applications des réseaux de neurones pour la reconnaissance des

105
Bearing monitoring: from modelling to experiments: feature selection for fault diagnosis Marc THOMAS, Professor in mechanical engineering ETS, Montreal 1 Surveillance 8 International Conference - October 20-21, 2015 Roanne Institute of Technology, France

Upload: doantruc

Post on 05-Jan-2017

224 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Applications des Réseaux de Neurones pour la reconnaissance des

Bearing monitoring:

from modelling to experiments:

feature selection for fault diagnosis

Marc THOMAS,

Professor in mechanical engineering

ETS, Montreal

1 Surveillance 8 International Conference - October 20-21, 2015

Roanne Institute of Technology, France

Page 2: Applications des Réseaux de Neurones pour la reconnaissance des

Outline • Introduction (ETS, Dynamo)

• Bearing models

• Defect severity

• Time indicators of defects

– Statistic indicators

– Shock indicators

• Shock Filter

• Minimum Entropy Deconvolution

• Peak Hold Down Sampling (low speed operation)

• Envelop

• Empirical Mode Decomposition (EMD-EEMD)

• Teager Kaiser Energy Operator (TKEO)

• Cyclostationnarity

2

Page 3: Applications des Réseaux de Neurones pour la reconnaissance des

Outline

• Frequency indicators

• Time (Scale)-Frequency indicators

– STFT

– Wavelet Paquet

• Application to electric current measurement

– Empirical Wavelet Transform (EWT)

• Complexity indicators

3

Page 4: Applications des Réseaux de Neurones pour la reconnaissance des

L’École de Technologie Supérieure

4

180 professors

360 staffs

6000 students

400 Ph.D. students

800 Masters

• 7 engineering programs (B.Ing.)

• 5 certificate programs

• 12 master programs (M. Sc. A.)

• 1 Ph. D. program

Page 5: Applications des Réseaux de Neurones pour la reconnaissance des

Dynamo Laboratory

Structural Heath Monitoring

Fatigue

Surveillance and Diagnostic

Process dynamics

Robotized welding

Structural Dynamics

Machinery Dynamics

Robotized grinding

Multi physic modeling of manufacturing process

Page 6: Applications des Réseaux de Neurones pour la reconnaissance des

6

Methodology for machinery

monitoring

Page 7: Applications des Réseaux de Neurones pour la reconnaissance des

Introduction

• In order to better understand the dynamic behavior of

mechanical components such as bearings subjected to

defects, it may be necessary to develop dynamic models.

• These models (after experimental calibration) allows for

evaluating the sensitivity and efficiency of features for

detecting faults both in time and frequency domains, before

to apply them experimentally.

• Various experimental applications of signal processing

methods are described.

7 Thorsen, O. V., and M. Dalva. 1999. « Failure identification and analysis for high-voltage induction motors in the petrochemical

industry ». Industry Applications, IEEE Transactions vol. 35, no 4, p. 810-818

Page 8: Applications des Réseaux de Neurones pour la reconnaissance des

8

TARGET

Develop a numerical simulator of bearing dynamics with localized defects to generate vibration responses according to all the functionning parameters .

Simulator

? ? ? ?

Bearing

parameters

Defect

parameters

working

Parameter s

Vibration

Responses

Page 9: Applications des Réseaux de Neurones pour la reconnaissance des

Theoretical, Discrete and FE models Theoretical

models based on

assumptions about

expected results

Example:

Assumption that

defect produces

amplitude and

phase modulations

with harmonics

Discrete models based

on simplified physical

behavior

Example: bearing model

Finite Elements models

Example: Continuous

bearing model

9

Page 10: Applications des Réseaux de Neurones pour la reconnaissance des

10

Outer

Ring

Inner

Ring

Fluid

Film

Fluid

Film

Ball

KOR KIR

KOF KIF

MOR M IR

M B

COF CIF

Discrete models of bearing in a Radial

Direction 3 D.O.F: Only

consider the

bearing

5 D.O.F.: Consider the housing,

bearing and shaft

20 D.O.F.: allows for

considering gyroscopic

effect (high speed

operations)

Page 11: Applications des Réseaux de Neurones pour la reconnaissance des

Defect on

outer race

Defect on ball Defect on

inner race

Simulation of bearing defects

11 S. Sassi, B. Badri, M. Thomas, (2007), A Numerical Model to Predict Damaged Bearing Vibrations,

Journal of Vibration and Control. vol. 13 no. 11, 1603-1628.

Page 12: Applications des Réseaux de Neurones pour la reconnaissance des

12

Loading Forces

Qi Qi

F

yi

a b

x z

y y

01

Nb

ii

QF

The equilibrium condition of the inner race

with the Nb rolling elements may be

written as follows

The bearing may be subjected to external forces with radial and axial

components yxFyFxFF rra

tan

Page 13: Applications des Réseaux de Neurones pour la reconnaissance des

13

Load Distribution

t

ε2

ψcos11max

i

iQQ

mim When :

0Qi

Elsewhere :

2 Ym

Q i Q max

e is the load distribution factor.

which is function of the axial and radial displacement components

t is a constant that depends on the contact nature.

e tg

r

a .1.21

The load applied on any rolling element

located at angle measured from the

maximum load direction Qmax, is given by :

i

Page 14: Applications des Réseaux de Neurones pour la reconnaissance des

14

The motion over the failed areas produces

impacts which result in shock pulses.

Impact Force During the Shock

Versus Defect Size-Ball Diameter Ratio

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.50

2

4

6

8

10

12

Defect Size / Ball Diameter

Static Eff

ort Magni

fication [

% ]

4

2

8

10

0

6

12

Defect Size / Ball Diameter

0.3 0.2 0.1 0.4 0.5 0.0

S

tati

c E

ffo

rt M

ag

nif

ica

tio

n

( %

)

V is the variation of speed before and after shock.

K is an impacting material coefficient

The strength of impact felt by the bearing components when the

ball is traversing a defect area depends on the relative speeds and

on the external load.

2

(1 )D SF F K V

Page 15: Applications des Réseaux de Neurones pour la reconnaissance des

15

Exemples of constant Shock pulses

generated by a defect

( a ) on Outer Race, ( b ) on Inner Race

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22

0

100

200

300

400

500

Time ( s )

Fo

rce (

N )

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

0

500

1000

1500

2000

2500

Time ( s )

Fo

rce

( N

)

Time ( s )

F

orc

e

( N

)

Page 16: Applications des Réseaux de Neurones pour la reconnaissance des

16

Geometric correction of the numerical

response

( a )

21

2

max

2

2

max

2 )(cos)(sin)(

RRR

Sensor

max

m :

principal

direction

O

Defective Ring ( b )

The model has been designed to generate a response according to a radial

line of maximum deformation (turning), whereas the response measured by

the sensor (fixed) is given according to a different radial line of measurement.

