anti-mouse cd52 treatment ameliorates colitis through

7
Vol. 41, No. 9 1423 Biol. Pharm. Bull. 41, 1423–1429 (2018) © 2018 The Pharmaceutical Society of Japan Regular Article Anti-mouse CD52 Treatment Ameliorates Colitis through Suppressing Th1/17 Mediated Inflammation and Promoting Tregs Differentiation in IL-10 Deficient Mice Jianhui Liu, a,b,# Honggang Wang, c,# Yi Li, a Peiliang Shi, d Jianfeng Gong, a Lili Gu, a Weiming Zhu,* ,a and Jieshou Li a a Department of General Surgery, Jinling Hospital, Medical School of Nanjing University; No. 305 East Zhongshan Road, Nanjing, Jiangsu Province 210002, China: b Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University; 121 Jiangjiayuan Road, Nanjing, Jiangsu Province 210011, China: c Department of General Surgery, Taizhou People’s Hospital, Taizhou Clinical Medical College of Nanjing Medical University; No. 366 Taihu Road, Taizhou, Jiangsu Province 225300, China: and d Model Animal Research Center of Nanjing University; No. 12 Xuefu Road, Nanjing, Jiangsu Province 210089, China. Received April 4, 2018; accepted June 4, 2018; advance publication released online June 13, 2018 Recent studies suggested that excessive T helper (Th)1/17 cells concomitant with regulatory T cell defi- ciency might play important roles in Crohn’s disease. Anti-cluster of differentiation 52 (CD52) monoclonal antibody (mAb), which aims on CD52 antigen on mature immunocytes, has both T cell depletion and im- munosuppressive activities. In this study, we evaluated the therapeutic effects and possible mechanisms of anti-CD52 treatment on interleukin-10 (IL-10) deficient mouse. Anti-mouse CD52 mAb was administered to C3H/HeJBir.IL-10 /(C3H.IL-10 /) mice intraperitoneally 20 μg per week for 2 weeks. The disease activity index, body weight, the histological grading of colitis, and levels of tumor necrosis factor (TNF)-α, inter- feron (IFN)-γ, IL-17 and IL-6 in colon were quantified after treatment. In addition, CD25, Forkhead box P3 (Foxp3) and transforming growth factor (TGF)-β gene as well as the percentage of CD25 + Foxp3 + T cells in colon were also measured. The severity of colitis in IL-10 /mice was significantly decreased by the treat- ment, with improvement of colon histological grade. The treatment also decreased the TNF-α, IFN-γ, IL-17 and IL-6 levels in colon. Furthermore, the treatment up-regulated the mRNA expression of CD25, Foxp3 and TGF-β gene as well as the percentage of CD25 + Foxp3 + T cells in colon lamina propria mononuclear cells (LPMCs) of IL-10 /mice. Our data might indicate that anti-CD52 treatment could ameliorate the colitis of C3H.IL-10 /mice and it might be related to the suppression of Th1/17 related inflammation and the promo- tion of regulatory T cell differentiation. Thus, our data reveals that anti-CD52 treatment may hold potential for clinical applications for Crohn’s disease treatment. Key words T cell; interleukin-10 (IL-10) deficient mouse; Crohn’s disease; anti-cluster of differentiation 52 (CD52) monoclonal antibody Crohn’s disease (CD), one of the two major clinically de- fined forms of inflammatory bowel disease, is an immune- mediated relapsing systemic inflammatory disease manly affecting the gastrointestinal tract with extra-intestinal manifestations. 1) Although the exact pathogenesis of CD is complex, it’s believed that CD might be triggered by en- vironmental factors and resulted in a disturbed innate and adaptive immune response towards a diminished diversity of commensal microbiota. 2) Researches declare that CD is a T- helper (Th)1/Th17 type inflammatory reaction, with exorbitant secretion of numbers of effector cytokines such as interferon (IFN)-γ , interleukin (IL)-17 and tumor necrosis factor (TNF)-α as well as the unmatched changes of the T cell response. 3,4) The imbalance of effector T cells versus regulatory T cells (Tregs) in gastrointestinal tract mucosa is a hallmark of CD. 5) And genome-wide association studies support the imbalance model by linking loci that are crucially involved in Tregs and Th1/Th17 differentiation to CD. 6) Cluster of differentiation 52 (CD52) is a cell-surface gly- coprotein mainly expresses on mature lymphocytes. Anti- CD52 monoclonal antibody (known as campath-1) can rapidly produce a profound lymphopenia mainly by the cytotoxicity, leading to long-lasting changes in adaptive immunity. The humanized Campath-1H has been licensed for chronic lym- phocytic leukemia (CLL) 7) and been used successfully in several autoimmune diseases, such as arthritis, multiple scle- rosis, vasculitis 8) as well as in organ transplantation. 9) And in several trials, Campath-1H was found that it could promote increasing of Tregs. 10–12) Our previous studies demonstrated that anti-CD52 treat- ment could improve histological inflammation score, 13) inhibit epithelial apoptosis and tight junction permeability 14) in IL-10 deficient mice. In this study, we mainly investigated the thera- peutic effects on colitis and potential mechanisms relating to Th1/17 related inflammation and regulatory T cells of treat- ment with anti-mouse CD52 monoclonal antibody in IL-10 deficient mouse model which mimics human CD. MATERIALS AND METHODS Animals and Immunotherapy C3H/HeJBir.IL-10 -/ - (C3H.IL-10 -/ - ) mice and C3H/HeJ (wild type) mice were ob- tained from the Jackson Laboratory (Bar Harbor, ME, U.S.A.). All the mice were maintained at the Model Animal Research * To whom correspondence should be addressed. e-mail: [email protected] # These authors contributed equally to this work.

