“kek theory center workshop on hadron and nuclear physics...

62
High - energy hadron physics at J - PARC “KEK theory center workshop on Hadron and Nuclear Physics in 2017 ” KEK, January 7 - 10, 2017 Wen-Chen Chang Institute of Physics, Academia Sinica

Upload: others

Post on 12-Jun-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

High-energy hadron physics at J-PARC

“KEK theory center workshop on Hadron and Nuclear Physics in 2017 ”

KEK, January 7 - 10, 2017

Wen-Chen Chang

Institute of Physics, Academia Sinica

Outline

• High-momentum beamline at J-PARC

• Physics programs:

– Charm and strangeness production

– Hard exclusive process

– Exclusive Drell-Yan process

• Summary

2

3

J-PARC Facility(KEK/JAEA)

Bird’s eye photo in January of 2008

South to North

ExperimentalAreas

Neutrino Beams(to Kamioka)

JFY2009 Beams

Hadron Exp. Facility

Materials and Life Experimental Facility

JFY2008 Beams

3 GeV Synchrotron

JFY2007 Beams

Linac

4

K1.8

KL

SKS

K1.8BR

Beam

Lines

Experiment Secondary particles Max. Mom. Max. Intensity

K1.8 Hypernuclei,

Hadron Physics with S

p, K, p (2 separators) < 2.0 GeV/c ~105 Hz for K+

K1.8BR Hadron Physics with S p, K, p (1 separator) < 1.0 GeV/c ~104 Hz for K+

K1.1BR Lepton Flavor violation p, K, p (1 separator) < 1.1 GeV/c ~104 Hz for K+

KL Neutral K rare decay Neural Kaon ~ 2 GeV/c ~106 Hz

Intense pion, kaon beam in the momentum range of ~ 1 GeV/c

Jan.2009

Oct.2009

Oct.2009

K1.1(plan)

Hadron Experimental Facility (HEF)

J-PARC High-momentum Beam Line(Hi-P BL)

• High-intensity secondary Pion beam

• High-resolution beam: Δp/p ~ 0.1%

5

15kW Loss Target (SM)

30 GeV proton

J-PARC High-momentum Beam Line(Hi-P BL)

• High-intensity secondary Pion beam

• High-resolution beam: Δp/p ~ 0.1%

* Sanford-Wang: 15 kW Loss on Pt, Acceptance :1.5 msr%, 133.2 m

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

1.0E+09

0 5 10 15 20

Co

un

ts/s

ec

[GeV/c]

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

1.0E+09

0 5 10 15 20

Co

un

ts/s

ec

[GeV/c]

Negative Hadron Beams(Prod. Angle = 0 deg.)

p-

K-

pbar

p+

K+

Positive Hadron Beams(Prod. Angle = 3.1 deg.)

6

Charm and Strange production process

7

Di-quark Correlation in

Heavy-quark system

8H. Noumi, KEK workshop 2015

J-PARC E50

9

Stage-1 approved by J-PARC PAC-18, August 12, 2014.

H. Noumi, KEK workshop 2017

J-PARC E50

10H. Noumi, KEK workshop 2017

Stage-1 approved by J-PARC PAC-18, August 12, 2014.

Charmed Baryon Spectroscopy

11H. Noumi, KEK workshop 2017

Ξ Baryon Spectroscopy (LOI)

13

current limit

Ξ Spectroscopy with kaon beam

• Missing & Invariant Mass

Spectroscopy

• 5 GeV/c K− p reaction up to 2.5 GeV Ξ

* by K* tagging, threshold momentum for 2.5

GeV Ξ production is 5.5 GeV/c.

14

Yield Estimation

IK=106/spill

σ=1μb

dΩ/4π = 50%

4g/cm2 LH2 target

Y ~104/day 0

1

2

3

4

5

g.s.

Ξ(1530)

Ξ(1690)

Ξ(1820)Ξ(1950)Ξ(2030)

Ξ(2500)(Ge

V/c

)

Threshold momentum

in p(K−,K+)

M. Naruki, Baryon 2016

Hard exclusive production process

15

Quark Structure of Exotic Hadrons

16T. Hyodo, NSTAR 2015

Λ(1405)

• Y. Kamiya and T. Hyodo [PRC 93, 035203 (2016); 1509.00146 ]: compositeness property, ഥ𝑲𝐍 molecule.

