applied architectural structures: …faculty.arch.tamu.edu/media/cms_page_media/4350/notes23.pdf1...

9
1 F2012abn APPLIED ARCHITECTURAL STRUCTURES: STRUCTURAL ANALYSIS AND SYSTEMS ARCH 631 DR. ANNE NICHOLS FALL 2014 twenty three masonry construction Masonry Construction 1 Lecture 23 Applied Architectural Structures ARCH 631 lecture Bright Football Complex www.tamu.edu F2010abn Learning Evaluation Masonry Construction 2 Lecture 23 Architectural Structures III ARCH 631 F2009abn Masonry columns beams arches walls footings Masonry Construction 2 Lecture 24 Architectural Structures III ARCH 631 http://www.bluffton.edu www.archiplanet.org Masonry Construction 3 Lecture 26 Architectural Structures III ARCH 631 F2007abn solid, grouted, hollow unreinforced reinforced prestressing Masonry Construction

Upload: buidiep

Post on 05-Jul-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: APPLIED ARCHITECTURAL STRUCTURES: …faculty.arch.tamu.edu/media/cms_page_media/4350/notes23.pdf1 F2012abn APPLIED ARCHITECTURAL STRUCTURES: STRUCTURAL ANALYSIS AND SYSTEMS ARCH 631

1

F2012abn

APPLIED ARCHITECTURAL STRUCTURES:

STRUCTURAL ANALYSIS AND SYSTEMS

ARCH 631

DR. ANNE NICHOLS

FALL 2014

twenty three

masonry construction

Masonry Construction 1Lecture 23

Applied Architectural StructuresARCH 631

lecture

Bright Football Complexwww.tamu.edu

F2010abn

Learning Evaluation

Masonry Construction 2

Lecture 23

Architectural Structures III

ARCH 631

F2009abn

Masonry

• columns

• beams

• arches

• walls

• footings

Masonry Construction 2Lecture 24

Architectural Structures IIIARCH 631

http://www.bluffton.edu

www.archiplanet.org

Masonry Construction 3

Lecture 26

Architectural Structures III

ARCH 631

F2007abn

• solid, grouted, hollow

• unreinforced

• reinforced

• prestressing

Masonry Construction

Page 2: APPLIED ARCHITECTURAL STRUCTURES: …faculty.arch.tamu.edu/media/cms_page_media/4350/notes23.pdf1 F2012abn APPLIED ARCHITECTURAL STRUCTURES: STRUCTURAL ANALYSIS AND SYSTEMS ARCH 631

2

Masonry Construction 4

Lecture 26

Architectural Structures III

ARCH 631

F2007abn

Masonry Materials

• brick

• concrete masonry units

Masonry Construction 5

Lecture 26

Architectural Structures III

ARCH 631

F2007abn

Masonry Materials

• mortar

– water,

masonry cement,

sand, lime

– types:

• M higher strength – 2500 psi (ave.)

• S medium high strength – 1800 psi

• N medium strength – 750 psi

• O medium low strength – 350 psi

• K low strength – 75 psi

W

R

A

O

Masonry Construction 6

Lecture 26

Architectural Structures III

ARCH 631

F2007abn

Masonry Materials

• reinforcement

– deformed bars

– prestressing strand

– development length

– anchorage

– splices

– ties

• steel or composite

Masonry Construction 7

Lecture 26

Architectural Structures III

ARCH 631

F2007abn

Masonry Materials

• grout

– high slump concrete

– fills voids and fixes rebar

• prisms

– used to test strength, f′m

tmmortar

νmortar > νunit

tb

unit

tmmortar

νmortar > νunit

tb

unit

tmmortar

νmortar > νunit

tb

unit

Page 3: APPLIED ARCHITECTURAL STRUCTURES: …faculty.arch.tamu.edu/media/cms_page_media/4350/notes23.pdf1 F2012abn APPLIED ARCHITECTURAL STRUCTURES: STRUCTURAL ANALYSIS AND SYSTEMS ARCH 631

3

Masonry Construction 8

Lecture 26

Architectural Structures III

ARCH 631

F2007abn

Masonry Materials

• fire resistance– fire-resistive structural material

– details important to prevent leaks or cracks

– retains strength ifexposure not too long

• mortar and cmu’s dehydrate

• loses 30-60% after that

– no toxic fumes

– cover necessary to protect steel

Masonry Construction 9

Lecture 26

Architectural Structures III

ARCH 631

F2007abn

Masonry Materials

• moisture resistance – weathering index

for brick

– bond and detailing

– expansion or shrinking from water

• provide control joints

• parapets, corners, long walls

parapet with nocontrol joint

Masonry Construction 10

Lecture 26

Architectural Structures III

ARCH 631

F2007abn

Masonry Walls

– based on empirical requirements for

minimum wall thickness and height

• h/t < 25 (UBC 2105.2 h/t<35)