Upload: others

Post on 16-Oct-2021

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Anti-mouse CD52 Treatment Ameliorates Colitis through

Vol. 41, No. 9 1423Biol. Pharm. Bull. 41, 1423–1429 (2018)

© 2018 The Pharmaceutical Society of Japan

Regular Article

Anti-mouse CD52 Treatment Ameliorates Colitis through Suppressing Th1/17 Mediated Inflammation and Promoting Tregs Differentiation in IL-10 Deficient MiceJianhui Liu,a,b,# Honggang Wang,c,# Yi Li,a Peiliang Shi,d Jianfeng Gong,a Lili Gu,a Weiming Zhu,*,a and Jieshou Lia

a Department of General Surgery, Jinling Hospital, Medical School of Nanjing University; No. 305 East Zhongshan Road, Nanjing, Jiangsu Province 210002, China: b Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University; 121 Jiangjiayuan Road, Nanjing, Jiangsu Province 210011, China: c Department of General Surgery, Taizhou People’s Hospital, Taizhou Clinical Medical College of Nanjing Medical University; No. 366 Taihu Road, Taizhou, Jiangsu Province 225300, China: and d Model Animal Research Center of Nanjing University; No. 12 Xuefu Road, Nanjing, Jiangsu Province 210089, China.Received April 4, 2018; accepted June 4, 2018; advance publication released online June 13, 2018

