applied natural sciences - porous mediahigh-rise syndrome in cats,whitney wo, mehlhaff cj. am vet...

38
Applied Natural Sciences Leo Pel email: [email protected] http://tiny.cc/3NAB0 Het basisvak Toegepaste Natuurwetenschappen http://www.phys.tue.nl/nfcmr/natuur/collegenatuur.html

Upload: others

Post on 18-Oct-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

  • Applied Natural Sciences

    Leo Pele‐mail: [email protected]://tiny.cc/3NAB0

    Het basisvak Toegepaste Natuurwetenschappen

    http://www.phys.tue.nl/nfcmr/natuur/collegenatuur.html

  • Copyright © 2012 Pearson Education Inc.

    PowerPoint® Lectures forUniversity Physics, Thirteenth Edition

    – Hugh D. Young and Roger A. Freedman

    Lectures by Wayne Anderson

    Chapter 5

    Applying Newton’s Laws

  • LEARNING GOALS

    • How to use Newton’s first law to solve problems

    involving the forces that act on a body in equilibrium.

    • How to use Newton’s second law to solve problems

    involving the forces that act on an accelerating body.

    • The nature of the different types of friction forces—static

    friction, kinetic friction, rolling friction, and fluid

    resistance—and how to solve problems that involve

    these forces.

    • How to solve problems involving the forces that act on a

    body moving along a circular path.

    3

  • Summary

    aF

    m

    ABBA FF

    1 th law: inertia

    2nd law: acceleration

    3th law: action = -reaction

    0 constant F v

    Free body diagram

    4

  • Content (part 1)

    The three laws of Newton

    Type of forces and properties

    Free body diagram

    Circular motion and netto force

    Friction

    5

  • Properties of friction

    Friction depends on the normal force

    Friction depends on the material properties

    6

  • Magnitude of the frictional force

    7

  • Magnitude of the frictional force

    8

  • Magnitude of the frictional force

    T = fs9

  • Magnitude of the frictional force

    10

  • Magnitude of the frictional force

    T = fs

    T = fs = μsn

    11

  • Magnitude of the frictional force

    T = fs fk= constant (< T)

    T = fs = μsn

    12

  • 13

  • Properties of friction

    Friction depends on the normal force

    Friction depends on the material properties

    Static friction variesbetween 0 and a maximum value (=μsN)

    14

  • http://phet.colorado.edu/en/simulation/ramp-forces-and-motion

    http://www.phys.tue.nl/nfcmr/natuur/

    ramp

    15

  • The static frictional force keeps an object from starting to move when a force is applied. The static frictional force has a maximumvalue, but may take on any value from zero to the maximum, depending on what is needed to keep the sum of forces zero.

    Static Friction

    16

  • Properties of friction

    Friction depends on the normal force

    Friction depends on the material properties

    Static friction variesbetween 0 and a maximum value (=μsN)

    s k

    Fs s N s: static friction coefficient

    Fk = k N k: kinetic friction coefficientinequality

    Please note: no vectors18

  • Static Friction

    19

  • Kinetic Friction

    Fpush fk = kn

    20

  • Friction force

    I push a crate at constant speed on a floor. I then decides to turn the crate, so that the crate with a two times lower surface is in contact with the floor. If I want to push the crate with the same speed on the same floor, I must exert a force that

    2. 2x as small.

    1. 2x as large.

    3. the same.

    Answer: 3. The frictional force is dependent on the normal force ( which remained the same), and the kinetic coefficient of friction (independent of the size of the area)

  • DEMO surface area does not matter

  • Example friction?

    Calculate the kinetic friction coefficient at constant speed going down

    Constant speed, a = 0fk = w sin n = w cos and : fk = μk n

    So: μk = fk/n = tan

    23

  • Watch for this common error

    A good “road sign” is to be sure that the normal force comes out 

    perpendicular to the surface. 

    24

  • Example friction?

    Calculate the acceleration for a kinetic friction coefficient

    w sin  – μk n = ma

    n = w cos 

    so: a = g (sin  – μk cos )

    fk

    25

  • 26

  • High-rise syndrome in cats,Whitney WO, Mehlhaff CJ.

    Am Vet Med Assoc, 1987 Dec 1;191(11):1399-403.

    In a 1987 study of 132 cats brought to a New YorkCity emergency veterinary clinic after falls fromhigh-rise buildings, 90% of treated cats survived andonly 37% needed emergency treatment to keepthem alive. One that fell 32 stories onto concretesuffered only a chipped tooth and a collapsed lungand was released after 48 hours.

    27

  • Terminal velocity

    Fluid resistance

    Cat 60 km/h : survives

    Human 120 km/h : dies

    28

  • Unbanked and banked curves

    The required horizontal force on the car to allow him to maintain the circular path is provided by the frictional force.

    What is the maximum speed for friction coefficient μ?

    29

  • Unbanked and banked curves

    The required horizontal force on the car to allow him to maintain the circular path is provided by the frictional force.

    What is the maximum speed for friction coefficient μ?

    1) Static friction 2) Dynamic friction

  • Unbanked and banked curves

    The required horizontal force on the car to allow him to maintain the circular path is provided by the frictional force.

    What is the maximum speed for friction coefficient μs?

    31

  • Calculation

    F ma

    so:

    0x x

    y

    F maF

    2vf mR

    n mg

    max sf n

    2

    maxmaxs s

    vmg m v gRR

    and:

    Ex: μs = 0.87, R = 230 m, dan

    vmax= 160 km/h (44m/s)

    32

  • 33

  • Unbanked and banked curves

    Here it is the horizontal component of the normal force.

    No friction (not required). What is required angle β at speed v?

    34

  • Calculation

    F ma

    so:

    0x x

    y

    F maF

    2

    sin

    cos

    vn mR

    n mg

    2

    tan vgR

    Ex: v = 88 km/h (25 m/s), R = 230 m, dan β = 15o.

    hence:

    35

  • Examples

    www.phys.tue.nl/nfcmr/natuur

    See chap 5

  • Summary

    38

  • Summary

    39