apollonian circle packings: dynamics and number theorygauss.math.yale.edu/~ho2/doc/oh_icwm.pdf138...

97
Apollonian circle packings: Dynamics and Number theory Hee Oh Yale University ICWM, 2014

Upload: others

Post on 28-Sep-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

Apollonian circle packings: Dynamics andNumber theory

Hee Oh

Yale University

ICWM, 2014

Page 2: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

Apollonius of Perga

I Lived from about 262 BC to about 190 BC.I Known as “The Great Geometer”.I His famous book on Conics introduced the terms parabola,

ellipse and hyperbola.

Page 3: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

Apollonius’ theorem

Theorem (Apollonius of Perga)

Given 3 mutually tangent circles, there exist exactly two circlestangent to all three.

Page 4: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25
Page 5: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

Proof of Apollonius’ theorem

We give a modern proof of this ancient theorem using Mobiustransformations: For a,b, c,d ∈ C, ad − bc = 1,(

a bc d

)(z) =

az + bcz + d

, z ∈ C ∪ {∞}.

A Mobius transformation maps circles (including lines) tocircles, preserving angles between them.

In particular, it maps tangent circles to tangent circles.

Page 6: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

Proof of Apollonius’ theorem

We give a modern proof of this ancient theorem using Mobiustransformations: For a,b, c,d ∈ C, ad − bc = 1,(

a bc d

)(z) =

az + bcz + d

, z ∈ C ∪ {∞}.

A Mobius transformation maps circles (including lines) tocircles, preserving angles between them.

In particular, it maps tangent circles to tangent circles.

Page 7: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

Proof of Apollonius’ theorem

We give a modern proof of this ancient theorem using Mobiustransformations: For a,b, c,d ∈ C, ad − bc = 1,(

a bc d

)(z) =

az + bcz + d

, z ∈ C ∪ {∞}.

A Mobius transformation maps circles (including lines) tocircles, preserving angles between them.

In particular, it maps tangent circles to tangent circles.

Page 8: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

Proof of Apollonius’ theorem

Page 9: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

4 mutually tangent circles

Four possible configurations

Page 10: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

Construction of Apollonian circle packings

Beginning with 4 mutually tangent circles, we can keep addingnewer circles tangent to three of the previous circles, providedby the Apollonius theorem. Continuing this process indefinitely,we arrive at an infinite circle packing called an

Apollonian circle packing .

We’ll show the first few generations of this process:

Page 11: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

Construction of Apollonian circle packings

Beginning with 4 mutually tangent circles, we can keep addingnewer circles tangent to three of the previous circles, providedby the Apollonius theorem. Continuing this process indefinitely,we arrive at an infinite circle packing called an

Apollonian circle packing .

We’ll show the first few generations of this process:

Page 12: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

Initial stage

2

23

Here each circle C is labelled with its curvature:

curv(C) =1

radius(C).

The curvature of the outermost circle is −1 (oriented to havedisjoint interiors).

Page 13: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

First generation

2

23

Page 14: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

Second generation

2

2315

6

6

3

Page 15: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

Third generation

2

2315

38

38

35

623 14

11

623 14

11

3 15

6

6

Page 16: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

Example of bounded Apollonian circle packing

The outermost circle has curvature −1.

2

2315

3871114

167

374

371

222455

554659

219447

546

654

110287762

546

867

218647

362

683

323927

858

642

107279738

846

531

210623

662347318911

842635

3871222455

554659

114167

374

371

219447654

546

110287546

762

867

218647

362

683

323927642

858

107279846

738

531

318911

842635

210623

662347

3563198

407

590

491

198407

590

491

99143326

326

102263498

798

699

302863

602

803

203599

338

638

102263798

498

699

302863

602

803

203599

638

338

623

5087

134

278

275

150383

302443

147375

294

438

62 119362

194

371

170447330

507

179471522

354

59111

338350

179

162423

486

315

174455

506 347 1447122231

330

36398167

290

299

131255

378

354

2687182

218

251

42143

62

131

75231

150

186

35111314290

22790279

234

171

66215

194

107

1139

98183

294

267

110215314

299

83143

242254

1863134

182155

54167

110

131

2795

3886

3095266

194251

74231

138

195

59191

170

98

623 62 119

194362

371

170447330

507

179471354

522

5087 278

134

275

150383

302443

147375

438

294

59111

350338

179

174455

506 347162

423

486

315144798167

290

299

122231

330

363

131255

354

378

2687218

182251

42143

62

131

75231

186

150

35111290

314

227

66215

194

107

90279

234

171

1139

110215314

299

98183

294

267

83143

254242

3095

194

266

251

74231

138

195

59191 98

170

1863

182

134

155

54167

110

131

2795

86

38

3 1538

71114

222

219

110287

218

323

107279

210318

3871222

114

219

110287

218

323

107279

318210

35 63198

198

99

102263302

203

102263302

203

623

5087

150

14762119

170

179

59111

162174

14 47122

98

131

26 87

42

75

3511190

66

1139

98110

83

1863

54

27

3095

74

59

62362119

170

179

5087

150

147

59111

174162

14 47 98122

131

26 87

42

75

35111

66

90

1139

11098

83

3095

74

59

1863

54

27

Page 17: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

Example of bounded Apollonian circle packing

The outermost circle has curvature −10.

