aries-cs radial build definition and nuclear system characteristics l. el-guebaly, p. wilson, d....

28
ARIES-CS Radial Build Definition and Nuclear System Characteristics L. El-Guebaly, P. Wilson, D. Henderson, T. Tautges, M. Wang, C. Martin, J. Blanchard and the ARIES Team Fusion Technology Institute UW - Madison US / Japan Workshop on Power Plant Studies January 24 - 25, 2006 UCSD

Post on 19-Dec-2015

219 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: ARIES-CS Radial Build Definition and Nuclear System Characteristics L. El-Guebaly, P. Wilson, D. Henderson, T. Tautges, M. Wang, C. Martin, J. Blanchard

ARIES-CS Radial Build Definition and

Nuclear System Characteristics

ARIES-CS Radial Build Definition and

Nuclear System Characteristics

L. El-Guebaly, P. Wilson, D. Henderson, T. Tautges,

M. Wang, C. Martin, J. Blanchardand the ARIES Team

Fusion Technology InstituteUW - Madison

US / Japan Workshop on Power Plant StudiesJanuary 24 - 25, 2006

UCSD

Page 2: ARIES-CS Radial Build Definition and Nuclear System Characteristics L. El-Guebaly, P. Wilson, D. Henderson, T. Tautges, M. Wang, C. Martin, J. Blanchard

2

Nuclear Areas of Research

VV

Blanket

Shield

Magnet

Manifolds

Radial Build Definition:– Dimension of all components

– Optimal composition

High-performance shielding module at min

Neutron Wall Loading Profile:– Toroidal & poloidal distribution

– Peak & average values

Blanket Parameters:– Dimension– TBR, enrichment, Mn

– Nuclear heat load– Damage to FW– Service lifetime

Radiation Protection:– Shield dimension & optimal

composition– Damage profile at shield,

manifolds, VV, and magnets– Streaming issues

Activation Issues:– Activity and decay heat– Thermal response to

LOCA/LOFA events – Radwaste management

Page 3: ARIES-CS Radial Build Definition and Nuclear System Characteristics L. El-Guebaly, P. Wilson, D. Henderson, T. Tautges, M. Wang, C. Martin, J. Blanchard

3

Nuclear Task Involves Active Interaction with many Disciplines

1-D Nuclear Analysis(∆min, TBR, Mn, damage, lifetime)

Activation Assessment(Activity, decay heat, LOCA/LOFA,

Radwaste classification)

3-D Neutronics(Overall TBR, Mn)

Radial Build Definition@ ∆min and elsewhere

(Optimal dimension and composition,blanket coverage, thermal loads )

NWL Profile( peak, average, ratio)

Prelim. Physics(R, a, Pf, ∆min, plasma contour, magnet CL)

DesignRequirements

no ∆min match

or insufficient breeding

Init. DivertorParameters

Init. MagnetParameters

Blanket Concept

Systems Code(R, a, Pf)

CAD Drawings

Safety Analysis

Blanket Design

Page 4: ARIES-CS Radial Build Definition and Nuclear System Characteristics L. El-Guebaly, P. Wilson, D. Henderson, T. Tautges, M. Wang, C. Martin, J. Blanchard

4

Stellarators Offer Unique Engineering Features and Challenges

• Minimum radial standoff at min controls machine size and cost. Well optimized radial build particularly at min

• Sizable components with low shielding performance (such as blanket and He manifolds) should be avoided at min.

• Could design tolerate shield-only module (no blanket) at min? Impact on TBR, overall size, and economics?

• Compactness mandates all components should provide shielding function:– Blanket protects shield– Blanket and shield protect manifolds and VV– Blanket, shield, and VV protect magnets

• Highly complex geometry mandates developing new approach to directly couple CAD drawings with 3-D neutronics codes.

• Economics and safety constraints control design of all components from beginning.

