ar2ae045-ra1 room acoustics 1

115
ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM Acoustics Room Acoustics Room Acoustics Lecture AR2AE045-D1-1 Martin Tenpierik DR. IR. ARCH. MARTIN TENPIERIK / FACULTY OF ARCHITECTURE / BUILDING PHYSICS / AR2AE045 / 01 February 2012 / 1

Upload: petrica-ionut-banea

Post on 10-Jul-2016

222 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Acoustics

Room AcousticsRoom Acoustics

Lecture AR2AE045-D1-1

Martin Tenpierikp

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  1

Page 2: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Introduction Architectural Acoustics can be subdivided into

Room Acoustics / Spatial Acoustics

Traffic Noise and Urban Acoustics

Sound Insulation and Sound Proofing

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  2

Page 3: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Content This lecture focuses on Room Acoustics.

Room Acoustics includes acoustics of concert halls, theaters and auditoria.

But also:- Noise reduction in noisy spaces- Speech intelligibility in rooms / offices / schoolsSpeech intelligibility in rooms / offices / schools- Sound propagation through “Coupled Rooms”

Concert halls only once per 10 year ??Restaurant nearly every day

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  3

Page 4: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Room Acoustics

Sound Reflection in EnclosuresSound Reflection in Enclosures

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  4

Page 5: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Thousands of Rays!

longer path

later arrival

“reverberation"

direct sound

microphone

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  5

Page 6: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Measuring a Room

Past:- Use alarm pistol or clap your hands: “impulse”And listen or register on tapeAnd listen or register on tape

Nowadays:Use loudspeaker and microphone- Use loudspeaker and microphoneCalculate impulse response on computer

Different signals can be used:Different signals can be used:- Digital noise (white noise, pink noise)- Sweep signals

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  6

Page 7: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Impulse Response

An Example direct

echoecho reverberation

100 ms time axis00 s time axis

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  7

Page 8: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Our Ears + Brains

They are sensitive to Energy or Power

And are a logarithmic ‘device’And are a logarithmic device

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  8

Page 9: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Energy ~Pressure SquaredSquared

linear

direct

scale

0.3 stime axis

echo

time axis

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  9

Page 10: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Echogram

direct

echolog-

scale

0.6 stime axis

20 dB

time axis

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  10

Page 11: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Often drawn as

80direct

ude

[dB

]“reverberation"

60

Am

plitu

400 0 0 1 0 2 0 3 0 40.0 0.1 0.2 0.3 0.4

time [s]

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  11

Page 12: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Backward Integration:

Schröder

1 stime

20 dB

time

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  12

Page 13: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Reverberation Time:

Sabine’s Definition (1900)

reverberation time T

(1900) 60 dB decreasedraw straight line

1 stimetime

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  13

Page 14: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Example: Reverberation time

Reverberation in a room

T = 0 6 s in a small roomtime T = 0.6 s in a small room

T = 1.0 s in a small room

T = 2.0 s in a big room

T = 2.5 s in a big room

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  14

Page 15: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Reverberation Time:

From the energy balance of a room, Sabine derived an equation for the reverberation time as:

Sabine’s Definition (1900) 0

55.3 0.1616

V V VTc A A A

(1900)

c0 = speed of sound wave in air (=340 m/s)

l f ( 3)V = volume of room (m3)A = total absorption in room (m2 sabin) = sound absorption coefficient of a surface (-)1

n

i ii

Sp ( )

S = area of a surface (m2)

This equation can be derived from the energy balance of the

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  15

This equation can be derived from the energy balance of the room in case of a diffuse sound field.

