspresentintheatmospherein2005.270ThecalculationisbasedonL=1%ofgasconsumptionandV=5m3methanepertonofcoalburned.271

Results 272

Figure2showstheadditionsofCO2inppmvandmethaneinppbvthatoccurforthe273

differentfuelconsumptionscenariosshowinFigure1forthethreetransitionperiods(50,274

100and200years).Themethaneleakageisassumedtobe1%ofconsumption.Fivecubic275

metersofmethaneareassumedtoleaktotheatmosphereforeachtonofcoalmined.The276

atmosphericmethaneconcentrationstrackthepatternofmethanereleasequiteclosely277

becausemethaneisremovedquicklyfromtheatmospherewithanexponentiallydecay278

constantof12years(equation4b).Ontheotherhand,becauseonlyaportionoftheCO2279

introducedintotheatmospherebyfuelcombustionisremovedquickly(seeequation4a),280

CO2accumulatesacrossthetransitionperiodsand,aswewillshowbelow,persistsfora281

longtimethereafter.282

0 100 200

time [years]

Radi

ativ

eFo

rcin

g[W

m-2

]

0

5

Methane

Carbon Dioxidebusiness as usual

substitute gas

low carbon fast

40%

41%

42%

283

Figure3RadiativeforcingscalculatedforthecarbondioxideandmethaneadditionsshowninFigure2using284equation(6)andassumingΨCH4=1.43.Thebluecurvesindicatethebusinessasusualscenarioforthe50,100285and200yeartransitionperiods,thegreenthesubstitute‐gasscenario,andtheredthelow‐carbon‐fastscenario.286ThenumbersindicatethereductioninCO2forcingachievedbysubstitutinggas,expressedasapercentageofthe287reductionachievedbythelow‐carbon‐fastscenario.288

14

Figure3showstheradiativeforcingscorrespondingtotheatmosphericgasconcentrations289

showninFigure2usingequation(6).ThemethaneforcingisafewpercentoftheCO2290

forcing,andthusisunimportantindrivinggreenhousewarmingforagasleakagerateof291

1%.292

Figure4showstheglobalwarmingpredictedfromtheradiativeforcingsinFigure3for293

variousdegreesofheatlosstotheocean.Wetaketheequilibriumclimatesensitivity 1s =294

0.8(e.g.,adoublingofCO2causesa3°Cofglobalwarming).Thefastertransitionsproduce295

lessglobalwarmingbecausetheyputlessCO2intotheatmosphere.Thethermal296

modulationoftheoceanscanreducethewarmingbyuptoafactoroftwo.Forexample,297

Figure4Ashowstheglobalwarmingthatwouldresultfromthebusiness‐as‐usualscenario298

iftherewerenoheatlossestotheoceanrangesfrom1.5°Cforthe50yeartransitionto299

3.3°Cforthe200yeartransition.Figure4Cindicatesthatheatexchangetotheoceans300

couldreducethiswarmingbyafactoroftwoforthelongtransitionsandthreeforthe50301

yeartransition.Awarmingreductionthislargeisunlikelybecauseitassumesextreme302

parametervalues:adeepoceanlayerwithaheatstorage50timestheshallowmixedlayer,303

andalongmixingtimefortheshallowlayer(mix=50years).Figure4Bindicatesthemore304

likelyoceantemperaturechangemoderationbasedonmid‐rangedeeplayerstorage305

( 1mixdeepCC =20)andmixedlayerresponsetime(mix=5years)parametervalues.306

Theimportantmessageofthisfigureforthepurposesofthispaper,however,isnotthe307

amountofwarmingthatmightbeproducedbythevariousfuelscenariosofFigure1,but308

theindicationthatthereductioningreenhousewarmingfromsubstitutinggasforcoaland309

oilisnotsignificantlyaffectedbyheatexchangewiththeoceanorbythedurationofthe310

transitionperiod.Thesamepercentreductioninglobalwarmingfromsubstitutinggasfor311

coalandoilisrealizedregardlessofthedurationofthetransitionperiodorthedegreeof312

thermalmoderationbytheocean.Thebenefitofsubstitutinggasisapercentorsolessfor313

theshorttransitions,andtheoceanmoderationreducesthebenefitbyapercentorso,but314

thebenefitinallcircumstancesremains~38%.Heatlossintotheoceansmayreducethe315

warmingbyafactoroftwo,butthebenefitofsubstitutinggasisnotsignificantlyaffected.316

15

317

0

4business as usual

substitute gas

low carbon fast

1% gas leakage no ocean mixing

1.5 C

2.3 C

3.3 C

1.8 C

2.7 C

Tem

pera

ture

Chan

ge[C

]

32.4 C2.0 C

1.3 C1.4 C

0.8 C

Cd/Cm=20, mix=5 yrs

0

0 50 100 200

time [years]

3

0150

1.7 C1.4 C

0.9 C1.1 C

0.5 C

Cd/Cm=50, mix=50 yrs

39%

38%

38%

39%

38%

37%

38%

37%

36%1

2

1

2

1

2

3A.

B.

C.

318

Figure4.GlobalwarmingproducedbytheforcingsinFigure3computedusingequations(7,10,and12).The319bluecurvesindicatetemperaturechangesunderthebusiness‐as‐usualscenariofor50,100and200year320transitiondurations,andthegreenandredcurvesindicatethetemperaturechangesforthesubstitute‐gasand321low‐carbon‐fastscenarios.Thecolorednumbersindicatethetemperaturechanges,andtheblacknumbersthe322reductionintemperatureachievedbythesubstitute‐gasscenarioexpressedasafractionofthetemperature323reductionachievedbythelow‐carbon‐fastscenario.(A)Thewarmingwhenthereisnothermalinteractionwith324theocean(ortheoceanlayersthermallyequilibrateveryquickly).(B)Warmingunderalikelyoceaninteraction.325(C)Warmingwithaveryhighoceanthermalinteraction.Theoceanmixingparametersareindicatedin(B)and326(C).Allcalculationsassumegasleakageis1%ofconsumptionandtheIPCCmethaneclimatesensitivity.327

16

Figure5comparesthemethaneforcingofthesubstitute‐gasscenariototheCO2forcingof328

thebusiness‐as‐usualscenarioforthe50and100yeartransitiondurations.Theforcing329

forthe1%methanecurvesarethesameasinFigure3,butiscontinuedoutto200years330

assumingthefueluseremainsthesameasattheendoftheofthetransitionperiod.331

Similarlythebusiness‐as‐usualcurveisthesameasinFigure3continuedoutto200years.332

Thefigureshowsthatthemethaneforcingincreasesasthepercentmethaneleakage333

increases,andbecomesequaltotheCO2forcinginthebusiness‐asusualscenariowhenthe334

leakageis~15%ofconsumptionforthe50yeartransitionand30%ofconsumptionforthe335

100yeartransition.Attheendofthetransitionthemethaneradiativeforcingsfalltothe336

levelthatcanbesteadilymaintainedbytheconstantmethaneleakageassociatedwiththe337

smallcontinuednaturalgasconsumption.TheCO2forcingunderthebusiness‐as‐usual338

scenariofallabitandthenriseataslowsteadyrate,reflectingtheproscriptionthat26%of339

theCO2releasedtotheatmosphereisonlyveryslowlyremovedand22%isnotremovedat340

all(equation3a).ThisslowriseemphasizesthatevenverylowreleasesofCO2canbeof341

concern.Themethaneintheatmospherewouldrapidlydisappearinafewdecadesifthe342

methaneventingwerestopped,whereastheCO2curveswouldflattenbutnotdrop343

significantly.Finally,Figure5Ashowsthatthegreatermethaneclimatesensitivity344

proposedbyShindelletal(2009)(CH4=1.94)wouldmakea10%methaneventing345

equivalenttoa15%ventingwithCH4=1.43(theIPCCmethaneclimatesensitivity).346

17

2.5

01%

5%

10%

15%

20% Business as Usual

Substitute Gas

Leakage rate[% of consumption]