• K. Miyahara and T. Hyodo [PRC 93, 015201 (2016); 1506.05724 ]: KN local potential based on chiral SU(3) dynamics

• J. Hall et al. [PRL 114, 132002 (2015); 1411.3402]: Lattice QCD, ഥ𝑲𝐍 molecule.

• T. Sekihara and S. Kumano [PRC 89, 025202 (2014); 1311.4637]:radiative decay for determining the compositeness.

• L. Roca and E. Oset [PRC 87, 055201 (2013); 1301.5741]: Two-pole structures, ഥ𝑲𝐍 and 𝝅𝜮.

• T. Hyodo [Int. J. Mod. Phys. A, 28, 1330045 (2013); 1310.1176]: compositeness property.

• T. Sekihara et al. [Phys.Rev.C83:055202(2011); 1012.3232]: meson-baryon coupled-channels chiral dynamics, ഥ𝑲𝐍molecule.

• …

17Production channels, decay, size and medium effect …

Large-angle (Hard) Exclusive Process 𝑎 + 𝑏 → 𝑐 + 𝑑H. Kawamura et al., PRD 88, 034010 (2013)

18

Gluon propagator

Quark propagator

External quarks

Leading and connected Feynman diagrams

2, |t| ( , , , )is m i a b c d

a c

b d

Large-angle (Hard) Exclusive Process 𝑎 + 𝑏 → 𝑐 + 𝑑H. Kawamura et al., PRD 88, 034010 (2013)

19

Gluon propagator

Quark propagator

External quarks

Leading and connected Feynman diagrams

2, |t| ( , , , )is m i a b c d

Factorizationb

a c

d

Constituent-Counting Rule in Hard Exclusive ProcessH. Kawamura et al., PRD 88, 034010 (2013)

20

p n p ++ +0Kpp - + +

2

1( ) ( ) CMn a b c d

da b n nc d f

dt sn n n

-++ + ++

1 3 2 3 7n + + + 2 3 2 3 8n + + +

G. P. Lepage and S. J. Brodsky, PRD 22, 2157 (1980).

21

𝜦; n=10.0 𝚺; n=11.4

𝜦(𝟏𝟒𝟎𝟓); n=10.6 𝜦(𝟏𝟓𝟐𝟎); n=9.8

Constituent-Counting Rule in Photoproduction of HyperonsChang, Kumano, Sekihara, PRD 93, 034006 (2016)

5 system: 11

3 system: 9

q n

q n

Constituent-Counting Rule in Photoproduction of HyperonsChang, Kumano, Sekihara, PRD 93, 034006 (2016)

22

5 system: 11

3 system: 9

q n

q n

𝜦

𝚺

𝜦(𝟏𝟒𝟎𝟓)

𝜦(𝟏𝟓𝟐𝟎)

𝚺(1385)

Valence-Quark Degrees of (1405)H. Kawamura et al., PRD 88, 034010 (2013)

23

0K (1405)pp - + +

J-PARC

T. SekiharaKEK workshop 2015

Drell-Yan process

24

Generalized Transverse-Momentum-

Dependent Parton Distribution Functions (GTMDs)

25

F( , , t)x

f( , )Tx k

1 2( ), ( )F t F tf( )x

JHEP 08 (2008) 038; 08 (2009) 056

Deep Inelastic Scattering (DIS)

and Drell-Yan Processes

26

Parton Distribution Function

(PDF) of Proton

27CT14 (1506.07443)

2 2 0q Q

Light Antiquark Flavor Asymmetry: Drell-Yan Experiments with Proton Beam

• Naïve Assumption:

• NMC (Gottfried Sum

Rule):

• NA51 (Drell-Yan, 1994):

• E866/NuSea (Drell-Yan,

1998):

28time

Time-like process

29

Drell-Yan decay angular distributions

Collins-Soper frame

and are the decay polar

and azimuthal angles of the

μ+ in the dilepton rest-frame

0

0 1 2O

annilation parton mode

( ) =1,

l:

= =0; 0s A

q

A

q

A

0

2 2

2

1

2 22

(1 cos sin 2 cos sin cos2 )2

((1 cos ) (1 3cos ) sin 2 cos sin cos2 )2 2

d

A

d

AA

+ + +

+ + - + +

1

0 2Collinear pQCD

Lam-Tung relation (1978)