A correction must be added to the numerical response of the model to

correlate the numerical response with the response delivered by a fixed

sensor.

Page 17: Applications des Réseaux de Neurones pour la reconnaissance des

17

ddef

2

max2

1

AN BdfS

QVKrandomδ

Effects of Random Perturbations

KAN is a constant,

V is the relative slip speed between the ball and the race,

Qmax is the maximum loading value (applied on the most loaded

ball),

S is the ball/race elliptic contact surface,

f (ddef / Bd ) is a weighting polynomial function.

As the relative motion between the rolling elements and

the races is composed of rolling and slipping, friction-

induced vibration must be added in the total computed

response.

Friction-induced vibration produces random type vibration.

Page 18: Applications des Réseaux de Neurones pour la reconnaissance des

18

Effects of

Random Perturbations

Time ( s

)

( Total ) = ( impact ) + (random )

The relative movement between

elements = mixture of ROLLING and

SLIP

+

Page 19: Applications des Réseaux de Neurones pour la reconnaissance des

19

Motor Radial Force

Axial Force

Damaged Bearing

Dummy

Bearing

Flexible

Coupling

Calibration with experimental testing The test rig is composed of a shaft supported by two bearings driven by a

motor. The forces comes from an inertial wheel and an axial force.

Page 20: Applications des Réseaux de Neurones pour la reconnaissance des

20

Signals from defective rolling-element bearings available on site

http://csegroups.case.edu/bearingdatacenter/pages/apparatus-procedures

Test bench from Case western reserve

University: Bearing data center

Page 21: Applications des Réseaux de Neurones pour la reconnaissance des

21

Comparison of time responses (simulated and measured) Damage Size = 1270 m.

[ Frequency Rotation = 11.6 Hz ; Loading Amplitude = 1242 N ; Loading Orientation = 22 degrees ]

83 ms 12 ms

Time ( s )

Measured signal

Time ( s )

Simulated Signal

Page 22: Applications des Réseaux de Neurones pour la reconnaissance des

22

1xBPFO

2xBPFO

3xBPFO

Frequency ( Hz )

1xBPFO

2xBPFO

3xBPFO

Frequency ( Hz )

Measured

signal

Simulated

Signal

Comparison in Frequency Domain Damage Size = 1270 m on outer race

[ Frequency Rotation = 11.6 Hz ; Loading Amplitude = 1242 N ; Loading Orientation = 22

degrees ]

Page 23: Applications des Réseaux de Neurones pour la reconnaissance des

Signal Analysis

Vibration Signal Analysis Diagnostic

Wavelet Transform

Wavelet Packet

Transform

Empirical Wavelet

R.M.S.

Peak level

Crest factor

Kurtosis

Envelop

Shock filter

MED

Peak Hold Down Sampling

EMD (EEMD)

TKEO

Cyclostationnarity

Time

domain Frequency

domain

Time-Frequency

domain

Spectrum analysis

Envelop

FRF

Short-Time

Fourier

Transform

Time-Scale

domain

Complexity

Apen

LPZ

etc.

Page 24: Applications des Réseaux de Neurones pour la reconnaissance des

24

Time indicators of machinery

defects

Page 25: Applications des Réseaux de Neurones pour la reconnaissance des

25

RMS

peak

a

aCF

RMSaSF

a

peakaIF

a

Scalar indicators Peak

Redressed Average

Root Mean Square

Crest Factor

Kurtosis Shape Factor

Impulse Factor

1

1 N

k

k

a aN

Peak to Peak

max minPP a a 2

peak

PPa

1

1 N

k

k

a aN

Average

2

1

1 N

STD k

k

a a aN

N4

k

k 1

2

2

1

1 (a a)N

Ku1 N

k

k

a aN

N3

k

k 1

32

2

1

1 (a a)N

Sk

1 N

k

k

a aN

K-Factor

*K Peak RMS

Skewness

kNk1peak asupa

or

Standard Deviation

Page 26: Applications des Réseaux de Neurones pour la reconnaissance des

26

to analyze the sensitivity of fault

scalar indicators extracted from time

domain signals to bearing damage

manifested through an increase in

size and in the number of localized

defects.

Once calibrated, the aim of the simulator is :

Page 27: Applications des Réseaux de Neurones pour la reconnaissance des

27

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 -10

-5

0

5

10

Time ( s )

A (

m/s

2)

0 0.0

5

0.

1

0.1

5

0.

2

0.2

5

0.

3

0.3

5

0.

4

0.4

5

0.

5

-60

-40

-20

0

20

40

60

Time

(s)

A (

m/s

2)

0 0.0

5

0.

1

0.1

5

0.

2

0.2

5

0.

3

0.3

5

0.

4

0.4

5

0.

5

-100

-50

0

50

100

Time ( s

)

A (

m/s

2)

b) small defect of 0.55 mm

c) defect of 1.52 mm

a) healthy bearing

Peak 5.1 CF 3.8 SF 1.2

RMS 1.4 KU 3 IF 4.6

Vib

ration A

mplit

ude

( m

/s2 )

Peak 26.6 CF 6.4 SF 1.4

RMS 4.3 KU 10.2 IF 9.3

Peak 75.7 CF 7.2 SF 1.6

RMS 10.4 KU 15.8 IF 11.5

Evolution of vibration responses with defect sizes

Page 28: Applications des Réseaux de Neurones pour la reconnaissance des

28

0 0.5 1 1.5 2 2.5 3 0

50

100

150

200

250

300

350

400

450

500

Size Defect [ mm ]

Scala

r P

ara

mete

rs

RMS

Peak

Evolution of Scalar Parameters (Peak, RMS) according to the size of a defect on the Outer race

After calibration, the model allows for investigating the

sensitivity of features to damage size.

Page 29: Applications des Réseaux de Neurones pour la reconnaissance des

Design of experiments: 5 speeds, 3 forces, 4

defects, 3 repetitions= 180 experiments

29

Page 30: Applications des Réseaux de Neurones pour la reconnaissance des

30

Evolution of Scalar Parameters (Ku, CF, IF, SF) according to the size of a defect on the Outer race

0 0.5 1 1.5 2 2.5 3 0

2

4

6

8

10

12

14

16

18

Size Defect [ mm ]

Sc

ala

r P

ara

me

ters

Ku

C.F.

I.F.

S.F.

When the defect becomes

large, a decrease of all

features is observed

Ku and IF are indicators well

suited to detect a fault in the first

steps of degradation.

Page 31: Applications des Réseaux de Neurones pour la reconnaissance des

31

Comparison between Kurtosis values, for defects located on Outer and Inner Races

• When the defect is affecting the inner race, numerical simulation shows that the sensitivity of Kurtosis is less pronounced than when the defect is located on the outer race.