Page 5: ARIES-CS Radial Build Definition and Nuclear System Characteristics L. El-Guebaly, P. Wilson, D. Henderson, T. Tautges, M. Wang, C. Martin, J. Blanchard

5

ARIES-CS Requirements Guide In-vessel Components Design

Overall TBR 1.1 (for T self-sufficiency)

Damage to Structure 200 dpa - advanced FS (for structural integrity) 3% burn up - SiC

Helium Production @ Manifolds and VV 1 appm (for reweldability of FS)

S/C Magnet (@ 4 K): Fast n fluence to Nb3Sn (En > 0.1 MeV) 1019 n/cm2

Nuclear heating 2 mW/cm3 dpa to Cu stabilizer 6x10-3 dpa

Dose to electric insulator > 1011 rads

Machine Lifetime 40 FPY

Availability 85%

Page 6: ARIES-CS Radial Build Definition and Nuclear System Characteristics L. El-Guebaly, P. Wilson, D. Henderson, T. Tautges, M. Wang, C. Martin, J. Blanchard

6

Reference Dual-cooled LiPb/FS Blanket Selected with Advanced LiPb/SiC as Backup

Breeder Multiplier Structure FW/Blanket Shield VVCoolant Coolant Coolant

Internal VV:

Flibe Be FS Flibe Flibe H2O

LiPb (backup) – SiC LiPb LiPb H2O

LiPb (reference) – FS He/LiPb He H2O

Li4SiO4 Be FS He He H2O

External VV:

LiPb – FS He/LiPb He or H2O He

Li – FS He/Li He He

Page 7: ARIES-CS Radial Build Definition and Nuclear System Characteristics L. El-Guebaly, P. Wilson, D. Henderson, T. Tautges, M. Wang, C. Martin, J. Blanchard

7

FW Shape Varies Toroidally and Poloidally - a Challenging 3-D Modeling Problem

min

Beginning of FieldPeriod

Middle of FieldPeriod

= 0

= 60

3 FPR = 8.25 m

Page 8: ARIES-CS Radial Build Definition and Nuclear System Characteristics L. El-Guebaly, P. Wilson, D. Henderson, T. Tautges, M. Wang, C. Martin, J. Blanchard

8

UW Developed CAD/MCNP Coupling Approach to Model ARIES-CS for Nuclear Assessment

• Only viable approach for ARIES-CS 3-D neutronics modeling.

• Geometry and ray tracing in CAD; radiation transport physics in MCNPX.

• This unique, superior approach gained international support.

• Ongoing effort to benchmark it against other approaches developed abroad

(in Germany, China, and Japan).

• DOE funded UW to apply it to ITER - relatively simple problem.

CAD geometry engine Monte Carlo

methodRay object intersection

CAD based Monte Carlo Method

CAD geometry file Neutronics

input file

Page 9: ARIES-CS Radial Build Definition and Nuclear System Characteristics L. El-Guebaly, P. Wilson, D. Henderson, T. Tautges, M. Wang, C. Martin, J. Blanchard

9

3-D Neutron Wall Loading ProfileUsing CAD/MCNP Coupling Approach

IB OB

– R = 8.25 m design.– Neutrons tallied in discrete bins:

– Toroidal angle divided every 7.5o.– Vertical height divided into 0.5 m segments.

– Peak ~3 MW/m2 at OB midplane of = 0o – Peak to average = 1.52

= 0

= 60

Peak

Page 10: ARIES-CS Radial Build Definition and Nuclear System Characteristics L. El-Guebaly, P. Wilson, D. Henderson, T. Tautges, M. Wang, C. Martin, J. Blanchard

10

Novel Shielding Approach Helps Achieve Compactness

Benefits:– Compact radial build at min – Small R and low Bmax

– Low COE.

Challenges:– Integration of shield-only and transition

zones with surrounding blanket.– Routing of coolants to shield-only zones.– Higher WC decay heat compared to FS.

