ars.els-cdn.com · web viewtable s1 characteristics of coconut fiber packing and gravel total pore...

19
Supporting Information Sulfur and iron cycles promoted nitrogen and phosphorus removal in electrochemically assisted vertical flow constructed wetland treating wastewater treatment plant effluent with high S/N ratio Yingmu Wang, Ziyuan Lin, Yue Wang, Wei Huang, Jiale Wang, Jian Zhou * , Qiang He * Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China Corresponding author at: Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China. Tel./fax: +86 S1

Upload: others

Post on 02-Oct-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ars.els-cdn.com · Web viewTable S1 Characteristics of coconut fiber packing and gravel Total pore area (m2 g-1) Median pore diameter (nm) Porosity (%) Bulk density (g mL-1) coconut

Supporting Information

Sulfur and iron cycles promoted nitrogen and phosphorus removal in

electrochemically assisted vertical flow constructed wetland treating

wastewater treatment plant effluent with high S/N ratio

Yingmu Wang, Ziyuan Lin, Yue Wang, Wei Huang, Jiale Wang, Jian Zhou*, Qiang He*

Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of

Education, Chongqing University, Chongqing 400045, PR China

Corresponding author at: Key Laboratory of the Three Gorges Reservoir Region’s Eco-

Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.

Tel./fax: +86 23 65120980.

E-mail address: [email protected] (J. Zhou), [email protected] (Q. He)

S1

Page 2: ars.els-cdn.com · Web viewTable S1 Characteristics of coconut fiber packing and gravel Total pore area (m2 g-1) Median pore diameter (nm) Porosity (%) Bulk density (g mL-1) coconut

Stoichiometric calculation of SO42--S formation during batch experiment

In the batch experiment, the theoretical formation of SO42--S was calculated based on

stoichiometric analysis based on Eq. S1-9.

S0+1.2NO3--N+0.4H2O→SO4

2--S+0.6N2+0.8H+

(S1)

FeS+1.8NO3--N+H2O→SO4

2--S+0.9N2+Fe(OH)3+0.2H+

(S2)

0.5FeS2+1.5NO3--N+H2O→SO4

2--S+0.75N2+0.5Fe(OH)3+0.5H+

(S3)

S0+3NO3--N+H2O→SO4

2--S+3NO2--N+2H+

(S4)

FeS+4.5NO3--N+2.5H2O→SO4

2--S+4.5NO2--N +Fe(OH)3+2H+

(S5)

0.5FeS2+3.75NO3--N+1.75H2O→SO4

2--S+3.75NO2--N +0.5Fe(OH)3+2H+

(S6)

S0+0.75NO3--N+1.75H2O→SO4

2--S+0.75NH4+-N+0.5H+

(S7)

FeS+1.125NO3--N+3.875H2O→SO4

2--S+1.125 NH4+-N +Fe(OH)3+0.25OH-

(S8)

FeS2+1.875NO3--N+5.375H2O→2SO4

2--S+1.875 NH4+-N +Fe(OH)3+0.25H+

(S9)

SO42--S formation during S0-drive NO3

--N reduction was detailed in Eq. S10:△CSulfate=32×(5/6×(-△CNitrate-△CNitrite-△CAmmonia)+1/3×△CNitrite+4/3×△CAmmonia)

(S10)

SO42--S formation during FeS-drive NO3

--N reduction was detailed in Eq. S11:△CSulfate=32×(5/9×(-△CNitrate-△CNitrite-△CAmmonia)+2/9×△CNitrite+8/9×△CAmmonia)

(S11)

SO42--S formation during FeS2-drive NO3

--N reduction was detailed in Eq. S12:△CSulfate=32×(2/3×(-△CNitrate-△CNitrite-△CAmmonia)+4/15×△CNitrite+16/15×△CAmmonia)

(S12)

S2

Page 3: ars.els-cdn.com · Web viewTable S1 Characteristics of coconut fiber packing and gravel Total pore area (m2 g-1) Median pore diameter (nm) Porosity (%) Bulk density (g mL-1) coconut

Table S1 Characteristics of coconut fiber packing and gravel

Total pore area(m2 g-1)

Median pore diameter (nm)

Porosity(%)