Page 16: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Reverberation Time:

Energy balance equation of a room:

dEW V IA Derivation

W = power of sound source (W)

W V IAdt

V = volume of room (m3)E = energy density in room (J/m3)t ti ( )t = time (s)I = acoustic intensity in room (W/m2)A = total absorption in room (m2 Sabine)A total absorption in room (m Sabine)

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  16

Page 17: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Reverberation Time:

Reverberation time is the decay of acoustic energy after a source is switched off (thus W =0 W):

dDerivation 0 dEV IAdt

Since and in a diffuse field,2

2effp

Ec

2

4effp

Ic

the equation becomes

0c 04 c

22 0( )

( )4

effeff

dp t c Ap tdt V

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  17

Page 18: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Reverberation Time:

Assuming p2eff(t) = p2

eff(0) at t = 0, the solution to this equation becomes

Derivation 02 2 4( ) (0)

c AtV

eff effp t p e

or024

2

( )10 log 10log

(0)

c Ateff Vp t

e

which equals

2g g(0)effp

02 24

2 20 0

(0) ( )10log 10log 10log

c Ateff eff Vp p t

ep p

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  18

0 0

Page 19: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Reverberation Time:

Since T is defined for a decay of 60 dB, the term on the left hand side of the equation is 60 dB

Derivation 0460 10logc AT

Ve

or

6 55.3 55.34ln 10 V V VT 0 0 0

4 ln 10

tot

Tc A c A c S

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  19

Page 20: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Reverberation Time:

Sabine’s definition however gives problems for high average absorption coefficient. Eyring therefore derived another reverberation time as:

Eyring’s Definition (1930)

derived another reverberation time as:

55.3

V VT(1930)

d f d i i ( 340 / )

0 ln 1 6 ln 1 tot totc S S

c0 = speed of sound wave in air (=340 m/s)

V = volume of room (m3)Stot = total surface area in room (m2)Stot o a su ace a ea oo ( ) = average absorption coefficient (-)

Th d i i ill b d h

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  20

The derivation will not be presented here.

Page 21: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Reverberation Time

Sabine versus Eyring

55 3 VSabine:

55 3 V0

55.3

tot

VTc S

Eyring: 0

55.3ln 1

tot

VTc S

- Note the minus sign in Eyring’s equation

- Differences are small if is small

- Differences become bigger if approaches 1

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  21

gg pp

Page 22: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Reverberation Time:

Sabine’s and Eyring’s reverberation time:

Example Room size: 13 x 10 x 6 m3

Average sound absorption coefficient: 0.21

Total Absorption: 0.21 x 536 = 113 m2 sabin

55 3 78055.3 780 1.1340 0.21 536sabT s

55.3 780 1.0340 536 ln(1 0.21)eyrT s

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  22

Page 23: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

4

Sabine vs.Eyring

A room with V/Stot = 3 m

2 5

3

3,5m

e, T

[s]

1,5

2

2,5

rber

atio

n tim

0

0,5

1

Reve

r

SabineEyring

00 0,2 0,4 0,6 0,8 1

average absorption coefficient [-]

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  23

Page 24: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Reverberation Time:

60 dB??

Extrapolation only allowed if

1 stime

y

straight line!

time

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  24

Page 25: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Reverberation Time:

Sometimes therefore other intervals are used for characterising a room:

T i t l f 30 dBOther definitions

- T30 uses an interval of 30 dB multiply the found value with 2

- T15 uses an interval of 15 dB 15

multiply the found value with 4- EDT (Early Decay Time) uses the first 10 dB decay

multiply the found value with 6multiply the found value with 6

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  25

Page 26: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Reverberation Time

T is often used as a measure for acoustical quality

- 1.5 - 2.2 s for music- 0.8 - 1.0 s for speech- 0.8 s for an office (too high ??)( g )- 0.4 - 1.2 s in dwellings- 0.3 - 0.4 s maximum for the ‘hearing impaired’- 0.1 - 0.2 s is often disliked

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  26

Page 27: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Reverberation Time

Problem however is that T depends on volume:

- 0.4 s for a living room

- is 1.8 s for a sports facility if scaled-up

Therefore a better measure is needed:Therefore a better measure is needed:- STI (Speech Transmission Index): from 0 to 1;- C50 , U50 (clarity): from -15 dB to +15 dB;- average (average absorption coefficient): 0 to 1

ll l dStill, T is most commonly used.