Page 18: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

Example of unbounded Apollonian circle packing

1 141224406084

201201

129316

268385129

316

268385

73148

432

249465

184492

345

561

217580

616

43373148432

465

249

184492 561

345

217580

616

433

3388232

444

609

705

169276

504537

265532

760

697

64192388

481577

105336

156345

201592

412505

97280808

745

553

256768

681 489

193600

57632133

88232444

705

609

265532

760

697

169276

504 537

64192388

577481

201592

412505

105336

156345

97280

808

553

745

256768

489 681

193600

576321

9 1652108

184313

337

129348

240393

153412

304

433

2536124

49121

84204177

249

81196244

16949100

316

289169

148396 417

297

121324

372

225

2872136220409

433

193372

504585

217436 568

625

57168424

337505

96304145

313

177520448

361

81232616

673457

160496481

265

217648576

417

2564196396

561513

169324

516

441 121196388

361

76216424

625

577201600384

537

153472

256

457

49144436

289361

156456

321

393

81256268

121

91652108

184

337

313

153412

304

433

129348

240393

49100316

169289

148396

297

417

121324372

225

2536124121

49

84204249

177

81196

244

169

2872136220 433

409

217436568

625

193372

504585

81232616

457673

160496

265

481

217648576

417

57168424

505337

96304313

145

177520448

361

2564

196396

513561

121196388

361 169324516

441

76216

424

577

625

153472

256

457

201600 384

537

49144

436

361289

156456

393

321

81256

268

121

41224406084

201201

129268

316

385

129268

316

385

73184492345

561

148432

249465

217616

58043373

184492 561

345

148432

465

249

217616

580433

3364192388

481577

105156

336

345

201412592

505

88232444609

705

169504276

537

265760532

697

97256768

681 489

280808

745

553

193576600

3213364192388

577481

201412592

505105156

336

345

88232444

705

609

265760532

697

169504

276

537

97256768

489 681

280808

553

745

193576

600

321

92872136

220

409

433

193504372

585

217568436

625

5796304

145

313

168424

337505

177448

520

361

81160496481

265

232616

673457

217576648

417

1652

108184313

337129

240348

393

153304

412433

2584204

177

249

36124

4912181244

19616949148396 417

297

100316

289169121372

324 225

2576

216424625

577201384 600

537

153256

472457

64196396

561513

169516

324 441

121388

19636149156456

321

393

144436

28936181268

256

121

92872136220 433

409

217568 436

625

193504

372

585

81160496

265

481

232616

457673

217576648

417

5796304313

145

168424

505337

177448

520

361

1652108184337

313

153304

412433

129240

348

393

49148396297

417

100316

169289

121372

324225

2584204249

177

36124

12149 81244

196 169 2576

216424

577

625

153256

472457

201384600

537

64196396

513561

121388196 361 169

516

324441 49156456

393

321

144436

361289 81268

256

121

1412244060

129 129

73148

184

217 73148

184

217

3388232

169

265

64192

105201

97280

256193 33

88232265

169

64192

201

105

97280

256193

91652108129

153

253684

81 49100148

121

2872136

193

217

57168

96

177

81232

160

217

2564

196

169121

76216

201

153

49144

156

81

9 1652108

153129

49100

148

121

253684

81

2872136217

193

81232160

217

57168

96

177

2564196

121169

76216

153

201

49144

156

81

412244060

129 129

73184

148217 73

184

148217

3364192

105201

88232

169

265

97256

280

193 3364192201

105

88232265

169

97256

280

193

92872136

193

217

5796

168177

81160

232

217

1652108

129

153

2584

36 81 49148

100121 2576

216 201

153

64196

169121 49

156

144 81

92872136217

193

81160

232

217

5796

168177

1652

108

153

129

49148

100 121 2584

36812576

216

153

201

64196

12116949

156

14481

14122440

7373

3388

649733

88

6497

9 1652

2549

2872

57

81

2564

76

49916

52

4925

287281

57

2564

76

49

4122440

7373

336488

973364

88

97

92872

57

81

1652

25492576

6449

92872

81

57

1652

4925 2576

64 49

141224

33 33

916

28

25 9 16

28

25

41224

33 33

928

16 25 928

1625

1412

99

412

99

14

4 11412244060

129 129

73148

184

217 73148

184

217

3388232

169

265

64192

105201

97280

256193 33

88232265

169

64192

201

105

97280

256193

91652108129

153

253684

81 49100148

121

2872136

193

217

57168

96

177

81232

160

217

2564

196

169121

76216

201

153

49144

156

81

9 1652108

153129

49100

148

121

253684

81

2872136217

193

81232160

217

57168

96

177

2564196

121169

76216

153

201

49144

156

81

412244060

129 129

73184

148217 73

184

148217

3364192

105201

88232

169

265

97256

280

193 3364192201

105

88232265

169

97256

280

193

92872136

193

217

5796

168177

81160

232

217

1652108

129

153

2584

36 81 49148

100121 2576

216 201

153

64196

169121 49

156

144 81

92872136217

193

81160

232

217

5796

168177

1652

108

153

129

49148

100 121 2584

36812576

216

153

201

64196

12116949

156

14481

14122440

7373

3388

649733

88

6497

9 1652

2549

2872

57

81

2564

76

49916

52

4925

287281

57

2564

76

49

4122440

7373

336488

973364

88

97

92872

57

81

1652

25492576

6449

92872

81

57

1652

4925 2576

64 49

141224

33 33

916

28

25 9 16

28

25

41224

33 33

928

16 25 928

1625

1412

99

412

99

14

41There are also other unbounded Apollonian packingscontaining either only one line or no line at all. Since circles willget enormously large, it is hard to draw them.