WC Shield-only Zone(6.5% of FW area)

Transition Zone(13.5% of FW area)

Page 11: ARIES-CS Radial Build Definition and Nuclear System Characteristics L. El-Guebaly, P. Wilson, D. Henderson, T. Tautges, M. Wang, C. Martin, J. Blanchard

11

Toroidal / Radial Cross Section(R = 8.25 m )

| | WC-Shield only Zone (~6.5%)

Transition Region (~13.5%)

Nominal Blanket/shieldZone (~80%)

Plasma

Magnet

Vacuum Vessel

WC-Shield-II

WC-Shield-I

Blanket

FS-Shield

FWSOL

Back Wall

Gap

Non-uniformBlanket

LiPb & He Manifolds

4

17

5

28

35

28

5438

8

13

38

28

min =

119

cm

5 cm

Divertor System(10% of FW area)

Page 12: ARIES-CS Radial Build Definition and Nuclear System Characteristics L. El-Guebaly, P. Wilson, D. Henderson, T. Tautges, M. Wang, C. Martin, J. Blanchard

12

Radial Build Satisfies Design Requirements (3 MW/m2 peak )

||Thickness

(cm)

ShieldOnlyZone

@ min VV

Blanket

Shield

Magnet

WC

Shi

eld-

only

or

Tra

nsit

ion

Reg

ion

Manifolds

Thickness(cm)

Blanket/ShieldZone

> 181 cm

SO

L

Vac

uu

m V

esse

l

FS

Sh

ield

3.8

cm F

W

Gap

+ T

h. I

nsu

lato

r

Win

din

g P

ack

Pla

sma

5 >2 ≥228 312.228

Coi

l Cas

e &

In

sula

tor

5 cm

BW

Ext

ern

al S

tru

ctu

re

10

25 cmBreeding

Zone-I

25 cmBreeding Zone-II

0.5 cmSiC Insert

1.5 cm FS/He

1.5

cm F

S /H

e

63| | 35

Man

ifol

ds

SO

L

Vac

uu

m V

esse

l

Bac

k W

all

Gap

Gap

+ T

h. I

nsu

lato

r

Coi

l Cas

e &

In

sula

tor

Win

din

g P

ack

Pla

sma

5 17

|

5

FW

Ext

ern

al S

tru

ctu

re

1.5 cm FS/He

WC

Sh

ield

-I(r

epla

cea b

l e)

38

WC

Sh

ield

-II

(per

man

ent)

min = 119 cm

28 2

Gap

2

Replaceable | Permanent Components

Page 13: ARIES-CS Radial Build Definition and Nuclear System Characteristics L. El-Guebaly, P. Wilson, D. Henderson, T. Tautges, M. Wang, C. Martin, J. Blanchard

13

Blanket Design Meets Breeding Requirement

• Local TBR approaches 1.3• 3-D analysis confirmed 1-D local TBR estimate for full blanket coverage.• Uniform and non-uniform blankets sized to provide 1.1 overall TBR based

on 1-D results combined with blanket coverage. To be confirmed with detailed 3-D model.

0.0

0.5

1.0

1.5

0 20 40 60 80

Thickness of Breeding Zone (cm)

3.8cm He-Cooled FWHe-Cooled FS-Shield

FullBlanket

Page 14: ARIES-CS Radial Build Definition and Nuclear System Characteristics L. El-Guebaly, P. Wilson, D. Henderson, T. Tautges, M. Wang, C. Martin, J. Blanchard

14

Preliminary 3-D Results Using CAD/MCNP Coupling Approach

Model* 1-D 3-D

Local TBR 1.285 1.316 ± 0.61%

Energy multiplication (Mn) 1.14 1.143 ± 0.49%

Peak dpa rate (dpa/FPY) 40 39.4 ± 4.58%

FW/B lifetime (FPY) 5 5.08 ± 4.58%

Nuclear heating (MW):FW 156 145.03 ±1.33%Blanket 1572 1585.03 ±1.52%Back wall 13 9.75 ± 6.45%Shield 71 62.94 ± 2.73%Manifolds 18 19.16 ± 5.49%Total 1830 1821.9 ± 0.49%

____________________________* Homogenized components. Uniform blanket everywhere. No divertor. No penetrations. No gaps.

Future 3-D analysis will include blanket variation, divertor system and penetrations to confirm 1.1 overall TBR and Mn.