0 0.5 1 1.5 2 2.5 32

4

6

8

10

12

14

16

18

Size Defect [ mm ]

Sca

lar

Par

amet

ers

Kurt ( Outer Race )

Kurt ( Inner Race )

Page 32: Applications des Réseaux de Neurones pour la reconnaissance des

32

Effect of rotor speed

0

5

10

15

20

25

600 650 700 750 800 850 900 950 1000

Rpm

Scala

r am

plitu

de

Ku

IF

CF

SF

Numerical simulations show that the features are less sensitive at higher speeds

Page 33: Applications des Réseaux de Neurones pour la reconnaissance des

33

Bearing affected by multiple defects

• The numerical simulations show that all features decrease with the number of defects.

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6

Number of Defects on OR

Scala

r In

dic

ato

rs

Kurtosis

C.F.

I.F.

S.F.

Page 34: Applications des Réseaux de Neurones pour la reconnaissance des

34

Development of a new indicator based on Ku and RMS,

which always increases with the defect size .

It needs a RMS0 reference when healthy ( zone 1).

1.0

2.0

3.0

4.0

5.0

0 0.5 1 1.5 2 2.5 3

Defect Diameter [ mm ]

TA

LA

F

Null

slope

Zone

I

Zone

II

Zone

III

Zone

IV

TALAF

0

logRMS

RMSKuTALAF

Sassi S., Badri B. and Thomas M., 2008. Tracking surface degradation of ball bearings by means of new time domain scalar

descriptors, Internat. journal of COMADEM, ISSN1363-7681, 11 (3), 36-45

Page 35: Applications des Réseaux de Neurones pour la reconnaissance des

35

Detection of defect severity

There is a double impact: one at entry and one at the exit of the defect.

The time between both allows for detecting the defect size.

Ref: Singh S., Explicit dynamic finite element modelling of defective rolling

element bearing, 2014, U. Adelaide ( Au)

Experimental measurement

Defect size

Page 36: Applications des Réseaux de Neurones pour la reconnaissance des

The shock filters

• The Shock filter

• Minimum Entropy Deconvolution (MED)

36

Page 37: Applications des Réseaux de Neurones pour la reconnaissance des

37

TARGET of Shock Filter

Shock Filter

? ? ?

Random

vibration

(slip, friction)

Shocks

(defects) Harmonic

vibration

(unbalance,

misalignment)

Filtered

Vibration

Response

Time

Extract the shock response from the other sources of perturbation

Page 38: Applications des Réseaux de Neurones pour la reconnaissance des

38

The Shock filter At each sample (i) of the time signal, the Kurtosis of a window C centered on i

(i-n; i+n) is computed and compared to the ones calculated on windows located

to the left L (i-3n; i-n) and right R (i+n; i+3n) of the current sample (i).

Once the Kurtosis has

been evaluated for each of

the three windows, a

selection is conducted:

•If the energy of the central

window is greater than the

two others into the left and

right window, we declare

the presence of a shock

and the peak amplitude of

the signal at position (i) is

assigned to the shock

extractor.

•Otherwise, there is no

shock and the shock

extractor takes a null value.

Badri B., Thomas M. and Sassi S., July 2012. The envelop Shock detector: a new method to detect impulsive signals, International

journal of COMADEM.13 p.

Page 39: Applications des Réseaux de Neurones pour la reconnaissance des

Shock Detector (SD)

Introduction de la problématique

L’usinage et ses contraintes

L’usinage à haute vitesse, Particularités

État de l’art

Présentation du Broutement

Modélisation des broches

Monitoring des CNC

Capteurs

Suivi de l’usinage

Traitement de signal

Diagnostic intelligent

Objectifs

Modélisation

Simulation

Stabilité de l’usinage

Originalités

Condition de fonctionnement

Rotor et Palier

Effet gyroscopique

Transmissibilité

Effort de coupe

SIPVICORP

Quantification des VFD

Détection du broutement

Analyse Expérimentale

Régime permanent

Régime transitoire

Mesure en coupe

SipviCorp

Présentation des Articles

ESD

Étude du comportement des roulements dans les

Rotors à Haute vitesse

Spindle Bearings Simulator

Synthése et conclusion

Modélisation

Surveillance

Comportement à vide

Comportement en coupe

Perspective de développement.

Page 40: Applications des Réseaux de Neurones pour la reconnaissance des

40 0 0.1 0.2 0.3 0.4 0.5

-60

-40

-20

0

20

40

60

Réponse temporelle

Temps (s)

Am

plitu

de

SNR (Signal noise Ratio) = 92.398 %Nb. Choc/s = 78.5062

The Shock Filter

Page 41: Applications des Réseaux de Neurones pour la reconnaissance des

Evaluation of defect severity with SD signals Defect =0,18mm Defect =0,56mm SNR 82% SNR 63%

Comparing the RMS level of the filtered signal with the original signal gives an indication on the severity of damage.

Page 42: Applications des Réseaux de Neurones pour la reconnaissance des

Detection of multiple defects

2 shocks at 180o

Bearing SKF 1210 ETK9 operating at 720 RPM

with 2 defects on outer race:1mm @ 0deg and 0,8 mm @ 180deg

Original response

Page 43: Applications des Réseaux de Neurones pour la reconnaissance des

Original signal

SD Filtered

signal

1st shock signal

2nd shock signal

Identification of shock sources

Page 44: Applications des Réseaux de Neurones pour la reconnaissance des

Detection of defects by neural network

44

Three layers

5 Neurons into the hidden layer

Activation with log-Sigmoïde

Page 45: Applications des Réseaux de Neurones pour la reconnaissance des

Identification of damage severity by neural network

Page 46: Applications des Réseaux de Neurones pour la reconnaissance des

• A minimum entropy is aimed to reduce the disorder.

• Minimum Entropy Deconvolution: The method allows for highlighting

the shocks present into the original signal

Maximizing the Kurtosis with the Minimum

Entropy Deconvolution ( MED)

June-Yule Lee et A.K. Nandi, Extraction of impacting signals using blind deconvolution. Journal of Sound and

Vibration 1999. 232(5): p. 945-962.

Endo H., Randall R.B. (2007), Application of a minimum entropy deconvolution filter to enhance Autoregressive

model based gear tooth fault detection technique, Mechanical Systems and Signal processing, 21, 906,919.

Tomasz B. Nader S. (2012), Fault Detection Enhancement in Rolling Element Bearings Using the Minimum

Entropy Deconvolution, Archives of Acoustics, Vol 37, No. 2, pp. 131-141.