Page 19: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

Example of unbounded Apollonian circle packing

1 141224406084

201201

129316

268385129

316

268385

73148

432

249465

184492

345

561

217580

616

43373148432

465

249

184492 561

345

217580

616

433

3388232

444

609

705

169276

504537

265532

760

697

64192388

481577

105336

156345

201592

412505

97280808

745

553

256768

681 489

193600

57632133

88232444

705

609

265532

760

697

169276

504 537

64192388

577481

201592

412505

105336

156345

97280

808

553

745

256768

489 681

193600

576321

9 1652108

184313

337

129348

240393

153412

304

433

2536124

49121

84204177

249

81196244

16949100

316

289169

148396 417

297

121324

372

225

2872136220409

433

193372

504585

217436 568

625

57168424

337505

96304145

313

177520448

361

81232616

673457

160496481

265

217648576

417

2564196396

561513

169324

516

441 121196388

361

76216424

625

577201600384

537

153472

256

457

49144436

289361

156456

321

393

81256268

121

91652108

184

337

313

153412

304

433

129348

240393

49100316

169289

148396

297

417

121324372

225

2536124121

49

84204249

177

81196

244

169

2872136220 433

409

217436568

625

193372

504585

81232616

457673

160496

265

481

217648576

417

57168424

505337

96304313

145

177520448

361

2564

196396

513561

121196388

361 169324516

441

76216

424

577

625

153472

256

457

201600 384

537

49144

436

361289

156456

393

321

81256

268

121

41224406084

201201

129268

316

385

129268

316

385

73184492345

561

148432

249465

217616

58043373

184492 561

345

148432

465

249

217616

580433

3364192388

481577

105156

336

345

201412592

505

88232444609

705

169504276

537

265760532

697

97256768

681 489

280808

745

553

193576600

3213364192388

577481

201412592

505105156

336

345

88232444

705

609

265760532

697

169504

276

537

97256768

489 681

280808

553

745

193576

600

321

92872136

220

409

433

193504372

585

217568436

625

5796304

145

313

168424

337505

177448

520

361

81160496481

265

232616

673457

217576648

417

1652

108184313

337129

240348

393

153304

412433

2584204

177

249

36124

4912181244

19616949148396 417

297

100316

289169121372

324 225

2576

216424625

577201384 600

537

153256

472457

64196396

561513

169516

324 441

121388

19636149156456

321

393

144436

28936181268

256

121

92872136220 433

409

217568 436

625

193504

372

585

81160496

265

481

232616

457673

217576648

417

5796304313

145

168424

505337

177448

520

361

1652108184337

313

153304

412433

129240

348

393

49148396297

417

100316

169289

121372

324225

2584204249

177

36124

12149 81244

196 169 2576

216424

577

625

153256

472457

201384600

537

64196396

513561

121388196 361 169

516

324441 49156456

393

321

144436

361289 81268

256

121

1412244060

129 129

73148

184

217 73148

184

217

3388232

169

265

64192

105201

97280

256193 33

88232265

169

64192

201

105

97280

256193

91652108129

153

253684

81 49100148

121

2872136

193

217

57168

96

177

81232

160

217

2564

196

169121

76216

201

153

49144

156

81

9 1652108

153129

49100

148

121

253684

81

2872136217

193

81232160

217

57168

96

177

2564196

121169

76216

153

201

49144

156

81

412244060

129 129

73184

148217 73

184

148217

3364192

105201

88232

169

265

97256

280

193 3364192201

105

88232265

169

97256

280

193

92872136

193

217

5796

168177

81160

232

217

1652108

129

153

2584

36 81 49148

100121 2576

216 201

153

64196

169121 49

156

144 81

92872136217

193

81160

232

217

5796

168177

1652

108

153

129

49148

100 121 2584

36812576

216

153

201

64196

12116949

156

14481

14122440

7373

3388

649733

88

6497

9 1652

2549

2872

57

81

2564

76

49916

52

4925

287281

57

2564

76

49

4122440

7373

336488

973364

88

97

92872

57

81

1652

25492576

6449

92872

81

57

1652

4925 2576

64 49

141224

33 33

916

28

25 9 16

28

25

41224

33 33

928

16 25 928

1625

1412

99

412

99

14

4 11412244060

129 129

73148

184

217 73148

184

217

3388232

169

265

64192

105201

97280

256193 33

88232265

169

64192

201

105

97280

256193

91652108129

153

253684

81 49100148

121

2872136

193

217

57168

96

177

81232

160

217

2564

196

169121

76216

201

153

49144

156

81

9 1652108

153129

49100

148

121

253684

81

2872136217

193

81232160

217

57168

96

177

2564196

121169

76216

153

201

49144

156

81

412244060

129 129

73184

148217 73

184

148217

3364192

105201

88232

169

265

97256

280

193 3364192201

105

88232265

169

97256

280

193

92872136

193

217

5796

168177

81160

232

217

1652108

129

153

2584

36 81 49148

100121 2576

216 201

153

64196

169121 49

156

144 81

92872136217

193

81160

232

217

5796

168177

1652

108

153

129

49148

100 121 2584

36812576

216

153

201

64196

12116949

156

14481

14122440

7373

3388

649733

88

6497

9 1652

2549

2872

57

81

2564

76

49916

52

4925

287281

57

2564

76

49

4122440

7373

336488

973364

88

97

92872

57

81

1652

25492576

6449

92872

81

57

1652

4925 2576

64 49

141224

33 33

916

28

25 9 16

28

25

41224

33 33

928

16 25 928

1625

1412

99

412

99

14

41There are also other unbounded Apollonian packingscontaining either only one line or no line at all. Since circles willget enormously large, it is hard to draw them.

Page 20: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

Circle-counting question

For a bounded Apollonian packing P, there are only finitelymany circles of radius bigger than a given number.

For each T > 0, we set

NP(T ) := #{C ∈ P : curv(C) < T} <∞.

Clearly, NP(T )→∞ as T →∞.

Question

I Is there an asymptotic of NP(T ) as T →∞?I If so, can we compute?

Page 21: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

Circle-counting question

For a bounded Apollonian packing P, there are only finitelymany circles of radius bigger than a given number.

For each T > 0, we set

NP(T ) := #{C ∈ P : curv(C) < T} <∞.

Clearly, NP(T )→∞ as T →∞.

Question

I Is there an asymptotic of NP(T ) as T →∞?I If so, can we compute?

Page 22: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

Apollonian circle packing

2

2315

3871114

167

374

371

222455

554659

219447

546

654

110287762

546

867

218647

362

683

323927

858

642

107279738

846

531

210623

662347318911

842635

3871222455

554659

114167

374

371

219447654

546

110287546

762

867

218647

362

683

323927642

858

107279846

738

531

318911

842635

210623

662347

3563198

407

590

491

198407

590

491

99143326

326

102263498

798

699

302863

602

803

203599

338

638

102263798

498

699

302863

602

803

203599

638

338

623

5087

134

278

275

150383

302443

147375

294

438

62 119362

194

371

170447330

507

179471522

354

59111

338350

179

162423

486

315

174455

506 347 1447122231

330

36398167

290

299

131255

378

354

2687182

218

251

42143

62

131

75231

150

186

35111314290

22790279

234

171

66215

194

107

1139

98183

294

267

110215314

299

83143

242254

1863134

182155

54167

110

131

2795

3886

3095266

194251

74231

138

195

59191

170

98

623 62 119

194362

371

170447330

507

179471354

522

5087 278

134

275

150383

302443

147375

438

294

59111

350338

179

174455

506 347162

423

486

315144798167

290

299

122231

330

363

131255

354

378

2687218

182251

42143

62

131

75231

186

150

35111290

314

227

66215

194

107

90279

234

171

1139

110215314

299

98183

294

267

83143

254242

3095

194

266

251

74231

138

195

59191 98

170

1863

182

134

155

54167

110

131

2795

86

38

3 1538

71114

222

219

110287

218

323

107279

210318

3871222

114

219

110287

218

323

107279

318210

35 63198

198

99

102263302

203

102263302

203

623

5087

150

14762119

170

179

59111

162174

14 47122

98

131

26 87

42

75

3511190

66

1139

98110

83

1863

54

27

3095

74

59

62362119

170

179

5087

150

147

59111

174162

14 47 98122

131

26 87

42

75

35111

66

90

1139

11098

83

3095

74

59

1863

54

27

Page 23: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

The study of this question involves notions related to metricproperties of the underlying fractal set called residual set.

Page 24: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

Residual set

Definition (Residual set of P)

Res(P) := ∪C∈PC.

Equivalently, the residual set of P is the fractal set which is leftin the plane after removing all the open disks enclosed bycircles in P.

2

2315

3871114

167

374

371

222455

554659

219447

546

654

110287762

546

867

218647

362

683

323927

858

642

107279738

846

531

210623

662347318911

842635

3871222455

554659

114167

374

371

219447 654

546

110287546

762

867

218647

362

683

323927642

858

107279846

738

531

318911

842635

210623

662347

3563198

407

590

491

198407

590

491

99143326

326

102263498

798

699

302863

602

803

203599

338

638

102263798

498

699

302863

602

803

203599

638

338

623

5087

134

278

275

150383

302443

147375

294

438

62 119362

194

371

170447330

507

179471522

354

59111

338350

179

162423

486

315

174455

506 347 1447122231

330

36398167

290

299

131255

378

354

2687182

218

251

42143

62

131

75231

150

186

35111314290

22790279

234

171

66215

194

107

1139

98183

294

267

110215314

299

83143

242254

1863134

182155

54167

110

131

2795

3886

3095266

194251

74231

138

195

59191

170

98

623 62 119

194362

371

170447330

507

179471354

522

5087 278

134

275

150383

302443

147375 438

294

59111

350338

179

174455

506 347162

423

486

315144798167

290

299

122231

330

363

131255

354

378

2687218

182251

42143

62

131

75231

186

150

35111290

314

227

66215

194

107

90279

234

171

1139

110215314

299

98183

294

267

83143

254242

3095

194

266

251

74231

138

195

59191 98

170

1863

182

134

155

54167

110

131

2795

86

38

3 1538

71114

222

219

110287

218

323

107279

210318

3871222

114

219

110287

218

323

107279

318210

35 63198

198

99

102263302

203

102263302

203

623

5087

150

14762119

170

179

59111

162174

14 47122

98

131

26 87

42

75

3511190

66

1139

98110

83

1863

54

27

3095

74

59

62362119

170

179

5087

150

147

59111

174162

14 47 98122

131

26 87

42

75

35111

66

90

1139

11098

83

3095

74

59

1863

54

27

Page 25: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

Residual dimension

The Hausdorff dimension of the residual set of P is called theResidual dimension of P, which we denote by α.