Page 15: ARIES-CS Radial Build Definition and Nuclear System Characteristics L. El-Guebaly, P. Wilson, D. Henderson, T. Tautges, M. Wang, C. Martin, J. Blanchard

15

He Access Tubes Raise Streaming Concern

||Thickness

(cm)

ShieldOnlyZone

@ min VV

Blanket

Shield

Magnet

WC

Shi

eld-

only

or

Tra

nsit

ion

Reg

ion

Manifolds

Thickness(cm)

Blanket/ShieldZone

> 181 cm

SO

L

Vac

uu

m V

esse

l

FS

Sh

ield

3.8

cm F

W

Gap

+ T

h. I

nsu

lato

r

Win

din

g P

ack

Pla

sma

5 ? ≥228 302.228

Coi

l Cas

e &

In

sula

tor

5 cm

BW

Ext

ern

al S

tru

ctu

re

10

25 cmBreeding

Zone-I

25 cmBreeding Zone-II

0.5 cmSiC Insert

1.5 cm FS/He

1.5

cm F

S /H

e

63| | 35

Man

ifol

ds

Loc

al S

hie

ld

He Tube(32 cm ID)

SO

L

Vac

uu

m V

esse

l

Bac

k W

all

Gap

Gap

+ T

h. I

nsu

lato

r

Coi

l Cas

e &

In

sula

tor

Win

din

g P

ack

Pla

sma

5 17

|

5

FW

Ext

ern

al S

tru

ctu

re

1.5 cm FS/He

WC

Sh

ield

-I(r

epla

cea b

l e)

38

WC

Sh

ield

-II

(per

man

ent)

min = 119 cm

28 2

Page 16: ARIES-CS Radial Build Definition and Nuclear System Characteristics L. El-Guebaly, P. Wilson, D. Henderson, T. Tautges, M. Wang, C. Martin, J. Blanchard

16

Local Shield Helps Solve Neutron Streaming Problem

Pla

s ma

Ba c

k W

all

FW

/Bla

nk

et Shie

ld

Man

ifol

ds

VV

Mag

ne t

He Access Tube

Loc

al S

hiel

d

0

10

20

30

40

No TubeI-D

Limit

2-D with 20 cm Local Shield

2-D

No Local Shield

with TubeOngoing 3-D analysis will optimize dimension of local shield

Hot spots at VV and magnet

Page 17: ARIES-CS Radial Build Definition and Nuclear System Characteristics L. El-Guebaly, P. Wilson, D. Henderson, T. Tautges, M. Wang, C. Martin, J. Blanchard

17

Key Design Parameters for Economic Analysis

Integral system analysis will assess impact ofmin, Mn, and th on COE

LiPb/FS/He LiPb/SiC(reference) (backup)

min 1.19 1.14

Overall TBR 1.1 1.1

Energy Multiplication (Mn) 1.14 1.1

Thermal Efficiency (th) 40-45%* 55-63%*

FW Lifetime (FPY) 5 6

System Availability ~85% ~85%

__________* Depending on peak .

Page 18: ARIES-CS Radial Build Definition and Nuclear System Characteristics L. El-Guebaly, P. Wilson, D. Henderson, T. Tautges, M. Wang, C. Martin, J. Blanchard

18

Activation Assessment

• Main concerns:

– Decay heat of FS and WC components.

– Thermal response of blanket/shield during LOCA/LOFA.

– Waste classification:- Low or high level waste?

-Any cleared metal?

– Radwaste stream.

Page 19: ARIES-CS Radial Build Definition and Nuclear System Characteristics L. El-Guebaly, P. Wilson, D. Henderson, T. Tautges, M. Wang, C. Martin, J. Blanchard

19

Decay Heat

WC decay heat dominates at 3 h after shutdown

102

103

104

105

106

100 101 102 103 104 105 106 107

Time After Shutdown (s)

1h 1d 1w

FS of Blanket-I

FWWC Shield-I

LiPb

Page 20: ARIES-CS Radial Build Definition and Nuclear System Characteristics L. El-Guebaly, P. Wilson, D. Henderson, T. Tautges, M. Wang, C. Martin, J. Blanchard

20

Thermal Response duringLOCA/LOFA Event

• 3-coolant system rare LOCA/LOFA event (< 10-8/y) • Severe accident scenario: He and LiPb LOCA in all blanket/shield modules

& water LOFA in VV.• For blanket, FW temperature remains below 740 oC limit.• WC shield modules may need to be replaced. More realistic accident scenario

will be assessed.