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  27

Page 28: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Room Acoustics

Influence of Sound Absorbing MaterialsInfluence of Sound Absorbing Materials

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  28

Page 29: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOMabsorbed + transmitted

Absorbing Surface absorbing material

sound sound

microphone

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  29

Page 30: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Increasing Absorption

80 Multiple reflections:Direct sound not affected

Decrease of reverberation time ud

e [d

B]

Multiple reflections:

extra energy loss

time60

Am

plitu

400 0 0 1 0 2 0 3 0 40.0 0.1 0.2 0.3 0.4

time [s]

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  30

Page 31: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Speech Intelligibility and Musical Clarity 80Musical Clarity

Boundary:50 ms: Speech ud

e [d

B]

50 ms: Speech80 ms: Music 60

Am

plitu

400 0 0 1 0 2 0 3 0 40.0 0.1 0.2 0.3 0.4

time [s]

early: energy increase late: disturbing noise

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  31

Page 32: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Increasing Absorption

80However, total energy

ude

[dB

] Is reduced

60

Am

plitu

400 0 0 1 0 2 0 3 0 4

Ratio of early to late increases

0.0 0.1 0.2 0.3 0.4time [s]

early: energy increase late: disturbing noise

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  32

Page 33: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Reverberation Time Revisited

Should we choose reverberation time as low as possible?

Revisited

Yes, reverberation decreases speech intelligibility

Maybe, but sound pressure level might get too low

No, people do not like anechoic music

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  33

Page 34: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Reverberation Time Revisited

Yes Maybe or No

RevisitedAcoustic design is a compromise!

E.g., a theatre is not the same as a concert hall.

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  34

Page 35: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Room Acoustics

Absorption MechanismAbsorption Mechanism

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  35

Page 36: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Types of Absorption

Three types of sound absorption are distinguished:

- Friction of molecules in porous material;

- Panel resonance (mass-spring system)

- Perforated panels: Helmholtz resonance + panel resonance

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  36

Page 37: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Types of Absorption:

transmissionFriction of Molecules

transmission

absorption

reflectionincident

abs. + transm. + refl. = incident

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  37

Page 38: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Types of Absorption:

Hole size (or specific flow resistance) is essential.

Friction of Molecules

Too open hardly any friction

OKOK

Too dense hardly any entrance

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  38

Page 39: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Types of Absorption:

Reflection at back wall reduces absorption…

Friction of Molecules

reflection at backsiderigid layer, like concrete

absorption material

reflectionincident reflectionincident

… but mostly needed as structure and for reducing

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  39

y gsound transmission.

Page 40: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Types of Absorption:

Absorption as a function of frequency

1.0laagdikte 4 cmLayer thickness 4 cm

Friction of Molecules

0 6

0.8ci

ent

g20 000 Ns/m4

Layer thickness 4 cmFlow resistance 20000 Ns/m4

0.4

0.6

sorp

tieco

effic

harmonics

0 0

0.2

abs

fundametalsspeech

harmonics

speech

0.050 100 200 400 800 1600 3150

frekwentie [Hz]

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  40

Page 41: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

1.0stromingsweerstand 20 000 Ns/m4

Types of Absorption:

Thickness of absorption layer is important as well

Flow resistance 20000 Ns/m4

0 6

0.8ci

ent

16

Friction of Molecules

Flow resistance 20000 Ns/m

0.4

0.6

sorp

tieco

effic

laagdikte 1 cm24

8

Layer thickness 1 cm

0 0

0.2

abs

Acoustic wall paper does not exist

Carpet needs to be thick

0.050 100 200 400 800 1600 3150

frekwentie [Hz]Modern plaster ??

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  41

Page 42: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Types of Absorption:

Paint layers or thin protective films cause shielding of the material from acoustic waves above the following frequency:

Panel Resonance

following frequency:

0 0 4102 2shield

cft t

th ifi ti i d (k / 2/ )

2 2f f f ft t

0c0 the specific acoustic impedance (kg/m2/s)

ftf the mass of the film (kg/m2)

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  42

Page 43: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Types of Absorption:

Absorption due to resonance of mass-spring system.