100 200

time [years]

Radi

ativ

eFo

rcin

g[W

m-2

]

2.5

00

0.5

1.0

1.5

2.0

3.0

0.5

1.0

1.5

2.0

50 150

Business as Usual

Substitute Gas

1%

5%

10%

15%

20%

25%

30%

50 year transition

100 year transition

A.

B.

347

Figure5.RadiativeforcingsofCO2forthebusinessasusualscenario(bluecurves)andforCH4forvariousgas348leakageratesinthesubstitute‐gasscenario(greencurves).The1%methanecurvesandthebusinessasusual349curvesarethesameasinFigure3excepttheverticalscaleisexpandedandthecurvesareextendedfromtheend350ofthetransitionto200yearsassumingthegasemissionsarethesameasattheendofthetransitionpast100351years.Themethaneforcingsplateauatthelevelscorrespondingtotheatmosphericconcentrationsupportedby352thesteadyCH4emissions.TheCO2forcingincreasesbecauseanappreciablefractionoftheCO2emissionsare353removedslowlyornotatallfromtheatmosphere.ThemethaneforcingsallassumetheIPCCmethaneclimate354sensitivity(CH4=1.43)exceptthesingleredcurve,whichassumesthemethaneclimatesensitivitysuggestedby355Shindelletal.(2009)(CH4=1.94).356

18

0 50

time [years]

1.5

0

Cd/Cm=20, mix=5 yrs

1%

0.96 C

5%

1.07 C

10%

1.19 C

15%

1.30 C

0 100

1.5

0

1%

1.60 C

10%

1.84 C

20%

2.05 C

0 200

1.5

0

2.69 C

1%

35%

3.48 C

A. 50yr Transition

B. 100yr Transition

C. 200 yr Transition

40%

1%

40%

21%

5%

-6%

17%

39%

-1%

Tem

pera

ture

Chan

ge[C

]

Busi

ness

asU

sual

Subs

titut

eG

asLo

wCar

rbon

Fast

357

Figure6.Impactofmethaneleakageonglobalwarmingfortransitionperiodsof(A)50,(B)100,and(C)200358years.Astheleakagerate(greenpercentagenumbers)increase,thewarmingofthesubstitute‐gasscenario359(greencurves)increases,thebluebusiness‐as‐usualandgreensubstitute‐gascurvesapproachoneanotherand360thencross,andthepercentageofthewarmingreductionattainedbythefastsubstitutionoflowcarbonenergy361sourcesdecreaseandthenbecomenegative.Thewarmingsassumethesameexchangewiththeoceanasin362Figure4B.363

Figures6illustrateshowthebenefitsofsubstitutinggasforcoalandoildisappearasthe364

methaneleakageincreasesabove1%oftotalmethaneconsumption.Thefigureshowsthe365

globalwarmingcalculatedfortheoceanheatexchangeshowinFigure4B.Asthemethane366

leakageincreases,thegreensubstitute‐gasscenariocurvesrisetowardandthenexceedthe367

bluebusiness‐as‐usualcurves,andthebenefitofsubstitutinggasdisappears.Thegas368

19

leakageatwhichsubstitutinggasforoilandcoalwarmstheearthmorethanthebusiness‐369

as‐usualscenarioissmallest(L~10%)forthe50yeartransitionperiodandlargest370

(L~35%)forthe200yeartransitionperiod.371

Figure7summarizeshowthebenefitofgassubstitutiondependsonthegasleakagerate.372

FortheIPCCmethaneclimatesensitivity(CH4=1.43),thebenefitofsubstitutinggasgoesto373

zerowhenthegasleakageis44%ofconsumption(30%ofproduction)forthe200year374

transition,24%ofconsumption(19%ofproduction)forthe100yeartransition,and13%375

ofconsumption(12%orproduction)forthe50yeartransition.FortheShindelletal.376

climatesensitivitycorrespondingtoCH4=1.94,thecrossoverforthe50yeartransition377

occursatagasleakageof~9%ofconsumption,andreasonableoceanthermalmixing378

reducesthisslightlyto~8%ofconsumption(7.4%ofproduction).Thislastis379

approximatelythecross‐overdiscussedbyHowarthetal.(2011and2012).Intheirpapers380

theysuggestamethaneleakagerateashighas8%ofproductionispossible,andtherefor381

thatnaturalgascouldbeasbad(ifcomparedonthebasisofelectricitygeneration)ortwice382

asbad(ifcomparedonaheatcontentbasis)ascoaloverashorttransitionperiod.As383

discussedinthenextsection,aleakagerateashighas8%isdifficulttojustify.Figure7384

thusshowsthesignificanceofShindell’shighermethaneclimatesensitivitytoHowarth’s385

proposition.Withoutit,anevenlessplausiblemethaneleakagerateof13%wouldbe386

requiredtomakegasasbadortwiceasbadascoalintheshortterm.Overthelongerterm,387

substitutionofgasisbeneficialevenathighleakagerates‐apointcompletelymissedby388

Howarthetal.389

20

0

10

20

30

40

50

0 5 10 15

%Percent low‐C‐fast

Leakage [% of consumption]

Benefit of Gas Substitution

1 to 2% leakage

390

Figure7.Thereductionofgreenhousewarmingattainedbysubstitutingnaturalgasforcoalandoil(substitute‐391gasscenario),expressedasapercentageofthereductionattainedbyimmediatelysubstitutinglowcarbonfuels392(low‐C‐fastscenario),plottedasafunctionofthegasleakagerate.Atleakagerateslessthan~1%,thebenefitof393substitutingnaturalgasis>40%thatofimmediatelysubstitutinglowcarbonenergysources.Thebenefit394declinesmorerapidlywithleakageforshorttransitions.ThetopthreecurvesassumeanIPCCmethaneclimate395sensitivity(CH4=1.43).Thebottomtwoshowtheimpactofthegreatermethaneclimatesensitivitysuggestedby396Shindelletal(2009)(CH4=1.94).Theoceanmixingcurveaddsthesmalladditionalimpactofthermalexchange397withtheoceansattherateshowninFigure4BtotheCH4=1.94curveimmediatelyaboveit.398

