appendix a chronological survey of selected publications

12
Appendix A Chronological Survey of Selected Publications Until today most Fe-based superconducting thin films were grown by pulsed laser deposition (60% of publications), followed by molecular beam epitaxy (23%). Other methods, RF-sputter deposition, electrodeposition and chemical vapor deposi- tion methods, for example, were only marginally exploited. This can be seen from the number of publications devoted to thin film growth of iron pnictides and iron chalco- genides that appeared since 2008. The dominant appearance of both methods can be explained by two facts: (i) Most thin film research groups, that entered the field of Fe- based superconductors, have used pulsed laser deposition and achieved reasonable results. (ii) Molecular beam epitaxy, was mainly used in the growth of monolayer FeSe films, which produced a lot of research output. Despite some drawbacks when it comes to the incorporation of volatile elements at high temperatures, both methods, pulsed laser deposition as well as molecular beam epitaxy, have demonstrated a great potential in the growth of the new Fe-based superconductors. Table A.1 provides a chronological list of the first thin film publication of each compound and also the arXiv-source, if available. © Springer Nature Switzerland AG 2021 S. Haindl, Iron-Based Superconducting Thin Films, Springer Series in Materials Science 315, https://doi.org/10.1007/978-3-030-75132-6 381

Upload: others

Post on 22-Oct-2021

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Appendix A Chronological Survey of Selected Publications

Appendix AChronological Survey of SelectedPublications

Until today most Fe-based superconducting thin films were grown by pulsed laserdeposition (∼60% of publications), followed by molecular beam epitaxy (∼23%).Other methods, RF-sputter deposition, electrodeposition and chemical vapor deposi-tionmethods, for example, were onlymarginally exploited. This can be seen from thenumber of publications devoted to thin film growth of iron pnictides and iron chalco-genides that appeared since 2008. The dominant appearance of both methods can beexplained by two facts: (i)Most thin film research groups, that entered the field of Fe-based superconductors, have used pulsed laser deposition and achieved reasonableresults. (ii) Molecular beam epitaxy, was mainly used in the growth of monolayerFeSe films, which produced a lot of research output. Despite some drawbacks whenit comes to the incorporation of volatile elements at high temperatures, bothmethods,pulsed laser deposition as well as molecular beam epitaxy, have demonstrated a greatpotential in the growth of the new Fe-based superconductors.

TableA.1 provides a chronological list of the first thin film publication of eachcompound and also the arXiv-source, if available.

© Springer Nature Switzerland AG 2021S. Haindl, Iron-Based Superconducting Thin Films,Springer Series in Materials Science 315,https://doi.org/10.1007/978-3-030-75132-6

381

Page 2: Appendix A Chronological Survey of Selected Publications

382 Appendix A: Chronological Survey of Selected Publications

Table A.1 First publications of different Fe-based superconducting thin films in chronologicalorder according to the journal publication. Methods: ED = electrodeposition, MBE = molecularbeam epitaxy,MOCVD=metal-organic chemical vapor deposition, PLD= pulsed laser deposition.The onset critical temperatures do not necessarily correspond to the optimized valuesDate Compound Method Tc,on (K) Comment arXiv: Refs.

2008 09 19 Sr(Fe1−xCox )2As2 PLD 20 0808.1985 [1]

2008 10 22 LaOFeAs PLD – epitaxial 0808.1956 [2]

2008 11 04 LaO1−xFxFeAs 2-stage 11 PLD &anneal.

0808.1864 [3]

2009 03 20 FeSea PLD 2 – [4]

2009 03 20 FeSe1−xTex PLD 13.2 – [4]

2009 07 03 FeTexSy PLD 5 – [5]

2009 08 03 FeSe0.5Te0.5 PLD 17 – [6]

2009 08 28 NdOFeAs MBE – – [7]

2009 10 06 Ba(Fe1−xCox )2As2 PLD 20 0907.0666 [8]

2010 01 08 FeTea PLD 13 0911.5282 [9]

2010 02 09 LiFeAs ED 13 – [10]

2010 05 15 Sr1−xKxFe2As2 MBE 30.3 – [11]

2010 05 18 Ba1−xKxFe2As2 2-stage 40 PLD &anneal.