Panel Resonance

rigid layer, like concrete

thin panel(filled) cavitySPRING

MASS

reflectionincident

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  43

Page 44: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Types of Absorption:

Absorption highest near resonance frequency:

'1 60sPanel Resonance

1 602 0.6

tres

plate cav

sfm m a b d

with m the mass of the system (kg/m2)

mplate the mass of the plate (kg/m2)

s’t the stiffness of the spring (air layer) (N/m3)

dcav the thickness of the cavity (m)

a, b the dimensions of the plate (m)

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  44

Page 45: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Types of Absorption:

Absorption as a function of frequency

1.0laagdikte 4 cm

Panel Resonance

0 6

0.8ci

ent

g20 000 Ns/m4

0.4

0.6

sorp

tieco

effic

0 0

0.2

abs

0.050 100 200 400 800 1600 3150

frekwentie [Hz]

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  45

Page 46: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Types of Absorption:

Absorption due to resonance of mass-spring system.

Perforated Panels

rigid layer, like concrete

perforated panelporous absorber

reflectionincident

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  46

Page 47: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Types of Absorption:

Absorption highest near:

ePerforated Panels

54resplate cav

efd d

with e the degree of perforation (-)

dcav the thickness of the cavity (m)

dplate the thickness of the perforated plate (m)

e should be smaller than 30%

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  47

Page 48: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Types of Absorption:

Absorption as a function of frequency

1.0laagdikte 4 cm

Perforated Panels

0 6

0.8ci

ent

g20 000 Ns/m4

0.4

0.6

sorp

tieco

effic

0 0

0.2

abs

0.050 100 200 400 800 1600 3150

frekwentie [Hz]

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  48

Page 49: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Room Acoustics

Some Examples of Absorption MaterialsSome Examples of Absorption Materials

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  49

Page 50: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Examples of Absorbers:

Standard Office

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  50

© Lau Nijs

Page 51: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Examples of Absorbers:

Integrated Ceiling

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  51

© Lau Nijs

Page 52: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Examples of Absorbers:

Absorbing Plasters

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  52

© Lau Nijs

Page 53: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Examples of Absorbers:

Perforated Panels

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  53

© Lau Nijs

Page 54: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Examples of Absorbers:

Carpets

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  54

© Lau Nijs

Page 55: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Examples of Absorbers:

Panels

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  55

© D. Bankersen en L.M. Schaberg

Page 56: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Examples of Absorbers:

Plants??

Yes but youYes, but you need a lot of them

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  56

© Roby van Praag

Page 57: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Examples of Absorbers:

Baffles

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  57

© Lau Nijs

Page 58: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Room Acoustics

Sound Power LevelSound Power Level

Sound Pressure Level

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  58

Page 59: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Recapitulation from Previous Lectures

Several Sound Levels can be defined:

2p LecturesSound Pressure Level:

20

10 log effp

pL

p

W Sound Power Level:

0

10 logWWLW

and many more.

p0 = 2·10-5 Pa

W0 = 1·10-12 W

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  59

0

Page 60: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Recapitulation from Previous Lectures

Sound power is extremely low.

W WLLectures

0

10 logWWLW

100 10

W

W W

Example:

If the source has a sound power level of 80 dBre10-12

then the sound power equals 10-4 W.

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  60

Page 61: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

One Source in a Room

diffuse field

source

diffuse field

direct sound

microphone

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  61

Page 62: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Direct Sound Only

2 0 0c Wp

source

; 24eff directpr

direct sound

microphone

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  62

Page 63: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Diffuse Field

2 0 04 1c Wp ; 1eff diffusepA

microphonemicrophone

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  63

Page 64: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Addition of Sound Pressures

2 0 0; 24eff direct

c Wpr

2 0 0;

4 1eff diffusec WpA

Pressures

2 2 2; ; ;eff total eff direct eff diffusep p p

thus (Sabine-Franklin-Jäger theory)

2

4 1110 log4p WL L

A

2g

4p W r A

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  64

Page 65: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Addition of Sound Pressures

2 0 0 0 0; 2

4 14eff total

c W c Wpr A

Pressures

Divide by p02

2

; 0 0 0 02 2 2 20 0 0

4 14

eff totalp c W c Wp r p A p

Since p02 equals 0c0W0, this becomes

0 0 0

2

;2 20 0 0

4 14

eff totalp W Wp r W AW

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  65

0 0 04p r W AW

Page 66: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Addition of Sound Pressures