What is the gas leakage rate 399

Themostextensivesynthesesofdataonfugitivegasesassociatedwithunconventionalgas400

recoveryisanindustryreporttotheEPAcommissionedbyTheDevonEnergyCorporation401

(Harrison,2012).Itdocumentsgasleakageduringthecompletionof1578unconventional402

(shalegasortightsand)gaswellsby8differentcompanieswithareasonable403

representationacrossthemajorunconventionalgasdevelopmentregionsoftheU.S.Three404

percentofthewellsinthestudyventedmethanetotheatmosphere.Ofthe1578405

unconventional(shalegasortightsand)gaswellsintheDevonstudy,1475(93.5%)were406

greencompleted‐thatistheywereconnectedtoapipelineinthepre‐initialproduction407

stagesotherewasnoneedforthemtobeeitherventedorflared.Ofthe6.5%ofallwells408

thatwerenotgreencompleted,54%wereflared.Thus3%ofthe1578wellsstudied409

ventedmethaneintotheatmosphere.410

21

Thewellsthatventedmethanetotheatmospheredidsoattherateof765411

Mcsf/completion.Themaximumgasthatcouldbeventedfromthenon‐greencompleted412

wellswasestimatedbycalculatingthesonicventingratefromthechoke(orifice)sizeand413

sourcegastemperatureofthewell,usingaformularecommendedbytheEPA.Sincemany414

wellsmightventatsub‐sonicrates,whichwouldbeless,thisisanupperboundonthe415

ventingrate.Thetotalventedvolumewasobtainedbymultiplyingthisventingratebythe416

knowndurationofventingduringwellcompletion.Theseventedvolumesrangedfrom417

340to1160Mscf,withanaverageof765Mscf.Theventingfromanaverage418

unconventionalshalegaswellindicatedbytheDevonstudyisthus~23Mscf(=0.03x765419

Mscf),whichissimilartothe18.33McfEPA(2010)estimatesisventedduringwell420

completionofaconventionalgaswell(halfventedandhalfflared).Sinceventingduring421

wellcompletionandworkoverconventionalgaswellsisestimatedat0.01%ofproduction422

(e.g.,Howarthetal.,2011),thiskindofventingisinsignificantforbothunconventionaland423

conventionalwells.424

TheunconventionalgasleakagerateindicatedbytheDevondataisverydifferentfromthe425

4587MscftheEPA(2010)inferredwasventedduringwellcompletionandworkoverfor426

unconventionalgaswellsfromtheamountofgascapturedinaverylimitednumberof427

“greencompletions”reportedtothembyindustrythroughtheirGasSTARprogram.In428

their2010backgroundtechnicalsupportdocumenttheEPAassumedthatthiskindof429

“green”capturewasveryrare,andthatthegaswasusuallyeitherventedorflared.430

Assumingfurtherthatthegaswasvented50%ofthetime,theEPAconcludedthat4587431

Mscfwasventedtotheatmosphereandthatunconventionalwellsvent250times432

(=4587/18.3)moremethaneduringwellcompletionandworkoverthanconventionalgas433

wells.TheEPA(2010)studyisa“BackgroundTechnicalSupportDocument”andnotan434

officialreport.Itwasprobablyneverintendedtobemorethananoutlineofanapproach435

andaninitialestimate,andtheEPAhassincecautionedthattheyhavenotreviewedtheir436

analysisindetailandcontinuetobelievethatnaturalgasisbetterfortheenvironmentthan437

coal(Fulton,2011).NeverthelesstheEPA(2010)reportsuggestedtomanythatthe438

leakageduringwellcompletionandworkoverforunconventionalgaswellscouldbea439

substantialpercentage(~2.5%)ofproduction,andmanyacceptedthissuggestionwithout440

22

furthercriticalexaminationdespitethefactthatthesafetyimplicationsofthemassive441

ventingimpliedbytheEPAnumbersshouldhaveraisedquestions(e.g.,Cathlesetal.,442

2012a,b).443

Onceawellisinplace,theleakageinvolvedinroutineoperationofthewellsiteandin444

transportingthegasfromthewelltothecustomeristhesameforanunconventionalwell445

asitisfromaconventionalwell.WhatweknowaboutthisleakageissummarizedinTable446

2.Routinesiteleaksoccurwhenvalvesareopenedandclosed,andleakageoccurswhen447

thegasisprocessedtoremovingwaterandinertcomponents,duringtransportationand448

storage,andintheprocessofdistributiontocustomers.Thefirstmajorassessmentof449

theseleakswascarriedoutbytheGasResearchInstitute(GRI)andtheEPAin1997and450

theresultsareshowninthesecondcolumnofTable2.AppendixAofEPA(2010)givesa451

detailedandveryspecificaccountingofleaksofmanydifferentkinds.Thesenumbersare452

summedintothesamecategoriesanddiaplayedincolumn3ofTable2.EPA(2011)found453

similarleakagerates(column4).Skone(2011)assessedleakagefrom6classesofgas454

wells.WeshowhisresultsforunconventionalgaswellsintheBarnettShaleincolumn5of455

Table2.Hisotherwellclassesaresimilar.Venkatishetal(2011)carriedoutan456

independentassessmentthatisgivenincolumn6.Therearevariationsinthese457

assessments,butoverallaleakageof~1.5%ofproductionissuggested.Additional458

discussionofthisdataanditscompilationcanbefoundinCathlesetal.(2012)andCathles459

(2012).460

Table2.Leakageofnaturalgasthatiscommontobothconventionalandunconventionalgaswellsinperentof461gasproduction.462

GRI‐EPA

(1997)

EPA

(2010)

EPA

(2011)

Skone

(2011)

Venkatish

eta.(2011)

Routinesiteleaks 0.37% 0.40% 0.39%

Processing 0.15% 0.12% 0.16% 0.21% 0.42%

Transportation&storage 0.48% 0.37% 0.40% 0.40% 0.26%

Distribution 0.32% 0.22% 0.26% 0.22%

Totals 1.32% 1.11% 1.21%

23

463

Basedontheabovereviewthenaturalgasleakagerateappearstobenodifferentduring464

thedrillingandwellpreparationofunconventional(tightshalesdrilledhorizontallyand465

hydrofractured)gaswellsthanforconventionalgaswells,andtheoverallleakagefromgas466

wellsisprobably<1.5%ofgasproduction.Intheircontroversialpapersuggestingthatgas467

couldbetwiceasbadacoalfromagreenhousewarmingperspective,Howarthetal(2011,468

2012)suggestedroutinesiteleakscouldbeupto1.9%ofproduction,leakageduring469

transportation,storage,anddistributioncouldbeupto3.6%orproduction,andgas470

leakagefromunconventionalgaswellsduringwellcompletionandworkovercouldbe471

1.9%ofproduction.Adding0.45%leakageforliquidunloadingandgasprocessing,the472

suggestedgasleakagecouldbe7.9%ofproduction,enoughto“undercutthelogicofitsuse473

asabridgingfuelinthecomingdecades,ifthegoalistoreduceglobalwarming.”474

ThebasisgivenbyHowarthetal.(2011)fortheirmorethan5foldincreaseinleakage475

duringtransportation,storage,anddistributionis:(a)aleakageinRussianpipelinesthat476

occurredduringthebreakupoftheSovietUnionwhichisirrelevanttogaspipelinesinthe477

U.S.,and(b)adebateontheaccountingofgasinTexaspipelinesthatconcernsroyalties478

andtaxreturns(Percival,2010).Howarthetal.suggestinthisTexascasethattheindustry479