Recent studies suggested that excessive T helper (Th)1/17 cells concomitant with regulatory T cell defi-ciency might play important roles in Crohn’s disease. Anti-cluster of differentiation 52 (CD52) monoclonal antibody (mAb), which aims on CD52 antigen on mature immunocytes, has both T cell depletion and im-munosuppressive activities. In this study, we evaluated the therapeutic effects and possible mechanisms of anti-CD52 treatment on interleukin-10 (IL-10) deficient mouse. Anti-mouse CD52 mAb was administered to C3H/HeJBir.IL-10−/− (C3H.IL-10−/−) mice intraperitoneally 20 µg per week for 2 weeks. The disease activity index, body weight, the histological grading of colitis, and levels of tumor necrosis factor (TNF)-α, inter-feron (IFN)-γ, IL-17 and IL-6 in colon were quantified after treatment. In addition, CD25, Forkhead box P3 (Foxp3) and transforming growth factor (TGF)-β gene as well as the percentage of CD25+Foxp3+ T cells in colon were also measured. The severity of colitis in IL-10−/− mice was significantly decreased by the treat-ment, with improvement of colon histological grade. The treatment also decreased the TNF-α, IFN-γ, IL-17 and IL-6 levels in colon. Furthermore, the treatment up-regulated the mRNA expression of CD25, Foxp3 and TGF-β gene as well as the percentage of CD25+Foxp3+ T cells in colon lamina propria mononuclear cells (LPMCs) of IL-10−/− mice. Our data might indicate that anti-CD52 treatment could ameliorate the colitis of C3H.IL-10−/− mice and it might be related to the suppression of Th1/17 related inflammation and the promo-tion of regulatory T cell differentiation. Thus, our data reveals that anti-CD52 treatment may hold potential for clinical applications for Crohn’s disease treatment.

Key words  T  cell;  interleukin-10  (IL-10)  deficient mouse; Crohn’s  disease;  anti-cluster  of  differentiation  52 (CD52) monoclonal antibody

Crohn’s  disease  (CD),  one  of  the  two  major  clinically  de-fined  forms  of  inflammatory  bowel  disease,  is  an  immune-mediated  relapsing  systemic  inflammatory  disease  manly affecting  the  gastrointestinal  tract  with  extra-intestinal manifestations.1)  Although  the  exact  pathogenesis  of  CD  is complex,  it’s  believed  that  CD  might  be  triggered  by  en-vironmental factors and resulted in a disturbed innate and adaptive  immune  response  towards  a  diminished  diversity  of commensal microbiota.2)  Researches  declare  that  CD  is  a  T-helper (Th)1/Th17 type inflammatory reaction, with exorbitant secretion of numbers of effector cytokines such as interferon (IFN)-γ, interleukin (IL)-17 and tumor necrosis factor (TNF)-α as  well  as  the  unmatched  changes  of  the  T  cell  response.3,4) The imbalance of effector T cells versus regulatory T cells (Tregs)  in gastrointestinal  tract mucosa  is a hallmark of CD.5) And  genome-wide  association  studies  support  the  imbalance model by linking loci that are crucially involved in Tregs and Th1/Th17 differentiation to CD.6)

Cluster  of  differentiation  52  (CD52)  is  a  cell-surface  gly-coprotein  mainly  expresses  on  mature  lymphocytes.  Anti-CD52 monoclonal antibody (known as campath-1) can rapidly 

produce  a  profound  lymphopenia  mainly  by  the  cytotoxicity, leading to long-lasting changes in adaptive immunity. The humanized  Campath-1H  has  been  licensed  for  chronic  lym-phocytic  leukemia  (CLL)7) and been used successfully in several autoimmune diseases, such as arthritis, multiple scle-rosis, vasculitis8)  as well  as  in  organ  transplantation.9) And in several  trials,  Campath-1H  was  found  that  it  could  promote increasing of Tregs.10–12)

Our  previous  studies  demonstrated  that  anti-CD52  treat-ment  could  improve histological  inflammation  score,13) inhibit epithelial  apoptosis  and  tight  junction  permeability14) in IL-10 deficient mice. In this study, we mainly investigated the thera-peutic effects on colitis and potential mechanisms relating to Th1/17  related  inflammation  and  regulatory  T  cells  of  treat-ment  with  anti-mouse  CD52  monoclonal  antibody  in  IL-10 deficient mouse model which mimics human CD.