This can be rewritten as

2;

4 11ff t t lp W Pressures ;

2 20 0

14

eff totalp Wp W r A

Take the log on both side and multiply with 10

2 4 11p W ;

2 20 0

4 1110log 10log4

eff totalp Wp W r A

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  66

Page 67: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Sound pressure level according to

If we rewrite, we get

2 4 11ff t t lp W according to Sabine-Franklin-Jäger theory

;2 20 0

110log 10log 10log4

eff totalp Wp W r A

theory

This equals

4 11 2

4 1110 log4p WL L

r A

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  67

Page 68: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Reverberation Radius

The reverberation radius is defined as the distance from the source where both the direct and diffuse sound pressure are equal:sound pressure are equal:

2 2; ;eff direct eff diffusep p

and thus

16 1g

Ar

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  68

Page 69: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Example(given earlier)

Ceiling

S (m2)

130

0.5

A (m2)

65

Floor

Side wall left

Side wall right

130

78

78

0.1

0.1

0 2

13

7.8

15 6Side wall right

Front

Back

78

60

60

0.2

0.1

0.1

15.6

6

6

Totals 536 113.4

113.4 0.21536

Room

13 10 6 m3

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  69

Page 70: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

85

90

ExampleSound Pressure

Lecture room of 13 x 10 x 6 m3 and LW = 86 dB

70

75

80

85

[dB]

Pressure Level 0.02

0.050.100.20

50

55

60

65

SPL,

Lp

[

0.50

1.00 4 11

40

45

50

0 2 4 6 8 10 12

2

110 log4p WL L

r A

distance from source [m]

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  70

Page 71: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

85

90

ExampleSound Pressure

Lecture room of 13 x 10 x 6 m3 and LW = 86 dB

70

75

80

85

[dB]

Pressure Level 0.02

0.050.100.20

50

55

60

65

SPL,

Lp

[

0.50

1.00 4 11

High value is not necessarily a good room

40

45

50

0 2 4 6 8 10 12

2

110 log4p WL L

r A

High level means a lot of reverberation

distance from source [m]So again: compromise must be found

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  71

Page 72: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Sound Pressure Level with

According to Sab.-Fr.-Jäg. theory SPL reaches a constant level far from the sound source. However, SPL keeps decreasing with increasing distance fromLevel with

Michael Barron’s correction

SPL keeps decreasing with increasing distance from source. Therefore Barron made following correction

correction

2

1 4 0.04010 log exp4

p W

rL Lr A T

which can be written as

/ r mfp /

2

4 1110 log4

r mfp

p WL Lr A

4

tot

VmfpS

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  72

Page 73: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

85

90

ExampleSound Pressure

Lecture room of 13 x 10 x 6 m3 and LW = 86 dB

70

75

80

85

[dB]

Pressure Level: Sab-Fr-Jag

0.020.050.100.20

50

55

60

65

SPL,

Lp

[

0.50

1.00

40

45

50

0 2 4 6 8 10 12

distance from source [m]

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  73

Page 74: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

85

90

ExampleSound Pressure

Lecture room of 13 x 10 x 6 m3 and LW = 86 dB

70

75

80

85

[dB]

Pressure Level: Barron 0.02

0.050.100.20

50

55

60

65

SPL,

Lp

[

0.50

1.00

40

45

50

0 2 4 6 8 10 12

distance from source [m]

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  74

Page 75: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Room Acoustics

SpeechSpeech

Noise in Rooms

Multi-Source Situations

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  75

Page 76: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Wanted Speech + Noise

wanted speech receiver

wanted speech:Noise a ted speec

- heavily depends on direct sound,

- so room not very important

perceived noise:

noise source

- very often in diffuse field,

- so it depends on the room

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  76

Page 77: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Example: Speech with Noise

Reverberation chamber speech + radio

“Ik sta hier in de nagalmkamer op 1 m afstand van deNoise Ik sta hier in de nagalmkamer op 1 m afstand van de mikrofoon. Op 5 meter afstand van de mikrofoon bevindt zich een spelend radiootje. Kunt U mij nog verstaan?”