isseekingtohidemethanelossesofmorethan5%ofthegastransmitted,butthe480

proponentsinthearticlestate“Wedon’tthinkthey’rereallylosingthegas,wejustthink481

they’renotpayingforit”.Intheir5foldincreaseinroutinegasleaks(fromtheaverage482

levelinTable2of0.38%to1.9%),Howarth’setal.(2011)citeaGAOstudyofventingfrom483

wellsinonshoreandoffshoregovernmentleasesthatdoesnotdistinguishventingfrom484

flaring.Lackingthisdistinction,itisnotsurprisingthatitconflictsdramaticallywiththe485

summariesinTable2.Wehavealreadydiscussedleakageduringwellcompletionand486

workoverandnotedthattheDevondataindicateHowarthetal.’s1.9%leakageatthis487

stageishugelyexaggerated(theDevondataindicatestheleakageis~0.01%andsimilarto488

thatfromconventionalgaswellcompletionsandworkovers).489

TherehavebeenanumberofpaperspublishedrecentlythatoffersupportforHowarth’s490

highleakageestimates.Hughes(2011)re‐interpreteddatapresentedinawidely491

24

distributedNETLpowerpointanalysisbySkone(2011).ByloweringSkone’sEstimated492

UltimateRecoveries(EUR)fortheBarnellShalefrom3Bcfto0.84Bcfwhilekeepingthe493

sameestimateofleakageduringwellcompletionandgasdelivery,Hughesincreased494

Skone’sleakageestimatesfrom2to6%ofproduction‐alevelwhichfallsmidwaybetween495

Howarth’slowandhighgasleakageestimates.Howeverleakageisafractionofwell496

production(awellthatdoesnotproducecannotemit),andthusisitbogustoreducethe497

EUR(thedenominator)withoutalsoreducingthenumerator(theabsoluteleakageofthe498

well).Skone’sdatamustbeevaluatedonitsownterms,notsimplyadjustedtofitsomeone499

else’sconclusions.500

Petronetal.(2012)analyzedairsamplesatthe300mhighBolderAtmospheric501

Observatory(BAO)towerwhenthewindwastowarditfromacrosstheDenver‐Julesburg502

Basin(DJB).Gasesventingfromcondensate(condensedgasfromoilandwetgaswells)503

stocktanksintheDJBarerichinpropanerelativetomethane,whereastherawnaturalgas504

ventingfromgaswellsintheDJBcontainverylittlepropane.Fromtheintermediateratio505

ofpropanetomethaneobservedattheBAOtowerandestimatesofleakagefromthestock506

tanks,Petroneetal.calculatethattodilutethepropaneleakingfromthestocktankstothe507

propane/methaneratioobservedatthetower,~4%ofmethaneproducedbygaswellsin508

theDJBmustventintotheatmosphere.TheairsampledattheBAOtoweriscertainlynot509

simplyamixofrawnaturalgasandstocktankemissionsfromtheDJBasPetronetal.510

assume,however.IfthiswerethecasetherewouldbenooxygenintheairattheBAO511

towerlocation.Thebackgroundatmospheremustcertainlymixinwiththesetwo(and512

perhapsother)gassources.BackgroundairintheDenverareacontains~1800ppb513

methaneandverylittlepropane.Mixingwiththebackgroundatmospherecoulddilutethe514

stocktankemissionstothepropane/methaneratioobservedattheBAOtowerwithno515

leakagefromgaswellsintheDJBrequiredatall.Contrarytotheirsuggestion,theBAO516

towerdatareportedbyPetroneetal.placenoconstraintsatallonthegasleakageratesin517

theDJBwhatsoever.MoredetailsareinCathles(2012).518

Certainlythereismorewecouldlearnaboutnaturalgasleakagerates.Theissueis519

complicatedbecausegasisusedinthetransmissionprocesssoshrinkageofproductdoes520

notequatetoventing.Inadditionthereareconventionsandpracticesthatmakescientific521

25

assessmentdifficult.Despitethedifficulties,however,itappearsthattheleakagerateis522

lessthan2%ofproduction.523

Discussion 524

WehaveverifiedourcomputationsbycomparingthemtopredictionsbyWigley’s(2011)525

publicallyavailableandwidelyusedMAGICCprogram.Althoughtherearesomeinternal526

differences,Table3showsthatthe~40%reductioningreenhousewarmingwepredictis527

alsopredictedbyMAGICCwhenscenariossimilartotheoneweconsiderhereareinputto528

bothMAGICCandourprograms.TheMAGICCcalculationsstartat1990ADsoweconsider529

thetemperatureincreasesfrom2000totheendoftheperiod.Fueluseisincreasedand530

reducedlinearlyratherthanexponentially,andthefueluseatthestart,midpoint,andend531

ofthetransitionsimulationsareslightlydifferentthaninFigure1.Thetemperature532

changesforthe200yearcycleagreeverywell.Wigley’sMAGICCtemperaturechange533

predictionsbecomeprogressivelylowerthanoursasthetransitionintervalisshortened.534

ThismaybebecauseMAGICCincludesasmalloceanthermalinteraction,whereasthe535

calculationswereportinTable3donot.536

Table3.TemperaturechangespredictedbyWiglely’s(2011)MAGICCprogramforlinearchangesinfueluse537similartothescenariosinFigure1comparedtoequilibrium(nooceanthermalinteraction)globalwarming538predictionsbytheprogramdescribedandusedinthispaper.Thefirstthreerowscomparethetemperature539changesofthetwoprograms.Thelastrowshowsthereductioningreenhousewarmingachievableby540substitutingnaturalgasforcoalandoilasapercentageofthereductionthatwouldbeachievedbytherapid541substitutionofallfossilfuelswithlowcarbonenergysources.542

200yearcycle 100yearcycle 40yearcycle

Program MAGICC Thispaper MAGICC Thispaper MAGICC Thispaper

B‐as‐usual 3.85 3.68 2.3 2.56 1.05 1.5

Swapgas 2.85 2.85 1.65 1.94 0.80 1.12

LowCfast 1.7 1.70 0.85 1.09 0.38 0.58

%reduction 42% 42% 45% 42% 37% 41%

543

26

Incorporationoftheindirectcontributionstomethane’sradiativeforcingthroughψCH4in544

equation(6)wasvalidatedbycomparingvaluesofGWPcomputedby(13)topublished545

valuessummarizedinTable4.546

t

t

COCHCO

CO

t

t

CHCOCH

CHCH

dtfMWppbvC

F

dtfMWppbvC

F

GWP

0

242

2

0

424

44

][

][

(13)547

GWPistherelativeglobalwarmingimpactofakgofCH4comparedtoakgofCO2addedto548

theatmosphere,whenconsideredoveraperiodoftimet.Theradiativeforcings(∆F)are549

definedby(6),theremovalofthegasesfromtheatmosphere(f)by(4aandb),andMWCO2550

isthemolecularweightofCO2.TheψCH4factorof1.43inthesecondcolumnofTable4551

combinestheindirectforcingcausedbyCH4‐inducedproductionofozone(25%according552

toIPCC,2007)andwatervaporinthestratosphere(additional15%accordingtotheIPCC,553

2007).WiththisfactortheGWPlistedinTable2.14oftheIPCC(2007)arereplicatedas554

showninthesecondrowofTable4.TheψCH4factorof1.94inthesecondcolumnwas555

determinedbyussuchthatitapproximatelypredictstheincreasedforcingssuggestedby556

Shindelletal.(2009)asshowninthebottomrowofTable4.WedonotuseGWPsinour557

analysisandusethemhereonlytojustifythevaluesofψCH4usedinourcalculations.558

Table4TheGWPcalculatedfrom(6and13)forthevalueofψCH4incolumn2arecomparedtoGWP(in559

parentheses)givenbytheIPCC(2007)andShindelletal.(2009).560

ψCH4 t=20years t=100years t=500years

Directmethaneforcingfrom(6) 1 51.5 17.9 5.45

IPCC(2007,§2.10.3.1,Table2.14) 1.43 73.5(72) 25.8(25) 7.8(7.6)

