apollo - a webinar for the phascolarctos cinereus research community

82
An Introduction to Apollo A webinar for the Phascolarctos cinereus research community Monica Munoz-Torres, PhD | @monimunozto Berkeley Bioinformatics Open-Source Projects (BBOP) Lawrence Berkeley National Laboratory Joint Genome Institute | University of California Berkeley | U.S. Department of Energy 04 August, 2015

Upload: monica-munoz-torres

Post on 14-Aug-2015

30 views

Category:

Science


2 download

TRANSCRIPT

An Introduction to Apollo A webinar for the Phascolarctos cinereus research community

Monica Munoz-Torres, PhD | @monimunozto

Berkeley Bioinformatics Open-Source Projects (BBOP)Lawrence Berkeley National LaboratoryJoint Genome Institute | University of California Berkeley | U.S. Department of Energy

04 August, 2015

APOLLO DEVELOPMENT

APOLLO DEVELOPERS 2

h"p : / /GenomeA r c h i t e c t . o r g /  

Nathan Dunn

Eric Yao JBrowse, UC Berkeley

Deepak Unni Colin Diesh

Elsik Lab, University of Missouri

Suzi Lewis Principal Investigator

BBOP  

Moni Munoz-Torres Stephen Ficklin GenSAS,

Washington State University

3

ANNOTATION PLAN

Introduction

Assembly freeze Automated Annotation

Manual annotation

Using Web Apollo

Curation freeze

Merge: automated +

manual

Genome-wide & gene-specific comparative

analyses

QC QC

Synthesis & dissemination.

OUTLINE

Web  Apollo  Collabora(ve  Cura(on  and    Interac(ve  Analysis  of  Genomes  

4 OUTLINE

•  THE  GENE  MODEL  predic(on,  annota(on,  cura(on  

 •  APOLLO  

empowering  collabora(ve  cura(on    •  APOLLO  on  THE  WEB  

becoming  acquainted  

•  EXAMPLE  demonstra(ons  

5

BY THE END OF THIS TALKyou will

v Be>er  understand  genome  cura(on  in  the  context  of  annota(on:    assembled  genome  à  automated  annotaEon  à  manual  annotaEon  

v Become  familiar  with  the  environment  and  func(onality  of  the  Apollo  genome  annota(on  edi(ng  tool.  

v Learn  to  iden(fy  homologs  of  known  genes  of  interest  in  a  newly  sequenced  genome.  

v Learn  about  corrobora(ng  and  modifying  automa(cally  annotated  gene  models  using  available  evidence  in  Apollo.  

Introduction

REVIEW ON YOUR OWNfor manual annotation

To  remember…  Biological  concepts  to  be>er  understand  manual  annota(on  

6 FOOD FOR THOUGHT

•  GLOSSARY  from  con$g  to  splice  site  

 •  CENTRAL  DOGMA  

in  molecular  biology    •  WHAT  IS  A  GENE?  

defining  your  goal  

•  TRANSCRIPTION  mRNA  in  detail  

 •  TRANSLATION  

and  other  defini(ons  

•  GENOME  CURATION  steps  involved  

7 CURATING GENOMES

What is a gene?

v  The  defini(on  of  a  gene  paints  a  very  complex  picture  of  molecular  ac(vity  and  it  is  a  con(nuously  evolving  concept.    

•  From  the  Sequence  Ontology  (SO):  “A  gene  is  a  locatable  region  of  genomic  sequence,  corresponding  to  a  unit  of  inheritance,  which  is  associated  with  regulatory  regions,  transcribed  regions  and/or  other  func(onal  sequence  regions”.      “Evolving  Concept”  at  h>p://goo.gl/LpsajQ  

8 CURATING GENOMES

What is a gene?

v  In  our  life(me,  the  Encyclopedia  of  DNA  Elements  (ENCODE)  project  updated  this  concept  yet  again.  Long  transcripts  &  dispersed  regula$on!  

   

“A  gene  is  a  DNA  segment  that  contributes  phenotype/func(on.  In  the  absence  of  demonstrated  func(on,  a  gene  may  be  characterized  by  sequence,  transcrip(on  or  homology.”  

 

https://www.encodeproject.org/

9 CURATING GENOMES

What is a gene?considerations

v  Consider  :  •  A  gene  is  a  genomic  sequence  (DNA  or  RNA)  directly  encoding  

func(onal  product  molecules,  either  RNA  or  protein.  

•  If  several  func(onal  products  share  overlapping  regions,  we  take  the  union  of  all  overlapping  genomics  sequences  coding  for  them.  

•  This  union  must  be  coherent  –  i.e.,  processed  separately  for  final  protein  and  RNA  products  –  but  does  not  require  that  all  products  necessarily  share  a  common  subsequence.

Gerstein et al., 2007. Genome Res.

