asapian

2
Matematiska institutionen Utbildning Utbildning på forskarnivå Potentiella avhandlingsämnen Potentiella avhandlingsämnen i matematisk statistik Potentiella avhandlingsämnen i matematisk statistik Here are descriptions of possible PhDprojects in mathematical statistics. It is also possible to propose a project of your own. A potential supervisor at the department should then be contacted before the application is submitted. 1. Statistical Inference for Stochastic Differential Equations in Epidemic Modelling Supervisors: Michael Höhle and Tom Britton The susceptibleinfectiousrecovered (SIR) model is a popular compartmental model in infectious disease epidemiology for modelling the dynamics of a communicable disease in a population. The introduction of new vaccination programs at national level is an example, where SIR like models are used to evaluate potential effects beforehand. Typically, this is done by formulating agestructured SIR models including demographics by deterministic differential equations. However, uncertainty due to the epidemic process being inherently stochastic or uncertainty due to inference of model parameters from time series data are rarely taken into account in these approaches. The intention of the proposed Ph.D. project is to investigate the potential of stochastic differential equations (SDEs) as a more stochastic alternative to the current deterministic models for such large population evaluations. The project thus ranges from how to formulate agestructured SIR models as SDEs to how to perform realistic parameter inference in such complex models given available agestratified timeseries data. Potential methodological approaches could be the approximation of Markov jump processes by diffusions, which are then (partially) observed in discrete time (see e.g. Fuchs (2013)), or the Cox–Ingersoll–Ross diffusion process approximation developed in Cauchemez and Ferguson (2008). In both cases a Bayesian framework is used to perform model inference. An alternative inferential approach could be the plugandplay framework described in, e.g., He et al. (2010). Proof of concept of the developed methods is intended by application to available routine collected public health surveillance data, e.g., weekly or biweekly data on the reported number of measles, rotavirus or norovirus infections. However, such compartmental dynamic modelling based on SDE has many other different applications, e.g. in systems biology. Literature: S. Cauchemez and N. M. Ferguson (2008). Likelihoodbased estimation of continuous time epidemic models from timeseries data: application to measles transmission in London, J. R. Soc. Interface, 5(25):885897. He D, Ionides EL, King AA, Plugandplay inference for disease dynamics: measles in large and small populations as a case study (2010). J. R. Soc. Interface 7, 271–283. C. Fuchs (2013), Inference for Diffusion Processes: With Applications in Life Sciences, Springer.

Upload: deusexmacchiato

Post on 22-May-2017

214 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Asapian

Matematiska institutionen Utbildning Utbildning på forskarnivå Potentiella avhandlingsämnen

Potentiella avhandlingsämnen i matematisk statistik

Potentiella avhandlingsämnen i matematiskstatistikHere are descriptions of possible PhD­projects in mathematical statistics. It isalso possible to propose a project of your own. A potential supervisor at thedepartment should then be contacted before the application is submitted.

 1. Statistical Inference for Stochastic Differential EquationsinEpidemic ModellingSupervisors: Michael Höhle and Tom Britton

The susceptible­infectious­recovered (SIR) model is a popular compartmental model ininfectious disease epidemiology for modelling the dynamics of a communicable disease ina population. The introduction of new vaccination programs at national level is anexample, where SIR like models are used to evaluate potential effects beforehand.Typically, this is done by formulating age­structured SIR models including demographicsby deterministic differential equations. However, uncertainty due to the epidemic processbeing inherently stochastic or uncertainty due to inference of model parameters from time­series data are rarely taken into account in these approaches.

The intention of the proposed Ph.D. project is to investigate the potential of stochasticdifferential equations (SDEs) as a more stochastic alternative to the current deterministicmodels for such large population evaluations. The project thus ranges from how toformulate age­structured SIR models as SDEs to how to perform realistic parameterinference in such complex models given available age­stratified time­series data. Potentialmethodological approaches could be the approximation of Markov jump processes bydiffusions, which are then (partially) observed in discrete time (see e.g. Fuchs (2013)), orthe Cox–Ingersoll–Ross diffusion process approximation developed in Cauchemez andFerguson (2008). In both cases a Bayesian framework is used to perform modelinference. An alternative inferential approach could be the plug­and­play frameworkdescribed in, e.g., He et al. (2010). Proof of concept of the developed methods is intendedby application to available routine collected public health surveillance data, e.g., weekly orbiweekly data on the reported number of measles, rotavirus or norovirus infections.However, such compartmental dynamic modelling based on SDE has many other differentapplications, e.g. in systems biology.

Literature:

S. Cauchemez and N. M. Ferguson (2008). Likelihood­based estimation of continuous­time epidemic models from time­series data: application to measles transmission inLondon, J.   R. Soc. Interface, 5(25):885­897.

He D, Ionides EL, King AA, Plug­and­play inference for disease dynamics: measles inlarge and small populations as a case study (2010). J. R. Soc. Interface 7, 271–283.

C. Fuchs (2013), Inference for Diffusion Processes: With Applications in Life Sciences,Springer. 

Page 2: Asapian

2. Epidemics in structured populationsSupervisor: Pieter Trapman

The aim of the project is to study epidemics in structured populations, where the structuremight be generated by households, by random graphs or other methods.

One focus of the project will be real time dynamics of epidemics in those structuredpopulations. The hope is that methods created in this way will provide more insight inepidemics in populations with structures which are changing over time and in the durationof outbreaks. Furthermore, it might help to identify possible unwanted effects of publichealth measures, e.g., prolonging the duration of an epidemic by vaccination. In thisproject rigorous mathematics, specifically probability theory will meat relevant publichealth issues.

 

3. Dynamics on complex networksSupervisor: Maria Deijfen

The aim of the project is to investigate how the behavior of random spatial processes isaffected when the underlying structure is taken to be a random graph intended to describea large complex network rather than some more homogeneous structure (e.g. Z^d).During the last decade, the area of random graphs has developed from dealing mainly withsimplistic models with little structure to studying more complex models aimed atdescribing real networks. By now, there is a fairly good understanding of the propertiesand asymptotic behavior of many of these new graph models, which opens up for thestudy of dynamic processes taking place on the networks. Indeed, an important goal ofnetwork modeling is to understand how the structure of a network affects various types ofprocesses taking place on the network. The aim of the project is to study a number ofwell­known random dynamic processes and investigate the impact of an underlyingheterogeneous graph structure.

Senast uppdaterad: 26 mars 2014Sidansvarig: Matematiska institutionen 

Matematiska institutionen 

© Stockholms universitet, SE­106 91 Stockholm, Telefon: 08­16 20 00