… Music …………………….

Translation: I am standing here in a reverberation chamber at a distance of 1 m from a microphone At 5 m from thisdistance of 1 m from a microphone. At 5 m from this

microphone a radio is playing. Can you still understand me?

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  77

Page 78: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Example: Speech with Noise

Anechoic room speech + radio

Noise“We bevinden ons in de dode kamer. Op 5 meter afstand van de mikrofoon staat een spelende radio; zelf sta ik op 1 m van de mikrofoon. U merkt wel dat de radio hier

i d hi d lijk i d i d l k ”minder hinderlijk is dan in de nagalmkamer.”

… Music …………………….

Translation: We are now in an anechoic room. At 5 m distance from the microphone a radio is playing; I myself am standing afrom the microphone a radio is playing; I myself am standing a 1 m distance from this microphone. You probably observe that the radio is less annoying than in the reverberation chamber.

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  78

Page 79: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Example: Speech with Noise

Living room speech + radio

Noise“Dit is een stukje tekst opgenomen in een huiskamer die een tikkeltje galmt. De spreker bevindt zich op 1 m van de mikrofoon; op 5 m staat een spelend radiootje. U

kt d t i d t d ij t k t l tmerkt dat, voor iemand met goede oren, mijn tekst wel te volgen is, maar aangenaam is anders, zeker als mijn tekst ook nog veel langer zou duren.”

… Music …………………….

Translation: This is a piece of text recorded in a living roomTranslation: This is a piece of text recorded in a living room which is slightly reverberant. The speaker is distanced 1 m from the microphone; At 5 m from this microphone is a radio. You observe that for someone with good ears my text is intelligible

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  79

observe that, for someone with good ears, my text is intelligible, though not pleasantly, particularly if there would be more text.

Page 80: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Example: Speech Levels

Vocal effort Measured at 1 m in front of mouth

Maximum .......................... 90 dB(A)Shouting ........................... 84Very Loud ......................... 78yLoud ................................. 72Raised Voice ...................... 66Normal .............................. 60Relaxed ............................. 54

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  80

Page 81: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Some Noise Levels

Some Noise Levels

Damage to the ears ....................... >80 dB(A)Normal speech at 1 m ................... 60

Sleep disturbance ........................ 40Difficult tasks at school or office .... 35-45Traffic noise ................................ 55-75Restaurant .................................. 55-85

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  81

Page 82: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Signal to Noise RatioS/N Wanted soundS/N

Noise

Difference between both levels is excellent first estimation

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  82

Page 83: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Noisy space Signal strength (= direct sound)

110 logL L 210 log4p WL L

r

n ‘noise’ sources with equal sound strength

4 1

4 110 log 10 logp WL L n

A

4 110 logp W

nL L

A

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  83

Page 84: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

S/N ratio Signal

110 logL L 210 log4p WL L

r

Noise

4 110 l

nL L

10 logp WL LA

S/N= Signal – Noise

Th ll ti f L

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  84

Thus a cancellation of LW

Page 85: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

S/N ratio Signal to noise ratio is then defined as

4 11 n 2

4 11/ 10 log 10 log4

nS N

r A

S/N depends on:- distance to wanted speaker r- distance to wanted speaker r- number of noise sources in the room n- total absorption (including guests) A- mean absorption coefficient

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  85

Page 86: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Speech Intelligibility

Minimum level for good ears S/N = -6Fair S/N = 0Good S/N =+6Good S/N +6

For a whole day at school, higher values required

Also for the hearing impaired S/N = +15 !!!!!

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  86

Page 87: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Example of a Restaurant

r n gem lbh Signal Noise S/N

1 10 0 1 13 10 6 59 0 68 3 9 31 10 0.1 13106 59.0 68.3 -9.3

The person speaking here is inaudible.