Shindelletal.(2009) 1.94 99(105) 35(33) 10.5

561

Themostimportantmessageofthecalculationsreportedhereisthatsubstitutingnatural562

gasforcoalandoilisasignificantwaytoreducegreenhouseforcingregardlessofhowlong563

(withinafeasiblerange)thesubstitutiontakes(Figure4).Formethaneleakagesof~1%of564

27

totalconsumption,replacingcoalusedinelectricitygenerationand50%oftheoilusedin565

transportationwithnaturalgas(veryfeasiblestepsthatcouldbedrivenbythelowcostof566

methanealonewithnogovernmentencouragement)wouldachieve~40%ofthe567

greenhousewarmingreductionthatcouldbeachievedbytransitioningimmediatelytolow568

carbonenergysourcessuchaswind,nuclear,orsolar.Afastertransitiontolow‐carbon569

energysourceswoulddecreasegreenhousewarmingfurther,butthesubstitutionof570

naturalgasfortheotherfossilfuelsisequallybeneficialinpercentagetermsnomatterhow571

fastthetransition.572

Thebasisforthe~40%reductioningreenhouseforcingissimplythereductionoftheCO2573

putintotheatmosphere.Whengasleakageislow,thecontributionofmethaneto574

greenhousewarmingisnegligible(Figure3),andonlytheCO2inputcounts.Thereduction575

inCO2ventedbetweenthebusiness‐as‐usualandthesubstitute‐gasscenariosis44.1%of576

thereductionbetweenthebusiness‐as‐usualtothelow‐carbon‐fastscenarios.This577

fractionisindependentofthetransitionperiod;itisthesamewhetherthetransition578

occursover50yearsor200years.BecausethelossesofCO2fromtheatmosphere579

(equation4a)areproportionaltotheamountofCO2intheatmosphere,therelative580

amountsofCO2attheendofthetransitionaresimilartotheproportionsadded.Forthe581

sametransitionintervalalmostthesameproportionalamountsofCO2areremovedforall582

scenarios.Thusthefractionalsubstitute‐gasreductioninCO2intheatmosphereatthe583

endofallthetransitionintervalsremains44.1%althoughtherearesomevariationsinthe584

seconddecimalplace.ThecurvesshowninFigure7intersectthey‐axis(0%gasleakage)585

atfractionsslightlydifferentfrom44.1%becausetheradiativeforcingisnon‐linearwith586

respecttoCO2concentration(equation5a).Thelongertransitionperiodsshowlargernon‐587

lineareffectsbecausetheyputmoreCO2intotheatmosphere.Thenearlydirect588

relationshipbetweenreductionsinthemassofCO2ventedandthedecreaseinglobal589

warmingisapowerfulconceptualsimplificationthatisparticularlyusefulbecauseitisso590

easytocalculate,apointmadebyAllen(2009).591

Theglobalwarmingreductionfromswappinggasfortheotherfossilfuelsofcourse592

decreasesasmethaneleakageincreases.Butatlowleakagerates,thebenefitof593

substitutingnaturalgasremainscloseto40%.Inthecontextofswappinggasforcoal,the594

28

extramethaneemittedbylowlevelsofleakagehassuchatrivialclimateeffectthatitneed595

notbeconsideredatall.596

Sulfurdioxideadditionsarenotafactorinouranalysisbecausethesubstitute‐gasandlow‐597

carbon‐fastscenariosreducetheburningofcoaloverthegrowthperiodinanidentical598

fashion.ThusbothintroduceSO2identically,andthesmallwarmingeffectsoftheSO2,599

whichwilloccurnomatterhowcoalisretired,cancelinthecomparison.Intherealworld600

the“aerosolbenefit”ofcoalmustberemovedeventually(unlesswearetoburncoal601

forever),andthesooneritisremovedthebetterbothbecausethesmallwarmingits602

removalwillcausewillhavelessimpactwhentemperaturesarecooler,and,muchmore603

importantly,becausereplacingcoalsoonwillreduceCO2emissionsandleadtomuchless604

globalwarminginthelongerterm.605

Wigley’s(2011)decreaseingreenhousewarmingforthenaturalgassubstitutionhe606

definesissimilartothatwecomputehere.At0%leakage,Wigley(2011,hisFigure3)607

calculatesa0.35°Ccoolingwhichwouldbea0.45°CcoolingabsentthereducedSO2608

emissionsheconsiders.Wecalculateacoolingof~0.62°Cfor0%leakage.Ourcoolingis609

greaterthanhisatleastinpartbecauseourgassubstitutionscenarioreducestheCO2610

emissionsmorethanhis.Fromnearlythesamestart,ourgassubstitutionreducesCO2611

emissionsfromthebusiness‐as‐usual200yeartransitioncycleby743GtCwhereasWigley612

reducesCO2by425GtC.613

Thereareofcourseuncertaintiesinthekindofcalculationscarriedouthere,butthese614

uncertaintiesareunlikelytochangetheconclusionsreached.Carbondioxideisalmost615

certainlynotremovedfromtheatmosphereexactlyasdescribedbyequation(3).The616

uptakeofCO2maywellslowastheclimatewarms.Carbondioxideislesssolubleinwarm617

waterandthehalinecirculationmayslowastheseasurfacetemperatureincreases.The618

increaseinterrestrialCO2uptakefromCO2fertilizationmaybereducedbynitrogen619

limitations.AgooddiscussionoftheseissuesisprovidedinNRC(2011).Ebyetal.(2009)620

havesuggestedbasedonsophisticatedcoupledglobalmodelsthat~50%oftheintroduced621

CO2mayberemovedwithatimeconstantof130yearsand50%withanexponentialtime622

constantof2900years.Modificationsofequation(3)thatreduceCO2uptakeastheclimate623

29

warmswillmakethebenefitsofnotputtingCO2intotheatmosphere,forexampleby624

substitutinggasforcoal,evengreater,andtheargumentspresentedherestronger.625

Thetransmissionofheatfromthemixedtothedeeplayeroftheoceansisanunknown626

whichhasastrongimpactontransientglobalwarming.Forexample,ifheatenteredthe627

deeplayerwith10%oftheeasewithwhichitentersitfromtheatmospheresothat6281

s ~0.1,thedeeplayerwouldlargelylooseitscoolingeffectiveness(e.g.,ainequation11629