Usually the dimension is an integer and defined for a smoothmanifold. But the Hausdorff dimension can be defined for anyset; and it does not have to be an integer.

In fact, the definition of a fractal is a set with non-integralHausdorff dimension.

Page 26: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

Residual dimension

The Hausdorff dimension of the residual set of P is called theResidual dimension of P, which we denote by α.

Usually the dimension is an integer and defined for a smoothmanifold. But the Hausdorff dimension can be defined for anyset; and it does not have to be an integer.

In fact, the definition of a fractal is a set with non-integralHausdorff dimension.

Page 27: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

Hausdorff dim. (Hausdorff and Caratheodory (1914))

DefinitionLet s ≥ 0. F ⊂ Rn. The s-dim. Hausdorff meas. of F is def. by:

Hs(F ) := limε→0

(inf{∑

d(Bi)s : F ⊂ ∪iBi ,d(Bi) < ε}

)where d(Bi) is the diameter of Bi .

It can be shown that as s increases, the s-dim Haus measureof F will be∞ up to a certain value and then jumps to 0.

DefinitionThe Hausdorff dim of F is this critical value of s:

dimH(F ) = sup{s : Hs(F ) =∞} = inf{s : Hs(F ) = 0}.

Page 28: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

Hausdorff dim. (Hausdorff and Caratheodory (1914))

DefinitionLet s ≥ 0. F ⊂ Rn. The s-dim. Hausdorff meas. of F is def. by:

Hs(F ) := limε→0

(inf{∑

d(Bi)s : F ⊂ ∪iBi ,d(Bi) < ε}

)where d(Bi) is the diameter of Bi .

It can be shown that as s increases, the s-dim Haus measureof F will be∞ up to a certain value and then jumps to 0.

DefinitionThe Hausdorff dim of F is this critical value of s:

dimH(F ) = sup{s : Hs(F ) =∞} = inf{s : Hs(F ) = 0}.

Page 29: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

α = dimH(Res(P)): Residual dim

We observeI 1 ≤ α ≤ 2

I α is independent of P: any two Apollonian packings areequivalent to each other by a Mobius transformation.

I The precise value of α is unknown, but approximately,α = 1.30568(8) (McMullen 1998)

In particular, Res(P) is much bigger than a c’ble union ofcircles of P, but not too big in the sense that its Leb. area (=2dimensional Haus. measure) is zero.

Page 30: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

α = dimH(Res(P)): Residual dim

We observeI 1 ≤ α ≤ 2

I α is independent of P: any two Apollonian packings areequivalent to each other by a Mobius transformation.

I The precise value of α is unknown, but approximately,α = 1.30568(8) (McMullen 1998)

In particular, Res(P) is much bigger than a c’ble union ofcircles of P, but not too big in the sense that its Leb. area (=2dimensional Haus. measure) is zero.

Page 31: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

Confirming Wilker’s prediction based on computer experiments,Boyd showed: (NP(T ) := #{C ∈ P : curv(C) < T})

Theorem (Boyd 1982)

limT→∞

log NP(T )

log T= α.

Boyd asked whether NP(T ) ∼ cTα as T →∞, and wrote thathis numerical experiments suggest this may be false andperhaps

NP(T ) ∼ c · Tα(log T )β

might be more appropriate.

Page 32: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

Confirming Wilker’s prediction based on computer experiments,Boyd showed: (NP(T ) := #{C ∈ P : curv(C) < T})

Theorem (Boyd 1982)

limT→∞

log NP(T )

log T= α.

Boyd asked whether NP(T ) ∼ cTα as T →∞, and wrote thathis numerical experiments suggest this may be false andperhaps

NP(T ) ∼ c · Tα(log T )β

might be more appropriate.

Page 33: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

Theorem (Kontorovich-O. 2009)

For a bounded Apollonian packing P, there exists a constantcP > 0 such that

NP(T ) ∼ cP · Tα

where α = 1.30568(8) is the residual dimension of P.

Theorem (Lee-O. 2012)

There exists η > 0 such that for any bounded Apollonianpacking P,

NP(T ) = cP · Tα + O(Tα−η)

where α = 1.30568(8) is the residual dimension of P.

Page 34: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

Theorem (Kontorovich-O. 2009)

For a bounded Apollonian packing P, there exists a constantcP > 0 such that

NP(T ) ∼ cP · Tα

where α = 1.30568(8) is the residual dimension of P.

Theorem (Lee-O. 2012)

There exists η > 0 such that for any bounded Apollonianpacking P,

NP(T ) = cP · Tα + O(Tα−η)

where α = 1.30568(8) is the residual dimension of P.

Page 35: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

Counting inside Triangle

For unbounded Apollonian packing P, NP(T ) =∞.

Consider a curvilinear triangle R whose sides are given bythree mutually tangent circles in any Apollonian packing (eitherbounded or unbounded):

SetNR(T ) := #{C ∈ R : curv(C) < T} <∞.

Page 36: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

Counting inside Triangle

For unbounded Apollonian packing P, NP(T ) =∞.

Consider a curvilinear triangle R whose sides are given bythree mutually tangent circles in any Apollonian packing (eitherbounded or unbounded):

SetNR(T ) := #{C ∈ R : curv(C) < T} <∞.

Page 37: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

Theorem (O.-Shah 10)

For a curvilinear triangle R of any Apollonian packing P,

NR(T ) ∼ cR · Tα.

Page 38: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

Distribution of circles in Apollonian packing

QuestionCan we describe the asymptotic distribution of circles in P ofcurvature at most T as T →∞?

For a bounded Borel subset E , set

NT (P,E) := #{C ∈ P : curv(C) < T ,C ∩ E 6= ∅}.

As we vary E ⊂ C, how does NT (P,E) depend on E?

Page 39: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

Distribution of circles in Apollonian packing

QuestionCan we describe the asymptotic distribution of circles in P ofcurvature at most T as T →∞?

For a bounded Borel subset E , set

NT (P,E) := #{C ∈ P : curv(C) < T ,C ∩ E 6= ∅}.

As we vary E ⊂ C, how does NT (P,E) depend on E?