10 CURATING GENOMES

What is a gene?

v  “The  gene  is  a  union  of  genomic  sequences  encoding  a  coherent  set  of  poten(ally  overlapping  func(onal  products.”  

Gerstein et al., 2007. Genome Res

11 CURATING GENOMES

TRANSLATIONreading frame

v  Reading  frame  is  a  manner  of  dividing  the  sequence  of  nucleo(des  in  mRNA  (or  DNA)  into  a  set  of  consecu(ve,  non-­‐overlapping  triplets  (codons).  

v  Three  frames  can  be  read  in  the  5’  à  3’  direc(on.  Given  that  DNA  has  two  an(-­‐parallel  strands,  an  addi(onal  three  frames  are  possible  to  be  read  on  the  an(-­‐sense  strand.  Six  total  possible  reading  frames  exist.  

v  In  eukaryotes,  only  one  reading  frame  per  sec(on  of  DNA  is  biologically  relevant  at  a  (me:  it  has  the  poten(al  to  be  transcribed  into  RNA  and  translated  into  protein.  This  is  called  the  OPEN  READING  FRAME  (ORF)  •  ORF  =  Start  signal  +  coding  sequence  (divisible  by  3)  +  Stop  signal  

v  The  sec(ons  of  the  mature  mRNA  transcribed  with  the  coding  sequence  but  not  translated  are  called  UnTranslated  Regions  (UTR);  one  at  each  end.  

12 CURATING GENOMES

TRANSLATIONreading frame: splice sites

v  The  spliceosome  catalyzes  the  removal  of  introns  and  the  liga(on  of  flanking  exons.  •  introns:  spaces  inside  the  gene,  not  part  of  the  coding  sequence  •  exons:  expression  units  (of  the  coding  sequence)  

v  Splicing  “signals”  (from  the  point  of  view  of  an  intron):    •  There  is  a  5’  end  splice  “signal”  (site):  usually  GT  (less  common:  GC)  •  And  a  3’  end  splice  site:  usually  AG  •  …]5’-­‐GT/AG-­‐3’[…  

 

v  It  is  possible  to  produce  more  than  one  protein  (polypep(de)  sequence  from  the  same  genic  region,  by  alterna(vely  bringing  exons  together=  alternaEve  splicing.  For  example,  the  gene  Dscam  (Drosophila)  has  38,000  alterna(vely  spliced  mRNAs  =  isoforms  

13

"Gene structure" by Daycd- Wikimedia Commons

CURATING GENOMES

TRANSLATIONnow in your mind

14

Text for figures goes here

CURATING GENOMES

TRANSLATIONreading frame: phase

v  Introns  can  interrupt  the  reading  frame  of  a  gene  by  inser(ng  a  sequence  between  two  consecu(ve  codons  

v  Between  the  first  and  second  nucleo(de  of  a  codon  

v  Or  between  the  second  and  third  nucleo(de  of  a  codon  

"Exon and Intron classes”. Licensed under Fair use via Wikipedia

CURATING GENOMESoverview

1  PredicEon  of  Gene  Models      

2  AnnotaEon  of  gene  models    

 3     Manual  annotaEon  

CURATING GENOMES 15

16 Gene Prediction

GENE PREDICTION

v  The  iden(fica(on  of  structural  features  of  the  genome:    

•  Primarily  focused  on  protein-­‐coding  genes.    •  Predicts  also  transfer  RNAs  (tRNA),  ribosomal  RNAs  (rRNA),  

regulatory  mo(fs,  long  and  small  non-­‐coding  RNAs  (ncRNA),  repe((ve  elements  (masked),  etc.  

•  Two  methods  for  iden(fica(on.  •  Some  are  self-­‐trained  and  some  must  be  trained.  

17 Gene Prediction

GENE PREDICTIONmethods for discovery

1)  Ab  ini,o:    -­‐  based  on  DNA  composi(on,    -­‐  deals  strictly  with  genomic  sequences  -­‐  makes  use  of  sta(s(cal  approaches  to  search  for  coding  regions  and  typical  gene  signals.      •  E.g.  Augustus,  GENSCAN,    

geneid,  fgenesh,  etc.  

3’  

Nat Rev Genet. 2015 Jun;16(6):321-32. doi: 10.1038/nrg3920

18

Nucleic Acids 2003 vol. 31 no. 13 3738-3741

Gene Prediction

GENE PREDICTIONmethods for discovery (ctd)

2)  Homology-­‐based:    -­‐  evidence-­‐based,    -­‐  finds  genes  using  either  similarity  searches  in  the  main  databases  or  experimental  data  including  RNAseq,  expressed  sequence  tags  (ESTs),  full-­‐length  complementary  DNAs  (cDNAs),  etc.      