wouldhaveavalueof0.91).ThetransientresponsetoCO2forcingwouldberapid(occur630

at0.91mix),andtheoceanwouldreducetheequilibriumglobaltemperaturechangeby631

only9%.Therelativeratesatwhichheatistransferredintothemixedlayerandoutofit632

intothedeeplayerwouldappeartobeanimportantareaforfurtherinvestigation,633

especiallybecauseitimpactsourabilitytoinferpropervaluesintheequilibriumclimate634

forcing(seediscussioninNRC,2011).Oceanheatexchangedoesnotaffectthe635

comparativebenefitofsubstitutinggas,souncertaintiesintheoceanheatexchangeaernot636

ofconcerntotheconclusionswereachhere.637

ThecalculationsmadehereavoidtheuseofGWPfactors.ThedeficienciesintheGWP638

approacharediscussedwellbySolomonetal.(2011).Asisapparentfrom(13),theGWP639

metricrequiresthatthetimeperiodofcomparisonbespecified.Forashorttimeperiod,a640

shortlivedgaslikemethanehasahighGWP(e.g.,itis72timesmorepotentintermsof641

globalwarmingthanCO2whencomparedovera20year).Thenotionthatmethane642

emissionshave72timestheglobalwarmingimpactofCO2wouldtempteliminating643

methaneemissionsimmediately,andworryingaboutreducingCO2emissionslater.Onthe644

otherhandfora500yearperiod,theglobalwarmingimpactofakilogramofvented645

methaneisonly7.6thatofakilogramofCO2(GWPCH4=7.6,seeTable4),andthislow646

impactwouldsuggestdealingwithCO2emissionsfirstandthemethaneemissionslater,647

perhapsevensubstitutinggasforcoalandoil.AsSolomonetal.pointouttheGWPmetric648

speaksonlytothetimeperiodforwhichitiscalculatedandshedsnolightonthewhether649

CO2orCH4shouldbereducedfirst.650

30

100 500

time [years]200 300 400

0.5

1

1.5

2

Tem

pera

ure

Chan

ge[C

]

00

39.8%

10%leakage

nofo

ssil

fuel

s

Business as UsualSubstitute Gas

Low Carbon Fast

Cd/Cm=20, mix=5 yrsCH4

651

Figure8.TemperaturechangeforscenariosinFigure1whenatransitionperiodis100yearsisfollowedbya400652yearperiodwithnoburningoffossilfuels.Methaneleakageinthetransitionis10%ofgasconsumptionand653Shindell’sgreatermethaneforcingandheatexchangewiththeoceanareincluded.Extramethaneventinginthe654substitute‐gasscenarioproduceswarminggreaterthanthebusiness‐as‐usualscenariouptoalmosttheendof655thetransition,butthebenefitsofreducingcarbonemissionsbysubstitutinggasemergeveryquicklythereafter.656

Figure8illustratesthefundamentaldilemma.Itshowsthatevenwhenmethaneleakageis657

solarge(L=10%ofconsumption)thatsubstitutinggasforcoalandoilincreasesglobal658

warmingintheshortterm,thebenefitofgassubstitutionreturnsinthelongterm.The659

shorttermheatingcausedbymethaneleakagerapidlydissipatesafteremissionsofCO2660

andCH4ceaseat100years.CH4israpidlyremovedfromtheatmosphere,butCO2isnot.661

Theresultisthat50yearsorsoaftertheterminationofventing(beyond150yearsin662

Figure8),thebenefitofgasemergesunscathed.Ata10%leakagerateanda100year663

transitionperiod,thesubstitute‐gasscenarioproducesasmallamountmorewarmingthan664

thebusiness‐as‐usualscenarioat70years,butafter150yearsthegassubstitutionreduces665

globalwarmingmuchmorebecauseithasreducedtheamountofCO2ventedtothe666

atmosphere.Figure8showshowdangerousametricsuchasGWPcanbe.Evenfor667

31

methaneemissionsof9%ofproductionandShindell’sforcings,substitutinggasforcoalis668

worthwhileinthelongterm.AnalysesthatrelyonlyonGWPfactors,suchasthatof669

Howarthetal.(2011),missthismixofimpactscompletely,andseeonlythedamageof670

extramethaneemissionsintheshorttermorthebenefitsofgassubstitutioninthelong671

term,dependingontheGWPintervalselected.Fortunatelyitisveryeasytocarryoutthe672

necessaryconvolutionintegrals(equations5and11)asdonehereandavoidGWPmetrics673

altogether.AsstatedbySolomonetal.(2011)andotherswhotheycite,GWPfactors674

shouldsimplynotbeusedtoevaluatefuelconsumptionscenarios.675

Finally,framingthefuelusescenariosintermsofexponentialgrowthanddeclineaswe676

havedonehereallowsthefeasibilityofimplementingthevariousscenariostobeexamined677

inapreliminaryfashion.Figure9showstherateofgrowthoflowcarbonenergyresources678

thatisrequiredbythefuelhistoriesinFigure1fora100yeartransition.Growthatmore679

than5%peryearwouldbechallenging.Figure9showsthatthelow‐carbon‐fastscenario680

inFigure1requiresanimmediate~16%peryear(butrapidlydeclining)growthinlow681

carbonenergysources.Thegrowthrateoflowcarbonenergysourcesattheendofthe682

growthperiodofthebusiness‐as‐usualscenarioisanevengreater24%peryear.Because683

thereistimetoplan,thiscouldbereducedbyphasinginlowcarbonenergysourcestoward684

theendofthefossilfuelgrowthperiod.Thesubstitute‐gasscenariohasamuchlower685

growthrequirementatthisstage,whichwouldmakethisscenariosubstantiallyeasierto686

accommodate.687

Anydecisiontosubstitutegasforcoalandoilofcourseinvolveseconomicandsocial688

consideration,aswellasclimateanalysis.Naturalgascanenablethetransitiontowindor689

solarenergybyprovidingthesurgecapacitywhenthesesourcesfluctuateandbackup690

whenthesesourceswane.Becauseofitswideavailabilityandlowcost,economicfactors691

willencouragegasreplacingcoalinelectricitygenerationandoilinsegmentsof692

transportation.ItisafueltheU.S.andmanyothercountriesneednotimport,soits693

developmentcouldincreaseemployment,nationalsecurity,andamorepositivebalanceof694

payments.Ontheotherhand,cheapandavailablegasmightunderminetheeconomic695

viabilityoflowcarbonenergysourcesanddelayatransitiontolowcarbonsources.Froma696

greenhousepointofviewitwouldbebettertoreplacecoalelectricalfacilitieswithnuclear697

32

plants,windfarms,orsolarpanels,butreplacingthemwithnaturalgasstationswillbe698

faster,cheaperandachieve40%ofthelow‐carbon‐fastbenefitiftheleakageislow.How699

thisbalanceisstruckisamatterofpoliticsandoutsidethescopeofthispaper.Whatcan700

besaidhereisthatgasisanaturaltransitionfuelthatcouldrepresentsthebiggest701

availablestabilizationwedgeavailabletous.702

50 100

time [years]

Gro

wth

rate

[%/y

r]