Bulk density(g mL-1)

coconut fiber 6.007 514.5 54.2129 0.8029

gravel 0.136 7430.9 3.8331 2.6469

S3

Page 4: ars.els-cdn.com · Web viewTable S1 Characteristics of coconut fiber packing and gravel Total pore area (m2 g-1) Median pore diameter (nm) Porosity (%) Bulk density (g mL-1) coconut

Table S2 Primes targeting nirS, nirK, and nosZ for RT-PCR assay

Genes Primer Primer sequences Reference

nirSnirS-F 5′ GTSAACGTSAAGGARACSGG 3′

[1]nirS-R 5′ GASTTCGGRTGSGTCTTGA 3′

nirKnirK-F 5′ ATYGGCGGVCAYGGCGA 3′

[2]nirK-R 5′ GCCTCGATCAGRTTRTGGTT 3′

nosZnosZ-F 5′ CGCRACGGCAASAAGGTSMSSGT 3′

[3]nosZ-R 5′ CAKRTGCAKSGCRTGGCAGAA 3′

S4

Page 5: ars.els-cdn.com · Web viewTable S1 Characteristics of coconut fiber packing and gravel Total pore area (m2 g-1) Median pore diameter (nm) Porosity (%) Bulk density (g mL-1) coconut

Table S3 P, Fe and S transformations in anode and cathode chambers based on XRD and XPS

Region P transformations Fe transformations S transformations

Anode Fe(n+)OH-PO4, FeOOH-PO4 β-FeOOH, Fe2O3 -

Cathode FePO4·2H2O, FeOOH-PO4 β-FeOOH FeS, FeS2 S0

S5

Page 6: ars.els-cdn.com · Web viewTable S1 Characteristics of coconut fiber packing and gravel Total pore area (m2 g-1) Median pore diameter (nm) Porosity (%) Bulk density (g mL-1) coconut

Table S4 N species and SO42--S variations along the longitudinal pathway of E-VFCW

Region Parameters(mg L-1)

Typical operation modes

Phase 2 Phase 5 Phase 6 Phase 7

Influent

NO3--N 16.01±0.02 16.27±0.15 15.86±0.18 15.70±0.03

NO2--N 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00

NH4+-N 0.21±0.01 0.44±0.02 0.23±0.01 0.66±0.18

TN 16.22±0.03 16.71±0.13 16.09±0.17 16.36±0.21

SO42--N 75.70±3.62 74.82±4.65 75.26±3.26 74.85±4.21

Anodeeffluent

NO3--N 11.59±0.12 14.93±0.07 12.75±0.06 13.68±0.07

NO2--N 0.12±0.09 0.29±0.11 0.25±0.13 0.28±0.03

NH4+-N 0.49±0.02 0.46±0.06 1.23±0.09 0.26±0.09

TN 12.20±0.23 15.68±0.12 14.23±0.28 14.22±0.01

SO42--N 75.57±4.29 74.59±3.27 74.67±6.39 75.03±3.63

Upper cathodeeffluent

NO3--N 1.23±0.08 8.85±0.11 4.39±0.05 7.87±0.07

NO2--N 0.09±0.05 0.12±0.05 0.11±0.02 0.30±0.01

NH4+-N 3.59±0.03 0.42±0.01 0.86±0.04 0.96±0.04

TN 4.91±0.16 9.39±0.17 5.36±0.11 9.13±0.04

SO42--N 57.50±3.23 73.52±3.60 62.70±4.12 74.50±4.24

Middle cathodeeffluent

NO3--N 0.29±0.04 4.17±0.08 2.15±0.10 4.65±0.05

NO2--N 0.02±0.02 0.29±0.13 0.07±0.02 0.56±0.14

NH4+-N 4.07±0.05 1.16±0.08 2.17±0.02 1.59±0.04

TN 4.38±0.07 5.62±0.03 4.39±0.14 6.80±0.05

SO42--N 52.65±4.76 76.53±2.97 57.37±3.86 78.02±4.80

Bottom cathodeeffluent

NO3--N 0.36±0.01 2.39±0.06 0.95±0.02 2.13±0.11

NO2--N 0.04±0.01 0.33±0.05 0.01±0.00 0.62±0.04

NH4+-N 3.97±0.01 1.43±0.03 2.23±0.08 1.74±0.05

TN 4.37±0.03 4.15±0.14 3.19±0.06 4.49±0.05

SO42--N 50.57±3.20 79.65±5.01 59.47±5.17 80.77±3.91

S6

Page 7: ars.els-cdn.com · Web viewTable S1 Characteristics of coconut fiber packing and gravel Total pore area (m2 g-1) Median pore diameter (nm) Porosity (%) Bulk density (g mL-1) coconut