•  E.g:  fgenesh++,  Just  Annotate  My  genome  (JAMg),  SGP2  

19

GENE ANNOTATION

Integra(on  of  data  from  computa(onal  &  experimental  evidence  with  data  from  predic(on  tools,  to  generate  a  reliable  set  of  structural  annotaEons.      Involves:  1)  ab  ini$o  predic(ons  2)  assessment  of  biological  evidence  to  drive  the  gene  predic(on  process  3)  synthesis  of  these  results  to  produce  a  set  of  consensus  gene  models  

Gene Annotation

20

In  some  cases  algorithms  and  metrics  used  to  generate  consensus  sets  may  actually  reduce  the  accuracy  of  the  gene’s  representa(on.  

GENE ANNOTATION

Gene  models  may  be  organized  into  “sets”  using:  v  automa(c  integra(on  of  predicted  sets  (combiners);  e.g:  GLEAN,  

EvidenceModeler  or  

v  tools  packaged  into  pipelines;  e.g:  MAKER,  PASA,  Gnomon,  Ensembl,  etc.  

Gene Annotation

ANNOTATION IS NOT PERFECT automated annotation remains an imperfect art

Unlike  the  more  highly  polished  genomes  of  earlier  projects,  today’s  genomes  usually  have:  

•  more  frequent  assembly  errors,  which  lead  to  annota(on  of  genes  across  mul(ple  scaffolds  

•  lower  coverage  

No one is perfect, least of all automated annotation. 21

Image: www.BroadInstitute.org

MANUAL ANNOTATIONworking concept

Precise  elucidaEon  of  biological  features  encoded  in  the  genome  requires  careful  

examinaEon  and  review.    

Schiex  et  al.  Nucleic  Acids  2003  (31)  13:  3738-­‐3741  

Automated Predictions

Experimental Evidence

Manual Annotation – to the rescue. 22

cDNAs,  HMM  domain  searches,  RNAseq,  genes  from  other  species.  

The  manual  annotator  evaluates  all  available  evidence  and  corroborates  or  modifies  genome  element  predic(ons.    

BUT, MANUAL CURATIONdoes not always scale

Researchers  on  their  own;  may  or  may  not  publicize  results;  may  be  a  dead-­‐end  with  very  few  people  ever  aware  of  these  results.  

Elsik  et  al.  2006.  Genome  Res.  16(11):1329-­‐33.  

MANUAL ANNOTATION 23

Too  many  sequences  and  not  enough  hands.  

A  small  group  of  highly  trained  experts  (e.g.  GO).  

1   Museum  

A  few  very  good  biologists,  a    few  very  good  bioinforma(cians  camping  together  for  intense  but  short  periods  of  (me.  

Jamboree  2  

Co"age  3  

24

MANUAL ANNOTATIONobjectives

IdenEfies  elements  that  best  represent  the  underlying  biology  and  eliminates  elements  that  reflect  systemic  errors  of  automated  analyses.  

Assigns  funcEon  through  compara(ve  analysis  of  similar  genome  elements  from  closely  related  species  using  literature,  databases,  and  experimental  data.  

MANUAL ANNOTATION

h>p://GeneOntology.org  

1  

2  

GENOME ANNOTATIONan inherently collaborative task

Researchers  oren  turn  to  colleagues  for  second  opinions  and  insight  from  those  with  exper(se  in  par(cular  areas  (e.g.,  domains,  families).  

APOLLO 25

We  need  annota$on  edi$ng  tools  to  modify  and  refine  the  precise  loca$on  and  structure  of  the  genome  elements  that  

predic$ve  algorithms  cannot  yet  resolve  automa$cally.  

“Incorrect  and  incomplete  genome  annota$ons  will  poison  every  experiment  that  uses  them”.  

-­‐  M.  Yandell  

APOLLOcollaborative genome annotation editing tool

26

v  Web  based,  integrated  with  JBrowse.  v  Supports  real  (me  collabora(on!  v  Automa(c  genera(on  of  ready-­‐made  computable  data.    v  Supports  annota(on  of  genes,    pseudogenes,  tRNAs,  snRNAs,  

snoRNAs,  ncRNAs,  miRNAs,  TEs,  and  repeats.  v  Intui(ve  annota(on,  gestures,  and  pull-­‐down  menus  to  create  and  

edit  transcripts  and  exons  structures,  insert  comments  (CV,  freeform  text),  associate  GO  terms,  etc.  

APOLLO

h>p://GenomeArchitect.org    

APOLLO ARCHITECTUREsimpler, more flexible

APOLLO 27

Web-­‐based  client  +  annota(on-­‐edi(ng  engine  +  server-­‐side  data  service  

REST / JSON Websockets

Annotation Engine (Server)

Shiro

LDAP

OAuth

JBrowse Data Organism 2

Annotations

Security

Preferences

Organisms

Tracks

BAM BED VCF GFF3 BigWig

Annotators

Google Web Toolkit (GWT) / Bootstrap

JBrowse DOJO / jQuery JBrowse Data Organism 1

Load genomic evidence for selected organism

Single Data Store PostgreSQL, MySQL,

MongoDB, ElasticSearch

Apollo v2.0

We  train  and  support  hundreds  of  geographically  dispersed  scien(sts  from  diverse  research  communi(es  to  conduct  manual  annota(ons,  to  recover  coding  sequences  in  agreement  with  all  available  biological  evidence  using  Web  Apollo.      v  Gate  keeping  and  monitoring.  v  Tutorials,  training  workshops,  and  “geneborees”.  