We must optimize the filter in order to maximize

the Kurtosis:

Maximise The

Kurtosis of x(n)

Page 47: Applications des Réseaux de Neurones pour la reconnaissance des

When using MED, the filter size and number of

iterations must be selected

In this example, N=128

with 20 itérations was

selected

Page 48: Applications des Réseaux de Neurones pour la reconnaissance des

Tian Ran Lin, Eric Kim, Andy C.C. Tan. (2013) A practical signal processing approach for condition

monitoring of low speed machinery using Peak Hold Down Sample algorithm, MSSP 36, 256-270.

0 0.5 1 1.5 2

x 105

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Samples

Accele

rati

on

(m

m/s

²)

Application to low speed operations

• Peak Hold Down Sampling

help to reduce the length of signal by segmentation

In low speed operations, the periods are very long and the length of signals very big.

Page 49: Applications des Réseaux de Neurones pour la reconnaissance des

Bearing faults diagnosis using PHDS and MED when operating at low

speeds

• The method first uses MED to maximize the Kurtosis, and then uses the

PHDS to reduce the signal length. The enveloppe is then applied.

After MED

After PHDS Melki O., Kedadouche M., Badri B. and Thomas M. October 2014. Monitoring bearing operating at very low speeds. Proceedings of the

32e CMVA, Montreal, 14 p

Using directly PHDS is too much noisy. The signal needs to be previously unnoised.

Page 50: Applications des Réseaux de Neurones pour la reconnaissance des

20 40 60 80 100 120 1400

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5x 10

-3

Frequency (Hz)

Acce

lera

tio

n (

g)

BPFO = 7.7 Hz

20 40 60 80 100 120 1400

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5x 10

-3

Frequency (Hz)

Acc

eler

atio

n (

g) BPFO = 7.5 Hz

20 40 60 80 100 120 1400

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5x 10

-3

X: 12.3

Y: 0.0009106

Frequency (Hz)

Acce

lera

tio

n (

g)

BPFO=12.3Hz

20 40 60 80 100 120 1400

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5x 10

-3

Frequency (Hz)

Acc

eler

atio

n (g

)BPFO = 12.3 Hz

Experimental applications on test bench

Defect size 50 microns

A - PHDS B - MED +PHDS

B - MED +PHDS A - PHDS

60 RPM

100 RPM

Page 51: Applications des Réseaux de Neurones pour la reconnaissance des

Huang, N. E., Shen, Z., and Long, S. R., The Empirical Mode Decomposition and Hilbert Spectrum for Nonlinear and Non-Stationary Time

Series , Proc. R. Soc. London, Ser. (1998)

51

EMD (Empirical Mode Decomposition)

SIGNAL

UPPER Envelop:

U(t)

Lower

Envelop:(L(t)

Mean:

m(t)

EMD

The empirical mode decomposition

assumes that any real signal s(t) can

be divided into “a local average” m(t)

and “a strongly oscillating component”

h1(t) as follows:

1 i

i

s t h t m t h t r t

The mean of the upper and lower envelopes

is defined as:

( ) ( )

2

U t L tm t

Page 52: Applications des Réseaux de Neurones pour la reconnaissance des

EMD Method • The mean is subtracted from the signal, leading to the first

component, until it is the first Intrinsic Mode Function(IMF1):

IMF1 contains the highest frequency band.

• An IMF is a function respecting the following conditions:

The number of extrema and the number of zero crossings are either equal or

differ at most by 1;

The value of the moving average between the superior envelope (defined by

local maxima) and the inferior envelope (defined by local minima) is zero.

• Iterative steps: the same procedure is applied by removing IMF1 to

the signal, etc..

52

1 1

11 1 11

1 1 1 1k k k

d t s t m t

d t d t m t

IMF d t d t m t

1 1

2 1 2

1n n n

r t s t IMF t

r t r t IMF t

r t r t IMF t

Page 53: Applications des Réseaux de Neurones pour la reconnaissance des

IMFs Spectre of IMFs: from highest to lowest

Page 54: Applications des Réseaux de Neurones pour la reconnaissance des

54

Example: Simulated Signal of bearing defect

Resonance with modulation

frequencies at IMF2

Misalignment detected at IMF 7

The simulated signal (assumptions about expected results) contains:

• excitation at the resonance (2000 Hz) modulated by BPFO +

• unbalance (70 Hz)+

• misalignment (140 Hz)+

• noise (50%)

Unbalance detected at IMF8

Noise at IMF1

Page 55: Applications des Réseaux de Neurones pour la reconnaissance des

55

Mode mixing problem with EMD

  0.5cos(40 )  1

cos 8     2

6     3

x t t

x t t

x t t

1 2 3x t x t x t x t

Ensemble EMD

Example:

The EMD decomposition may give erroneous results

Page 56: Applications des Réseaux de Neurones pour la reconnaissance des

56

Usual EEMD

• The noise level to add

is unknown

• Usually 20% of the

RMS signal is arbitrary

selected

A noise must be added to the signal

0 200 400 600 800 1000 1200 1400 1600 1800 2000-0.2

0

0.2

0 200 400 600 800 1000 1200 1400 1600 1800 2000-0.2

0

0.2

0 200 400 600 800 1000 1200 1400 1600 1800 2000-0.1

0

0.1

0 200 400 600 800 1000 1200 1400 1600 1800 2000-0.1

0

0.1

0 200 400 600 800 1000 1200 1400 1600 1800 2000-0.5

0

0.5

0 200 400 600 800 1000 1200 1400 1600 1800 2000-0.5

0

0.5

0 200 400 600 800 1000 1200 1400 1600 1800 2000-1

0

1

0 200 400 600 800 1000 1200 1400 1600 1800 20000

5

0 200 400 600 800 1000 1200 1400 1600 1800 20000

0.5

1

Sample

IMF 1

IMF 2

IMF 3

IMF 4

IMF 5

IMF 6

IMF 7

IMF 8

IMF 9

Wu Z H and Huang N E. Ensemble empirical mode decomposition: a noise assisted data analysis method Adv. Adapt. Data Anal

(2009). 1 1–41

This method takes time

(>100 averages)

Page 57: Applications des Réseaux de Neurones pour la reconnaissance des

57

Optimum EEMD

1 11

2 2

1 11 1

( ( ) ( )( ( ) ( )( )

( ( ) ( )   ( ( ) ( )

k k k k

N

N

i

k

N

k k ki i

IMF i IMF IMF i IMFr k

IMF i IMF IMF i IMF

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Co

effi

cien

t o

f C

orr

elat

ion

(A)

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

2

3

4

5

7

9

1011

Level [L]

Nu

mb

er o

f IM

F (B)

Correlation ( IMF1 & IMF2 )

Correlation ( IMF2 & IMF3 )

Correlation ( IMF3 & IMF4 )

Correlation ( IMF4 & IMF5 )

L=6E-5 0 200 400 600 800 1000 1200 1400 1600 1800 2000-1

-0.5

0

0.5

1IMF 1

0 200 400 600 800 1000 1200 1400 1600 1800 20000

2

4

6

Sample

IMF 3

0 200 400 600 800 1000 1200 1400 1600 1800 2000-2

-1

0

1

2IMF 2

The correlation between each subsequent IMF is computed with

the noise level in order to find the optimal noise level.