– wall thicknesses often increased by 4”/story

– bearing walls > 3-5 stories uneconomical,

steel or concrete frames used

– strength design limit states:

• serviceability: deflection

• ultimate: compression & tension

Masonry Construction 11

Lecture 26

Architectural Structures III

ARCH 631

F2007abn

e

Masonry Walls

• compression + bending

h

=

P

Me

P

S

M

A

P+

ab ff −ba ff +

S

M

I

Mcfb ==

A

Pfa =

virtual eccentricity

P

axial stress bending stress

M=Pe

combined

Page 4: APPLIED ARCHITECTURAL STRUCTURES: …faculty.arch.tamu.edu/media/cms_page_media/4350/notes23.pdf1 F2012abn APPLIED ARCHITECTURAL STRUCTURES: STRUCTURAL ANALYSIS AND SYSTEMS ARCH 631

4

Masonry Construction 12

Lecture 26

Architectural Structures III

ARCH 631

F2007abn

Masonry Walls

• equivalent eccentricity with lateral load

eoP

M V

P

w eoP

V

P

w

e1

P

Me1 =

virtual eccentricity

F2012abn

Masonry Walls

Masonry Construction 14Lecture 23

Applied Architectural StructuresARCH 631

tension normal to bed joints

tension parallel to bed joints

Not allowed in

MSJC code

strong units weak units

F2007abnMasonry Construction 14Lecture 26

Architectural Structures IIIARCH 631

Masonry Beam & Wall Design

• MSJC (ACI, ASCE, TMS)

– limit tensile stress in mortar

– working stress design (ASD)• linear stresses in masonry

• no tension in masonry whenreinforced

• elastic stress in steel < fy• additional compression in walls

– masonry strength = f’m

Masonry Construction 15

Lecture 26

Architectural Structures III

ARCH 631

F2007abn

Masonry Beam & Wall Design

• reinforcement increases capacity & ductility

Page 5: APPLIED ARCHITECTURAL STRUCTURES: …faculty.arch.tamu.edu/media/cms_page_media/4350/notes23.pdf1 F2012abn APPLIED ARCHITECTURAL STRUCTURES: STRUCTURAL ANALYSIS AND SYSTEMS ARCH 631

5

Masonry Construction 16

Lecture 26

Architectural Structures III

ARCH 631

F2007abn

Masonry Design

BIA Teknote 17 series

grout

unit

t

d n.a.

STRAIN STRESS

As

fm

kd

εs

M

Ts=Asfsfs/n

εm Cm=fmb(kd)/2

jd

bd

A s=ρ

• fs is not the yield stress

• fm is the stress in the masonry

F2012abn

Allowable Masonry Stresses

• tension - unreinforced only

Masonry Construction 18Lecture 23

Applied Architectural StructuresARCH 631

F2012abn

Allowable Masonry Stresses

Masonry Construction 19Lecture 23

Applied Architectural StructuresARCH 631

• flexure

– Fb = 1/3 f’m (unreinforced)

– Fb = 0.45 f’m (reinforced)

• shear, unreinforced masonry

– Fv = ≤ 120 psi

• shear, reinforced masonry

– M/Vd ≤ 0.25: Fv =

– M/Vd ≥ 1.0: Fv=

mf. ′51

mf. ′03

mf. ′02

F2009abn

Allowable Reinforcement Stress

• tension

a) Grade 40 or 50 Fs = 20 ksi

b) Grade 60 Fs = 24 ksi

c) Wire joint Fs = 30 ksi

• *no allowed increase by 1/3 for

combinations with wind & earthquake

– did before 2011 MSJC

Masonry Construction 19Lecture 24

Architectural Structures IIIARCH 631

Page 6: APPLIED ARCHITECTURAL STRUCTURES: …faculty.arch.tamu.edu/media/cms_page_media/4350/notes23.pdf1 F2012abn APPLIED ARCHITECTURAL STRUCTURES: STRUCTURAL ANALYSIS AND SYSTEMS ARCH 631

6

F2007abn

2

kdbffA mss =

Masonry Construction 20

Lecture 26

Architectural Structures III

ARCH 631

Reinforcement, Ms

grout

unit

t

d n.a.

As

Ts=Asfs

Cm=fmb(kd)/2

jd

kd

MSJC: Fs = 20 ksi, 24 ksi or 30 ksi by type

ΣF=0:

ΣM about Cm:

if fs=Fs (allowable) the moment capacity is limited by the steel

s2

sss jfρbdjdfAM ==

F2007abnMasonry Construction 20Lecture 26

Architectural Structures IIIARCH 631

Reinforcement, Mm

grout

unit

t

d n.a.