28

DISPERSED COMMUNITIES collaborative manual annotation efforts

APOLLO

LESSONS LEARNED

What  we  have  learned:    •  Collabora(ve  work  dis(lls  invaluable  knowledge  •  We  must  enforce  strict  rules  and  formats  •  We  must  evolve  with  the  data  •  A  li>le  training  goes  a  long  way  •  NGS  poses  addi(onal  challenges  

LESSONS LEARNED 29

Apollo  h>p://genomearchitect.org/web_apollo_user_guide  

1.  Select  a  chromosomal  region  of  interest,  e.g.  scaffold.  

2.  Select  appropriate  evidence  tracks  to  review  the  gene  model.  

3.  Determine  whether  a  feature  in  an  exis(ng  evidence  track  will  provide  a  reasonable  gene  model  to  start  working.  -­‐  select  and  drag  the  feature  to  the  ‘User-­‐created  Annota(ons’  

area,  creaEng  an  iniEal  gene  model.  If  necessary  use  edi(ng  func(ons  to  adjust  the  gene  model.  

4.  Check  your  edited  gene  model  for  integrity  and  accuracy  by  comparing  it  with  available  homologs.  

Becoming Acquainted with Web Apollo 31 |

Always  remember:  when  annota(ng  gene  models  using  Apollo,  you  are  looking  at  a  ‘frozen’  version  of  the  genome  assembly  and  you  will  not  be  able  to  modify  the  assembly  itself.  

31

GENERAL PROCESS OF CURATIONsteps to remember

32

APOLLOannotation editing environment

BECOMING ACQUAINTED WITH APOLLO

Color  by  CDS  frame,  toggle  strands,  set  color  scheme  and  highlights.  

Upload  evidence  files  (GFF3,  BAM,  BigWig),  add  combinaEon  and  sequence  search  tracks.  

Query  the  genome  using  BLAT.  

Naviga(on  and  zoom.  

Search  for  a  gene  model  or  a  scaffold.  

Get  coordinates  and  “rubber  band”  selec(on  for  zooming.  

Login  

User-­‐created  annota(ons.   Annotator  

panel.  

Evidence  Tracks  

Stage  and  cell-­‐type  specific  transcrip(on  data.  

REMOVABLE SIDE DOCKwith customizable tabs

HIGHLIGHTED IMPROVEMENTS 33

Annotations Organism Users Groups Admin Tracks Reference Sequence

EDITS & EXPORTSannotation details, exon boundaries, data export

HIGHLIGHTED IMPROVEMENTS 34

1 2

Annotations

1

2

HIGHLIGHTED IMPROVEMENTS 35

Reference Sequences

3

FASTA  

GFF3  

EDITS & EXPORTSannotation details, exon boundaries, data export

3

36 | 36 Becoming Acquainted with Web Apollo.

USER NAVIGATION

Annotator  panel.  

•  Choose appropriate evidence tracks from list on annotator panel. •  Select & drag elements from evidence track into the ‘User-created Annotations’ area.

•  Edge-matching.

•  Hovering over annotation in progress brings up an information pop-up.

37 | 37

USER NAVIGATION

Becoming Acquainted with Web Apollo.

•  Annotation right-click menu

38

Annota(ons,  annota(on  edits,  and  History:  stored  in  a  centralized  database.  

38

USER NAVIGATION

Becoming Acquainted with Web Apollo.

39

The  Annota(on  InformaEon  Editor  

DBXRefs  are  database  crossed  references:  if  you  have  reason  to  believe  that  this  gene  is  linked  to  a  gene  in  a  public  database  (including  your  own),  then  add  it  here.  

39

USER NAVIGATION

Becoming Acquainted with Web Apollo.

40

The  Annota(on  InformaEon  Editor  

•  Add  PubMed  IDs  •  Include  GO  terms  as  appropriate  

from  any  of  the  three  ontologies  •  Write  comments  sta(ng  how  you  

have  validated  each  model.  

40

USER NAVIGATION

Becoming Acquainted with Web Apollo.

41 |

Zoom  in/out  with  keyboard:  shir  +  arrow  keys  up/down  

41

USER NAVIGATION

Becoming Acquainted with Web Apollo.

•  ‘Zoom  to  base  level’  op(on  reveals  the  DNA  Track.  

•  Color  exons  by  CDS  from  the  ‘View’  menu.  

•  Toggle  reference  DNA  sequence  and  translaEon  frames  from  either  direc(on.  