M. Kedadouche, M. Thomas and A. Tahan. 2015. A comparative study between Empirical wavelet transforms (EWT) and Empirical

Mode Decomposition methods: Application to bearing defects , submitted to MSSP

The IMF (3) is identified in this case

Page 58: Applications des Réseaux de Neurones pour la reconnaissance des

Complementary Ensemble Empirical Mode

decomposition (CEEMD)

58

Yeh J. R., Shieh J. S. et Huang N. E., Complementary Ensemble Empirical Mode

Decomposition: A novel noise enhanced data analysis method, Advances in Adaptive

Data Analysis, 2 (2) (2010) 135-156.

Page 59: Applications des Réseaux de Neurones pour la reconnaissance des

59

Teager Kaiser Energy Operator (TKEO)

TKEO extracts the amplitude modulation and the frequency

modulation from the signal.

TKEO has a great time resolution since the operator only

needs three samples into the signal to be computed.

TKEO is very easy to implement efficiently.

Maragos, P., J. F. Kaiser et T. F. Quatieri. 1993. « On amplitude and frequency demodulation using energy operators ». Signal

Processing, IEEE Transactions on, vol. 41, no 4, p. 1532-1550.

Page 60: Applications des Réseaux de Neurones pour la reconnaissance des

Numerical application of TKEO

60

Fm=BPFO f1 f2 A B

100 Hz 1800 Hz 4000 Hz 0,1 0,8 Bad detection of BPFO

• The signal needs to be mono

component and must be previously

filtered.

• TKEO is very sensitive to noise

and the signal needs to be

previously unnoised

Sheen, Yuh-Tay. 2004. « A complex filter for vibration signal demodulation in bearing defect diagnosis ». Journal of Sound and

Vibration, vol. 276, no 1–2, p. 105-119.

Page 61: Applications des Réseaux de Neurones pour la reconnaissance des

61

Monitoring Machines by Using a Hybrid Method

Combining MED, EMD, and TKEO

MED EMD

IMF

1

IMF

2

IMF

3

IMF 4 IMF

5

IMF

6

IMF 7 IMF

8

IMF 9 IMF

10

IMF

11

0.86 0.53 0.16 0.22 0.17 0.12 0.07 0.06 0.04 0.03 0.01

M. Kedadouche, M. Thomas and A. Tahan, 21 april 2014. Monitoring bearing defects by using a method combining EMD, MED and

TKEO. Advances in Acoustics and Vibration., Vol 2014, ID 502080,10 p.

Multi-components and

noisy signal Denoising the signal

Selection of the most correlated IMF to the signal

TKEO of

IMF1

Correlation

Page 62: Applications des Réseaux de Neurones pour la reconnaissance des

62

D0 D1 D2

Experiments on test bench of bearing fault detection by mixing

MED, EMD, and TKEO from acoustic emission

Bearing W

Healthy 0

Defect 1 50 µm

Defect 2 100 µm

30

0 rp

m

60

0 rp

m

Page 63: Applications des Réseaux de Neurones pour la reconnaissance des

Envelope-Derivative Operator (EDO)

• The EDO is given by:

• For a discrete signal x(n), the EDO is defined in

discrete format by

where h(n) is the discrete Hilbert transform and

defined as h(n) = H[x(n)].

63

222)()()()()( nxHtxnxjHtxtx

)1()1()1()1(4

1)( 2222 nhnhnxnxtx

)1()1()1()1(2

1 nhnhnxnx

(6)

J.M.O. Toole, A. Temko and N. Stevenson, Assessing instantaneous energy in the EEG: a non-negative, frequency-weighted energy

operator, IEEE conference proceedings, (2014) 3288–3291.

Page 64: Applications des Réseaux de Neurones pour la reconnaissance des

4 experiments of EDO: No fault, 56, 104 and 152 microns

64

Amplitude at BPFO: 156 Hz

No fault 56 microns

104 microns 152 microns

Y. IMAOUCHEN, M. KEDADOUCHE, R. ALKAMA and M. THOMAS, The Envelope-Derivative Operator for Bearing Fault Detection,

Surveillance 8

Page 65: Applications des Réseaux de Neurones pour la reconnaissance des

65

Cyclostationnarity:

Computation of angular statistics

1. Data acquisition ( pre-recorded vibration signals)

2. Re sampling in the angular domain

3. Computation of the angular statistics

+

+

Périod 1 réalization

Angular statistics= angular mean, variance, power, Kurtosis 4) Angular analysis (FFT, Angle-frequency, etc.)

Lamraoui M., Thomas M., El Badaoui M. et Zaghbani I., Juin 2010. Le kurtosis angulaire comme outil de diagnostic, Vibration, Choc

et bruit (VCB2010), Lyon, France, article AC 29, 21 p.

Page 66: Applications des Réseaux de Neurones pour la reconnaissance des

66

Applying cyclostationnarity to machining

4 cycles of 1 block

Angular average

Angular Variance

4 peaks corresponding to teeth

Signal (blue) with its mean (red) and angular variance (green)

Time signal

Blocks of cycles after synchronization,

(10 cycles by block)

10 Cycles

Lamraoui M., Thomas M., El Badaoui M. et Zaghbani I., Juin 2010. Le kurtosis angulaire comme outil de diagnostic, Vibration, Choc

et bruit (VCB2010), Lyon, France, article AC 29, 21 p.

Page 67: Applications des Réseaux de Neurones pour la reconnaissance des

67

The Angular Kurtosis decreases when chatter

or tool wear

Healthy tool Chatter In resonance After tool wear

Page 68: Applications des Réseaux de Neurones pour la reconnaissance des

68

Effect of tool wear on the angular power

Angle between two teeth

Angle-frequency representation

Measurement of rake angle

Test 1: before wear Test 4: after wear

For an important wear, a strong increase of

the angular power amplitude is detected

Angle [°] Angle [°]

The 4 peaks are

corresponding

to the passage

of every tooth.

Lamraoui M., Thomas M., El Badaoui M. et Zaghbani I., Juin 2010. Le kurtosis angulaire comme outil de diagnostic, Vibration, Choc

et bruit (VCB2010), Lyon, France, article AC 29, 21 p.

Page 69: Applications des Réseaux de Neurones pour la reconnaissance des

• Fourier analysis breaks down a signal into constituent sinusoids of

different frequencies.

