application of the automatic transition prediction functionality of … · 2013-12-12 · joint...

33
Joint Symposium of DFG PAK 136 and DLR-Airbus C 2 A 2 S 2 E > “Simulation of Wing and Nacelle Stall”, Folie 1 Andreas Krumbein, DLR, AS, C 2 A 2 S 2 E / Normann Krimmelbein, TU-BS, ISM > Braunschweig, 19.06.2008 Application of the Automatic Transition Prediction Functionality of the DLR TAU Code to 3D Aircraft Configurations Andreas Krumbein Deutsches Zentrum für Luft- und Raumfahrt, Institute of Aerodynamics and Flow Technology C²A²S²E Center for Computer Applications in AeroSpace Science and Engineering Normann Krimmelbein Technische Universität Braunschweig, Institute of Fluid Mechanics, Aerodynamics of Aircraft

Upload: others

Post on 17-Jun-2020

4 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Application of the Automatic Transition Prediction Functionality of … · 2013-12-12 · Joint Symposium of DFG PAK 136 and DLR-Airbus C2A2S2E > “Simulation of Wing and Nacelle

Joint Symposium of DFG PAK 136 and DLR-Airbus C2A2S2E > “Simulation of Wing and Nacelle Stall”, Folie 1Andreas Krumbein, DLR, AS, C2A2S2E / Normann Krimmelbein, TU-BS, ISM > Braunschweig, 19.06.2008

Application of the Automatic Transition Prediction Functionalityof the DLR TAU Code to 3D Aircraft Configurations

Andreas KrumbeinDeutsches Zentrum für Luft- und Raumfahrt, Institute of Aerodynamics and Flow TechnologyC²A²S²E Center for Computer Applications in AeroSpace Science and Engineering

Normann KrimmelbeinTechnische Universität Braunschweig, Institute of Fluid Mechanics, Aerodynamics of Aircraft

Page 2: Application of the Automatic Transition Prediction Functionality of … · 2013-12-12 · Joint Symposium of DFG PAK 136 and DLR-Airbus C2A2S2E > “Simulation of Wing and Nacelle

Joint Symposium of DFG PAK 136 and DLR-Airbus C2A2S2E > “Simulation of Wing and Nacelle Stall”, Folie 2Andreas Krumbein, DLR, AS, C2A2S2E / Normann Krimmelbein, TU-BS, ISM > Braunschweig, 19.06.2008

Outline

Introduction

Transition Prediction Coupling Structure

Technical Feasibility

First Validation Results

Conclusion & Outlook

Outline

Page 3: Application of the Automatic Transition Prediction Functionality of … · 2013-12-12 · Joint Symposium of DFG PAK 136 and DLR-Airbus C2A2S2E > “Simulation of Wing and Nacelle

Joint Symposium of DFG PAK 136 and DLR-Airbus C2A2S2E > “Simulation of Wing and Nacelle Stall”, Folie 3Andreas Krumbein, DLR, AS, C2A2S2E / Normann Krimmelbein, TU-BS, ISM > Braunschweig, 19.06.2008

Introduction

Introduction

Requirements from Aircraft Industry and Research:

RANS based CFD tool with transition prediction

Automatic: no intervention of the user

Autonomous: as little additional information as possible

Reduction of modeling based uncertaintiesAccuracy of results from fully turbulent flow or flow with prescribedtransition often not satisfactory

Exploitation of the full potential of advanced turbulence models

Improved simulation of the interaction between transition locationsand separation

Page 4: Application of the Automatic Transition Prediction Functionality of … · 2013-12-12 · Joint Symposium of DFG PAK 136 and DLR-Airbus C2A2S2E > “Simulation of Wing and Nacelle

Joint Symposium of DFG PAK 136 and DLR-Airbus C2A2S2E > “Simulation of Wing and Nacelle Stall”, Folie 4Andreas Krumbein, DLR, AS, C2A2S2E / Normann Krimmelbein, TU-BS, ISM > Braunschweig, 19.06.2008

Different coupling approaches:

RANS solver + stability code + eN method

RANS solver + boundary layer code+ stability code + eN method

RANS solver + boundary layer code+ eN database method(s)