Yet, such spaces are still designed and built.

l l f d S/ 6Minimum level for good ears S/N = -6Fair S/N = 0Good S/N =+6

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  87

Page 88: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Ketelhuis BK-City

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  88

© Pau Sarquella Fabregas

Page 89: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Example of a Restaurant (1)

r n gem lbh Signal Noise S/N

1 10 0 1 13 10 6 59 0 68 3 9 31 10 0.1 13106 59.0 68.3 -9.3

0.5 10 0.1 13106 65.0 68.3 -3.3

0.25 10 0.1 13106 71.0 68.3 2.70.25 10 0.1 13106 71.0 68.3 2.7

Distance to source is an important factor.

l l f d S/ 6Minimum level for good ears S/N = -6Fair S/N = 0Good S/N =+6

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  89

Page 90: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Example of a Restaurant (2)

r n gem lbh Signal Noise S/N

1 1 0 1 13 10 6 59 0 58 3 0 71 1 0.1 13106 59.0 58.3 0.7

1 5 0.1 13106 59.0 65.3 -6.3

1 25 0.1 13106 59.0 72.3 -13.21 25 0.1 13106 59.0 72.3 13.2

Number of unwanted sources is important.

l l f d S/ 6Minimum level for good ears S/N = -6Fair S/N = 0Good S/N =+6

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  90

Page 91: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Example of a Restaurant (3)

r n gem lbh Signal Noise S/N

1 5 0 1 13 10 6 59 0 65 3 6 31 5 0.1 13106 59.0 65.3 -6.3

1 5 0.2 13106 59.0 61.3 -2.3

1 5 0.3 13106 59.0 59.4 -0.41 5 0.3 13106 59.0 59.4 0.4

Mean absorption coefficient is important.

l l f d S/ 6Minimum level for good ears S/N = -6Fair S/N = 0Good S/N =+6

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  91

Page 92: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Example of a Restaurant (4)

r n gem lbh Signal Noise S/N

1 5 0 2 6 5 5 3 59 0 67 8 8 81 5 0.2 6.553 59.0 67.8 -8.8

1 5 0.2 13106 59.0 61.7 -2.7

1 5 0.2 262012 59.0 55.5 3.51 5 0.2 262012 59.0 55.5 3.5

Total area is important as well.

l l f d S/ 6Minimum level for good ears S/N = -6Fair S/N = 0Good S/N =+6

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  92

Page 93: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

S/N ratio Lombard effect (1911)

People tend to talk louder in a reverberant space.

And the more people are present, the louder they speak.

However,

this effect is not reflected in the S/N ratio.

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  93

Page 94: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Room Acoustics

Auditorium Acoustics: Strength / LoudnessAuditorium Acoustics: Strength / Loudness

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  94

Page 95: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Strength / Loudness (1)

One measure often used to characterise auditoriums for music is strength, G.

It is defined as the amount of energy at a certain iti i th l ti t th t fposition in the room relative to the amount of

energy at a distance of 10 m from the source in an anechoic room.

2 ( )t

effp t dt0

2,10

0

10 log( )

t

A m

Gp t dt

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  95

0

Page 96: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Strength / Loudness (2)

G (dB) characterises the influence of the room on sound pressure level relative to an anechoic situationsituation.

It b ittIt can be written as

1 4(1 ) 2

2

( )410 log 1

r AG

24 10

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  96

Page 97: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Strength / Loudness (3)

At a large distance from the sound source (r >2rg) this can be approximated as

21 4(1 )

4(1 )410 log 10 log 31r AG

2

10 log 10 log 3114 10

GA

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  97

Page 98: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

30

ExampleLoudness / Strength

Concert Hall of 20 x 50 x 14 m3

15

20

25dB

]

Strength

0.02 0 05

too loud,headaches

5

10

15

Stre

ngth

, G [ 0.05

0.10 0.20

0 505.5 dB4 0 dB

-10

-5

00 10 20 30 40 50

S 0.50

1.00 too weak,inaudible

4.0 dB

10

distance from source [m]

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  98

Page 99: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Strength / Loudness (4)

According to this classical theory, the strength/loudness becomes constant at large distance from the sourcedistance from the source.

I lit G k d i if iIn reality G keeps decreasing if r increases.

A i h Mi h l B ’ ti liAgain here Michael Barron’s correction applies.