Table S5 Bacteria diversity and richness indexes among sludge samples

Sample Reads OTU ace Shannon Simpson coverage

In 27918 549 634.9 3.74 0.108 0.996

Ea 26011 432 544.4 3.68 0.074 0.996

Ec1 32610 1003 1220.1 4.78 0.022 0.992

Ec2 37705 1083 1291.2 5.15 0.013 0.993

Ec3 34435 1154 1365.4 5.18 0.016 0.992

S7

Page 8: ars.els-cdn.com · Web viewTable S1 Characteristics of coconut fiber packing and gravel Total pore area (m2 g-1) Median pore diameter (nm) Porosity (%) Bulk density (g mL-1) coconut

Table S6 Relative abundance of the functional bacteria in anode and cathode chambers

Region Transformations Genus (abundance) Reference

AnodeFerrous-driven nitrate reduction unclassified Gallionellaceae (22.9%), Dechloromonas (13.5%) [4, 5]

Dissimilatory ferric reduction Geothrix (2.5%) [6]

Upper

cathode

Sulfate reductionDesulfobulbus (1.5%), Desulfomicrobium (0.7%), Desulfovibrio (0.9%),

Desulfuromonas (2.3%), unclassified Desulfuromonadales (0.2%)[7]

Sulfur-driven nitrate reduction Thiobacillus (0.2%), Limnobacter (0.8%) [8, 9]

Ferrous-driven nitrate reduction unclassified Gallionellaceae (7.7%), Ferritrophicum (2.3%) [10]

DNRA Clostridium_sensu_stricto_1 (10.3) [11, 12]

Middle

cathode

Sulfate reductionDesulfobulbus (0.3%), Desulfomicrobium (2.8%), Desulfovibrio (0.2%),

Desulfuromonas (3.7%), unclassified Desulfuromonadales (1.0%)[7]

Sulfur-driven nitrate reduction Thiobacillus (5.9%), Limnobacter (2.8%) [8, 9]

Ferrous-driven nitrate reduction unclassified Gallionellaceae (3.6%) [10]

DNRA Clostridium_sensu_stricto_1 (5.0%) [11, 12]

Bottom

cathode

Sulfate reductionDesulfobulbus (0.4%), Desulfomicrobium (2.9%), Desulfovibrio (0.3%),

Desulfuromonas (2.4%), unclassified Desulfuromonadales (2.4%)[7]

Sulfur-driven nitrate reduction Thiobacillus (7.9%), Limnobacter (1.0%) [8, 9]

Ferrous-driven nitrate reduction unclassified Gallionellaceae (5.0%), Ferritrophicum (0.4%) [10]

DNRA Clostridium_sensu_stricto_1 (3.1%) [11, 12]

S8

Page 9: ars.els-cdn.com · Web viewTable S1 Characteristics of coconut fiber packing and gravel Total pore area (m2 g-1) Median pore diameter (nm) Porosity (%) Bulk density (g mL-1) coconut

Fig.S1 Evolution of (a) PO43--P concentration and removal rate, (b) NO3

--N, NO2--N and

NH4+-N concentration and (c) NO3

--N and TN removal rate, and NH4+-N accumulation rate in

the effluent of E-VFCW

S9

Page 10: ars.els-cdn.com · Web viewTable S1 Characteristics of coconut fiber packing and gravel Total pore area (m2 g-1) Median pore diameter (nm) Porosity (%) Bulk density (g mL-1) coconut

Fig.S2 (a) pH, (b) DO and (c) ORP variation in the influent and effluent of VFCWs with

different HRT and current density

S10

Page 11: ars.els-cdn.com · Web viewTable S1 Characteristics of coconut fiber packing and gravel Total pore area (m2 g-1) Median pore diameter (nm) Porosity (%) Bulk density (g mL-1) coconut

Fig.S3 SEM images of (a) anode, (b) coconut fiber packing in cathode chamber, (c) cathode

and (d) coconut fiber packing in control group

S11

Page 12: ars.els-cdn.com · Web viewTable S1 Characteristics of coconut fiber packing and gravel Total pore area (m2 g-1) Median pore diameter (nm) Porosity (%) Bulk density (g mL-1) coconut