MATERIALS AND METHODS

Animals and Immunotherapy   C3H/HeJBir.IL-10−/− (C3H.IL-10−/−) mice  and C3H/HeJ  (wild  type) mice were  ob-tained from the Jackson Laboratory (Bar Harbor, ME, U.S.A.). All  the mice were maintained  at  the Model Animal Research 

* To whom correspondence should be addressed.  e-mail: [email protected]

# These authors contributed equally to this work.

Page 2: Anti-mouse CD52 Treatment Ameliorates Colitis through

1424 Vol. 41, No. 9 (2018)Biol. Pharm. Bull.

Center  of  Nanjing  University  (Nanjing,  China)  in  a  specific-pathogen-free (SPF) animal facility. All mice received humane care in accordance with the law concerning the protection and control of animals in China. C3H.IL-10−/− mice were used be-cause they develop colitis more severely than other strains.15) Age  and  sex matched  C3H.IL-10−/−  mice  at  12 weeks  of  age with  established  colitis  and wild  type mice were  used  for  the experiments  of  anti-mouse  CD52  administration.  The  mice were  assigned  to  the  anti-mouse  CD52  treated  IL10−/− mice group  (anti-mouse  CD52  group),  phosphate  buffered  saline (PBS)  treated  IL10−/−  mice  group  (Control  group)  and  PBS treated  wild  type  group  (normal  group).  There  were  6  mice per  group. The  drug  administration  of  anti-CD52 monoclonal antibody  was  performed  as  previously  described.13)  Briefly, each  mouse  in  anti-mouse  CD52  group  was  injected  intra-peritoneally with 20 µg anti-mouse CD52 monoclonal antibody (clone  BTG-2G)  (MBL,  Nakaku  Nagoya,  Japan)  dissolved with  PBS. One week  later,  the  drug was  administrated  again with  the  same  dose.  The  normal  and  control  group  mice  re-ceived  an  equivalent  quantity  of  PBS  at  the  same  time.  The clinic  symptoms  were  observed  after  the  treatment.  One  and three weeks after the final drug administration, the mice were sacrificed for the following tests.

Disease Activity Index (DAI) The clinical manifestation of  colitis was quantified with  the DAI according  to  the meth-ods described previously.16) Briefly, the ruffled fur, occult fecal blood  determined  by  the  Fecal Occult Blood Card  (Jiancheng Biotechnology  Co.,  Nanjing,  China),  rectal  prolapsed  (<1 cm for one point or >1 cm for  two points), soft stool and diarrhea were  the  score  points  of DAI. All  the  points were  added  to  a final DAI score with a range from 0 to 6.

Histopathology   The  colon  samples  were  collected  and fixed  in  paraformaldehyde  (PFA).  Samples  were  paraffin-embedded, sectioned, and stained with hematoxylin and eosin. Grading  of  intestinal  inflammatory  score  was  determined  as described previously,16) with the scores ranged from 0 to 4.

Cytokine-Specific Enzyme-Linked Immunosorbent Assay (ELISA)   Cytokine  determination  in  colon  mucosa was  performed  as  previously  described,17)  briefly,  protein  ex-tracts  were  obtained  by  homogenization  of  colonic  segments (0.5 mg  tissue/mL)  in  homogenization  buffer  consisting  of  a protease  inhibitor  (Roche Diagnostics, Mannheim, Germany). Samples  were  centrifuged  at  20000×g  for  30 min  at  4°C. Supernatant  was  aliquoted  and  stored  at −80°C  for  cytokine examination.  TNF-α, IFN-γ, IL-17 and IL-6 concentrations in  colonic  protein  extracts  were  measured  using  ELISA  Kit (Invitrogen, Vienna, Austria)  according  to  the manufacturer’s recommendations. Values were expressed as pg/mg protein.