RANS solver + transition closure model or transition/turbulence model

Introduction

Page 5: Application of the Automatic Transition Prediction Functionality of … · 2013-12-12 · Joint Symposium of DFG PAK 136 and DLR-Airbus C2A2S2E > “Simulation of Wing and Nacelle

Joint Symposium of DFG PAK 136 and DLR-Airbus C2A2S2E > “Simulation of Wing and Nacelle Stall”, Folie 5Andreas Krumbein, DLR, AS, C2A2S2E / Normann Krimmelbein, TU-BS, ISM > Braunschweig, 19.06.2008

Different coupling approaches:

RANS solver + stability code + eN method

RANS solver + boundary layer code+ stability code + eN method

RANS solver + boundary layer code+ eN database method(s)

RANS solver + transition closure model or transition/turbulence model

Introduction

Page 6: Application of the Automatic Transition Prediction Functionality of … · 2013-12-12 · Joint Symposium of DFG PAK 136 and DLR-Airbus C2A2S2E > “Simulation of Wing and Nacelle

Joint Symposium of DFG PAK 136 and DLR-Airbus C2A2S2E > “Simulation of Wing and Nacelle Stall”, Folie 6Andreas Krumbein, DLR, AS, C2A2S2E / Normann Krimmelbein, TU-BS, ISM > Braunschweig, 19.06.2008

Different coupling approaches:

RANS solver + stability code + eN method

RANS solver + boundary layer code+ fully automated stability code

+ eN method

RANS solver + boundary layer code+ eN database method(s)

RANS solver + transition closure model or transition/turbulence model

Introduction

Page 7: Application of the Automatic Transition Prediction Functionality of … · 2013-12-12 · Joint Symposium of DFG PAK 136 and DLR-Airbus C2A2S2E > “Simulation of Wing and Nacelle

Joint Symposium of DFG PAK 136 and DLR-Airbus C2A2S2E > “Simulation of Wing and Nacelle Stall”, Folie 7Andreas Krumbein, DLR, AS, C2A2S2E / Normann Krimmelbein, TU-BS, ISM > Braunschweig, 19.06.2008

Different coupling approaches:

RANS solver + fully automated stability code + eN method

RANS solver + boundary layer code+ fully automated stability code

+ eN method

RANS solver + boundary layer code+ eN database method(s)

RANS solver + transition closure model or transition/turbulence model

← 2

← 1

← 3

← future

Introduction

Page 8: Application of the Automatic Transition Prediction Functionality of … · 2013-12-12 · Joint Symposium of DFG PAK 136 and DLR-Airbus C2A2S2E > “Simulation of Wing and Nacelle

Joint Symposium of DFG PAK 136 and DLR-Airbus C2A2S2E > “Simulation of Wing and Nacelle Stall”, Folie 8Andreas Krumbein, DLR, AS, C2A2S2E / Normann Krimmelbein, TU-BS, ISM > Braunschweig, 19.06.2008

cycle = kcyc

Transition Prediction Coupling StructureCoupling Structure

external BL approach

Page 9: Application of the Automatic Transition Prediction Functionality of … · 2013-12-12 · Joint Symposium of DFG PAK 136 and DLR-Airbus C2A2S2E > “Simulation of Wing and Nacelle

Joint Symposium of DFG PAK 136 and DLR-Airbus C2A2S2E > “Simulation of Wing and Nacelle Stall”, Folie 9Andreas Krumbein, DLR, AS, C2A2S2E / Normann Krimmelbein, TU-BS, ISM > Braunschweig, 19.06.2008

cycle = kcyc

cycle = kcyc

external BL approach

internal BL approach

Coupling Structure

Transition Prediction Coupling Structure

Page 10: Application of the Automatic Transition Prediction Functionality of … · 2013-12-12 · Joint Symposium of DFG PAK 136 and DLR-Airbus C2A2S2E > “Simulation of Wing and Nacelle

Joint Symposium of DFG PAK 136 and DLR-Airbus C2A2S2E > “Simulation of Wing and Nacelle Stall”, Folie 10Andreas Krumbein, DLR, AS, C2A2S2E / Normann Krimmelbein, TU-BS, ISM > Braunschweig, 19.06.2008