1004.4751 [12]

2010 07 30 NdO1−xFxFeAs MBE 48 1005.0186 [13]

2011 12 16 SmO1−xFxFeAs MBE 57.8 – [14]

2012 03 01 1 uc FeSe MBE 53 SrTiO3substrate

1201.5694 [15]

2012 04 27 Ba1−xLaxFe2As2 PLD 22.4 1110.0045 [16]

2012 09 07 BaFe2(As1−xPx )2 PLD 29 – [17]

2012 12 13 Ba(Fe1−xCrx )2As2 PLD – 1302.0340 [18]

2012 12 20 Sr1−xLaxFe2As2 PLD 20.8 1302.0340 [19]

2013 07 08 Ba1−xCexFe2As2 PLD 13.4 1307.0542 [20]

Ba1−xPrxFe2As2 PLD 6.2

Ba1−xNdxFe2As2 PLD 5.8

2014 07 17 KFe2As2 2-stage 3.7 PLD &anneal.

– [21]

2015 01 21 NdOFe1−xCoxAs 2-stage 16 MOCVD &anneal.

– [22]

2015 12 03 CaFe2As2 MBE <6 CaF2substrate

– [23]

2016 29 11 Ba(Fe1−xNix )2As2 PLD 21.2 – [24]

2017 09 19 FeSxSe1−x PLD 3 FeSe-FeSmultilayer

1708.00572 [25]

2019 10 03 SmO1−xHxFeAs 2-stage 48 PLD &anneal.

1903.11819 [26]

2020 08 21 LaOFe1−xCoxAs PLD – – [27]

SmOFe1−xCoxAs 8.5

SmO1−xFxFe1−yCoyAs 14.2 CaF2substrate

aFirst publication after 2008 with an investigation of superconductivity

Page 3: Appendix A Chronological Survey of Selected Publications

Appendix BSpace Groups and Brillouin Zones

The most important structure-types for Fe-based superconductors are the ThCr2Si2-type which is described by a Bravais lattice type t I and space group I4/mmm(No. 139) [28] and the anti-PbO-type, Cu2Sb, ZrCuSiAs, which all are describedby a Bravais lattice type t P and space group P4/nmm (No. 129) [29]. All latticesbelong to the tetragonal crystal family (a = b �= c; α = β = γ = 90◦). The spacegroup tables can be found in Sect. 2.2 of the International Tables for CrystallographyA. For the coordinates of the Wyckoff positions of space group P4/nmm given inSect. 1.2 the origin at 4̄m2 at 4̄/nm2/g, at−1/4, 1/4, 0 from centre (2/m) was chosen[29]. For the centrosymmetric space group I4/mmm the center of symmetry is theorigin.

An exact description of the Brillouin zones (BZs) can be found in Sect. 1.5 byMois I. Aroyo and Hans Wondratschek: International Tables for Crystallography B(2010) [30]. FigureB.1a, b shows exemplarily the BZs of a primitive and a bodycentred tetragonal lattice with points and lines of symmetry. In Fig.B.1c, d explainsthe correlation between the unfolded (1-Fe uc) and the folded BZ (2-Fe uc) of theFe-based superconductors in the (kx , ky)-plane.