Isolation of Mononuclear Cells from Colon Lamina Pro-pria   Lamina  propria  mononuclear  cells  (LPMCs)  of  colon were  isolated  according  to  the  methods  described  previously with  some  modifications.18)  Briefly,  the  colon  of  each  mouse was  immediately  harvested  after  sacrifice,  cut  longitudinally and  washed  with  cold  RPMI1640  containing  5%  fetal  calf serum  (FCS),  then  cut  into  pieces  to  incubate  in  the  solution contains 1 mM  ethylenediaminetetraacetic  acid  (EDTA)  (Sig-ma-Aldrich,  St.  Louis,  MO,  U.S.A.)  and  1 mM dithiothreutol (Sigma) for 30 min at 37°C. Subsequently, the remained tissues were  digested  for  30 min  in  the  presence  of  40 U/mL  collage-nase II (Sigma) and 10 µg/mL  deoxyribonuclease  (DNase)  I (Boehringer  Mannheim,  Mannheim,  Germany).  The  suspen-

sions  were  passed  through  a  40-µm nylon mesh separately and  then  centrifuged  through  a  40/70% discontinuous  Percoll (Pharmacia,  Uppsala,  Sweden)  gradient  at  400×g  and  20°C for 25 min without braking. The cells  from  the  interface were collected.  All  the  collected  mononuclear  cells  were  washed and  resuspended  with  RPMI1640  for  the  following  FACS analysis.

FACS Analysis   Fluorescein  isothiocyanate  (FITC)-con-jugated  anti-mouse  CD4,  Allophycocyanin  (APC)-conjugated anti-mouse  CD25  and  Phycoerythrin  (PE)-conjugated  anti-mouse Foxp3 (eBioscience, San Diego, CA, U.S.A.) were used for the stain of Tregs according to the protocols supplied by manufacturer.  Briefly,  1×106  cells  were  suspended  in  100 µL flow staining buffer with saturating amounts of fluorochrome-conjugated  anti-CD4/CD25  for  the  staining  of  cell  surface antigens,  then  the  cells were  incubated with Fixation/Permea-bilization  buffer  and  stained  with  PE-conjugated  anti-mouse Foxp3.  All  the  flow  cytometric  analyses  were  acquired  using the  FACScan  flow  cytometer  (Becton  Dickinson,  San  Jose, CA,  U.S.A.),  and  the  data  were  analyzed  using  the  Flowjo software  (Tree Star, U.S.A.). Unstained cells and cells  stained with isotype-matched control antibodies served as controls.

Quantitative Real-Time PCR (qPCR) Total RNA of colon tissue  was  isolated  with  RNAiso  Plus  (TaKaRa,  Dalian, China)  and  reversed  transcribed  by  RT  reagent  Kit  (TaKaRa) according  to  manufacturer’s  instructions.  The  primers  were as  follows:  Foxp3,  5′-CCC AGG AAA GAC AGC AAC CTT-3′ and  5′-TTC TCA CAA CCA GGC CAC TTG-3′,  CD4,  5′-AAG TGA CCT TCA GTC CGG GTA-3′  and  5′-GGG TTA GAG ACC  TTA GAG TTG CT-3′,  CD25,  5′-CTC CCA TGA CAA ATC GAG  AAA GC-3′  and  5′-ACT CTG TCC TTC CAC GAA ATG AT-3′, transforming  growth  factor  (TGF)-β,  5′-CCG CAA CAA CGC  CAT CTA TG-3′  and  5′-CCC GAA TGT CTG ACG TAT TGA  AG-3′,  Beta-actin,  5′-GAG AAG ATC TGG CAC CAC ACC-3′ and  5′-GCA TAC AGG GAC AGC ACA GC-3′.  The  qPCR  was performed  with  the  Step  One  Real-Time  PCR  system  (ABI, Carlsbad,  CA,  U.S.A.)  using  the  SYBR  Premix  Ex  Taq  II  kit (TaKaRa).  All  the  process  was  according  to  manufacturer’s direction  and  PCR  reactions  were  done  in  duplicate  and  rela-tive  expression  was  calculated  using  the  2−ΔΔCt method after normalizing beta-actin expression for each sample.