Fig.S4 N species composition, NO3--N/TN removal rate and NH4

+-N accumulation rate in the

effluent of (a) anode and (b) cathode in the E-VFCW. Error bars denote standard deviations

of 15 samples (n=15). NH4+-N accumulation rate was defined as -△NH4

+-N/△NO3--N

S12

Page 13: ars.els-cdn.com · Web viewTable S1 Characteristics of coconut fiber packing and gravel Total pore area (m2 g-1) Median pore diameter (nm) Porosity (%) Bulk density (g mL-1) coconut

Fig.S5 (a) Rarefaction curve, (b) principle component analysis (PCA) at OTU level, and

Venn diagram of (c) all sludge samples and (d) sludge samples along the longitudinal

pathway of cathode chamber

S13

Page 14: ars.els-cdn.com · Web viewTable S1 Characteristics of coconut fiber packing and gravel Total pore area (m2 g-1) Median pore diameter (nm) Porosity (%) Bulk density (g mL-1) coconut

Reference

[1] O. Coban, P. Kuschk, U. Kappelmeyer, O. Spott, M. Martienssen, M.S. Jetten, K. Knoeller, Nitrogen transforming community in a horizontal subsurface-flow constructed wetland, Water Res., 74 (2015) 203-212.

[2] A. Tellez-Rio, S. García-Marco, M. Navas, E. López-Solanilla, R.M. Rees, J.L. Tenorio, A. Vallejo, Nitrous oxide and methane emissions from a vetch cropping season are changed by long-term tillage practices in a Mediterranean agroecosystem, Biol. Fert. Soils, 51 (2014) 77-88.

[3] A. Florio, I.M. Clark, P.R. Hirsch, D. Jhurreea, A. Benedetti, Effects of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) on abundance and activity of ammonia oxidizers in soil, Biol. Fert. Soils, 50 (2014) 795-807.

[4] A. Chakraborty, F. Picardal, Neutrophilic, nitrate-dependent, Fe(II) oxidation by a Dechloromonas species, World .J Microbiol. Biotechnol., 29 (2013) 617-623.

[5] S. He, C. Tominski, A. Kappler, S. Behrens, E.E. Roden, Metagenomic Analyses of the Autotrophic Fe(II)-Oxidizing, Nitrate-Reducing Enrichment Culture KS, Appl. Environ. Microbiol., 82 (2016) 2656-2668.

[6] K.P. Nevin, D.R. Lovley, Mechanisms for Accessing Insoluble Fe(III) Oxide during Dissimilatory Fe(III) Reduction by Geothrix fermentans, Appl. Environ. Microbiol., 68 (2002) 2294-2299.

[7] H.F. Castro, N.H. Williams, A. Ogram, Phylogeny of sulfate-reducing bacteria1, FEMS Microbiol. Ecol., 31 (2000) 1-9.

[8] H.S. Moon, K.H. Ahn, S. Lee, K. Nam, J.Y. Kim, Use of autotrophic sulfur-oxidizers to remove nitrate from bank filtrate in a permeable reactive barrier system, Environ. Pollut., 129 (2004) 499-507.

[9] S. Spring, P. Kampfer, K.H. Schleifer, Limnobacter thiooxidans gen. nov., sp. nov., a novel thiosulfate-oxidizing bacterium isolated from freshwater lake sediment, Int. J. Syst. Evol. Microbiol., 51 (2001) 1463-1470.

[10] J.V. Weiss, J.A. Rentz, T. Plaia, S.C. Neubauer, M. Merrill-Floyd, T. Lilburn, C. Bradburne, J.P. Megonigal, D. Emerson, Characterization of Neutrophilic Fe(II)-Oxidizing Bacteria Isolated from the Rhizosphere of Wetland Plants and Description of Ferritrophicum radicicola gen. nov. sp. nov., and Sideroxydans paludicola sp. nov, Geomicrobiol. J., 24 (2007) 559-570.

[11] J. Pett-Ridge, M.K. Firestone, Redox fluctuation structures microbial communities in a wet tropical soil, Appl. Environ. Microbiol., 71 (2005) 6998-7007.

[12] S.X. Yin, D. Chen, L.M. Chen, R. Edis, Dissimilatory nitrate reduction to ammonium and responsible microorganisms in two Chinese and Australian paddy soils, Soil Biol. Biochem., 34 (2002) 1131-1137.

S14