Nominal Blanket/ShieldTmax ~ 711 oC

Shield-only Zone

Tmax ~ 1060 oC

740 C temp limit

1 s 1 m 1 h 1 d 1 mo

740 C temp limit

1 s 1 m 1 h 1 d 1 mo

Page 21: ARIES-CS Radial Build Definition and Nuclear System Characteristics L. El-Guebaly, P. Wilson, D. Henderson, T. Tautges, M. Wang, C. Martin, J. Blanchard

21

Waste Management Approach

• Options:– Disposal in LLW or HLW repositories– Recycling – reuse within nuclear facilities– Clearing – release to commercial market, if CI < 1.

• Repository capacity is limited:– Recycling should be top-level requirement for fusion

power plants– Transmute long-lived radioisotopes in special module– Clear majority of activated materials to minimize waste

volume.

Page 22: ARIES-CS Radial Build Definition and Nuclear System Characteristics L. El-Guebaly, P. Wilson, D. Henderson, T. Tautges, M. Wang, C. Martin, J. Blanchard

22

ARIES-CS Generates Only Low-Level Waste

WDRReplaceable Components:

FW/Blanket-I 0.4WC-Shield-I 0.9

Permanent Components:WC-Shield-II 0.3FS Shield 0.7Vacuum Vessel 0.05Magnet < 1Confinement building << 0.1

LLW (WDR < 1) qualifies for near-surface disposal or, preferably, recycling

Page 23: ARIES-CS Radial Build Definition and Nuclear System Characteristics L. El-Guebaly, P. Wilson, D. Henderson, T. Tautges, M. Wang, C. Martin, J. Blanchard

23

Majority of Waste (74%) can be Cleared from Regulatory Control

0

2000

4000

6000

8000

Blanket BuildingShield/VV Magnet

14%

5% 7%

74%

Dispose or Recycle

Clear10-1

101

103

105

107

109

1011

100 102 104 106 108 1010

Time After Shutdown (s)

1h 1d1y

Shield

Limit 100y

Blanket

Vacuum Vessel

Magnet

Building

In-vessel components cannot be cleared

Page 24: ARIES-CS Radial Build Definition and Nuclear System Characteristics L. El-Guebaly, P. Wilson, D. Henderson, T. Tautges, M. Wang, C. Martin, J. Blanchard

24

Building Constituents can be Cleared 1-4 y after Plant Decommissioning

Building composition: 15% Mild Steel, 85% Concrete

10-4

10-2

100

102

104

100 102 104 106 108 1010

Time After Shutdown (s)

1h 1d

IAEA

Limit

100y

US

InnermostSegmentMild Steel

3.5 y

10-4

10-3

10-2

10-1

100

101

102

103

104

100 102 104 106 108 1010

Time After Shutdown (s)

1h 1d1.3 y

IAEA

Limit

100y

US

InnermostSegmentConcrete

Page 25: ARIES-CS Radial Build Definition and Nuclear System Characteristics L. El-Guebaly, P. Wilson, D. Henderson, T. Tautges, M. Wang, C. Martin, J. Blanchard

25

Stellarators Generate Large Radwaste Compared to Tokamaks

Means to reduce ARIES-CS radwaste are being pursued(more compact machine with less coil support and bucking structures)

FW

BackWall

Blanket

Shield

CoilStructure Manifolds

V V

WP

BuckingCylinder

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

ARIES - I III II IV RS ST ATSPPS CS

SiCSiC

SiC

V V

V

FS

FS(D-

3He)

FS

Stellarators not compacted, no replacements

Page 26: ARIES-CS Radial Build Definition and Nuclear System Characteristics L. El-Guebaly, P. Wilson, D. Henderson, T. Tautges, M. Wang, C. Martin, J. Blanchard

26

Well Optimized Radial Build Contributed to Compactness of ARIES-CS

Over past 25 y, stellarator major radius more than halved by advanced physics and technology, dropping from 24 m for UWTOR-M to 7-8 m for ARIES-CS,

approaching R of advanced tokamaks.