Frequency Analysis: FFT

Page 70: Applications des Réseaux de Neurones pour la reconnaissance des

Bearing frequencies if both

races are rotating

70

cos cos11 1

2

cos

d di o

d d

B o

B i

d d

i

B BFTF

P P

BPFO N FTF

BPFI N FTF

P BBSF FTF

Bd

Page 71: Applications des Réseaux de Neurones pour la reconnaissance des

0 10 20 30 40 50 60 70 80 90 100 110 120

Fréquence

0.05

0.1

0.15

0.2

0.25

0.3 Velocity in/sec

0

Residual life greater than 10%

No significant sign of degradation

Bandwidth where must appear the first signs de degradation

Bandwidth

for bearing

frequencies

1 x RPM

2 x RPM

3 x RPM

First step of bearing

degradation

71

Berry. 1991. « How to track rolling bearing health with vibration signature analysis ». Sound and Vibration, p. 24-35

Page 72: Applications des Réseaux de Neurones pour la reconnaissance des

0 10 20 30 40 50 60 70 80 90 100 110 120

Fréquence Kcpm

0

0.05

0.1

0.15

0.2

0.25

0.3

1 x RPM

2 x RPM

3 x RPM Modulation à 1 x RPM

Natural frequency

Second step of bearing

degradation Vélocité en po/sec

72

Bandwidth where must appear the first signs de

degradation

Residual life greater than 5%

Small noise

Increase in acceleration amplitude

Needs analysis in log scale

Berry. 1991. « How to track rolling bearing health with vibration signature analysis ». Sound and Vibration, p. 24-35

Page 73: Applications des Réseaux de Neurones pour la reconnaissance des

0 10 20 30 40 50 60 70 80 90 100 110 120

Fréquence Kcpm

0

0.05

0.1

0.15

0.2

0.25

0.3

Vélocité en po/sec

1 x RPM

Natural frequency with bearing

frequency modulationst

BPFO BPFI

2 x BPFO 2 x BPFI

Third step of bearing degradation

73

Bearing frequencies

with harmonics and

modulations

Residual life greater than 1%

Noise increases

Temperature increases

Acceleration amplitude increases

Berry. 1991. « How to track rolling bearing health with vibration signature analysis ». Sound and Vibration, p. 24-35

Page 74: Applications des Réseaux de Neurones pour la reconnaissance des

Severity based on amplitude at the

bearing frequency

BPFO or BPFI or

2BSF

f0

f ( Hz )

V ( mm/s )

74

Page 75: Applications des Réseaux de Neurones pour la reconnaissance des

Frequency analysis (FFT) from numerical bearing model

75

1xBPFO

2xBPFO

3xBPFO

Frequency ( Hz )

Bearing defect of 1.2 mm on outer race

Harmonics of BPFO: detection at the third stage of

degradation Modulation

frequencies

Page 76: Applications des Réseaux de Neurones pour la reconnaissance des

Features in frequency domain

0

0,5

1

1,5

2

2,5

3

0,00 200,00 400,00 600,00 800,00 1000,00 1200,00 1400,00 1600,00

Am

plitu

de

Defect size ( microns)

Amplitude around BPFO and modulations

BPFO

BPFOBEAT

The features in the frequency domain

consider the amplitude at the bearing

frequencies and the harmonics

(n*BPFO) including the modulations (f0)

BPFO+/- 1.1 f0

f0

Numerical simulation

Page 77: Applications des Réseaux de Neurones pour la reconnaissance des

Design of experiments: 5 speeds, 3 charges, 4

defects, 3 repetitions= 180 experiments

77

Page 78: Applications des Réseaux de Neurones pour la reconnaissance des

0 10 20 30 40 50 60 70 80 90 100 110 120

Fréquence Kcpm

0

0.05

0.1

0.15

0.2

0.25

0.3

Vélocité po/sec

Bearing

frequencies with

harmonicss

Random like vibrations in high

frequency domain

1 x RPM

BPFO

BPFI

Last stage of bearing degradation

78

Residual life lower than 0.2%

High Noise

High Temperature

Velocity amplitude increases

Acceleration amplitude decreases

Berry. 1991. « How to track rolling bearing health with vibration signature analysis ». Sound and Vibration, p. 24-35

Page 79: Applications des Réseaux de Neurones pour la reconnaissance des

Time-frequency analysis

79

Page 80: Applications des Réseaux de Neurones pour la reconnaissance des

STFT from numerical bearing model

80

Time

Fre

quency

0 0.1 0.2 0.3 0.4 0.5

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

50

100

150

200

250

300

350

400

-2.5 -2 -1.5 -1 -0.5 0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 0.1 0.2 0.3 0.4 0.5

-50

0

50

Page 81: Applications des Réseaux de Neurones pour la reconnaissance des

81

STFT Measurement (after denoising):

high vibration observed at 23 000 rpm

during transients (up, stable and down

speed) due to coincidence between:

harmonics of spindle bearing and

natural frequencies

Computation of variation of

natural frequencies with speed

due to gyroscopic effect.

Badri B., M. Thomas; S. Sassi; I. Zaghbani; V. Songméné, Juin 2010, Étude du comportement des roulements dans les rotors tournant

à haute vitesse, Revue Int. sur l’Ingénierie des Risques Industriels, 3(1), 1-16

Increase and decrease of speed up to 30 000 rpm on machining center

Page 82: Applications des Réseaux de Neurones pour la reconnaissance des

82

Application in machining: Cyclostationnarity and Angle-

Frequency of the residual signal

The peaks corresponding to the four teeth are very well defined when there is no

wear.

When the wear becomes important, the spikes of the angular Kurtosis disappeared

and it is less easy to distinguish the frequencies of the residual signal.

The wear involves a decrease of impulses, and thus a flattening of angular Kurtosis.

Low wear Advanced wear

Lamraoui M., Thomas M., El Badaoui M. et Zaghbani I., Juin 2010. Le kurtosis angulaire comme outil de diagnostic, Vibration, Choc

et bruit (VCB2010), Lyon, France, article AC 29, 21 p.

Page 83: Applications des Réseaux de Neurones pour la reconnaissance des

Wavelet decomposition

Page 84: Applications des Réseaux de Neurones pour la reconnaissance des

Wavelet Packet Decomposition

Example: Three-level Wavelet Packet

Decomposition tree

Page 85: Applications des Réseaux de Neurones pour la reconnaissance des

WPD

S(0,0)

0-24kHz

S(1,0)

0 - 12kHz

S(1,1)

12 - 24kHz

S(2,0)

0 - 6kHz

S(2,1)

6 - 12kHz

S(2,2)

12- 18kHz

S(2,3)

18 - 24kHz

S(3,0)

0-3kHz

S(3,1)

3-6kHz

S(3,2)

6-9kHz

S(3,3)

9-12kHz

S(3,4)

12-

15kHz

S(3,5)

15-18kHz

S(3,6)

18-21kHz

S(3,7)

21-24kHz

Wavelet Packet Decomposition

Niv

J=0

Niv

J=1

Niv

J=2

Niv

J=3

Fe/2=(48/2)kHz

Page 86: Applications des Réseaux de Neurones pour la reconnaissance des

Comparison between WPD and HT+WPD

Y. Imaouchen, R. Alkama and M. Thomas. October 2014. Bearing Fault Detection Using Motor Current Signal Analysis

Based on Wavelet Packet Decomposition and Hilbert Envelope. 2e AVE, Blois (Fr)

Page 87: Applications des Réseaux de Neurones pour la reconnaissance des

Acoustic

Emission

Sampling Frequency

48kHz Vibration Current probe

Sensor (Hall effect)

Materiel and Test Bench: application to electric current measurement

Bearing SKF : 1210 EKTN9

Experimental Test Bench

Data acquisition system

Page 88: Applications des Réseaux de Neurones pour la reconnaissance des

Bearing defect

• The bearing is SKF1210.