© Springer Nature Switzerland AG 2021S. Haindl, Iron-Based Superconducting Thin Films,Springer Series in Materials Science 315,https://doi.org/10.1007/978-3-030-75132-6

383

Page 4: Appendix A Chronological Survey of Selected Publications

384 Appendix B: Space Groups and Brillouin Zones

Fig.B.1 Brillouin zones (BZs) of (a) a primitive tetragonal lattice and (b) a body centered tetragonallattice with c/a > 1 (arithmetic crystal class 4/mmmI). Points and lines of symmetry are indicated.The irreducible wedge of the BZ is colored. Tetragonal BZ in the (kx , ky)-plane for (c) the 1-Fe unitcell (‘unfolded BZ’) and (d) the 2-Fe unit cell (‘folded BZ’) of Fe-based superconductors with twohole and two electron bands at the Fermi level. Folding lines and folding directions are indicated

References

1. Hiramatsu, H., Katase, T., Kamiya, T., Hirano, M., Hosono, H.: Superconductivity in epitaxialthin films of Co-doped SrFe2As2 with bilayered FeAs structures and their magnetic anisotropy.Appl. Phys. Express 1, 101702 (2008)

2. Hiramatsu, H., Katase, T., Kamiya, T., Hirano, M., Hosono, H.: Heteroepitaxial growth andoptoelectronic properties of layered iron oxyarsenide. LaFeAsO. Appl. Phys. Lett. 93, 162504(2008)

3. Backen, E., Haindl, S., Niemeier, T., Hühne, R., Freudenberg, T., Werner, J., Behr, G., Schultz,L., Holzapfel, B.: Growth and anisotropy of La(O, F)FeAs thin films deposited by pulsed laserdeposition. Supercond. Sci. Technol. 21, 122001 (2008)

4. Wu,M.K., Hsu, F.C., Yeh, K.W., Huang, T.W., Luo, J.Y.,Wang,M.J., Chang, H.H., Chen, T.K.,Rao, S.M., Mok, B.H., Chen, C.L., Huang, Y.L., Ke, C.T., Wu, P.M., Chang, A.M., Wu, C.T.,

Page 5: Appendix A Chronological Survey of Selected Publications

Appendix B: Space Groups and Brillouin Zones 385

Perng, T.P.: The development of the superconducting PbO-typeβ-FeSe and related compounds.Phys. C 469, 340 (2008)

5. Mele, P., Matsumoto, K., Haruyama, Y., Mukaida, M., Yoshida, Y., Kiss, T.: Fabrication ofFe-Te-S superconducting epitaxial thin films by pulsed laser deposition. Appl. Phys. Express2, 073002 (2009)

6. Si, W., Lin, Z.-W., Jie, Q., Yin, W.-G., Zhou, J., Gu, G., Johnson, P.D., Li, Q.: Enhancedsuperconducting transition temperature in FeSe0.5Te0.5. Appl. Phys. Lett. 95, 052504 (2009)

7. Kawaguchi, T., Uemura, H., Ohno, T., Watanabe, R., Tabuchi, M., Ujihara, T., Takenaka, K.,Takeda, Y., Ikuta, H.: Epitaxial growth of NdFeAsO thin films by molecular beam epitaxy.Appl. Phys. Express 2, 093002 (2009)

8. Katase, T., Hiramatsu, H., Yanagi, H., Kamiya, T., Hirano, M., Hosono, H.: Atomically-flat,chemically-stable, superconducting epitaxial thin film of iron-based superconductor, cobalt-doped BaFe2As2. Solid State Commun. 149, 2121 (2009)

9. Han, Y., Li, W.Y., Cao, L.X., Wang, X.Y., Xu, B., Zhao, B.R., Guo, Y.Q., Yang, J.L.: Supercon-ductivity in iron telluride thin films under tensile stress. Phys. Rev. Lett. 104, 017003 (2010)

10. Chen, N., Qu, S., Li, Y., Liu, Y., Zhang, R., Zhao, H.: Synthesis of LiFeAs superconductor byelectrochemistry at room temperature. J. Appl. Phys. 107, 09E123 (2010)

11. Agatsuma, S., Yamagishi, T., Takeda, S., Naito,M.:MBE growth of FeSe and Sr1−xKxFe2As2.Phys. C 470, 1468 (2010)

12. Lee, N.H., Jung, S.-G., Kim, D.H., Kang, W.N.: Potassium-doped BaFe2As2 superconductingthin films with a transition temperature of 40 K. Appl. Phys. Lett. 96, 2020505 (2010)