UWTOR-M24 m

0 5 10 15 20 25

2

4

6

8

m

Average Major Radius (m)

ASRA-6C20 m

HSR-G18 m

SPPS14 mFFHR-J

10 m

ARIES-CS

ARIES-STSpherical Torus

3.2 m

ARIES-ATTokamak

5.2 m

Stellarators||

7 m 8.25 m

198219872000199620002005

Page 27: ARIES-CS Radial Build Definition and Nuclear System Characteristics L. El-Guebaly, P. Wilson, D. Henderson, T. Tautges, M. Wang, C. Martin, J. Blanchard

27

Concluding Remarks

• Novel shielding approach developed for ARIES-CS. Ongoing study is assessing benefits and addressing challenges.

• CAD/MCNP coupling approach developed specifically for ARIES-CS 3-D neutronics modeling.

• Combination of shield-only zones and non-uniform blanket presents best option for ARIES-CS.

• Proposed radial build satisfies design requirements.

• No major activation problems identified for ARIES-CS.

• At present, ongoing ARIES-CS study is examining more compact design (R < 8 m) that needs further assessment.

Page 28: ARIES-CS Radial Build Definition and Nuclear System Characteristics L. El-Guebaly, P. Wilson, D. Henderson, T. Tautges, M. Wang, C. Martin, J. Blanchard

28

ARIES-CS Publications

L. El-Guebaly, R. Raffray, S. Malang, J. Lyon, and L.P. Ku, “Benefits of Radial Build Minimization and Requirements Imposed on ARIES-CS Stellarator Design,” Fusion Science & Technology, 47, No. 3, 432 (2005).

L. El-Guebaly, P. Wilson, and D. Paige, “Initial Activation Assessment of ARIES Compact Stellarator Power Plant,” Fusion Science & Technology, 47, No. 3, 440 (2005).

M. Wang, D. Henderson, T. Tautges, L. El-Guebaly, and X. Wang, “Three -Dimensional Modeling of Complex Fusion Devices Using CAD-MCNP Interface,” Fusion Science & Technology, 47, No. 4, 1079 (2005).

L. El-Guebaly, P. Wilson, and D. Paige, “Status of US, EU, and IAEA Clearance Standards and Estimates of Fusion Radwaste Classifications,” University of Wisconsin Fusion Technology Institute Report, UWFDM-1231 (December 2004).

L. El-Guebaly, P. Wilson, and D. Paige, “Evolution of Clearance Standards and Implications for Radwaste Management of Fusion Power Plants,” Journal of Fusion Science & Technology, 49, 62-73 (2006).

M. Zucchetti, L. El-Guebaly, R. Forrest, T. Marshall, N. Taylor, K. Tobita, “The Feasibility of Recycling and Clearance of Active Materials from Fusion Power Plants,” Submitted to ICFRM-12 conference at Santa Barbara (Dec 4-9, 2005).

L. El-Guebaly, R. Forrest, T. Marshall, N. Taylor, K. Tobita, M. Zucchetti, “Current Challenges Facing Recycling and Clearance of Fusion Radioactive Materials,” University of Wisconsin Fusion Technology Institute Report, UWFDM-1285. Available at: http://fti.neep.wisc.edu/pdf/fdm1285.pdf

L. El-Guebaly, “Managing Fusion High Level Waste – a Strategy for Burning the Long-Lived Products in Fusion Devices,” Fusion Engineering and Design. Also, University of Wisconsin Fusion Technology Institute Report, UWFDM-1270. Available at: http://fti.neep.wisc.edu/pdf/fdm1270.pdf

R. Raffray, L. El-Guebaly, S. Malang, and X. Wang, “Attractive Design Approaches for a Compact Stellarator Power Plant” Fusion Science & Technology, 47, No. 3, 422 (2005).

J. Lyon, L.P. Ku, P. Garabedian, L. El-Guebaly, and L. Bromberg, “Optimization of Stellarator Reactor Parameters,” Fusion Science & Technology, 47, No. 3, 4414 (2005).

R. Raffray, S. Malang, L. El-Guebaly, and X. Wang, “Ceramic Breeder Blanket for ARIES-CS,” Fusion Science & Technology, 48, No. 3, 1068 (2005).