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  99

Page 100: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Concertgebouw Amsterdam

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  101

© Stylos

Page 101: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Room Acoustics

Auditorium AcousticsAuditorium Acoustics

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  102

Page 102: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Auditorium Acoustics

More Information on Auditoriums can be found in

More Information

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  103

© Lau Nijs

Page 103: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Auditorium Acoustics

This book contains 100 concert halls from all over the world.

Among these halls are ‘het Concertgebouw’ in A t d d ‘d D l ’ i R tt dAmsterdam and ‘de Doelen’ in Rotterdam.

The book also contains questionnaires among musicians and audience.

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  104

Page 104: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Concert Halls

Concertgebouw

More Information on Auditoriums can be found in

ConcertgebouwAmsterdam

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  105

Page 105: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Concert Halls

Doelen

More Information on Auditoriums can be found in

Doelen Rotterdam

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  106

Page 106: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Concert Halls

Doelen

Amsterdam versus Rotterdam

1888Doelen Rotterdam

year 1888

2037 seats

18780 318780 m3

year 1966

2242 seats

24070 m3

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  107

Page 107: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Auditorium Acoustics

Beranek uses among others 4 measures for characterising concert halls:

Parameters - Reverberation time

- Bass ratio

- Strength / Loudness

- Degree of diffusivity

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  108

Page 108: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Auditorium Acoustics

A concert hall does not contain much absorption from its own. Absorption mainly results from audience

Absorptionaudience.

K t ’ ti ti (‘D l ’)Kosten’s reveration equation (‘Doelen’):

VT 6 1.07

Tseated area

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  109

Page 109: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Auditorium Acoustics

Bass ratio is defined as a ratio of reverberation times at different frequencies:

Bass Ratio125 250

500 1000

T TBRT T

People tend to like that T is longer at lower f

500 1000

frequencies.

1.1 < BR < 1.45 for ‘short’ T (chamber music)

1.1 < BR < 1.25 for ‘long’ T (auditorium)

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  110

Page 110: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Auditorium Acoustics

Strength / Loudness has already been defined previously.

Strength / Loudness

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  111

Page 111: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Auditorium Acoustics

In a completely diffuse sound field a listener in the audience feels completely enveloped by the sound.

DiffusivityTo increase diffusivity use scattering elements with th i f l th i dit i ( 50 ?)the size of wave lengths in auditorium (…50 cm?)

h l d h k f h ’ (fl h ’ )This also reduces the risk of echo’s (flutter echo’s)

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  112

Page 112: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Auditorium Acoustics

Very often concert halls are built in a shoebox shape, like the ‘Musikverein’ in Vienna:

Shoebox Shape

- Reduces risk of errors

- More constant distribution of important parameters thacross the room

- Seats below a balcony often notorious for bad soundsound

- Risk of flutter echo’s between opposite walls

Other shapes are of course possible too.

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  113

Page 113: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Auditorium Acoustics

Two of Beranek’s parameters:

- Reverberation time, T: between 2.0 – 2.3 s

ParametersRevisited

- Strength / Loudness, G: between 4.0 and 5.5 dB

A simple Excel sheet can now be used as a first estimate.

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  114

Page 114: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

Auditorium Acoustics

With pencil and paper a good estimate of a concert hall can be made (70% ???)

Modern simulation software is an important tool (80% ???)(80% ???)

l d ll h l d l dFor large auditoriums still physical models are made and tested (90% ???)

The remaining 10% is pure psychology, PR and luck.

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  115

Page 115: AR2AE045-RA1 Room Acoustics 1

ROOM ACOUSTICS ROOM ACOUSTICS ROOM ACOUSTICS ROOM

That’s it for today!End

More information on room acoustics can be found here

htt //bk ij t / b L Nij (D t h l )•http://bk.nijsnet.com/ by Lau Nijs (Dutch only)

•“Concert and Opera Houses – How they sound” by L.L. BeranekL.L. Beranek

•“Auditorium Acoustics and Architectural Design” by M. Barron

DR. IR. ARCH. MARTIN  TENPIERIK  /  FACULTY OF ARCHITECTURE  /  BUILDING PHYSICS  /  AR2AE045  /  01 February 2012 /  116