Integration paths:integration path in 3D:

energy transport of a wave represented by the group velocitygroup velocity direction can be taken as amplification directiongroup velocity trajectory can be approximated by edge streamline

“line-in-flight” cutspressure distribution along cutsboundary layer data from BL codegroup velocity trajectory approximated with stability codeexternal BL approach

inviscid streamlinesboundary layer data directly from RANS solverinternal BL approach

Coupling Structure

Page 11: Application of the Automatic Transition Prediction Functionality of … · 2013-12-12 · Joint Symposium of DFG PAK 136 and DLR-Airbus C2A2S2E > “Simulation of Wing and Nacelle

Joint Symposium of DFG PAK 136 and DLR-Airbus C2A2S2E > “Simulation of Wing and Nacelle Stall”, Folie 11Andreas Krumbein, DLR, AS, C2A2S2E / Normann Krimmelbein, TU-BS, ISM > Braunschweig, 19.06.2008

transition module• line-in-flight cuts

or• inviscid stream lines

• cp-extractionor

• lam. BL data from RANS grid

• lam. BL code COCO (G. Schrauf)

• swept, tapered → conical flow, 2.5d• streamline-oriented• external code

• local lin. stability code LILO (G. Schrauf)

• eN method for TS & CF• external code

or

• eN database methods• one for TS & one for CF• external codes

or

• empirical transition criteria

2D

external BL approach

internal BL approach

Coupling StructureTransition prediction module:

Page 12: Application of the Automatic Transition Prediction Functionality of … · 2013-12-12 · Joint Symposium of DFG PAK 136 and DLR-Airbus C2A2S2E > “Simulation of Wing and Nacelle

Joint Symposium of DFG PAK 136 and DLR-Airbus C2A2S2E > “Simulation of Wing and Nacelle Stall”, Folie 12Andreas Krumbein, DLR, AS, C2A2S2E / Normann Krimmelbein, TU-BS, ISM > Braunschweig, 19.06.2008

transition module• line-in-flight cuts

or• inviscid stream lines

• cp-extractionor

• lam. BL data from RANS grid

• lam. BL code COCO (G. Schrauf)

• swept, tapered → conical flow, 2.5d• streamline-oriented• external code

• local lin. stability code LILO (G. Schrauf)

• eN method for TS & CF• external code

or

• eN database methods• one for TS & one for CF• external codes

or

• empirical transition criteria

3D

external BL approach

internal BL approach

Coupling StructureTransition prediction module:

N facto

r integ

ration

N factor integration

Page 13: Application of the Automatic Transition Prediction Functionality of … · 2013-12-12 · Joint Symposium of DFG PAK 136 and DLR-Airbus C2A2S2E > “Simulation of Wing and Nacelle

Joint Symposium of DFG PAK 136 and DLR-Airbus C2A2S2E > “Simulation of Wing and Nacelle Stall”, Folie 13Andreas Krumbein, DLR, AS, C2A2S2E / Normann Krimmelbein, TU-BS, ISM > Braunschweig, 19.06.2008

2d, 2.5d (infinite swept) + 3d wings, fuselages and nacelles

Single + multi-element configurations

Flow topologiesattachedwith laminar separation:

- laminar separation approximates transition if transition is locateddownstream of the laminar separation point (external BL approach)

- real stability analysis with stability code inside bubble + many points in prismatic layer (internal BL approach)

Criteria for attachment line transition, by-pass transition & transitioninside laminar separation bubbles (external BL approach) are available, but until now only ALT criterion was tested for only one test case.