Annota(ng  

“Simple  case”:      -­‐  the  predicted  gene  model  is  correct  or  nearly  correct,  and    

 -­‐  this  model  is  supported  by  evidence  that  completely  or  mostly  agrees  with  the  predic(on.    

 -­‐  evidence  that  extends  beyond  the  predicted  model  is  assumed  to  be  non-­‐coding  sequence.    

 

The  following  are  simple  modifica(ons.    

 

43 | 43

ANNOTATING SIMPLE CASES

Becoming Acquainted with Web Apollo. SIMPLE CASES

44 |

•  A   confirma(on   box  will   warn   you   if   the   receiving   transcript   is   not   on   the  same  strand  as  the  feature  where  the  new  exon  originated.  

•  Check  ‘Start’  and  ‘Stop’  signals  arer  each  edit.  

44

ADDING EXONS

Becoming Acquainted with Web Apollo. SIMPLE CASES

If  transcript  alignment  data  are  available  and  extend  beyond  your  original  annota(on,  you  may  extend  or  add  UTRs.    

1.  Right  click  at  the  exon  edge  and  ‘Zoom  to  base  level’.    

2.  Place  the  cursor  over  the  edge  of  the  exon  un$l  it  becomes  a  black  arrow  then  click  and  drag  the  edge  of  the  exon  to  the  new  coordinate  posi(on  that  includes  the  UTR.    

45 |

To  add  a  new  spliced  UTR  to  an  exis(ng  annota(on  follow  the  procedure  for  adding  an  exon.  

45

ADDING UTRs

Becoming Acquainted with Web Apollo. SIMPLE CASES

1.   Zoom  in  to  clearly  resolve  each  exon  as  a  dis(nct  rectangle.    

2.  Two  exons  from  different  tracks  sharing  the  same  start  and/or  end  coordinates  will  display  a  red  bar  to  indicate  matching  edges.  

3.  Selec(ng  the  whole  annota(on  or  one  exon  at  a  (me,  use  this  ‘edge-­‐matching’  func(on  and  scroll  along  the  length  of  the  annota(on,  verifying  exon  boundaries  against  available  data.  Use  square  [  ]  brackets  to  scroll  from  exon  to  exon.  

4.  Check  if  cDNA  /  RNAseq  reads  lack  one  or  more  of  the  annotated  exons  or  include  addi(onal  exons.    

 

46 | 46

CHECK EXON INTEGRITY

Becoming Acquainted with Web Apollo. SIMPLE CASES

To  modify  an  exon  boundary  and  match  data   in   the   evidence   tracks:   select  both   the   offending   exon   and   the  feature  with  the  expected  boundary,  then  right  click  on  the  annota(on  to  select   ‘Set  3’   end’   or   ‘Set  5’   end’   as  appropriate.  

 

47 |

In  some  cases  all  the  data  may  disagree  with  the  annota(on,  in  other  cases  some  data  support  the  annota(on  and  some  of  the  

data  support  one  or  more  alterna(ve  transcripts.  Try  to  annotate  as  many  alterna(ve  transcripts  as  are  well  supported  by  the  data.  

47

EXON STRUCTURE INTEGRITY

Becoming Acquainted with Web Apollo. SIMPLE CASES

Flags  non-­‐canonical  splice  sites.  

Selec(on  of  features  and  sub-­‐features  

Edge-­‐matching  

Evidence  Tracks  Area  

‘User-­‐created  Annota(ons’  Track  

Apollo’s  edi(ng  logic  (brain):    §  selects  longest  ORF  as  CDS  §  flags  non-­‐canonical  splice  sites  

48

ORFs AND SPLICE SITES

Becoming Acquainted with Web Apollo. SIMPLE CASES

49 |

Exon/intron  junc(on  possible  error  

Original  model  

Curated  model  

Non-­‐canonical   splices   are   indicated   by   an  orange   circle   with   a   white   exclama(on   point  inside,   placed   over   the   edge   of   the   offending  exon.    Most   insects,   have   a   valid   non-­‐canonical   site  GC-­‐AG.   Other   non-­‐canonical   splice   sites   are  unverified.  Web  Apollo   flags  GC   splice   donors  as  non-­‐canonical.  

Canonical  splice  sites:  

3’-­‐…exon]GA  /  TG[exon…-­‐5’  

5’-­‐…exon]GT  /  AG[exon…-­‐3’  reverse  strand,  not  reverse-­‐complemented:  

forward  strand  

49

SPLICE SITES

Becoming Acquainted with Web Apollo. SIMPLE CASES

Zoom  to  review  non-­‐canonical  splice  site  warnings.  Although  these  may  not  always  have  to  be  corrected  (e.g  GC  donor),  they  should  be  flagged  with  the  appropriate  comment.    

Web  Apollo  calculates  the  longest  possible  open  reading  frame  (ORF)  that  includes  canonical  ‘Start’  and  ‘Stop’  signals  within  the  predicted  exons.    