13. Kawaguchi, T., Uemura, H., Ohno, T., Tabuchi,M., Ujihara, T., Takenaka, K., Takeda, Y., Ikuta,H.: In situ growth of superconducting NdFeAs(O, F) thin films by molecular beam epitaxy.Appl. Phys. Lett. 97, 042509 (2010)

14. Ueda, S., Takeda, S., Takano, S., Mitsuda, A., Naito, M.: Molecular beam epitaxy growthof superconducting Ba1−xKxFeAs and SmFeAs(O, F) films. Jpn. J. Appl. Phys. 51, 010103(2012)

15. Wang, Q.-Y., Li, Z., Zhang, W.-H., Zhang, Z.-C., Zhang, J.-S., Li, W., Ding, H., Ou, Y.-B.,Deng, P., Chang, K., Wen, J., Song, C.-L., He, K., Jia, J.-F., Ji, S.-H., Wang, Y.-Y., Wang,L.-L., Chen, X., Ma, X.-C., Xue, Q.-K.: Interface-induced high-temperature superconductivityin single unit-cell FeSe films on SrTiO3. Chin. Phys. Lett. 29, 037402 (2012)

16. Katase, T., Iimura, S., Hiramatsu, H., Kamiya, T., Hosono, H.: Identical effects of indirect anddirect electron doping of superconducting BaFe2As2 thin films. Phys. Rev. B 85, 140515(R)(2012)

17. Adachi, S., Shimode, T., Miura, M., Chikumoto, N., Takemori, A., Nakao, K., Oshikubo, Y.,Tanabe, K.: Pulsed laser deposition of BaFe2(As, P)2 superconducting thin films with highcritical current density. Supercond. Sci. Technol. 25, 105015 (2012)

18. Engelmann, J., Müller, K.H., Nenkov, V., Schultz, L., Holzapfel, B., Haindl, S.: Metamagneticeffects in epitaxial BaFe1.8Co0.2As2 thin films. Eur. Phys. J. B 85, 406 (2012)

19. Hiramatsu, H., Katase, T., Kamiya, T., Hosono, H.: Superconducting properties and phasediagram of indirectly electron-doped (Sr1−xLax )Fe2As2 epitaxial films grown by pulsed laserdeposition. IEEE Trans. Appl. Supercond. 23, 7300405 (2013)

20. Katase, T., Hiramatsu, H., Kamiya, T., Hosono, H.: Magnetic scattering and electron pairbreaking by rare-earth-ion substitution in BaFe2As2 epitaxial films. New J. Phys. 15, 073019(2013)

21. Hiramatsu, H., Matsuda, S., Sato, H., Kamiya, T., Hosono, H.: Growth of c-axis-orientedKFe2As2 thin films. ACS Appl. Mater. Interfaces 6, 14293 (2014)

22. Corrales-Mendoza, I., Bartolo-Pèrez, P., Sánches-Reséndiz, V.M., Gallardo-Hernández, S.,Conde-Gallardo, A.: Growth of superconducting NdFe0.88Co0.12AsO films by metal-organicchemical vapor deposition and post arsenic diffusion. EPL 109, 17007 (2015)

23. Hatano, T., Kawaguchi, T., Fujimoto, R., Nakamura, I., Mori, Y., Harada, S., Ujihara, T., Ikuta,H.: Thin film growth of CaFe2As2 by molecular beam epitaxy. Supercond. Sci. Technol. 29,015013 (2016)

Page 6: Appendix A Chronological Survey of Selected Publications

386 Appendix B: Space Groups and Brillouin Zones

24. Richter, S., Aswartham, S., Pukenas, A., Grinenko, V., Wurmehl, S., Skrotzki, W., Büchner,B., Nielsch, K., Hühne, R.: Superconductivity in Ni-doped Ba-Fe-As thin films prepared fromsingle-crystal targets using PLD. IEEE Trans. Appl. Supercond. 27, 7300403 (2017)

