ars.els-cdn.com · web viewhybrid carbon nanofillers 320% 13.1 2018 [1] elastic band cnts 920%...

13
Super-hydrophobic, durable and cost-effective carbon black/rubber composites for high performance strain sensors Yang Chen a, & , Ling Wang a, & , Zefeng Wu a , Junchen Luo a , Bei Li a , Xuewu Huang a , Huaiguo Xue a , Jiefeng Gao* a,b,c a School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, China b State Key Laboratory of Polymer Materials Engineering Sichuan University, Chengdu, Sichuan 610065, P. R. China c Yangzhou Shuguang Cable Co., Ltd, Gaoyou, Yangzhou, Jiangsu 225007, China *Corresponding authors: [email protected]; Author contributions & These authors contributed equally to this work and

Upload: others

Post on 07-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ars.els-cdn.com · Web viewHybrid carbon nanofillers 320% 13.1 2018 [1] Elastic band CNTs 920% 129.2 2018 [2] Thermoplastic polyurethane (TPU) SWNTs/MWNTs 100% 1.24 2018 [3] Carbonized

Super-hydrophobic, durable and cost-effective carbon black/rubber

composites for high performance strain sensors

Yang Chen a, &, Ling Wang a, &, Zefeng Wu a, Junchen Luo a, Bei Li a, Xuewu Huang a,

Huaiguo Xue a, Jiefeng Gao*a,b,c

a School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou,

Jiangsu, 225002, China

b State Key Laboratory of Polymer Materials Engineering Sichuan University,

Chengdu, Sichuan 610065, P. R. Chinac Yangzhou Shuguang Cable Co., Ltd, Gaoyou, Yangzhou, Jiangsu 225007, China

*Corresponding authors: [email protected];

Author contributions

& These authors contributed equally to this work and should be considered co-first

authors

Page 2: ars.els-cdn.com · Web viewHybrid carbon nanofillers 320% 13.1 2018 [1] Elastic band CNTs 920% 129.2 2018 [2] Thermoplastic polyurethane (TPU) SWNTs/MWNTs 100% 1.24 2018 [3] Carbonized

Fig. S1 (a) Surface morphology of RB/CBNPs-25. (b) The cross-sectional SEM image of RB. (c) The magnified cross-sectional SEM image of RB/CBNPs-25/PDMS-30.

Page 3: ars.els-cdn.com · Web viewHybrid carbon nanofillers 320% 13.1 2018 [1] Elastic band CNTs 920% 129.2 2018 [2] Thermoplastic polyurethane (TPU) SWNTs/MWNTs 100% 1.24 2018 [3] Carbonized

Fig. S2 (a) The thermal gravity analysis curve of RB, RB/CBNPs, RB/CBNPs/PDMS. (b) Differential thermal gravity curve of RB, RB/CBNPs, RB/CBNPs/PDMS.

Page 4: ars.els-cdn.com · Web viewHybrid carbon nanofillers 320% 13.1 2018 [1] Elastic band CNTs 920% 129.2 2018 [2] Thermoplastic polyurethane (TPU) SWNTs/MWNTs 100% 1.24 2018 [3] Carbonized

Table S1 Mechanical properties of the different RB based samples

Nanofiber based Sample

Tensile strength(MPa)

Yong’s modulus(MPa)

Elongation at break(%)

RB

8.9±0.6 1.29±0.2 1014±33.5

RB/CBNPs 9.9±0.3 1.1±0.1 784.3±41.1

RB/CBNPs/PDMS 10.6±0.7 1.3±0.1 1003.2±54.8

Page 5: ars.els-cdn.com · Web viewHybrid carbon nanofillers 320% 13.1 2018 [1] Elastic band CNTs 920% 129.2 2018 [2] Thermoplastic polyurethane (TPU) SWNTs/MWNTs 100% 1.24 2018 [3] Carbonized

Table S2 Selected parameters extracted from our work and the reported

papers on strain gauge sensors

Matrix Conductivefillers

Elongation at break

Gaugefactor

Referencesand year

Polydimethylsiloxane(PDMS)

Hybrid carbonnanofillers

320% 13.1 2018 [1]

Elastic band CNTs 920% 129.2 2018 [2]

Thermoplastic polyurethane(TPU)

SWNTs/MWNTs 100% 1.24 2018 [3]

Carbonized silk fabrics (CSFs)

N.A. 52% 37.5 2016 [4]

Elastic ecoflex CNT fibers 960% 64 2015 [5]

Chewing gum MWCNTs 700% 25 2015 [6]

Polyurethane(PU)-poly(3,4ethylenedioxythiophen

e) polystyrenesulfonate (PEDOT:PSS)

SWCNTs 100% 50.8 2015 [7]

Polydimethylsiloxane(PDMS)

3D thin graphite foam (TGF)

100% 52 2017 [8]

Silicone composite Carbonized nano-sponge (CNS)

60% 8.37 2017 [9]

Natural rubber Liquid-exfoliated graphene

800% 35 2014 [10]

Polydimethylsiloxane(PDMS)

CB 30% 15.75 2016 [11]

Poly(vinyl alcohol) (PVA)

CNTs 240% 1.1 2017 [12]

Elastic cotton/polyurethane (PU) core-spun yarn

SWCNTs 300% 2.15 2016 [13]

Polydimethylsiloxane(PDMS)

Graphene foam 50% 98.66 2016 [14]

Conductive coaxial fibers SWCNTs 250% 425 2018 [15]

Rubber band CB 980% 242.6 2019This work

References

[1] Y. Zheng, Y. Li, K. Dai, Y. Wang, G. Zheng, C. Liu, C. Shen, A highly stretchable

Page 6: ars.els-cdn.com · Web viewHybrid carbon nanofillers 320% 13.1 2018 [1] Elastic band CNTs 920% 129.2 2018 [2] Thermoplastic polyurethane (TPU) SWNTs/MWNTs 100% 1.24 2018 [3] Carbonized

and stable strain sensor based on hybrid carbon nanofillers/polydimethylsiloxane

conductive composites for large human motions monitoring, Compos. Sci. Technol.