Page 40: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

Distribution of circles

QuestionDoes there exist a measure ωP on C such that for any bddBorel E ⊂ C,

limT→∞

NT (P,E)

Tα= ωP(E)?

Note that all the circles in P lie on the residual set of P.

Hence any measure describing the asymptotic distribution ofcircles of P must be supported on the residual set of P.

What measure could that be?

Page 41: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

Distribution of circles

QuestionDoes there exist a measure ωP on C such that for any bddBorel E ⊂ C,

limT→∞

NT (P,E)

Tα= ωP(E)?

Note that all the circles in P lie on the residual set of P.

Hence any measure describing the asymptotic distribution ofcircles of P must be supported on the residual set of P.

What measure could that be?

Page 42: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

Distribution of circles

QuestionDoes there exist a measure ωP on C such that for any bddBorel E ⊂ C,

limT→∞

NT (P,E)

Tα= ωP(E)?

Note that all the circles in P lie on the residual set of P.

Hence any measure describing the asymptotic distribution ofcircles of P must be supported on the residual set of P.

What measure could that be?

Page 43: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

Distribution of circles

QuestionDoes there exist a measure ωP on C such that for any bddBorel E ⊂ C,

limT→∞

NT (P,E)

Tα= ωP(E)?

Note that all the circles in P lie on the residual set of P.

Hence any measure describing the asymptotic distribution ofcircles of P must be supported on the residual set of P.

What measure could that be?

Page 44: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

We show that the α-dim. Hausd. measure Hα on Res(P) doesthe job.

Theorem (O.-Shah, 10)

For any bdd. Borel E ⊂ C with smooth bdry,

NT (P,E) ∼ cA · Hα(E ∩ Res(P)) · Tα

where 0 < cA <∞ is an absolute constant independent of P.

Page 45: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

We show that the α-dim. Hausd. measure Hα on Res(P) doesthe job.

Theorem (O.-Shah, 10)

For any bdd. Borel E ⊂ C with smooth bdry,

NT (P,E) ∼ cA · Hα(E ∩ Res(P)) · Tα

where 0 < cA <∞ is an absolute constant independent of P.

Page 46: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

Distribution of circles

Thm says that circles in an Apollonian packing are uniformlydistributed w.r.t the α-dim. Hausdorff meas. on its residual set:

NT (P,E1)

NT (P,E2)∼ H

α(E1 ∩ Res(P))

Hα(E2 ∩ Res(P)).

Page 47: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

Integral Apollonian circle packings

We call an Apollonian packing P integral if every circle in Phas integral curvature.

Does there exist any integral P?

The answer is positive thanks to the following beautiful thm ofDescartes:

Page 48: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

Integral Apollonian circle packings

We call an Apollonian packing P integral if every circle in Phas integral curvature.

Does there exist any integral P?

The answer is positive thanks to the following beautiful thm ofDescartes:

Page 49: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

Descartes circle theorem, 1643

Theorem (in a letter to Princess Elisabeth of Bohemia)

A quadruple (a,b, c,d) is the curvatures of four mutuallytangent circles if and only if it satisfies the quadratic equation:

2(a2 + b2 + c2 + d2) = (a + b + c + d)2.

Page 50: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

2

2315

3871114

167

374

371

222455

554659

219447

546

654

110287762

546

867

218647

362

683

323927

858

642

107279738

846

531

210623

662347318911

842635

3871222455

554659

114167

374

371

219447 654

546

110287546

762

867

218647

362

683

323927642

858

107279846

738

531

318911

842635

210623

662347

3563198

407

590

491

198407

590

491

99143326

326

102263498

798

699

302863

602

803

203599

338

638

102263798

498

699

302863

602

803

203599

638

338

623

5087

134

278

275

150383

302443

147375

294

438

62 119362

194

371

170447330

507

179471522

354

59111

338350

179

162423

486

315

174455

506 347 1447122231

330

36398167

290

299

131255

378

354

2687182

218

251

42143

62

131

75231

150

186

35111314290

22790279

234

171

66215

194

107

1139

98183

294

267

110215314

299

83143

242254

1863134

182155

54167

110

131

2795

3886

3095266

194251

74231

138

195

59191

170

98

623 62 119

194362

371

170447330

507

179471354

522

5087 278

134

275

150383

302443

147375 438

294

59111

350338

179

174455

506 347162

423

486

315144798167

290

299

122231

330

363

131255

354

378

2687218

182251

42143

62

131

75231

186

150

35111290

314

227

66215

194

107

90279

234

171

1139

110215314

299

98183

294

267

83143

254242

3095

194

266

251

74231

138

195

59191 98

170

1863

182

134

155

54167

110

131

2795

86

38

3 1538

71114

222

219

110287

218

323

107279

210318

3871222

114

219

110287

218

323

107279

318210

35 63198

198

99

102263302

203

102263302

203

623

5087

150

14762119

170

179

59111

162174

14 47122

98

131

26 87

42

75

3511190

66

1139

98110

83

1863

54

27

3095

74

59

62362119

170

179

5087

150

147

59111

174162

14 47 98122

131

26 87

42

75

35111

66

90

1139

11098

83

3095

74

59

1863

54

27

E.g: 2((−1)2 + 22 + 22 + 32) = 36 = (−1 + 2 + 2 + 3)2

E.g. 2(22 + 32 + 62 + 232) = 1156 = (2 + 3 + 6 + 23)2

Page 51: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

Given three mutually tangent circles of curvatures a,b, c, if wedenote by d and d ′ for the curvatures of the two circles tangentto all three, then

2(a2 + b2 + c2 + d2) = (a + b + c + d)2

and2(a2 + b2 + c2 + (d ′)2) = (a + b + c + d ′)2.

By subtracting one from the other, we obtain

d + d ′ = 2(a + b + c).

So, if a,b, c,d are integers, so is d ′.

Page 52: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

Given three mutually tangent circles of curvatures a,b, c, if wedenote by d and d ′ for the curvatures of the two circles tangentto all three, then

2(a2 + b2 + c2 + d2) = (a + b + c + d)2

and2(a2 + b2 + c2 + (d ′)2) = (a + b + c + d ′)2.

By subtracting one from the other, we obtain

d + d ′ = 2(a + b + c).

So, if a,b, c,d are integers, so is d ′.

Page 53: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

Theorem (Soddy 1936)

If the initial 4 circles in an Apollonian packing P have integralcurvatures, P is integral.

Therefore, for any integral solution of2(a2 + b2 + c2 + d2) = (a + b + c + d)2, ∃ an integralApollonian packing!

Page 54: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

Theorem (Soddy 1936)

If the initial 4 circles in an Apollonian packing P have integralcurvatures, P is integral.

Therefore, for any integral solution of2(a2 + b2 + c2 + d2) = (a + b + c + d)2, ∃ an integralApollonian packing!