25. Fujiwara, K., Shiogai, J., Tsukazaki, A.: Fabrication of tetragonal FeSe-FeS alloy films withhigh sulfur contents by alternate deposition. Jpn. J. Appl. Phys. 56, 100308 (2017)

26. Matsumoto, J., Hanzawa, K., Sasase, M., Haindl, S., Katase, T., Hiramatsu, H., Hosono, H.:Superconductivity at 48 K of heavily hydrogen-doped SmFeAsO epitaxial films grown bytopotactic chemical reaction using CaH2. Phys. Rev. Mater. 3, 103401 (2019)

27. Haindl, S., Wurmehl, S., Büchner, B., Kampert, E.: PLD growth of iron-oxypnictides: Co- andF-substitution. Supercond. Sci. Technol. 33, 105004 (2020)

28. Aroyo, M.I. (ed.).: International Tables for Crystallography, vol. A. IUCr, pp. 486–487 (2016)29. Aroyo, M.I. (ed.): International Tables for Crystallography, vol. A. IUCr, pp. 458–461 (2016)30. Aroyo, M.I., Wondratschek, H.: Crystallographic viewpoints in the classification of space-

group representations. In: Shmueli, U. (ed.): International Tables for Crystallography, vol. B.IUCr, pp. 175–192 (2010)

Page 7: Appendix A Chronological Survey of Selected Publications

Index

AActivation energy, 254–257Alkali metal dispenser, 67, 72, 79Ambegaokar-Baratoff relation, 279, 282Anderson’s theorem, 9Andreev bound states, 309Angle-Resolved Photoelectron Spec-

troscopy (ARPES), 338–341Anion height, 17, 302Annealing, 162, 176, 177Anomalous Hall effect, 321Aqueous solution, 115–118, 120, 126As vapor, 67

BBaFe2As2, 2, 11, 196

electronic phase diagram, 294, 295interface, 203, 213, 243, 245–248, 294LEED, 179optical spectroscopy, 332, 336PLD, 52, 55, 192SDW, 14structure, 5, 8surface, 169, 170template, 193, 198

BaFe2(As1−xPx )2, 166critical currents, 266, 267, 275irradiation, 358MBE, 85, 86PLD, 58, 59point-contact spectroscopy, 346upper critical field, 315, 317

Ba(Fe1−xCox )2As2, 161, 166, 167critical currents, 268, 270, 275

electronic phase diagram, 293, 294, 297Hall effect, 320interface, 211, 243, 246, 247irradiation, 355, 356LEED, 152optical spectroscopy, 332, 333, 344PLD, 3, 52–57, 202, 248, 249point-contact spectroscopy, 345, 346RHEED, 154, 155surface impedance, 325voltage noise, 321vortex liquid, 253

Ba(Fe1−xCrx )2As2PLD, 57

Ba(Fe1−xNix )2As2critical currents, 269optical spectroscopy, 332, 337PLD, 57, 58vortex liquid, 253

BaFeO3−x , 55, 212, 248, 249, 269, 270, 325(Ba1−xKx )Fe2As2

MBE, 84, 85two-stage synthesis, 95–97

(Ba1−xLax )Fe2As2, 295–298PLD, 58

Band bending, 304–306Band structure calculations, 11(Ba1−xREx )Fe2As2

PLD, 58BaZrO3, 163, 167, 249, 250, 256, 257, 269,

272BCS theory, 9, 15, 18, 327Bean’s critical state, 260, 263Bicrystal, 277–280, 282BKT, 258–260

© Springer Nature Switzerland AG 2021S. Haindl, Iron-Based Superconducting Thin Films,Springer Series in Materials Science 315,https://doi.org/10.1007/978-3-030-75132-6

387

Page 8: Appendix A Chronological Survey of Selected Publications

388 Index

Blonder-Tinkham-Klapwijk theory, 344Bohr magneton, 9Bonding angle, 17, 159, 295, 302, 340Buffer layer, 162, 163, 174, 193–198