If  ‘Start’  appears  to  be  incorrect,  modify  it  selec(ng  an  in-­‐frame  ‘Start’  codon  further  up  or  downstream,  depending  on  evidence  (protein  database,  addi(onal  evidence  tracks).      

It  may  be  present  outside  the  predicted  gene  model,  within  a  region  supported  by  another  evidence  track.    

In  very  rare  cases,  the  actual  ‘Start’  codon  may  be  non-­‐canonical  (non-­‐ATG).    

50 | 50

‘START’ AND ‘STOP’ SITES

Becoming Acquainted with Web Apollo. SIMPLE CASES

Evidence  may  support  joining  two  or  more  different  gene  models.    Warning:  protein  alignments  may  have  incorrect  splice  sites  and  lack  non-­‐conserved  regions!    

1.  In  ‘User-­‐created  AnnotaEons’  area  shir-­‐click  to  select  an  intron  from  each  gene  model  and  right  click  to  select  the  ‘Merge’  op(on  from  the  menu.    

2.  Drag  suppor(ng  evidence  tracks  over  the  candidate  models  to  corroborate  overlap,  or  review  edge  matching  and  coverage  across  models.  

3.  Check  the  resul(ng  transla(on  by  querying  a  protein  database  e.g.  UniProt.  Add  comments  to  record  that  this  annota(on  is  the  result  of  a  merge.  

51 | 51

Red  lines  around  exons:  ‘edge-­‐matching’  allows  annotators  to  confirm  whether  the  evidence  is  in  agreement  without  examining  each  exon  at  the  base  level.  

COMPLEX CASES merge two gene predictions on the same scaffold

Becoming Acquainted with Web Apollo. COMPLEX CASES

One  or  more  splits  may  be  recommended  when:    -­‐  different  segments  of  the  predicted  protein  align  to  two  or  more  different  gene  families    -­‐  predicted  protein  doesn’t  align  to  known  proteins  over  its  en(re  length    

Transcript  data  may  support  a  split,  but  first  verify  whether  they  are  alterna(ve  transcripts.    

52 | 52

COMPLEX CASES split a gene prediction

Becoming Acquainted with Web Apollo. COMPLEX CASES

DNA  Track  

‘User-­‐created  AnnotaEons’  Track  

53

COMPLEX CASES correcting frameshifts, single-base errors, and selenocysteines

Becoming Acquainted with Web Apollo. COMPLEX CASES

1.  Web  Apollo  allows  annotators  to  make  single  base  modifica(ons  or  frameshirs  that  are  reflected  in  the  sequence  and  structure  of  any  transcripts  overlapping  the  modifica(on.  Note  that  these  manipula(ons  do  NOT  change  the  underlying  genomic  sequence.    

2.  If  you  determine  that  you  need  to  make  one  of  these  changes,  zoom  in  to  the  nucleo(de  level  and  right  click  over  a  single  nucleo(de  on  the  genomic  sequence  to  access  a  menu  that  provides  op(ons  for  crea(ng  inser(ons,  dele(ons  or  subs(tu(ons.    

3.  The  ‘Create  Genomic  InserEon’  feature  will  require  you  to  enter  the  necessary  string  of  nucleo(de  residues  that  will  be  inserted  to  the  right  of  the  cursor’s  current  loca(on.  The  ‘Create  Genomic  DeleEon’  op(on  will  require  you  to  enter  the  length  of  the  dele(on,  star(ng  with  the  nucleo(de  where  the  cursor  is  posi(oned.  The  ‘Create  Genomic  SubsEtuEon’  feature  asks  for  the  string  of  nucleo(de  residues  that  will  replace  the  ones  on  the  DNA  track.  

4.  Once  you  have  entered  the  modifica(ons,  Web  Apollo  will  recalculate  the  corrected  transcript  and  protein  sequences,  which  will  appear  when  you  use  the  right-­‐click  menu  ‘Get  Sequence’  op(on.  Since  the  underlying  genomic  sequence  is  reflected  in  all  annota(ons  that  include  the  modified  region  you  should  alert  the  curators  of  your  organisms  database  using  the  ‘Comments’  sec(on  to  report  the  CDS  edits.    

5.  In  special  cases  such  as  selenocysteine  containing  proteins  (read-­‐throughs),  right-­‐click  over  the  offending/premature  ‘Stop’  signal  and  choose  the  ‘Set  readthrough  stop  codon’  op(on  from  the  menu.  

 54 | 54 Becoming Acquainted with Web Apollo. COMPLEX CASES

COMPLEX CASES correcting frameshifts, single-base errors, and selenocysteines

Follow  the  checklist  un(l  you  are  happy  with  the  annota(on!  

And…  –  Comment  to  validate  your  annota(on,  even  if  you  made  no  changes  to  an  exis(ng  model.  Think  of  comments  as  your  vote  of  confidence.    