Coupling StructureTransition prediction module:

Page 14: Application of the Automatic Transition Prediction Functionality of … · 2013-12-12 · Joint Symposium of DFG PAK 136 and DLR-Airbus C2A2S2E > “Simulation of Wing and Nacelle

Joint Symposium of DFG PAK 136 and DLR-Airbus C2A2S2E > “Simulation of Wing and Nacelle Stall”, Folie 14Andreas Krumbein, DLR, AS, C2A2S2E / Normann Krimmelbein, TU-BS, ISM > Braunschweig, 19.06.2008

Transition lines on a generic transport aircraft:Ma = 0.2, Re = 2.3x106, α = -4.0°, ih = 4.0°32 cells normal to wall in structured grid part (HTP: 48), 12 million grid pointsonly TS-instabilities considered (Ncrit = 7.5, Tu = 0.13%)except: body → cp, min, local, wing upper surface → laminar separation

Feasibility

internal BL approach

Page 15: Application of the Automatic Transition Prediction Functionality of … · 2013-12-12 · Joint Symposium of DFG PAK 136 and DLR-Airbus C2A2S2E > “Simulation of Wing and Nacelle

Joint Symposium of DFG PAK 136 and DLR-Airbus C2A2S2E > “Simulation of Wing and Nacelle Stall”, Folie 15Andreas Krumbein, DLR, AS, C2A2S2E / Normann Krimmelbein, TU-BS, ISM > Braunschweig, 19.06.2008

beta:angle between skin friction line and inviscid streamline

3D laminar separation bubble:Feasibility

HTP, generic transport aircraft48 cells normal to wall in structured grid part for HTPMa = 0.2, Re = 2.3x106, α = 4.0°, ih = 4.0°transition over 3D laminar separation bubble

internal BL approach

Page 16: Application of the Automatic Transition Prediction Functionality of … · 2013-12-12 · Joint Symposium of DFG PAK 136 and DLR-Airbus C2A2S2E > “Simulation of Wing and Nacelle

Joint Symposium of DFG PAK 136 and DLR-Airbus C2A2S2E > “Simulation of Wing and Nacelle Stall”, Folie 16Andreas Krumbein, DLR, AS, C2A2S2E / Normann Krimmelbein, TU-BS, ISM > Braunschweig, 19.06.2008

HTP, generic transport aircraft15-20 points in attachment line boundary layerM = 0.2, Re = 2.3x106, α = -4.0°, ih = 4.0°LE sweep angle 32°TE sweep angle 13°

Reθ > 100 (Pfenninger/Poll)here: θ from TAU velocity profile

planned: detailed swept cylinder attachment line investigation

Attachment line transition:Feasibility

Page 17: Application of the Automatic Transition Prediction Functionality of … · 2013-12-12 · Joint Symposium of DFG PAK 136 and DLR-Airbus C2A2S2E > “Simulation of Wing and Nacelle

Joint Symposium of DFG PAK 136 and DLR-Airbus C2A2S2E > “Simulation of Wing and Nacelle Stall”, Folie 17Andreas Krumbein, DLR, AS, C2A2S2E / Normann Krimmelbein, TU-BS, ISM > Braunschweig, 19.06.2008

High lift configuration:transition prediction for slat, wing & flapMa = 0.174, Re = 1.34 x 106, α = 12°BL resolution: 20 points normal to walltotal point number: 8 million

Feasibility

Page 18: Application of the Automatic Transition Prediction Functionality of … · 2013-12-12 · Joint Symposium of DFG PAK 136 and DLR-Airbus C2A2S2E > “Simulation of Wing and Nacelle

Joint Symposium of DFG PAK 136 and DLR-Airbus C2A2S2E > “Simulation of Wing and Nacelle Stall”, Folie 18Andreas Krumbein, DLR, AS, C2A2S2E / Normann Krimmelbein, TU-BS, ISM > Braunschweig, 19.06.2008

High lift configuration, transition lines:only TS waves considered for TAU BL datatransition at laminar separation for COCO BL data

lower surfaces upper surfaces

Feasibility

Page 19: Application of the Automatic Transition Prediction Functionality of … · 2013-12-12 · Joint Symposium of DFG PAK 136 and DLR-Airbus C2A2S2E > “Simulation of Wing and Nacelle

Joint Symposium of DFG PAK 136 and DLR-Airbus C2A2S2E > “Simulation of Wing and Nacelle Stall”, Folie 19Andreas Krumbein, DLR, AS, C2A2S2E / Normann Krimmelbein, TU-BS, ISM > Braunschweig, 19.06.2008