CCaFe2As2

MBE, 83, 84Ca(Fe1−xCox )2As2

PLD, 60Cathodic codeposition, 116Cathodic metal deposition, 114CeO2, 162, 194, 195, 236–239, 260, 269,

270, 272–274, 353, 354Charge fluctuations, 13Charge transfer, 299, 301, 304–307Chemical bath deposition (CBD), 126–129,

189Chemical substitution, 6, 11Coated conductor, 47, 56, 273–276Cooper law fit, 105Cracker cell, 66, 67Critical currents, 260–264, 277Critical temperature, 15, 105, 161, 299Crystal field splitting, 4, 13Cuprate superconductors, 18

Dde Broglie wavelength, 149, 152de Gennes extrapolation length, 302Density of states, 11, 15Depairing current, 260–263Dielectric constant, 308Dirac cone, 14, 302, 336, 339Direct doping, 6, 295Dislocations, 71, 167, 173, 178, 192, 204,

206, 207, 237, 239Domain matching epitaxy, 34, 36, 62, 200Drude-Lorentz model, 326Drude term, 326

EEffusion cell, 66, 67, 100Electric noise, 321, 322Electrodeposition, 114–117, 119–121, 124,

189, 193Electron-boson coupling, 312, 315, 333Electron doping, 11, 295–298, 301, 302, 339Electronic correlations, 13, 302, 340Electronic phase diagram, 16, 287–291,

293–295

Electron-phonon coupling, 15, 327, 332, 340interfacial, 16, 299, 304, 306

FFe, 9, 10

buffer layer, 195, 196electrodeposition, 116ferromagnetism, 9impurity, 55, 111superconductivity, 10

Fe(CO)5, 109Fe1−xCoxSe

MBE, 70Fe3O4, 240, 249, 270, 352Fermi surface, 11, 300, 339, 340

nesting, 14, 346FeSe, 2, 13

ARPES, 338, 339chemical bath deposition, 126–129electrodeposition, 117, 119–121FeSe1−xTex , 161, 165, 167Hall coefficient, 319K:FeSe, 39LEED, 150, 151liquid phase deposition, 124–126MBE, 69, 70Mg:FeSe, 39MOCVD, 109–112PLD, 34, 36–39spray pyrolysis, 129sputter deposition, 103–105structure, 6two-stage synthesis, 95–97upper critical field, 315

FeSe/Bi2Se3LEED, 151

FeSe1−xSxelectronic phase diagram, 291PLD, 50, 51

FeSe/SrTiO3(1 uc), 11, 298, 300, 302–310energy gap, 300, 302Fermi surface, 298, 300LEED, 150MBE, 72, 74–79RHEED, 157, 158STM, 176, 177TRHEPD, 159upper critical field, 314

FeSe1−xTexconductivity fluctuations, 325critical currents, 268electronic phase diagram, 287–290

Page 9: Appendix A Chronological Survey of Selected Publications

Index 389

Hall coefficient, 319irradiation, 353, 354PLD, 43, 44, 46–48point-contact spectroscopy, 345RHEED, 154, 157, 158sputter deposition, 106–108two-stage synthesis, 96upper critical field, 313

FeSe1−xTex /SrTiO3(1 uc)MBE, 78, 79

FeTeHall coefficient, 319irradiation, 352MBE, 71, 72oxygenation, 42, 71PLD, 40–43point-contact spectroscopy, 344STM, 178structure, 7upper critical field, 313

FeTe/Bi2Te3point-contact spectroscopy, 344upper critical field, 315

FeTe1−xSxPLD, 48, 50two-stage synthesis, 96upper critical field, 313

FeTe/SiO, 94FeTe/SrTiO3(1 uc)

MBE, 78Fe-vacancy ordering, 72, 150, 151Film bending, 166Film texture, 160–163Flash evaporation, 94Fluorine source, 90–93Flux creep, 253–257Fuchs-Kliewer surface phonons, 192, 307Fulde-Ferrell-Larkin-Ovchinnikov (FFLO),