• Two experiments:

– healthy

– 1.06 mm on the outer race

• The electric signal (Canada) is 30 Hz (120 Hz/4 pôles).

• At 900 RPM (15 Hz), BPFO is 116.6 Hz.

• The supply voltage frequency is modulated by the

bearing defect .

• The envelope of the current signal contains thus

the fault-related frequencies.

Page 89: Applications des Réseaux de Neurones pour la reconnaissance des

Conventional spectral analysis

• The healthy bearing is in blue

• The defective bearing is in red

• We only notice an amplitude increase at each frequency: difficulty for diagnosing a defect.

Page 90: Applications des Réseaux de Neurones pour la reconnaissance des

fa fr Modulation effect on stator current Related nodes

|fa-BPFO| = 86.6 Hz (11 – 04) : [82.03-93.75Hz]

30Hz 15Hz |fa+BPFO| = 146.6 Hz (11 – 10) : [140.6-152.3Hz]

|fa-2*BPFO| = 203.26 Hz (11 – 25) : [199.2-210.9Hz]

|fa+2*BPFO| = 263.26 Hz (11 – 29) : [257.8-269.5Hz]

The bearing frequencies into the current signal

may be identified by :

Bearing frequencies into the current signal

.fault BPFOmff a

Page 91: Applications des Réseaux de Neurones pour la reconnaissance des

Energy Comparison

Condition

Frequency range

Node (11 – 5)

(70.31-82.03Hz)

Node (11 – 4)

(82.03-93.75Hz)

Node(11 – 12)

(93.75-105.46Hz)

Healthy 0.47 0.22 2.17

outer race

defect 0.9 5.16 2.38

ENERGY COMPARISON AROUND 86.6HZ

Condition

Frequency range Node (11 – 14)

(128.9-140.6Hz)

Node (11 – 10)

(140.6-152.3Hz)

Node(11 –11 )

(152.3-164.1Hz)

Healthy 0.023 0.016 0.17 outer race

defect 0.23 0.84 0.28

ENERGY COMPARISON AROUND 146.6HZ

The energy is compared around the defect frequencies for the

healthy and the defective bearing.

Page 92: Applications des Réseaux de Neurones pour la reconnaissance des

Spectrum Comparison between WPD and HT+WPD

WPD applied on the node containing 86,6 Hz

HT+ WPD applied on the node containing 86,6 Hz

Page 93: Applications des Réseaux de Neurones pour la reconnaissance des

Spectrum Comparison between WPD and HT+WPD

WPD applied on the node containing 146,6 Hz

HT+ WPD applied on the node containing 146,6 Hz

Page 94: Applications des Réseaux de Neurones pour la reconnaissance des

94

The Empirical Wavelet Transform

1    1

1cos 1

2 2

 1 1

n

n

n n

n n

if w w

w ww w

if w w w

otherwise

Scaling function: low pass Filter

1

1

1

1 1

1                 1 1

11  

2 2

 1 1

1   1                  

2 2

 1 1

   0        

ˆ

n n

n

n

n n

n

n

n

n n

if w w w

cos w ww

if w w ww

sin w ww

if w w w

otherwise

Wavelete function: band pass filter

The filter supports are defined

accordingle the frequential content

Spectral segmentation

Jérôme Gilles, Empirical Wavelet Transform, IEEE transactions on signal processing, vol. 61, no. 16, august 15, 2013

Adaptative Filter

The main idea of EWT is to extract different modes by designing appropriate

wavelet filter banks adapted to the signal.

Page 95: Applications des Réseaux de Neurones pour la reconnaissance des

95

Numerical simulation of EWT

0 200 400 600 800 1000 1200 1400 1600 1800 2000-1

-0.5

0

0.5

1IMF 1

0 200 400 600 800 1000 1200 1400 1600 1800 2000-2

-1

0

1

2IMF 2

0 200 400 600 800 1000 1200 1400 1600 1800 20000

2

4

6

Sample

IMF 3

0 200 400 600 800 1000 1200 1400 1600 1800 2000-1

0

1

2

3

4

5

6

7

8

0 10 20 30 40 50 60 70 80 90 1000

1000

2000

3000

4000

5000

6000

7000

X: 20

Y: 509.3

Frequency (Hz)

X: 4

Y: 1109

1 2 3x t x t x t x t

Spectral segmentation

for selecting the support

filters

Construction of filter banks

, , .  ˆ )ˆ (x n nW n t x t x w w

1 10, , .   )ˆˆ (xW t x t x w w

The detail coefficients are

The approximation coefficients are

1

1

0, ˆˆ ˆ ˆ( , )N

x x n

n

x t W w w W n w w

The signal is given by:

Page 96: Applications des Réseaux de Neurones pour la reconnaissance des

96

Empirical Wavelet Transforms : application to bearing defect

0 500 1000 1500 2000 2500 3000 3500 4000-3

-2

-1

0

1

2

3

Sample

0 50 100 150 200-2

-1

0

1

2

3

Sample0 1000 2000 3000 4000 5000 6000

0

10

20

30

40

50

Frequency (Hz)

FFTResonance frequency

0 1000 2000 3000 4000-1

0

1

0 1000 2000 3000 4000 5000 60000

0.1

0.2

0 1000 2000 3000 4000-1

0

1

0 1000 2000 3000 4000 5000 60000

0.1

0.2

0 1000 2000 3000 4000-1

0

1

0 1000 2000 3000 4000 5000 60000

0.1

0.2

0 1000 2000 3000 4000-1

0

1

Sample 0 50 100 150 200

0

0.1

0.2

Frequency (Hz)

2*FrFr

Third frequency resonance

Second frequency resonance

First frequency resonance

IMF 4

IMF 3

IMF 2

IMF 1

(A) (B)

Page 97: Applications des Réseaux de Neurones pour la reconnaissance des

97

Experimental application of EWT

0 0.5 1 1.5 2-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time (sec)