: O( ), ;1 2 =0 s A A - -

E615 @ FNAL: Violation of Lam-Tung RelationPRD 39, 92 (1989)

30

252-GeV p-+W

1 2 =0 - -

cos2 modulation at large Tp

Theoretical Interpretations of Lam-Tung

Violation in pion-induced DY

31

Boer-Mulders

Function

QCD chromo-

magnetic effect

Glauber gluon

Origin of effect Hadron QCD vacuum Pion specific

Quark-flavor

dependence

Yes No No

Hadron dependence Yes No Yes

Large PT limit 0 Nonzero 0

Violation for 𝜋𝑝 Yes (valence quarks

involved)

Yes Yes

Violation for 𝐾𝑝 Yes (valence quarks

involved)

Yes Yes/No

Violation for ҧ𝑝𝑝 Yes (valence quarks

involved)

Yes No

Violation for 𝑝𝑝 No (sea quarks involved) Yes No

References PRD 60, 014012 (1999) Z. Phy. C 60,697 (1993) PLB 726, 262 (2013)

Measurements with different beams , , , over wide kinematical ranges

would help differentiating the origin of Lam-Tung violation.

p K pp

Higher Twist Effect at large 𝑥𝜋E615 (PRD 39, 92 (1989))

32

xp

cos

Transversely polarized

Longitudinally polarized

+1

-1

Higher Twist Effect at large 𝑥𝜋Berger and Brodsky (PRL 42, 940, (1979))

33

2 2

2 2 2

2

4(1 ) (1 cos ) sin

9

Tx kd x

m

p

p

- + +

2(1 cos )d +

Semi-Exclusive DY processA. P. Bakulev, N. G. Stefanis, and O. V. Teryaev

(Phys. Rev. D 76, 074032 (2007))

34

Sensitivity of ,, to Pion DA

Pion distribution amplitude

ux

pN+-N (Leading-twist)E.R. Berger, M. Diehl, B. Pire, PLB 523 (2001) 265

35

𝑡 = 𝑝 − 𝑝′ 2

𝑄′2 = 𝑞′2 > 02 2

2

' '

2 N

Q Q

pq s M

-

( ')

( ') 2

p p

p p

+

+

-

+ -

x - x +

Generalized Transverse-Momentum-

Dependent Parton Distribution Functions (GTMDs)

36

F( , , t)x

f( , )Tx k

1 2( ), ( )F t F tf( )x

JHEP 08 (2008) 038; 08 (2009) 056

x+ x-

t

GPD

s

PP’

( ,0,0) ( ) ( )

( ,0,0) ( ) ( )

f f f

f f f

H x q x q x

H x q x q x

- -

- -

1

1

1

1

2

1

1

1

1

1

( , , ) ( )

( , , ) ( )

( , , ) ( )

( , , ) ( )

f

f

f

f

f A

f

f p

f

dx H x t F t

dx E x t F t

dx H x t G t

dx E x t G t

-

-

-

-

-

-

-

-

( , , )GPD x t

Generalized Parton Distribution (GPD)

2)'( PPt -

0t

5

( , , ) ( , , )

( , , ) ( , , )

f f

f f

no spin flip H x t H x t

spin flip E x t E x t

37

The first moments

GPDs for (unstable) hadronsH. Kawamura and S. Kumano, PRD 89, 054007 (2014)

38

Softening of long. mom. fraction x. Softening of transverse form factor.

GPDs GDAs

x+ x-

t

GPDsP P’

( ,0,0) ( ) ( )

( ,0,0) ( ) ( )

f f f

f f f

H x q x q x

H x q x q x

- -

- -

1

1

1

1

2

1

1

1

1

1

( , , ) ( )

( , , ) ( )

( , , ) ( )

( , , ) ( )

f

f

f

f

f A

f

f p

f

dx H x t F t

dx E x t F t

dx H x t G t

dx E x t G t

-

-

-

-

-

-

-

-

1

1

1 1 [ ( , ,0) ( , ,0)]

2 2

f f

f f fJ L xdx H x E x -

+ +

( , , )GPD x t

Ji’s sum rule

Generalized Parton Distribution (GPD)

2)'( PPt -

0t

5

( , , ) ( , , )

( , , ) ( , , )

f f

f f

no spin flip H x t H x t

spin flip E x t E x t

39

The first moments

The orbital angular momentum of quarks can be determined.