AsTs=Asfs

Cm=fmb(kd)/2

jd

kd

ΣF=0:

jkbdf5.0jd2

kdbfM 2

mmm ==

MSJC Fb =0.33f’m

2

kdbffA mss =

if fs=Fs (allowable) the moment capacity is limited by the steel

ΣM about Ts:

F2007abnMasonry Construction 21Lecture 26

Architectural Structures IIIARCH 631

Masonry Lintels

• distributed load

– triangular or trapezoidal

Masonry Construction 22Lecture 26

Architectural Structures IIIARCH 631

F2007abn

Strategy for RM Flexural Design

• to size section and find reinforcement

– find ρb knowing f’m and fy– size section for some ρ < ρb

• get k, j

• get b & d in nice units

– size reinforcement (bar size & #):

– check design:

sjF

Mbd

ρ=2 needs to be sized

for shear also

jdF

MA

s

s =

bb

sss

Fjkbd.

Mf

MjdFAM

<=

>=

250

Page 7: APPLIED ARCHITECTURAL STRUCTURES: …faculty.arch.tamu.edu/media/cms_page_media/4350/notes23.pdf1 F2012abn APPLIED ARCHITECTURAL STRUCTURES: STRUCTURAL ANALYSIS AND SYSTEMS ARCH 631

7

F2009abn

Ultimate Strength Design

• LRFD

• like reinforced concrete

• useful when beam shear is high

• improved inelastic model

– ex. earthquake loads

Masonry Construction 23Lecture 24

Architectural Structures IIIARCH 631

T

β1c

0.80f’m

C2

c1β

Masonry Construction 23Lecture 26

Architectural Structures IIIARCH 631

F2007abn

Masonry Walls

– one-way or two-way bending

– usually use hollow units (< 75% solid)

– reinforcement grouted

• into cells if hollow units

• between wythes if solid

– reinforcement usually at center

– reinforcement in compression ineffective

– avoid stirrups

– desirable in seismic zones

Masonry Construction 24Lecture 26

Architectural Structures IIIARCH 631

F2007abn

Masonry Walls

• axial force-moment

interaction diagram1≤+

b

b

a

a

F

f

F

f

F2012abn

Masonry Shear Walls

• bearing, bending, and shear

– compression increases resistance

unreinforced reinforced

– unreinforced stress limit 1.5 ≤ 120 psi

Masonry Construction 28Lecture 23

Applied Architectural StructuresARCH 631

v

nvn

v FA

Vor

bI

VQf ≤=

mf ′

Page 8: APPLIED ARCHITECTURAL STRUCTURES: …faculty.arch.tamu.edu/media/cms_page_media/4350/notes23.pdf1 F2012abn APPLIED ARCHITECTURAL STRUCTURES: STRUCTURAL ANALYSIS AND SYSTEMS ARCH 631

8

F2012abn

Masonry Shear Walls

• (and beams)

– reinforcement strength included:

– where

– stress limit depends on ratio of bending

moment to overturning moment: M/Vd

– spacing limits Masonry Construction 29Lecture 23

Applied Architectural StructuresARCH 631

n

mvmA

P.f

Vd

M..F 25075104

2

1+

−=

=

sA

dFA.F

nv

svvs 50

Fv = Fvm + Fvs

F2007abnMasonry Construction 26

Lecture 26

Architectural Structures III

ARCH 631

Masonry Shear Walls

• model as deep cantilever beam

– flexure reinforcement

– shear stirrups

d

Masonry Construction 26Lecture 26

Architectural Structures IIIARCH 631

F2007abn

Masonry Columns and Pilasters

• must be reinforced

Masonry Construction 27Lecture 26

Architectural Structures IIIARCH 631

F2007abn

Masonry Columns and Pilasters

• considered a column when b/t<3 and h/t>4

• slender is

– 8” one side

– h/t ≤ 25

• needs ties

• eccentricity

– 10% of side dimension required

– interaction diagrams like r/c

Page 9: APPLIED ARCHITECTURAL STRUCTURES: …faculty.arch.tamu.edu/media/cms_page_media/4350/notes23.pdf1 F2012abn APPLIED ARCHITECTURAL STRUCTURES: STRUCTURAL ANALYSIS AND SYSTEMS ARCH 631

9

Masonry Construction 28Lecture 26

Architectural Structures IIIARCH 631

F2007abn

Masonry Columns

– allowable axial load

h/r ≤ 99

h/r > 99

h = effective length

r = radius of gyration

An = effective area of masonry

Ast = effective area of column reinforcement

Fs = allowable compressive stress in column reinforcement

[ ]

−+′=

2

1401650250

r

hFA.Af.P sstnma

[ ]2

70650250

+′=

h

rFA.Af.P sstnma

(unreinforced Ast = 0)

F2009abn

Masonry Pilasters, Arches

• column in wall

– increase bearing area and stiffness

Masonry Construction 31Lecture 24

Architectural Structures IIIARCH 631

www.tamu.edu

Masonry Construction 30Lecture 26

Architectural Structures IIIARCH 631

F2007abn

Construction Supervision

• proper placement of allreinforcement

• prism construction

– masonry

– mortar

• hot/cold weatherprotection