Statistical Analysis   SPSS  version  17.0  software  (SPSS, Inc.,  Chicago,  IL, U.S.A.) was  used  to  perform  the  statistical analyses. The Mann–Whitney U  test  with  Bonferroni  cor-rection  was  used  for  multiple  comparisons  of  non-parametric data  (the  DAI  score  and  histopathology  score)  for  statistical significance. And for  the parametric data, Student’s  t  test was used  to  compare  two groups,  and one-way ANOVA was used for  multiple  comparisons  followed  by  Tukey  post-hoc test. Statistical  significance was  defined  as p<0.05. The GraphPad Prism  5.0  (GraphPad  Software  Inc.,  San  Diego,  CA,  U.S.A.) software was used for figures drawing.

RESULTS

Anti-CD52 Treatment Reduced Disease Activity in IL-10−/− Mice The onset and severity of colitis of IL-10−/− mice were  dramatically  different  among  strains  and  laborato-ries. We chose the 12 weeks old C3H/HeJ background mice as animal model for the severe and established colitis. The body weight  of mice was measured  every week  from  the first  drug 

Page 3: Anti-mouse CD52 Treatment Ameliorates Colitis through

Vol. 41, No. 9 (2018)  1425Biol. Pharm. Bull.

administration, the result showed that the IL-10−/− mice spon-taneously developed chronic colitis with weight loss, while the anti-CD52 mAb treated group grew more steadily. One, 2 and 3 weeks after the final administration, the body weights of an-ti-mouse CD52 group mice were  significantly  higher  than  the control mice, while the normal group got the similar outcome. (Fig.  1).  DAI,  which  is  defined  by  ruffled  fur,  fecal  blood, rectal  prolapse,  stool  form  and  diarrhea, was  used  to  analyze the  therapeutic  benefits  of  anti-CD52  treatment. Compared  to normal group,  the control group had higher mean DAI values (Fig.  2b),  while  the  anti-mouse  CD52  group  showed  a  sig-nificant reduction of DAI compared to  the control group three weeks after the treatment (Fig. 2b).

Anti-CD52 Treatment Lowered Histopathology Scores of Colitis in IL-10−/− Mice   Remarkable findings  in  the his-topathologic  effect  of  anti-CD52  treatment  were  found  three weeks  after  the  administration  on  mouse  colon.  The  anti-mouse CD52 group mice which  received anti-CD52  treatment showed  notable  depletion  of  inflammatory  cells  in  the  lamina propria  of  colon  mucosae  (Fig.  3c),  while  the  control  group mice  showed  the massive  infiltration with  inflammatory cells, disruption of mucosal and muscular architecture and ulcers penetrated the whole intestinal wall (Fig. 3b). The histopathol-ogy  scores  were  calculated  and  confirmed  the  effect  of  the anti-CD52  treatment.  Compared  to  control  group,  the  normal 

group mice  showed  a  significant  low  score  (Fig.  3d),  and  the score of anti-mouse CD52 group was also  lower  than the con-trol (Fig. 3d).

The Depletion of CD4+ among Colon LPMCs by Anti-CD52 Treatment in IL-10−/− Mice   It  has  showed  that CD4+ T-helper type 1 and T-helper type 17 cells and the inflammation  mediated  by  them  are  important  in  CD,  while the mature lymphocyte lysis effect of the anti-CD52 mAb was reported in many former studies. Next we tested the depletion of CD4+ T cells in the mononuclear cells in colon tissue three weeks  after  the  anti-CD52  treatment  using  the  flow  cytom-etry.  The  FACS  results  showed  that  after  the  development  of colitis,  the percentage of CD4+ T cell increased in the control group when  compare  to  the  normal  group  (21.80±0.87%  ver-sus 13.02±0.58%, p<0.01). However,  in  the  anti-mouse CD52 group,  significant  decreases  in  the percentage of CD4+ T cell were observed compared with control group (8.03±1.64% ver-sus 21.80±0.87%, p<0.01) after the treatment (Fig. 4).