00

20

24

4

8

12

16

Business as Usual

LowCarbon Fast Substitute Gas

Growth Rate Low Carbon Energy Sources

703

Figure9.ThegrowthrateoflowcarbonenergysourcesdeducedfromFigure1plottedasafunctionoftimefora704100yeartransition.Growthratesmorethan5%peryearsuchwillbechallengingtoachieveonaglobalbasis.705

Conclusions 706

Thecomparativeapproachtakeninthispapershowsthatthebenefitofsubstituting707

naturalgasdependsonlyonitsleakagerate.708

1.Forleakagerates~1%orless,thesubstitutionofnaturalgasforthecoalusedin709

electricitygenerationandfor55%oftheoilusedintransportationandheatingachieves710

33

40%ofthereductionthatcouldbeattainedbyanimmediatetransitiontolow‐carbon711

energysources.712

2.This40%reductiondoesnotdependonthedurationofthetransition.A40%reduction713

isattainedwhetherthetransitionisover50yearsor200years.714

3.Forleakagerates~1%orless,thereductionofgreenhousewarmingatalltimesis715

relateddirectlytothemassofCO2putintotheatmosphere,andthereforetoreduce716

greenhouseforcingwemustreducethisCO2input.ComplexitiesofhowCO2isremoved717

andreductionsinSO2emissionsandincreasesincarbonblackandthelikedonotchange718

thissimpleimperativeandshouldnotbeallowedtoconfusethesituation.719

4.Atlowmethaneleakagerates,substitutingnaturalgasisalwaysbeneficialfroma720

greenhousewarmingperspective,evenforforcingsashighashavebeensuggestedby721

Shindelletal.(2009)andusedbyHowarthetal.(2011).Underthefastesttransitionthatis722

probablyfeasible(our50yeartransitionscenario),substitutionofnaturalgaswillbe723

beneficialiftheleakagerateislessthanabout7%ofproduction.Foramorereasonable724

transitionof100years,substitutinggaswillbebeneficialiftheleakagerateislessthan725

~19%ofproduction(Figure7).Thenaturalgasleakagerateappearstobepresentlyless726

than2%ofproductionandprobably~1.5%ofproduction.727

5.Evenifthenaturalgasleakageratewerehighenoughtoincreasegreenhousewarming728

(e.g.,theleakagewas10%ofmethaneconsumptionor9%ofmethaneproduction),729

substitutinggaswouldstillhavebenefitsbecausethereductionofCO2emissionswould730

leadtoagreaterreductioningreenhousewarminglater(Figure8).731

6.Gasisanaturaltransitionfuelbecauseitssubstitutionreducestherateatwhichlow732

carbonenergysourcesmustbelaterintroduced(Figure9)andbecauseitcanfacilitatethe733

introductionoflowcarbonenergysources.734

Thepolicyimplicationsofthisanalysisare:(1)reducetheleakageofnaturalgasfrom735

productiontoconsumptionsothatitis~1%ofproduction,(2)encouragetherapid736

substitutionofnaturalgasforcoalandoil,and(3)encourageasrapidaconversiontolow737

carbonsourcesofenergyaspossible.738

34

Acknowledgements 739

Thispaperwasgreatlyimprovedbythreeexcellentreviews,twoanonymousandoneby740

RayPierrehumbert.Raypointedouttheimportanceofoceanmixing,suggestedcasting741

fueluseintermsofexponentialgrowthanddecline,anddrewmyattentiontoimportant742

references(asdidtheotherreviewers).Iamindebtedtomypriorco‐authorsinthis743

subject(MiltonTaam,LarryBrown,andAndrewHunter)forcontinuingveryhelpful744

discussions,andtomembersofthegasindustrywhopointedoutdataandhelpedme745

understandthecomplexitiesofgasproduction.MiltonTaamdrewmyattentiontothe746

MAGICCprogramandshowedmehoweasyitwastouse,andalsopushedpersistentlyfor747

thebroaderviewofmethanesubstitutionshowninFigure8.Thepaperwouldnotbewhat748

itiswithoutthecontributionoftheseindividualsandIthankthemfortheirinput.749

References 750

Allen,MR,FrameDJ,HuntingforC,JonesCD,LoweJA,MeinshauseM,andMeinshausenN751

(2009)Warmingcausedbycumulativecarbonemissionstowardsthetrillionthtonne,752

Nature,458(7242),1163–1166,doi:10.1038/nature08019.753

CathlesLM,(2012)PerspectivesontheMarcellusgasresource:Whatbenefitsandrisksare754

associatedwithMarcellusgasdevelopment?,755

http://blogs.cornell.edu/naturalgaswarming/756

CathlesLM,BrownL,TaamM,HunterH(2012a)Acommentaryon“thegreenhouse‐gas757

footprintofnaturalgasinshaleformations”byRWHowarth,RSantoro,andAIngraffea,758

ClimaticChange,DOI:10.1007/s10584‐011‐0333‐0.759

http://www.springerlink.com/content/x001g12t2332462p/760

CathlesLM,BrownL,HunterA,andTaamM(2012b)Pressrelease:responsetoHowarthet761

al.’sreply(February29,2012),762

http://www.geo.cornell.edu/eas/PeoplePlaces/Faculty/cathles/Natural%20Gas/Respo763

nse%20to%20Howarth's%20Reply%20Distributed%20Feb%2030,%202012.pdf764

ClarkeLE,EdmondsJA,JacobyHD,PitcherH,ReillyJM,RichelsR(2007)Scenariosof765

GreenhouseGasEmissionsandAtmosphericConcentrations.Sub‐report2.1aof766

35

SynthesisandAssessmentProduct2.1.AReportbytheClimateChangeScienceProgram767

andtheSubcommitteeonGlobalChangeResearch,Washington,DC,154pp768

EbyM,ZickfeldK,MontenegroA,ArcherD,MeissnerKJ,andWeaverAJ(2009)Lifetimeof769

anthropogenicclimatechange:millennialtimescalesofpotentialCO2andsurface770

temperatureperturbations.JournalofClimate22(10):2501‐2511,771

DOI:10.1175/2008JCLI2554.1.772

EIA(2011)InternationalEnergyOutlook2011,Worldtotalenergyconsumptiontables,773

http://www.eia.gov/oiaf/aeo/tablebrowser/#release=IEO2011&subject=1‐774

IEO2011&table=1‐IEO2011&region=0‐0&cases=Reference‐0504a_1630.775

EPA(2005)Compillationofairpollutionemissionfactors,vol.1,Stationarypointandand776

areasources:ReportAP‐42,OfficeofAirandRadiation,U.S.EPA,ResearchTriangel777

Park,NC27711.778

EPA(2010).GreenhouseGasEmissionsReportingfromthePetroleumandNaturalGas779

Industry.BackgroundTechnicalSupportDocument.U.S.EnvironmentalProtection780

Agency,WashingtonDC.781

http://www.epa.gov/climatechange/emissions/downloads10/Subpart‐W_TSD.pdf782

EPA(2011)Inventoryofgreenhousegasemissionsandsinks1990‐2009,EPA430‐R‐11‐783

005,55p,http://epa.gov/climatechange/emissions/usinventoryreport.html784

FultonM,MellquistN,KitaseiS,andBluesteinJ(2011)Comparinggreenhousegas785

emissionsfromnaturalgasandcoal.25Aug2011.WorldwatchInstitute/DeutscheBank.786

http://lockthegate.org.au/documents/doc‐305‐comparing‐life‐cycle‐greenhouse‐gas‐787