–  Or  add  a  comment  to  inform  the  community  of  unresolved  issues  you  think  this  model  may  have.  

55 | 55

Always  Remember:  Web  Apollo  cura(on  is  a  community  effort  so  please  use  comments  to  communicate  the  reasons  for  your    

annota(on  (your  comments  will  be  visible  to  everyone).  

COMPLETING THE ANNOTATION

Becoming Acquainted with Web Apollo.

Checklist  

1.  Can  you  add  UTRs  (e.g.:  via  RNA-­‐Seq)?  

2.  Check  exon  structures  

3.  Check  splice  sites:  most  splice  sites  display  these  residues  …]5’-­‐GT/AG-­‐3’[…  

4.  Check  ‘Start’  and  ‘Stop’  sites  

5.  Check  the  predicted  protein  product(s)  –  Align  it  against  relevant  genes/gene  family.  –  blastp  against  NCBI’s  RefSeq  or  nr  

6.  If  the  protein  product  s(ll  does  not  look  correct  then  check:  –  Are  there  gaps  in  the  genome?  – Merge  of  2  gene  predic(ons  on  the  same  scaffold  

– Merge  of  2  gene  predic(ons  from  different  scaffolds    

–  Split  a  gene  predic(on  –  Frameshies    

–  error  in  the  genome  assembly?  –  Selenocysteines,  single-­‐base  errors,  etc  

57 | 57

7.  Finalize  annota(on  by  adding:  –  Important  project  informa(on  in  the  form  of  

comments  –  IDs  from  public  databases  e.g.  GenBank  (via  

DBXRef),  gene  symbol(s),  common  name(s),  synonyms,  top  BLAST  hits,  orthologs  with  species  names,  and  everything  else  you  can  think  of,  because  you  are  the  expert.  

–  Whether  your  model  replaces  one  or  more  models  from  the  official  gene  set  (so  it  can  be  deleted).  

–  The  kinds  of  changes  you  made  to  the  gene  model  of  interest,  if  any.    

–  Any  appropriate  func(onal  assignments  of  interest  to  the  community  (e.g.  via  BLAST,  RNA-­‐Seq  data,  literature  searches,  etc.)  

THE CHECKLIST for accuracy and integrity

MANUAL ANNOTATION CHECKLIST

Example  

Example

Example 59

A  public  Apollo  Demo  using  the  Honey  Bee  genome  is  available  at    h>p://genomearchitect.org/WebApolloDemo  

-­‐  Demonstra(on  using  the  Hyalella  azteca  genome  (amphipod  crustacean).  

What do we know about this genome?

•  Currently  publicly  available  data  at  NCBI:  •  >37,000    nucleo(de  seqsà  scaffolds,  mitochondrial  genes  •  300    amino  acid  seqsà  mitochondrion  •  53    ESTs  •  0      conserved  domains  iden(fied  •  0    “gene”  entries  submi>ed    

•  Data  at  i5K  Workspace@NAL  (annota(on  hosted  at  USDA)    -­‐  10,832  scaffolds:  23,288  transcripts:  12,906  proteins  

Example 60

PubMed Search: what’s new?

Example 61

PubMed Search: what’s new?

Example 62

“Ten  popula(ons  (3  cultures,  7  from  California  water  bodies)  differed  by  at  least  550-­‐fold  in  sensiEvity  to  pyrethroids.”    

“By  sequencing  the  primary  pyrethroid  target  site,  the  voltage-­‐gated  sodium  channel  (vgsc),  we  show  that  point  muta(ons  and  their  spread  in  natural  popula(ons  were  responsible  for  differences  in  pyrethroid  sensi(vity.”  

“The  finding  that  a  non-­‐target  aqua(c  species  has  acquired  resistance  to  pes(cides  used  only  on  terrestrial  pests  is  troubling  evidence  of  the  impact  of  chronic  pesEcide  transport  from  land-­‐based  applica(ons  into  aqua(c  systems.”  

How many sequences for our gene of interest?

Example 63

•  Para,  (voltage-­‐gated  sodium  channel  alpha  subunit;  Nasonia  vitripennis).    

•  NaCP60E  (Sodium  channel  protein  60  E;  D.  melanogaster).  –  MF:  voltage-­‐gated  ca(on  channel  ac(vity  (IDA,  GO:0022843).  

–  BP:  olfactory  behavior  (IMP,  GO:0042048),  sodium  ion  transmembrane  transport  (ISS,GO:0035725).  

–  CC:  voltage-­‐gated  sodium  channel  complex  (IEA,  GO:0001518).  

And  what  do  we  know  about  them?  

Retrieving sequences for sequence similarity searches.