Page 55: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

Integral Apollonian circle packings

Any integral Apollonian packing is either bounded or liesbetween two parallel lines:

2

2315

3871114

167

374

371

222455

554659

219447

546

654

110287762

546

867

218647

362

683

323927

858

642

107279738

846

531

210623

662347318911

842635

3871222455

554659

114167

374

371

219447 654

546

110287546

762

867

218647

362

683

323927642

858

107279846

738

531

318911

842635

210623

662347

3563198

407

590

491

198407

590

491

99143326

326

102263498

798

699

302863

602

803

203599

338

638

102263798

498

699

302863

602

803

203599

638

338

623

5087

134

278

275

150383

302443

147375

294

438

62 119362

194

371

170447330

507

179471522

354

59111

338350

179

162423

486

315

174455

506 347 1447122231

330

36398167

290

299

131255

378

354

2687182

218

251

42143

62

131

75231

150

186

35111314290

22790279

234

171

66215

194

107

1139

98183

294

267

110215314

299

83143

242254

1863134

182155

54167

110

131

2795

3886

3095266

194251

74231

138

195

59191

170

98

623 62 119

194362

371

170447330

507

179471354

522

5087 278

134

275

150383

302443

147375 438

294

59111

350338

179

174455

506 347162

423

486

315144798167

290

299

122231

330

363

131255

354

378

2687218

182251

42143

62

131

75231

186

150

35111290

314

227

66215

194

107

90279

234

171

1139

110215314

299

98183

294

267

83143

254242

3095

194

266

251

74231

138

195

59191 98

170

1863

182

134

155

54167

110

131

2795

86

38

3 1538

71114

222

219

110287

218

323

107279

210318

3871222

114

219

110287

218

323

107279

318210

35 63198

198

99

102263302

203

102263302

203

623

5087

150

14762119

170

179

59111

162174

14 47122

98

131

26 87

42

75

3511190

66

1139

98110

83

1863

54

27

3095

74

59

62362119

170

179

5087

150

147

59111

174162

14 47 98122

131

26 87

42

75

35111

66

90

1139

11098

83

3095

74

59

1863

54

27

1 141224406084

201201

129316

268385129

316

268385

73148

432

249465

184492345

561

217580616

43373148432

465

249

184492 561

345

217580

616

433

3388232444609

705

169276

504537

265532 760

697

64192388

481577

105336

156345

201592412505

97280808745

553

256768

681 489

193600

5763213388232444 705

609

265532760

697

169276

504 537

64192388

577481

201592 412505

105336

156345

97280808

553

745

256768

489 681

193600

576 321

9 1652108

184313

337

129348

240393

153412

304

433

2536124

49121

84204177

249

81196244

16949100

316

289169

148396 417

297

121324

372

225

2872136220409

433

193372

504585

217436 568

625

57168424

337505

96304145

313

177520448

361

81232616

673 457

160496481

265

217648576

417

2564196396

561 513

169324

516

441 121196388

361

76216424625

577201600384

537

153472

256

457

49144436

289361

156456

321

393

81256268

121

91652108

184

337

313

153412

304

433

129348

240 393

49100316

169289

148396297

417

121324372

225

2536124121

49

84204249

177

81196

244

169

2872136220 433

409

217436568

625

193372

504 585

81232616

457 673

160496

265

481

217648 576

417

57168424

505337

96304313

145

177520 448

361

2564

196396

513 561

121196388

361 169324516

441

76216

424

577

625

153472

256

457

201600 384

537

49144

436

361289

156456

393

321

81256

268

121

41224406084

201201

129268

316

385

129268

316

385

73184492345

561

148432

249465

217616

58043373184492 561

345

148432

465

249

217616

580 433

3364192388

481577

105156

336

345

201412 592

505

88232444609

705

169504276

537

265760532

697

97256768

681 489

280808745

553

193576600

3213364192388

577481

201412592

505105156

336

345

88232444 705

609

265760 532

697

169504

276

537

97256768

489 681

280808

553

745

193576

600

321

92872136

220

409

433

193504372

585

217568436

625

5796304

145

313

168424

337505

177448 520

361

81160496481

265

232616

673 457

217576 648

417

1652

108184313

337 129240

348

393

153304

412433

2584204

177

249

36124

4912181244

19616949148396 417

297

100316

289169121372

324 225

2576

216424625

577201384 600

537

153256

472457

64196396

561 513

169516

324 441

121388

19636149156456

321

393

144436

28936181268

256

121

92872136220 433

409

217568 436

625

193504

372

585

81160496

265

481

232616

457 673

217576648

417

5796304313

145

168424

505337

177448520

361

1652108184337

313

153304

412433

129240

348

393

49148396297

417

100316

169289

121372

324225

2584204249

177

36124

12149 81244

196 169 2576

216424

577

625

153256

472 457

201384600

537

64196396

513 561

121388196 361 169

516

324441 49156456

393

321

144436

361289 81268

256

121

1412244060

129 129

73148

184

217 73148

184

217

3388232

169

265

64192

105201

97280

256193 33

88232265

169

64192

201

105

97280

256193

91652108129

153

253684

81 49100148

121

2872136

193

217

57168

96

177

81232

160

217

2564

196

169121

76216

201

153

49144

156

81

9 1652108

153129

49100

148

121

253684

81

2872136217

193

81232160

217

57168

96

177

2564196

121169

76216

153

201

49144

156

81

412244060

129 129

73184

148217 73

184

148217

3364192

105201

88232

169

265

97256

280

193 3364192201

105

88232265

169

97256

280

193

92872136

193

217

5796

168177

81160

232

217

1652108

129

153

2584

36 81 49148

100121 2576

216 201

153

64196

169121 49

156

144 81

92872136217

193

81160

232

217

5796

168177

1652

108

153

129

49148

100 121 2584

36812576

216

153

201

64196

12116949

156

14481

14122440

7373

3388

649733

88

6497

9 1652

2549

2872

57

81

2564

76

49916

52

4925

287281

57

2564

76

49

4122440

7373

336488

973364

88

97

92872

57

81

1652

25492576

6449

92872

81

57

1652

4925 2576

64 49

141224

33 33

916

28

25 9 16

28

25

41224

33 33

928

16 25 928

1625

1412

99

412

99

14

4 11412244060

129 129

73148

184

217 73148

184

217

3388232

169

265

64192

105201

97280

256193 33

88232265

169

64192

201

105

97280

256193

91652108129

153

253684

81 49100148

121

2872136

193

217

57168

96

177

81232

160

217

2564

196

169121

76216

201

153

49144

156

81

9 1652108

153129

49100

148

121

253684

81

2872136217

193

81232160

217

57168

96

177

2564196

121169

76216

153

201

49144

156

81

412244060

129 129

73184

148217 73

184

148217

3364192

105201

88232

169

265

97256

280

193 3364192201

105

88232265

169

97256

280

193

92872136

193

217

5796

168177

81160

232

217

1652108

129

153

2584

36 81 49148

100121 2576

216 201

153

64196

169121 49

156

144 81

92872136217

193

81160

232

217

5796

168177

1652

108

153

129

49148

100 121 2584

36812576

216

153

201

64196

12116949

156

14481

14122440

7373

3388

649733

88

6497

9 1652

2549

2872

57

81

2564

76

49916

52

4925

287281

57

2564

76

49

4122440

7373

336488

973364

88

97

92872

57

81

1652

25492576

6449

92872

81

57

1652

4925 2576

64 49

141224

33 33

916

28

25 9 16

28

25

41224

33 33

928

16 25 928

1625

1412

99

412

99

14

41

Page 56: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

Diophantine questions

For a given integral Apollonian packing P, it is natural to inquireabout its the Diophantine properties such as

Question

I Are there infinitely many circles with prime curvatures?I Which integers appear as curvatures?