Validation for high lift configuration:Validation

KH3Y geometry (DLR F11 model)Half-model with fuselageWing with full span slat and flap high-lift systemLanding configuration: δS = 26.5°, δF = 32.0°

MeasurementsEuropean High Lift Programme (EUROLIFT), partly funded by EUAirbus LSWT (Bremen, Germany)Re∞ = 1.35 million, M∞ = 0.174

Page 20: Application of the Automatic Transition Prediction Functionality of … · 2013-12-12 · Joint Symposium of DFG PAK 136 and DLR-Airbus C2A2S2E > “Simulation of Wing and Nacelle

Joint Symposium of DFG PAK 136 and DLR-Airbus C2A2S2E > “Simulation of Wing and Nacelle Stall”, Folie 20Andreas Krumbein, DLR, AS, C2A2S2E / Normann Krimmelbein, TU-BS, ISM > Braunschweig, 19.06.2008

Computationsα = 10.0° and 14.0°Fully turbulent & predicted transitionSpalart-Allmaras one-equation TMwith Edwards & Chandra mod.8 million points, 2.24 million cells,660.000 surface cellsTransition prediction in sections:9 on slat10 on main wing14 on flapWall normal resolution too coarse(only 20 to 30 points in BL)

⇒ external BL approach:line-in-flight cutscp-extractionlaminar BL code

‘Point transition‘

Validation

Page 21: Application of the Automatic Transition Prediction Functionality of … · 2013-12-12 · Joint Symposium of DFG PAK 136 and DLR-Airbus C2A2S2E > “Simulation of Wing and Nacelle

Joint Symposium of DFG PAK 136 and DLR-Airbus C2A2S2E > “Simulation of Wing and Nacelle Stall”, Folie 21Andreas Krumbein, DLR, AS, C2A2S2E / Normann Krimmelbein, TU-BS, ISM > Braunschweig, 19.06.2008

Computations1.5 years ago: the same test case was computedblock-structured RANS solver withdifferent BL code andeN database methodsmuch coarser resolution ofthe surfacegrid lines approximate thewing sectionsCalibration of critical N factors:α = 10°, hot film on main wing upperside at 68% span → (xT/c)main = 0.08

⇒ NTS = 4.9No indications for CF ⇒ NCF = NTS

5.5 mio. points97.000 surface cells

grid lines aswing sections

Validation

Page 22: Application of the Automatic Transition Prediction Functionality of … · 2013-12-12 · Joint Symposium of DFG PAK 136 and DLR-Airbus C2A2S2E > “Simulation of Wing and Nacelle

Joint Symposium of DFG PAK 136 and DLR-Airbus C2A2S2E > “Simulation of Wing and Nacelle Stall”, Folie 22Andreas Krumbein, DLR, AS, C2A2S2E / Normann Krimmelbein, TU-BS, ISM > Braunschweig, 19.06.2008

α = 10.0°, upper side: laminar surface regions

Validation

Results

Page 23: Application of the Automatic Transition Prediction Functionality of … · 2013-12-12 · Joint Symposium of DFG PAK 136 and DLR-Airbus C2A2S2E > “Simulation of Wing and Nacelle

Joint Symposium of DFG PAK 136 and DLR-Airbus C2A2S2E > “Simulation of Wing and Nacelle Stall”, Folie 23Andreas Krumbein, DLR, AS, C2A2S2E / Normann Krimmelbein, TU-BS, ISM > Braunschweig, 19.06.2008

α = 14.0°, upper side: laminar surface regions

Validation

Results

Page 24: Application of the Automatic Transition Prediction Functionality of … · 2013-12-12 · Joint Symposium of DFG PAK 136 and DLR-Airbus C2A2S2E > “Simulation of Wing and Nacelle

Joint Symposium of DFG PAK 136 and DLR-Airbus C2A2S2E > “Simulation of Wing and Nacelle Stall”, Folie 24Andreas Krumbein, DLR, AS, C2A2S2E / Normann Krimmelbein, TU-BS, ISM > Braunschweig, 19.06.2008

experimental transition locationscalibration point for NTS

experimental xT/cα 10.0° 14.0°slat 21% 11%main 8% 5%

deviation still unclear:

maybe criterion fortransition inside lami-nar separation helps

Validation

Comparison of experimental & predicted transition points

Page 25: Application of the Automatic Transition Prediction Functionality of … · 2013-12-12 · Joint Symposium of DFG PAK 136 and DLR-Airbus C2A2S2E > “Simulation of Wing and Nacelle