Am

plit

ud

e (V

)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 104

-0.2

0

0.2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 104

-0.2

0

0.2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 104

-0.1

0

0.1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 104

-0.2

0

0.2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 104

-0.2

0

0.2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 104

-0.02

0

0.02

Sample

IMF 1

IMF 2

IMF 3

IMF 4

IMF 5

IMF 6

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 104

-0.2

0

0.2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 104

-0.2

0

0.2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 104

-0.2

0

0.2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 104

-0.2

0

0.2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 104

-0.2

0

0.2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 104

-0.2

0

0.2

Sample

IMF 1

IMF 2

IMF 3

IMF 4

IMF 5

IMF 6

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 104

-0.2

0

0.2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 104

-0.2

0

0.2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 104

-0.2

0

0.2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 104

-0.2

0

0.2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 104

-0.2

0

0.2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 104

-0.2

0

0.2

Sample

IMF 2

IMF 3

IMF 4

IMF 5

IMF 6

IMF 1

0 0.5 1 1.5 2-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time (sec)

Am

plitu

de (

V)

0 0.5 1 1.5 2-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time (sec)

Am

plitu

de (

V)

Healthy bearing

Defect 50µm

Defect 100µm

Page 98: Applications des Réseaux de Neurones pour la reconnaissance des

98

Empirical Wavelet Transforms: Index selection,

( ) ( )_  

( ) ( )

i damaged i Healthy

damaged Healthy

kurtosis IMF kurtosis IMFindex selection

kurtosis x kurtosis x

Decision

<1 The is not selected

=1 The difference between the distribution of amplitude of the both

IMF (healthy & damaged) is the same as the raw signal (healthy

& damaged)

>1 The IMF is more impulsive than the raw signal. It is selected

Page 99: Applications des Réseaux de Neurones pour la reconnaissance des

99

Empirical Wavelet Transforms, IMF > 1

0 500 1000 15000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

Frequency (Hz)

Am

plitu

de (

V)

BPFO

0 500 1000 15000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

Frequency (Hz)

Am

plitu

de (

V)

BPFO

Index selection greater

than 1

D1=50 µm -0,68 3,77 1,47 1,27 1,17 0,36

D2=100 µm -1,23 4,13 1,35 0,85 0,33 0,31

1IMF2IMF3IMF4IMF5IMF6IMF0 500 1000 1500

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

Frequency (Hz)

Ampl

itude

(V)

0 20 40 60 80 1000

0.002

0.004

0.006

0.008

0.01

Frequency Rotaion of the shaft and its harmonics

ZOOM

D1 D2

Page 100: Applications des Réseaux de Neurones pour la reconnaissance des

100

Improvement: The selection will be easier if the signal is

monocomponent

Kedadouche, M., Thomas, M., Tahan, A. (2014) « An effective method based on empirical mode decomposition and empirical

wavelet for extracting bearing defect». 4th International Conference on Condition Monitoring of Machinery in Non-Stationary

Operations (CMMNO), December 15-16, Lyon, France.

1i i i iCMF C IMF IMF

Page 101: Applications des Réseaux de Neurones pour la reconnaissance des

Lempel-Ziz Complexity

S=0 Q_Buff=0 SQ_Buff=00 SQπ_Buff=0 SQπ _Buff contain Q_buff

c(n)=c(n)+1

S=0

i=1

i=2 Q_Buff=01 SQ_Buff=001 SQπ _Buff=00 SQπ _Buff doesn’t contain

Q_buff

i=3 S=001 Q_Buff=1 SQ_Buff=0011 SQπ _Buff=001 SQπ _Buff contain Q_buff

S=001 Q_Buff=11 SQ_Buf=00111 SQπ _Buff=0011 SQπ _Buff contain Q_buff i=4

.

.

N

New subsequence : 0◊01◊1

0◊01

0◊01◊11

0◊01◊111 Ruqiang Yan and Robert X. Gao,Complexity as a Measure for Machine Health Evaluation, IEEE transactions on instrumentation

and measurement, vol. 53, no. 4, august 2004

if x(t) < mean,

x(t)=0

otherwise= 1

Page 102: Applications des Réseaux de Neurones pour la reconnaissance des

Complexity :Approximate entropy (ApEn)

Complexity ApEn represents a

quantification of regularity in

sequences and time series data.

Complexity increases with the noise

1,   0

0,   0

xx

x

r=k*standard deviation of the x(t)

Yan, R. and R. X. Gao. 2007. « Approximate Entropy as a diagnostic

tool for machine health monitoring ». Mechanical Systems and

Signal Processing, vol. 21, no 2, p. 824-839.

It is an effective tool to distinguish between

the random and the cyclic shocks since

ApEn of noise is high.

Page 103: Applications des Réseaux de Neurones pour la reconnaissance des

103

Index for defect severity

4

21

4

1

* ( ) *

N

i

i

x xN

INDEX Kurtosis Energy x f ApEnRMS

M. Kedadouche, M. Thomas and A. Tahan. 2015. A comparative study between Empirical wavelet transforms (EWT) and Empirical

Mode Decomposition methods: Application to bearing defects , submitted to MSSP

Page 104: Applications des Réseaux de Neurones pour la reconnaissance des

104

Early detection with EMD+EWT+Index:

experiments of acoustic emission on bearing test bench

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2-1

-0.5

0

0.5

1

Time (Sec)

Am

plitu

de (

V)

Frequency (HZ)

Com

bine

d IM

F

0 0.5 1 1.5 2

x 104

1

2

3

4

5

100 200 300 400 500 600 700 800 900 1000

0.5

1

1.5

2

2.5

3

3.5

4

Frequency (Hz)

Am

plitu

de (

mV

)

BPFO=36,62 Hz

Velocity: 300 rpm

BPFO: 36.6 Hz

0 1 2 3 4 5 6 7 8 9

x 104

-0.2

0

0.2

C 1

0 1 2 3 4 5 6 7 8 9

x 104

-0.2

0

0.2

C 2

0 1 2 3 4 5 6 7 8 9

x 104

-0.2

0

0.2

C 3

0 1 2 3 4 5 6 7 8 9

x 104

-0.2

0

0.2

C 4

0 1 2 3 4 5 6 7 8 9

x 104

-0.2

0

0.2

Sample

C 5

0 0.5 1 1.5 2

x 104

0

0.51

0 0.5 1 1.5 2

x 104

00.5

1

0 0.5 1 1.5 2

x 104

0

0.51

0 0.5 1 1.5 2

x 104

0

0.51

0 0.5 1 1.5 2

x 104

00.5

1

Frequency (Hz)

C 1

C 2

C 3

C 4

C 5

Page 105: Applications des Réseaux de Neurones pour la reconnaissance des

Thank you for your attention

You do things right because you have experience

You have experience because you did things wrong

105