313

GGaP, 67, 85, 86Gap closing temperature, 299, 300Ginzburg-Landau theory, 309

anisotropic, 310coherence length, 309, 317depairing current, 262multiband effects, 313, 317

Grain boundaries, 48, 56, 277–280, 282Growth methods (overview), 28, 93Growth mode, 153, 154, 169, 171–173Growth rate, 34, 105

HHall coefficient, 318Hall effect, 317–321Halperin-Nelson formula, 258Heterointerface, 3, 198–212, 214, 215, 218,

222, 225, 227, 235–248High-Energy Positron Diffraction (HEPD),

159, 160High gas pressure trap system, 96Hillock formation, 127, 356Hole doping, 11H2Se, 109, 111, 112, 121Hund’s rule coupling, 13, 16, 302Hund’s rules, 9Hydrostatic pressure, 298

IIBAD technique, 47, 56, 57, 59, 163Impurity phase, 38, 43, 55, 56, 58–61, 85, 90,

93, 96, 99, 104, 105, 111–113, 124Indirect doping, 6, 295In8K4, 67Intercalated, 8, 51Ionic liquid, 115, 121Iron age, 1Irradiation, 348

critical temperature, 350, 358defect cascade, 350, 354defect cluster, 350, 355dpa, 351fluence, 351Frenkel defect, 349implantation depth, 358induced defects, 350ion implantation, 352, 353laser light, 351, 352microcracks, 175SRIM/TRIM, 351stopping power, 348

Irreversibility field, 263, 265Isovalent substitution, 11

KKFe2As2, 2

two-stage synthesis, 95–97KxFe2−ySe2, 39

electronic phase diagram, 291MBE, 72

Kramer plot, 263, 265

Page 10: Appendix A Chronological Survey of Selected Publications

390 Index

LLaOFeAs, 1, 11

PLD, 2, 60, 61structure, 5, 7

LaOFe1−xCoxAsPLD, 63

LaOFeP, 1, 11LaO1−xFxFeAs

MBE, 86, 87optical spectroscopy, 337point-contact spectroscopy, 348two-stage synthesis, 95–97, 99upper critical field, 317

(La1−ySmy)O1−xFxFeAsupper critical field, 317

LiFeAs, 2, 8, 11, 27, 32electrodeposition, 121, 124growth mode, 173MBE, 83RHEED, 152structure, 5, 7surface morphology, 178

Li1−xFexOHFeSe, 8PLD, 51

Likharev limit, 259, 261Liquid phase deposition, 124–126Lorentz term, 327Low-Energy Electron Diffraction (LEED),

149–152

MMagnetron, 102Matthias rules, 9Mattis-Bardeen theory, 327Mechanical exfoliation, 94, 256, 258, 282,

345Metal-Organic Chemical Vapor Deposition

(MOCVD), 109, 110, 112Metal-organic precursors, 109Metastable compounds, 295–298MgB2, 18Microbridge, 261Microstructure, 350Microwave spectroscopy, 324, 325MolecularBeamEpitaxy (MBE), 66, 67, 69–

72, 74–94, 100Mott transition, 13Multilayer, 94

NNanobridge, 261–263Nanoparticles, 269, 270

NdOFeAsRHEED, 155–157two-stage synthesis, 95–97

NdOFe1−xCoxAsMOCVD, 112, 113two-stage synthesis, 95–97

NdO1−xFxFeAsirradiation, 356MBE, 87–89

Nematicity, 14Nematic transition, 14, 319, 320, 330, 338–

340Non-Fermi liquid, 17, 327

OOptical spectroscopy, 325–332, 334–338Orbital fluctuations, 18Orbital ordering, 291, 339Orbital selective Mott phase, 13Order parameter symmetry

d-wave, 18, 302s++, 18s±, 17, 332, 346s-wave, 302, 325

Orthorhombic distortion, 13, 295, 307O vacancies, 301, 302

PPairing mechanism, 19Paramagnetic limit, 312Passivation layer, 356Pauli limit, 312, 313Pauli’s exclusion principle, 9Penetration depth, 322–325, 327, 328, 332,