Worldwide Activities for

Measuring GPDs

40arXiv:1208.1244

41

Muller et al., PRD 86 031502(R) (2012)

Extraction of GPDsSpace-like vs. Time-like Processes

Deeply Virtual Meson Production

(DVMP)

Exclusive meson-induced DY

2 0q +

-

channel crossings u

2 0q 2 0q

channel crossings u

+

-Deeply Virtual Compton Scattering

(DVCS)

Time-like Compton Scattering

(TCS)

𝜋𝜋

𝛾∗

𝛾∗

𝛾∗

𝛾∗

2 0q

𝛾 𝛾

0t

0t

| |x

1 , 1x x -

2 2

2

' '0.2

2 N

Q Q

pq s M

-𝑡 = 𝑝 − 𝑝′ 2= - 0.2 GeV2at at

Cross sections increase toward small s (→ low beam energy)

Production is dominant at forward angles

Differential cross sectionsT. Sawada, W.C. Chang, S. Kumano, J.C. Peng, S. Sawada, K. Tanaka

(Phys. Rev. D93 (2016) 114034; arXiv:1605.00364)

𝑄′2 = 𝑞′2 = 5 𝐺𝑒𝑉2

42

Sensitivity to Pion DAsT. Sawada, W.C. Chang, S. Kumano, J.C. Peng, S. Sawada, K. Tanaka

(Phys. Rev. D93 (2016) 114034; arXiv:1605.00364)

43

GPDs: GK2013

Leading-Twist Diagram

44

Pion-pole Dominance for ෨𝐸

45

Time-like Pion FF

46

2( ' )F Qp

Differential cross sections with an

updated time-like pion FF

47

P. Kroll, MENU 2016

S.V. Goloskokov, P. Kroll, PLB 748 (2015) 323

Beyond the Leading Twist

48

Transversity GPDs: 𝐻𝑇, ത𝐸𝑇

S.V. Goloskokov, P. Kroll, PLB 748 (2015) 323

Non-factorizable Mechanisms

49K. Tanaka, MENU 2016, KEK workshop 2017

Light-cone QCD Sum-Rule

50K. Tanaka, MENU 2016, KEK workshop 2017

J-PARC High-momentum Beam Line(Hi-P BL)

• High-intensity secondary Pion beam

• High-resolution beam: Δp/p ~ 0.1%

* Sanford-Wang: 15 kW Loss on Pt, Acceptance :1.5 msr%, 133.2 m

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

1.0E+09

0 5 10 15 20

Co

un

ts/s

ec

[GeV/c]

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

1.0E+09

0 5 10 15 20

Co

un

ts/s

ec

[GeV/c]

Negative Hadron Beams(Prod. Angle = 0 deg.)

p-

K-

pbar

p+

K+

Positive Hadron Beams(Prod. Angle = 3.1 deg.)

51

Total LO cross sections

52

BMP2001 GK2013

J-PARC (Pp=10-20 GeV) σ = 5 ~15 pb

CERN COMPASS (Pp= 190 GeV) = 0.65 pb

Top View

(0.2m) (2.3 m)

(2.4x1.8 m2)

(3.5x2.5 m2)

Muon-ID Wall

Original Configuration

for Charmed Baryon SpectroscopyExtension part

Proposal is currently

being prepared.

Extension of J-PARC E50 Experiment

for Drell-Yan measurement

53

Simulation

54

• Target : 57cm LH2 (nTGT = 4 g/cm2 )

• Beam momentum resolution( Δp/p ) = 0.1 %

• 1.83/1.58/1.00 *107 𝜋− /spill for 10/15/20 GeV beam

• Data Taking: 50 days (*Proposal of E50: 100 days)

• E50 spectrometers + μ ID system

・ Total hadronic interaction cross sections

of 𝜋−𝑝 is about 20-30 mb while the

production of J/𝜓 is about 1-3 nb

Expected cross sections for the exclusive/inclusive Drell-Yan processes

Assumptions:

Geant 4.9.3(E-50 spectrometer + Muon ID)

・ Exclusive Drell-YanGPD:BDP 2001: EPJC 23, 675 (2002)GK 2013: EPJC 73, 2278 (2013)GK 2015: PLB 748, 323 (2015)