156 (2018) 276-286.

[2] Y. Wang, Y. Jia, Y. Zhou, Y. Wang, G. Zheng, K. Dai, C. Liu, C. Shen, Ultra-

stretchable, sensitive and durable strain sensors based on polydopamine encapsulated

carbon nanotubes/elastic bands, J. Mater. Chem. C 6 (2018) 8160-8170.

[3] Y. Li, B. Zhou, G. Zheng, X. Liu, T. Li, C. Yan, C. Cheng, K. Dai, C. Liu, C. Shen,

Z. Guo, Continuously prepared highly conductive and stretchable SWNT/MWNT

synergistically composited electrospun thermoplastic polyurethane yarns for wearable

sensing, J. Mater. Chem. C 6 (2018) 2258-2269.

[4] C. Wang, X. Li, E. Gao, M. Jian, K. Xia, Q. Wang, Z. Xu, T. Ren, Y. Zhang,

Carbonized Silk Fabric for Ultrastretchable, Highly Sensitive, and Wearable Strain

Sensors, Adv. Mater. 28 (2016) 6640-6648.

[5] S. Ryu, P. Lee, J. B. Chou, R. Xu, R. Zhao, A. J. Hart, S.-G. Kim, Extremely

Elastic Wearable Carbon Nanotube Fiber Strain Sensor for Monitoring of Human

Motion, ACS Nano 9 (2015) 5929-5936.

[6] M. A. Darabi, A. Khosrozadeh, Q. Wang, M. Xing, Gum Sensor: A Stretchable,

Wearable, and Foldable Sensor Based on Carbon Nanotube/Chewing Gum

Membrane, ACS Appl. Mater. Interfaces 7 (2015) 26195-26205.

[7] E. Roh, B.-U. Hwang, D. Kim, B.-Y. Kim, N.-E. Lee, Stretchable, Transparent,

Ultrasensitive, and Patchable Strain Sensor for Human–Machine Interfaces

Comprising a Nanohybrid of Carbon Nanotubes and Conductive Elastomers, ACS

Nano 9 (2015) 6252-6261.

[8] W. Li, J. Guo, D. Fan, 3D Graphite-Polymer Flexible Strain Sensors with

Ultrasensitivity and Durability for Real-Time Human Vital Sign Monitoring and

Musical Instrument Education, Adv. Mater. Technol. 2 (2017) 1700070.

[9] X. G. Yu, Y. Q. Li, W. B. Zhu, P. Huang, T. T. Wang, N. Hu, S. Y. Fu, A wearable

strain sensor based on a carbonized nano-sponge/silicone composite for human

motion detection, Nanoscale 9 (2017) 6680-6685.

[10] C. S. Boland, U. Khan, C. Backes, A. O’Neill, J. McCauley, S. Duane, R.

Page 7: ars.els-cdn.com · Web viewHybrid carbon nanofillers 320% 13.1 2018 [1] Elastic band CNTs 920% 129.2 2018 [2] Thermoplastic polyurethane (TPU) SWNTs/MWNTs 100% 1.24 2018 [3] Carbonized

Shanker, Y. Liu, I. Jurewicz, A. B. Dalton, J. N. Coleman, Sensitive, High-Strain,

High-Rate Bodily Motion Sensors Based on Graphene–Rubber Composites, ACS

Nano 8 (2014) 8819-8830.

[11] Y. Zheng, Y. Li, Z. Li, Y. Wang, K. Dai, G. Zheng, C. Liu, C. Shen, The effect of

filler dimensionality on the electromechanical performance of polydimethylsiloxane

based conductive nanocomposites for flexible strain sensors, Compos. Sci. Technol.

139 (2017) 64-73.

[12] N. Wang, Z. Xu, P. Zhan, K. Dai, G. Zheng, C. Liu, C. Shen, A tunable strain

sensor based on a carbon nanotubes/electrospun polyamide 6 conductive nanofibrous

network embedded into poly(vinyl alcohol) with self-diagnosis capabilities, J. Mater.

Chem. C 5 (2017) 4408-4418.

[13] Z. Wang, Y. Huang, J. Sun, Y. Huang, H. Hu, R. Jiang, W. Gai, G. Li, C. Zhi,

Polyurethane/Cotton/Carbon Nanotubes Core-Spun Yarn as High Reliability

Stretchable Strain Sensor for Human Motion Detection, ACS Appl. Mater. Interfaces

8 (2016) 24837-24843.

[14] J. Li, S. Zhao, X. Zeng, W. Huang, Z. Gong, G. Zhang, R. Sun, C. P. Wong,

Highly Stretchable and Sensitive Strain Sensor Based on Facilely Prepared Three-

Dimensional Graphene Foam Composite, ACS Appl. Mater. Interfaces 8 (2016)

18954-18961.

[15] J. Zhou, X. Xu, Y. Xin, G. Lubineau, Coaxial Thermoplastic Elastomer-Wrapped

Carbon Nanotube Fibers for Deformable and Wearable Strain Sensors, Adv. Funct.

Mater. 28 (2018) 1705591.