Assume that P is primitive, i.e.,g. c.dC∈P(curv(C)) = 1.

Definition

1. A circle is prime if its curvature is a prime number.2. A pair of tangent prime circles is a tangent prime.

Page 57: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

Diophantine questions

For a given integral Apollonian packing P, it is natural to inquireabout its the Diophantine properties such as

Question

I Are there infinitely many circles with prime curvatures?I Which integers appear as curvatures?

Assume that P is primitive, i.e.,g. c.dC∈P(curv(C)) = 1.

Definition

1. A circle is prime if its curvature is a prime number.2. A pair of tangent prime circles is a tangent prime.

Page 58: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

2

2315

3871114

167

374

371

222455

554659

219447

546

654

110287762

546

867

218647

362

683

323927

858

642

107279738

846

531

210623

662347318911

842635

3871222455

554659

114167

374

371

219447654

546

110287546

762

867

218647

362

683

323927642

858

107279846

738

531

318911

842635

210623

662347

3563198

407

590

491

198407

590

491

99143326

326

102263498

798

699

302863

602

803

203599

338

638

102263798

498

699

302863

602

803

203599

638

338

623

5087

134

278

275

150383

302443

147375

294

438

62 119362

194

371

170447330

507

179471522

354

59111

338350

179

162423

486

315

174455

506 347 1447122231

330

36398167

290

299

131255

378

354

2687182

218

251

42143

62

131

75231

150

186

35111314290

22790279

234

171

66215

194

107

1139

98183

294

267

110215314

299

83143

242254

1863134

182155

54167

110

131

2795

3886

3095266

194251

74231

138

195

59191

170

98

623 62 119

194362

371

170447330

507

179471354

522

5087 278

134

275

150383

302443

147375

438

294

59111

350338

179

174455

506 347162

423

486

315144798167

290

299

122231

330

363

131255

354

378

2687218

182251

42143

62

131

75231

186

150

35111290

314

227

66215

194

107

90279

234

171

1139

110215314

299

98183

294

267

83143

254242

3095

194

266

251

74231

138

195

59191 98

170

1863

182

134

155

54167

110

131

2795

86

38

3 1538

71114

222

219

110287

218

323

107279

210318

3871222

114

219

110287

218

323

107279

318210

35 63198

198

99

102263302

203

102263302

203

623

5087

150

14762119

170

179

59111

162174

14 47122

98

131

26 87

42

75

3511190

66

1139

98110

83

1863

54

27

3095

74

59

62362119

170

179

5087

150

147

59111

174162

14 47 98122

131

26 87

42

75

35111

66

90

1139

11098

83

3095

74

59

1863

54

27

prime circles: 2,3, 11, 23,... Tangent prime circles: (2,3), (2,11),(3, 23), ...

Page 59: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

Infinitude of prime circles

Theorem (Sarnak 07)

In any primitive integral P, there are infinitely many primecircles as well as tangent prime circles.

SetΠT (P) := #{prime C ∈ P : curv(C) < T}

and

Π(2)T (P) := #{tangent primes C1,C2 ∈ P : curv(Ci) < T}.

Page 60: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

Infinitude of prime circles

Theorem (Sarnak 07)

In any primitive integral P, there are infinitely many primecircles as well as tangent prime circles.

SetΠT (P) := #{prime C ∈ P : curv(C) < T}

and

Π(2)T (P) := #{tangent primes C1,C2 ∈ P : curv(Ci) < T}.

Page 61: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

Analogue of Prime number theorem?

Using the sieve method based on heuristics on the randomnessof the Mobius function, Fuchs and Sanden formulated aconjecture analogous to the prime number theorem:

Conjecture (Fuchs-Sanden)

ΠT (P) ∼ c1NT (P)

log T; Π

(2)T (P) ∼ c2

NT (P)

(log T )2

where c1 and c2 can be given explicitly.

Page 62: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

Using the breakthrough work of Bourgain, Gamburd, Sarnak onexpanders together with Selberg’s upper bound sieve, weobtain upper bounds of true order of magnitude:

Theorem (Kontorovich-O. 09)

1. ΠT (P)� NT (P)log T

2. Π(2)T (P)� NT (P)

(log T )2 .

The lower bounds are open and seem very challenging.

Page 63: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

Using the breakthrough work of Bourgain, Gamburd, Sarnak onexpanders together with Selberg’s upper bound sieve, weobtain upper bounds of true order of magnitude:

Theorem (Kontorovich-O. 09)

1. ΠT (P)� NT (P)log T

2. Π(2)T (P)� NT (P)

(log T )2 .

The lower bounds are open and seem very challenging.

Page 64: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

QuestionFor a primitive integral P, how many integers appear ascurvatures of circles in P?

I.e., how big is #{curv (C) ≤ T ,C ∈ P} compared to T ?

Our counting result for circles says

#{curv (C) ≤ T counted with multiplicity : C ∈ P} ∼ c·T 1.305...

So we may hope that a positive density (=proportion) ofintegers arise as curvatures, conjectured by Graham, Lagarias,Mallows, Wilkes, Yan (Positive density conjecture):

Page 65: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

QuestionFor a primitive integral P, how many integers appear ascurvatures of circles in P?

I.e., how big is #{curv (C) ≤ T ,C ∈ P} compared to T ?

Our counting result for circles says

#{curv (C) ≤ T counted with multiplicity : C ∈ P} ∼ c·T 1.305...

So we may hope that a positive density (=proportion) ofintegers arise as curvatures, conjectured by Graham, Lagarias,Mallows, Wilkes, Yan (Positive density conjecture):

Page 66: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

QuestionFor a primitive integral P, how many integers appear ascurvatures of circles in P?

I.e., how big is #{curv (C) ≤ T ,C ∈ P} compared to T ?

Our counting result for circles says

#{curv (C) ≤ T counted with multiplicity : C ∈ P} ∼ c·T 1.305...

So we may hope that a positive density (=proportion) ofintegers arise as curvatures, conjectured by Graham, Lagarias,Mallows, Wilkes, Yan (Positive density conjecture):

Page 67: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

(Strong) Positive density conjecture

P: primitive integral Apollonian packing

Theorem (Bourgain-Fuchs 10)

#{curv (C) < T : C ∈ P} � T .