Example 64

>vgsc-­‐Segment3-­‐DomainII  RVFKLAKSWPTLNLLISIMGKTVGALGNLTFVLCIIIFIFAVMGMQLFGKNYTEKVTKFKWSQDGQMPRWNFVDFFHSFMIVFRVLCGEWIESMWDCMYVGDFSCVPFFLATVVIGNLVVSFMHR

BLAT search

Example 65

>vgsc-­‐Segment3-­‐DomainII  RVFKLAKSWPTLNLLISIMGKTVGALGNLTFVLCIIIFIFAVMGMQLFGKNYTEKVTKFKWSQDGQMPRWNFVDFFHSFMIVFRVLCGEWIESMWDCMYVGDFSCVPFFLATVVIGNLVVSFMHR

BLAT search

Example 66

Customizations: high-scoring segment pairs (hsp) in “BLAST+ Results” track

Example 67

Available Tracks

Example 68

Creating a new gene model: drag and drop

Example 69

•  Apollo automatically calculates ORF. In this case, ORF includes the high-scoring segment pairs (hsp).

Get Sequence

Example 70

http://blast.ncbi.nlm.nih.gov/Blast.cgi

Also, flanking sequences (other gene models) vs. NCBI nr

Example 71

In  this  case,  two  gene  models  upstream,  at  5’  end.  

BLAST  hsps  

Review alignments

Example 72

HaztTmpM006234  

HaztTmpM006233  

HaztTmpM006232  

Hypothesis for vgsc gene model

Example 73

Editing: merge the three models

Example 74

Merge  by  dropping  an  exon  or  gene  model  onto  another.  

Merge  by  selec(ng  two  exons  (holding  down  “Shir”)  and  using  the  right  click  menu.  

or…  

Editing: correct boundaries, delete exons

Example 75

Modify  exon  /  intron  boundary:    -­‐  Drag  the  end  of  the  

exon  to  the  nearest  canonical  splice  site.  

-­‐  Use  right-­‐click  menu.  

Delete  first  exon  from  M006233  

Editing: set translation start

Example 76

Editing: modify boundaries

Example 77

Modify  intron  /  exon  boundary  also  at  coord.  78,999.  

Finished model

Example 78

Corroborate  integrity  and  accuracy  of  the  model:    -­‐  Start  and  Stop  -­‐  Exon  structure  and  splice  sites  …]5’-­‐GT/AG-­‐3’[…  -­‐  Check  the  predicted  protein  product  vs.  NCBI  nr  

Information Editor

•  DBXRefs:  e.g.  NP_001128389.1,  N.  vitripennis,  RefSeq  

•  PubMed  iden(fier:  PMID:  24065824  

•  Gene  Ontology  IDs:  GO:0022843,  GO:0042048,  GO:0035725,  GO:0001518.  

•  Comments.  

•  Name,  Symbol.    

•  Approve  /  Delete  radio  bu>on.  

Example 79

Comments  (if  applicable)  

Demo  

APOLLOdemonstration

Apollo  demo  video  available  at:    h>ps://youtu.be/VgPtAP_fvxY  

DEMO 81

•  Berkeley  BioinformaEcs  Open-­‐source  Projects  (BBOP),  Berkeley  Lab:  Web  Apollo  and  Gene  Ontology  teams.  Suzanna  E.  Lewis  (PI).  

•  §  Chris$ne  G.  Elsik  (PI).  University  of  Missouri.    

•  *  Ian  Holmes  (PI).  University  of  California  Berkeley.  

•  Arthropod  genomics  community:  i5K  Steering  Commi>ee  (esp.  Sue  Brown  (Kansas  State)),  Alexie  Papanicolaou  (UWS),  and  the  Honey  Bee  Genome  Sequencing  Consor(um.  

•  Apollo  is  supported  by  NIH  grants  5R01GM080203  from  NIGMS,  and  5R01HG004483  from  NHGRI;  by  Contract  No.  60-­‐8260-­‐4-­‐005  from  the  Na(onal  Agricultural  Library  (NAL)  at  the  United  States  Department  of  Agriculture  (USDA);  and  by  the  Director,  Office  of  Science,  Office  of  Basic  Energy  Sciences,  of  the  U.S.  Department  of  Energy  under  Contract  No.  DE-­‐AC02-­‐05CH11231.  

•  Insect  images  used  with  permission:  h>p://AlexanderWild.com  

     

•  For  your  a"enEon,  thank  you!  Thank you. 82

Web  Apollo  

Nathan  Dunn  

Colin  Diesh  §  

Deepak  Unni  §    

 

Gene  Ontology  

Chris  Mungall  

Seth  Carbon  

Heiko  Dietze  

 

BBOP  

Web  Apollo:  h>p://GenomeArchitect.org    

i5K:  h>p://arthropodgenomes.org/wiki/i5K  

GO:  h>p://GeneOntology.org  

Thanks!  

NAL  at  USDA  

Monica  Poelchau  

Christopher  Childers  

Gary  Moore  

HGSC  at  BCM  

fringy  Richards  

Dan  Hughes  

Kim  Worley  

 

JBrowse          Eric  Yao  *