334–337Photoelectron Spectroscopy (PES), 338Pinning force, 260, 263–266, 356Point-contact spectroscopy, 342–346, 348Postdeposition annealing, 94–97, 99, 100Protection layer, 338Proximity annealing, 95Pulsed Laser Deposition (PLD), 28, 30–34,

36–39, 41–44, 46–48, 50–66Pulsed magnetic fields, 309P vapor, 67

QQuantum critical point, 315, 317

Page 11: Appendix A Chronological Survey of Selected Publications

Index 391

RRABiTS, 47, 48, 120, 163, 193, 194, 273,

274Reflection High-Energy Electron Diffrac-

tion (RHEED), 152–158Replica bands, 299, 306–308Rigid band shift, 11, 295Rocking curve, 163–167

SScotch-tape, 94Se

monoclinic (red), 120sputter target, 103

Seed layer, 44, 193, 197, 198Se etching, 74Selenization, 94, 100, 101Semimetal, 11, 110Skin depth, 323, 324, 337SmOFeAs

PLD, 61, 62SmO1−xFxFe1−yCoyAs

upper critical field, 317SmO1−xHxFeAs

two-stage synthesis, 95, 96SmOFe1−xCoxAs

PLD, 63SmO1−xFxFeAs

MBE, 89–93MOCVD, 113PLD, 63–66point-contact spectroscopy, 348two-stage synthesis, 95, 96upper critical field, 317

Solid Phase Epitaxy (SPE), 94SpinDensityWave (SDW), 14, 287, 297, 319Spin fluctuations, 10, 14, 16Spin orbit coupling, 4, 302Spin spiral state, 300Spray pyrolysis, 129Sputter deposition

DC, 105RF, 100, 102–104, 106–108

SQUID, 280SrFe2As2, 14, 295Sr(Fe1−xCox )2As2

PLD, 2, 52, 59, 60upper critical field, 315, 317

(Sr1−xKx )Fe2As2MBE, 84, 85PLD, 84

(Sr1−xLax )Fe2As2

electronic phase diagram, 298PLD, 60

Standard hydrogen electrode, 115Stoichiometric transfer, 31–34, 97Strain, 308, 320, 340Structure

anti-PbO-type, 6, 383Cu2Sb-type, 7, 383NiAs-type, 6PbClF-type, 7ThCr2Si2-type, 8, 383ZrCuSiAs-type, 7, 383

Substrate, 114, 189–193Substrate pretreatment, 74–80Superconducting gap, 328, 338Superconductor-to-insulator transition, 356Super-exchange interaction, 14Surface Debye temperature, 150Surface impedance, 322–325Surface polarity, 169–171, 192Surface reconstruction, 149–152, 155, 158,

169–171, 176, 177, 179Surface roughness, 154–158Surface termination, 192, 197

TThermallyAssisted Flux Flow (TAFF), 253–

257Tinkham formula, 311TlFe1.6Se2, 173Tl1−xFe1.6Se2, 8

PLD, 51Topological insulator, 3, 240Topological phase transition, 302Topological quantum computers, 240Topological superconductivity, 7Topological surface states, 240Two carrier model, 11, 319, 321Two-stage synthesis, 95–97, 99, 100

UUpper critical field, 309

anisotropy, 311, 313, 317, 354Fe-chalcogenides, 313Fe-pnictides, 315pseudo-isotropic, 313, 315

VVacuum coating, 94van der Waals bonding, 6, 200, 201van der Waals engineering, 240

Page 12: Appendix A Chronological Survey of Selected Publications

392 Index

van der Waals epitaxy, 81, 190Vapor pressures, 67Verwey transition, 240Vortex lattice, 309Vortex liquid, 263

W

Wet chemical deposition process, 124

Wexler’s formula, 342

WHH theory, 312, 315