Joint Symposium of DFG PAK 136 and DLR-Airbus C2A2S2E > “Simulation of Wing and Nacelle Stall”, Folie 25Andreas Krumbein, DLR, AS, C2A2S2E / Normann Krimmelbein, TU-BS, ISM > Braunschweig, 19.06.2008

ValidationWing-body configuration with laminar wing:PATHFINDER wing from EU project TELFONAM = 0.78, Re = 20.0×106, α = 0.44°, NTS = 12.0, NCF = 9.0 (→ free flight conditions)

external BL approach

Page 26: Application of the Automatic Transition Prediction Functionality of … · 2013-12-12 · Joint Symposium of DFG PAK 136 and DLR-Airbus C2A2S2E > “Simulation of Wing and Nacelle

Joint Symposium of DFG PAK 136 and DLR-Airbus C2A2S2E > “Simulation of Wing and Nacelle Stall”, Folie 26Andreas Krumbein, DLR, AS, C2A2S2E / Normann Krimmelbein, TU-BS, ISM > Braunschweig, 19.06.2008

Starboard wing, upper side

Starboard wing, lower side

X/C = 28%

CP TSP Mach Re T [K] CL β

P081 P085 0.78 20 mio 175 0.1 0o

Re_bar (<245) ϕeff

Inner 164 18.8o

Outer 173 19.6o

NCF NTS

P081PUI 8.3 3P081PUO 7.6 2

P081PLI 3.1 8.8P081PLO 3 8.4

P081SUI 9 3.7P081SUO 9 4

P081SLI 3 9P081SLO 3 8

η = 0.33 η = 0.67

X/C = 28%

P081S: similar zigzag pattern in TSP image on upper side and on lower side, even though upper side is CF and lower side is TS.

Does this mean that transition occurs further downstream?

Results from G. Schrauf, Airbus

Validation

Page 27: Application of the Automatic Transition Prediction Functionality of … · 2013-12-12 · Joint Symposium of DFG PAK 136 and DLR-Airbus C2A2S2E > “Simulation of Wing and Nacelle

Joint Symposium of DFG PAK 136 and DLR-Airbus C2A2S2E > “Simulation of Wing and Nacelle Stall”, Folie 27Andreas Krumbein, DLR, AS, C2A2S2E / Normann Krimmelbein, TU-BS, ISM > Braunschweig, 19.06.2008

Prolate spheroid (simple representation of an a/c fuselage):α = 10.0°, Re = 1.5 x 106, Ma = 0.03hybrid grid, 2.8 x 106 points40 – 90 grid points in lam. BL normal to wallexperimental cf with numerical transition line (left), numerical cf (right)TS dominated transition (CF present)

Validation

internal BL approach

• by H. W. Stock (DLR)*• modeling of the inter-

action of TS and CF waves (cannot be trea-ted by local linear stabi-lity theory)

• NTS,crit =8.0, NCF,crit =5.5

Page 28: Application of the Automatic Transition Prediction Functionality of … · 2013-12-12 · Joint Symposium of DFG PAK 136 and DLR-Airbus C2A2S2E > “Simulation of Wing and Nacelle

Joint Symposium of DFG PAK 136 and DLR-Airbus C2A2S2E > “Simulation of Wing and Nacelle Stall”, Folie 28Andreas Krumbein, DLR, AS, C2A2S2E / Normann Krimmelbein, TU-BS, ISM > Braunschweig, 19.06.2008

Validation

α = 10.0°, Re = 6.5 x 106, Ma = 0.13hybrid grid, 2.8 x 106 points40 – 90 grid points in lam. BL normal to wallexperimental cf with numerical transition line (left), numerical cf (right)interacting TS and CF transition

internal BL approach

Page 29: Application of the Automatic Transition Prediction Functionality of … · 2013-12-12 · Joint Symposium of DFG PAK 136 and DLR-Airbus C2A2S2E > “Simulation of Wing and Nacelle