db.pdf788

GRI‐EPA(1997)MethaneEmissionsfromthenaturalgasindustry,ProjectSummary,789

HarrisonNR,ShiresTM,WesselsJK,andCowgillRM,EPA/600/SR‐96/080.790

http://www.docstoc.com/docs/19963708/Methane‐Emissions‐from‐the‐Natural‐Gas‐791

Industry.792

36

HarrisonM(2012)RevisedAttachment3:Gaswellcompletionemissionsdata,URS793

CorporationReport(akatheURSDevonStudy),http://anga.us/media/241555/anga‐794

axpc%20nsps%20memo%20revised.pdf795

HayhoeK,KheshgiHS,JainAK,WuebblesDJ(2002)Substitutionofnaturalgasforcoal:796

climaticeffectsofutilitysectoremissions.ClimaticChange54:107–139.797

HowarthR,SantoroT,andIngraffeaA(2011)Methaneandthegreenhousegasfootprintof798

naturalgasfromshaleformations,ClimaticChange,DOI10.1007/s10584‐011‐0061‐5.799

http://www.springerlink.com/content/e384226wr4160653/800

HowarthRW,SantoroR,andIngraffeaA(2011).Methaneandthegreenhousegasfootprint801

ofnaturalgasfromshaleformations.ClimaticChangeLetters,doi:10.1007/s10584‐802

011‐0061‐5.http://www.springerlink.com/content/e384226wr4160653/803

HughesD(2011)Lifecyclegreenhousegasemissionsfromshalegascomparedtocoal:an804

analysisfromtwoconflictingstudies,PostCarbonInstitute,21p,805

http://www.postcarbon.org/report/390308‐life‐cycle‐greenhouse‐gas‐emissions‐from.806

HultmanN,ReboisD,ScholtenM,andRamigC(2011).Thegreenhouseimpactof807

unconventionalgasforelectricitygeneration.Environ.Res.Lett.6:044008,808

doi:10.1088/1748‐9326/6/4/044008.http://iopscience.iop.org/1748‐809

9326/6/4/044008/810

IPCC(1990),HoughtonJT,JenkinsGJ,andEphraumsJJ(eds.),Reportpreparedfor811

IntergovernmentalPanelonClimateChangebyWorkingGroupI,CambridgeUniversity812

Press,Cambridge,GreatBritain,NewYork,NY,USAandMelbourne,Australia,410p.813

http://www.ipcc.ch/publications_and_data/publications_and_data_reports.shtml814

IPCC(1996),HoughtonJT,MeiraFilhoLG,CallanderBA,HarrisN,KattenbergA,and815

MaskellK,ed.,ClimateChange1995:TheScienceofClimateChange,Contributionof816

WorkingGroupItotheSecondAssessmentReportoftheIntergovernmentalPanelon817

ClimateChange,CambridgeUniversityPress,ISBN0‐521‐56433‐6(pb:0‐521‐56436‐0)818

http://www.ipcc.ch/publications_and_data/publications_and_data_reports.shtml819

37

IPCC(2001),HoughtonJT,DingY,GriggsDJ,NoguerM,vanderLindenPJ,DaiX,MaskellK,820

andJohnsonCA,ed.,ClimateChange2001:TheScientificBasis,ContributionofWorking821

GroupItotheThirdAssessmentReportoftheIntergovernmentalPanelonClimate822

Change,CambridgeUniversityPress,ISBN0‐521‐80767‐0,823

http://www.grida.no/publications/other/ipcc%5Ftar/?src=/climate/ipcc_tar/wg1/ind824

ex.htm(pb:0‐521‐01495‐6).825

http://www.ipcc.ch/publications_and_data/publications_and_data_reports.shtml826

IPCC(2007)ClimateChange2007:ThePhysicalScienceBasis.ContributionofWorking827

GroupItotheFourthAssessmentReportoftheIntergovernmentalPanelonClimate828

Change[Solomon,S,QinD,ManningM,ChenZ,MarquisM,AverytKB,TignorM,and829

MillerHL(eds.)].CambridgeUniversityPress,Cambridge,UnitedKingdomandNew830

York,NY,USA.831

http://www.ipcc.ch/publications_and_data/publications_and_data_reports.shtml832

MooreB(2011),Re:Oilandnaturalgassectorconsolidatedrulemaking,DocketIDNo.833

EPA‐HQ‐QAR‐2010‐0505(withattacheddatasetdocumentinggasleakagefrom834

unconventionalgaswellsof7companies).835

NRC(2011)Climatestabilizationtargets:Emissions,concentrations,andimpactsover836

decadestomillennia,NationalAcadamiesPress,Washington,D.C.,285p.837

http://www.nap.edu/catalog.php?record_id=12877838

PetronG,FrostGJ,MillerBRand27others(2012)Hydrocarbonemissionscharacterization839

intheColoradoFrontRange‐apilotstudy,Jour.Geophys.Res.,840

doi:10.1029/2011JD016360.841

http://www.agu.org/journals/jd/jd1204/2011JD016360/2011JD016360.pdf842

SaghafiA,WilliamsDJ,andLamaRD(1997)WorldwideMethaneEmissionsfrom843

UndergroundCoalMining,Proceedingsofthe6thInternationalMineVentilation844

Congress‐May17‐22,Chapter69MethaneDrainage,CSIRO,p441‐445.845

38

Schwartz,SE(2007)Heatcapacity,timeconstant,andsensitivityoftheEarth’sclimate846

system,JournalofGeophysicalResearch,112,D24S05,12p.,847

doi:10.1029/2007JD008746848

ShindellDT,FaluvegiG,KochDM,SchmidtGA,UngerN,BauerSE(2009)Improved849

attributionofclimateforcingtoemissions.Science326:716–718.850

SkoneTJ(2011)“LifeCycleGreenhouseGasAnalysisofNaturalGasExtraction&Delivery851

intheUnitedStates”,oralpresentationatCornellUniversity,May12,2011,852

http://cce.cornell.edu/EnergyClimateChange/NaturalGasDev/Documents/PDFs/SKONE853

_NG_LC_GHG_Profile_Cornell_12MAY11_Final.PDF854

SolomonS,PierrehumbertR,MatthewsDandDanielJS(2011)Atmosphericcomposition855

irreversibleclimatechangeandmitigationpolicy,WorldClimateResearchProgramme,856

39p.,http://conference2011.wcrp‐climate.org/positionpapers.html857

VenkateshA,JaramilloP,GriffinWM,andMatthewsHS(2011)Uncertaintyinlifecycle858

greenhousegasemissionsfromUnitedStatesnaturalgasendusersanditseffectson859

policy,Environ.Sci.Technol.,45,8182‐8189.860

http://pubs.acs.org/doi/abs/10.1021/es200930h861

WigleyTML(2011)Coaltogas:theinfluenceofmethaneleakage,ClimaticChange,DOI862

10.1007/s10584‐011‐0217‐3.863

WigleyTML(2011)MAGICC/SCIGEN,http://www.cgd.ucar.edu/cas/wigley/magicc/864