Theorem (Bourgain-Kontorovich 12)

#{curv (C) < T : C ∈ P} ∼ κ(P)

24· T

where κ(P) > 0 is the number of residue classes mod 24 ofcurvatures of P.

• There are congruence restriction: modulo 24, not all residueclasses appear.

Page 68: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

(Strong) Positive density conjecture

P: primitive integral Apollonian packing

Theorem (Bourgain-Fuchs 10)

#{curv (C) < T : C ∈ P} � T .

Theorem (Bourgain-Kontorovich 12)

#{curv (C) < T : C ∈ P} ∼ κ(P)

24· T

where κ(P) > 0 is the number of residue classes mod 24 ofcurvatures of P.

• There are congruence restriction: modulo 24, not all residueclasses appear.

Page 69: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

Improving Sarnak’s result on the infinitude of prime circles,Bourgain showed that a positive fraction of prime numbersappear as curvatures in P.

Theorem (Bourgain, 2011)

#{prime curv (C) ≤ T : C ∈ P} � Tlog T

.

Page 70: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

Hidden symmetries

QuestionHow are we able to count circles in an Apollonian packing?

We exploit the fact that

an Apollonian packing has lots of hidden symmetries.

Explaining these hidden symmetries will lead us to explain therelevance of the packing with a Kleinian group, called theApollonian group.

Page 71: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

Hidden symmetries

QuestionHow are we able to count circles in an Apollonian packing?

We exploit the fact that

an Apollonian packing has lots of hidden symmetries.

Explaining these hidden symmetries will lead us to explain therelevance of the packing with a Kleinian group, called theApollonian group.

Page 72: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

Symmetry group of P

Fixing 4 mutually tangent (black) circles in P, we obtain fourdual (red) circles, each passing through 3 tangent points.

Page 73: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

Inverting w.r.t a dual circle fixes the three circles that it meetsperpendicularly and interchanges the two circles which aretangent to the three circles; indeed, it preserves P.

Page 74: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

Apollonian group

The Apollonian group A associated to P is generated by 4inversions w.r.t those dual circles:

A = 〈τ1, τ2, τ3, τ4〉 < Mob(C)

where Mob(C) = PSL2(C)± the gp of Mobius transf. of C.

Page 75: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

The Apollonian group A is a Kleinian group (= discretesubgroup of PSL±2 (C)) and satisfies

P = ∪4i=1A(Ci),

i.e., inverting the initial four (black) circles in P w.r.t the (red)dual circles generate the whole packing P.

Page 76: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

3 dim. hyp. geometry

The upper-half space model for hyp. 3 space H3:

H3 = {(x1, x2, y) : y > 0} with ds =

√dx2

1 + dx22 + dy2

y

and ∂∞(H3) = C.

Page 77: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

Via the Poincare extension thm,

PSL2(C)± = Isom(H3).

Note that PSL2(C)± acts on C by linear fractionaltransformations and an inversion w.r.t a circle C in Ccorresponds to the inversion w.r.t the vertical hemisphere in H3

above C.

Page 78: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

The Apollonian gp A (now considered as a discrete subgp ofIsom(H3)) has a fund. domain in H3, given by the exterior ofthe hemispheres above the dual circles to P:

In particular, A\H3 is an infinite vol. hyperbolic 3-mfld and hasfinitely many sided fund. domain.

Page 79: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

Orthogonal translates of geodesic surface

Counting circles of curvature at most T is same as countingvertical hemispheres of height at least 1/T .

Noting that vertical hemispheres in H3 are totally geodesicsubspaces, we relate the circle-counting problem with theequidistribution of translates of a closed totally geodesicsurface in A\H3.

Page 80: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

Orthogonal translates of geodesic surface

Counting circles of curvature at most T is same as countingvertical hemispheres of height at least 1/T .

Noting that vertical hemispheres in H3 are totally geodesicsubspaces, we relate the circle-counting problem with theequidistribution of translates of a closed totally geodesicsurface in A\H3.

Page 81: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

For a tot. geo. surface S of T1(A\H3), what is the asymptoticdist. of its orthogonal translates gt (S) as t →∞?

Page 82: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

Difficulties lie in the fact that the Apollonian mfld is of infinitevolume, as the dynamics of flows in inf. volume hyp. mflds arevery little understood. (if it were of fint vol, this type of questionis well-understood due to Margulis, Duke-Rudnick-Sarnak andEskin-McMullen...)

We show that this distribution in T1(A\H3) is described by asingular measure, called the Burger-Roblin measure, whoseconditional measures on horizontal planes turn out to be equalto the α-dim’l Haus. measures in this case, and this is why wehave the α-dim’l Haus. measure in our counting thm.

Page 83: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

Difficulties lie in the fact that the Apollonian mfld is of infinitevolume, as the dynamics of flows in inf. volume hyp. mflds arevery little understood. (if it were of fint vol, this type of questionis well-understood due to Margulis, Duke-Rudnick-Sarnak andEskin-McMullen...)

We show that this distribution in T1(A\H3) is described by asingular measure, called the Burger-Roblin measure, whoseconditional measures on horizontal planes turn out to be equalto the α-dim’l Haus. measures in this case, and this is why wehave the α-dim’l Haus. measure in our counting thm.

Page 84: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

Main ingredients of our proofs includeI the Lax-Phillips spectral theory for the Laplacian on A\H3;

I Ergodic properties of flows on T1(A\H3) based on thePatterson-Sullivan theory and the work of Burger-Roblin.

Page 85: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

Main ingredients of our proofs includeI the Lax-Phillips spectral theory for the Laplacian on A\H3;

I Ergodic properties of flows on T1(A\H3) based on thePatterson-Sullivan theory and the work of Burger-Roblin.

Page 86: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

More circle packings

This viewpoint via the study of Kleinian groups allows us to dealwith more general circle packings, provided they are invariantunder a finitely generated Kleinian group Γ.

Page 87: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

Here are some other pictures of circle packings for which wecan count circles of bounded curvature:

Page 88: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

Ex. of Sierpinski curve (McMullen)

Here the symmetry group isπ1(cpt. hyp. 3-mfd with tot. geod. bdry).

Page 89: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

The next pictures are reproduced from the book ”Indra’s pearls”by Mumford, Series and Wright (Cambridge Univ. Press 2002).

Page 90: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25
Page 91: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25
Page 92: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25
Page 93: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25
Page 94: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25
Page 95: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25
Page 96: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25

For these circle packings, or more generally for any circlepackings which is invariant under a (geometrically finite)Kleinian group, we have the following:

Theorem (O.-Shah)

Let δ := dimH(Res(P)). For any bdd. Borel E ⊂ C with smoothboundary,

NT (P,E) ∼ c · Hδ(E ∩ Res(P)) · T δ

for some absolute constant c > 0.

Page 97: Apollonian circle packings: Dynamics and Number theorygauss.math.yale.edu/~ho2/doc/Oh_ICWM.pdf138 195 59 191 170 98 6 23 62 119 194 362 371 ... 168 424 505 337 96 304 313 145 361 25