・ Inclusive Drell-Yan Pythia 6.4.26

・ BackgroundJAM 1.132

π π+

10 GeV 2.11 nb 0.323 nb

15 GeV 2.71 nb 0.493 nb

20 GeV 3.08 nb 0.616 nb

-

π-

(BDP 2001)

π-

(GK 2013)

π-

(GK 2015)

10 GeV 6.28 pb 17.53 pb 140 pb

15 GeV 4.66 pb 10.64 pb 20 pb

20 GeV 3.69 pb 7.24 pb

π π+

10 GeV 26.9 mb 24.8 mb

15 GeV 25.8 mb 24.1 mb

20 GeV 25.1 mb 23.5 mb

-

Event GeneratorInclusive Drell-Yan (Mμμ>1.5 GeV)

Exclusive Drell-Yan (Mμμ>1.5 GeV, |t-t0|<0.5 GeV2)

Hadronic Background

Total Cross Section

Particle Transportation + Detector

Yield Estimation

55

Invariant mass Mμ+μ- spectraT. Sawada, W.C. Chang, S. Kumano, J.C. Peng, S. Sawada, K. Tanaka

(Phys. Rev. D93 (2016) 114034; arXiv:1605.00364)

56

・ Data Taking: 50 days

Pπ = 10 GeV 15 GeV 20 GeV𝜋− Beam Momentum

・ “GK2013” GPDs

・ Mμ+μ- > 1.5 GeV

・ |t - t0|< 0.5 GeV2

Missing-mass MX (GeV) Missing-mass MX (GeV)Mμ+μ- (GeV) Mμ+μ- (GeV) Mμ+μ- (GeV)

Exclusive Drell-Yan

J/𝜓

Random backgrounds

InclusiveDrell-Yan

Total

J/𝜓

Missing-mass MX spectraT. Sawada, W.C. Chang, S. Kumano, J.C. Peng, S. Sawada, K. Tanaka

(Phys. Rev. D93 (2016) 114034; arXiv:1605.00364)

57

・ 1.5 < Mμ+μ- < 2.9 GeV

・ |t - t0|< 0.5 GeV2

Pπ = 10 GeV 15 GeV 20 GeV𝜋− Beam Momentum

MX (GeV) MX (GeV) MX (GeV)

・ “GK2013” GPDs

ExclusiveDrell-Yan

Randombackgrounds

Inclusive Drell-Yan

Total

J/𝜓

The exclusive Drell-Yan events could be identified by the signature peak at the nucleon mass in the missing-mass spectrum for all three pion beam momenta.

・ Data Taking: 50 days

• JLAB, HERMES, COMPASS → Space-like approach• J-PARC → Time-like approach

Q2

or

Q’2

(GeV

2)

xB or τ (GeV2)

Kinematic regions of GPDs

explored by space-like and time-like processes

58

Impacts and Prospects

• Impacts:– Factorization of exclusive Drell-Yan process.

– Universality of GPDs in space-like and time-like processes.

– Pion DAs.

– Separation of contributions from GPDs and transversity-GPDs through the dilepton angular distributions.

• Prospects: with an increase of beam time (50100 days) and beam luminosity and optimization of setup

– GPD at large-Q2 region

– QCD-evolution properties of GPDs

59

“GPD” and “Transition GPD”

• 𝜋−p → γ∗𝑛

• 𝜋−p → γ∗∆0

• 𝜋−n → γ∗∆−

• 𝜋+n → γ∗p

• 𝜋+p → γ∗∆++

• 𝜋+n → γ∗∆+

• 𝐾−p → γ∗Λ

• 𝐾−p → γ∗Λ(1405)

• 𝐾−p → γ∗Λ(1520)

• 𝐾−n → γ∗Σ−

• 𝐾+n → γ∗Θ+

60

, Kp

,p n , , ,N

*

“Transition GPD”: L. L. Frankfurt et al., PRD 60, 014010 (1999)

Hi-p Collaboration

61H. Noumi, KEK workshop 2017

Summary

• It is unique to use the hard exclusive processes to investigate the spectroscopy and partonicstructures of hadrons at J-PARC.

– Excited charm and strange baryons.

– Internal structures of exotic hadrons.

– GPDs in the time-like processes; pion DAs, Transition GPD.

• A “high-P collaboration” is formed to realize the broad experimental programs in the coming high-momentum beamline at J-PARC.

62