Joint Symposium of DFG PAK 136 and DLR-Airbus C2A2S2E > “Simulation of Wing and Nacelle Stall”, Folie 29Andreas Krumbein, DLR, AS, C2A2S2E / Normann Krimmelbein, TU-BS, ISM > Braunschweig, 19.06.2008

Validation

α = 15.0°, Re = 6.5 x 106, Ma = 0.13hybrid grid, 2.8 x 106 points40 – 90 grid points in lam. BL normal to wallexperimental cf with numerical transition line (left), numerical cf (right)CF dominated transition

internal BL approach

Page 30: Application of the Automatic Transition Prediction Functionality of … · 2013-12-12 · Joint Symposium of DFG PAK 136 and DLR-Airbus C2A2S2E > “Simulation of Wing and Nacelle

Joint Symposium of DFG PAK 136 and DLR-Airbus C2A2S2E > “Simulation of Wing and Nacelle Stall”, Folie 30Andreas Krumbein, DLR, AS, C2A2S2E / Normann Krimmelbein, TU-BS, ISM > Braunschweig, 19.06.2008

transitionalx/L = 0.75

turbulentx/L = 0.75

experimental

transitional

turbulentx/L = 0.75

Validation

α = 10.0°, Re = 1.5 x 106, Ma = 0.03free vortex separation in experiment is only matched for transitional computationskin friction lines (below) and vorticity contours (right)

Page 31: Application of the Automatic Transition Prediction Functionality of … · 2013-12-12 · Joint Symposium of DFG PAK 136 and DLR-Airbus C2A2S2E > “Simulation of Wing and Nacelle

Joint Symposium of DFG PAK 136 and DLR-Airbus C2A2S2E > “Simulation of Wing and Nacelle Stall”, Folie 31Andreas Krumbein, DLR, AS, C2A2S2E / Normann Krimmelbein, TU-BS, ISM > Braunschweig, 19.06.2008

Conclusion&Outlook

The complete coupled system (RANS solver & transition prediction module) was succesfully applied to a variety of 3D aircraft configurations.

The technical feasibility was shown for all configurations and first validationsteps have been made with:

good results for wing-body high-lift configuration

very good results for a prolate spheroid

For the high-lift case, the predicted transition lines are qualitatively alike and quantitatively very similar to those obtained with a block-structured coupledsystem.

It seems that attachment line transition plays role and that transition insidelaminar separation bubbles may be of importance.

Attachment line transition, by-pass trasition & transition inside laminarseparation bubbles (with BL code approach) must be applied to the high-lift case.

Much, much more validation on complex configurations is necessary.

Reliable experimental transition data from W/T tests is a severe problem.

Conclusion

Page 32: Application of the Automatic Transition Prediction Functionality of … · 2013-12-12 · Joint Symposium of DFG PAK 136 and DLR-Airbus C2A2S2E > “Simulation of Wing and Nacelle

Joint Symposium of DFG PAK 136 and DLR-Airbus C2A2S2E > “Simulation of Wing and Nacelle Stall”, Folie 32Andreas Krumbein, DLR, AS, C2A2S2E / Normann Krimmelbein, TU-BS, ISM > Braunschweig, 19.06.2008

Extensive testing on big cluster systems & validation

Investigation of ALT on swept cylinder

Testing of the empirical transition criteria

Setup of Best Practice guidelines

Implementation of a transition prediction method for unsteady flows

Implementation of transport equation approaches

OutlookConclusion&Outlook

Page 33: Application of the Automatic Transition Prediction Functionality of … · 2013-12-12 · Joint Symposium of DFG PAK 136 and DLR-Airbus C2A2S2E > “Simulation of Wing and Nacelle

Joint Symposium of DFG PAK 136 and DLR-Airbus C2A2S2E > “Simulation of Wing and Nacelle Stall”, Folie 33Andreas Krumbein, DLR, AS, C2A2S2E / Normann Krimmelbein, TU-BS, ISM > Braunschweig, 19.06.2008

Thank you!