Anti-CD52 Treatment Decreased the Pro-inflammatory Cytokine Expressions in Colon of IL-10−/− Mice   CD  is usually  considered  as  a Th1/Th17  type  of  inflammatory  reac-tion,  the  enhanced  secretion  of  pro-inflammatory  cytokines is  the  key  process  and  of  CD.  To  determine  the  therapeu-tic  effect  of  anti-CD52  mAb  in  IL-10−/− mouse model, the TNF-α, IFN-γ,  IL-17  and  IL-6  expressions  in  colon  tissue were  examined  by  ELISA.  Remarkable  increase  expres-sions  were  observed  in  control  group  compared  to  normal group (TNF-α 88.84±12.18 vs. 16.01±3.87 pg/mg, p<0.01; IFN-γ  59.92±19.58  vs.  5.75±1.43 pg/mg, p<0.01; IL-17 171.56±18.82 vs. 12.48±4.30 pg/mg, p<0.01; IL-6 64.33±13.45  vs. 7.18±3.21 pg/mg, p<0.01),  and  as  ex-pected,  the  anti-CD52  treatment  dramatically  decreased the level of these cytokines compared to the control (TNF-α  26.25±5.54  vs. 88.84±12.18 pg/mg, p<0.01; IFN-γ 25.66±8.09 vs.  59.92±19.58 pg/mg,  p<0.05;  IL-17  14.86±4.96 vs.  171.56±18.82 pg/mg, p<0.01; IL-6 19.84±3.21 vs. 64.33±13.45 pg/mg, p<0.01) (Fig. 5).

Anti-CD52 Treatment Promoted the CD25+Foxp3+ Regulatory T Cell Response in IL-10−/− Mice Th17 and Treg cells exist primarily in the intestinal mucosa, where they have  a  significant  role  in  T  cell-mediated  immune  responses, and excessive Th17 cells concomitant with a regulatory T cell deficiency  might  play  important  roles  in  the  inflammation 

Fig.  1.  The  Body  Weight  Changes  of  Mice  from  the  First  Anti-CD52 Treatment in Interleukin-10 Deficient Mouse ModelOne,  2  and  3  weeks  after  the  final  administration,  the  body  weights  of  anti-

mouse CD52 group mice were significantly higher than the control mice, while the normal group got the similar outcome. Values were presented means±S.E.M. (n=6 per group). NS p>0.05, * p<0.05, ** p<0.01, compared to the Control group.

Fig.  2.  The Changes of DAI Three Weeks after Anti-CD52 Treatment in IL-10 Deficient Mouse Model(a) Rectal prolapse and  stool  form of mice  in  each group.  (b) Compared  to normal group,  the control group had higher DAI values, while  the anti-mouse CD52 group 

showed a significant reduction of DAI compared to the Control group three weeks after the treatment. ** p<0.01.

Page 4: Anti-mouse CD52 Treatment Ameliorates Colitis through

1426 Vol. 41, No. 9 (2018)Biol. Pharm. Bull.

of  CD.19)  Foxp3-expressing  Tregs  are  believed  to  have  anti-inflammatory  activity  through  the  suppression  of  the  Th17 response.20)  And  CD25+Foxp3+ Tregs are believed to attenu-ate  the  severity of  ileitis  in a Crohn’s-like mouse model.21) So we  tested  the  CD25+Foxp3+  Tregs  in  colon  LPMC  by  FACS, additionally  the  mRNA  expressions  of  CD4,  CD25,  Foxp3 and TGF-β  were  also  examined.  The  result  showed  that  the percent of CD25+Foxp3+ Tregs in anti-mouse CD52 group was much  higher  compared  to  the  control  group  (8.65±0.33 vs. 3.77±0.27%, p<0.01) after  receiving  the anti-CD52  treatment. (Fig.  6)  And  the  mRNA  expressions  levels  of  CD25,  Foxp3 and TGF-β  in  anti-mouse  CD52  group  were  increased,  while the  mRNA  expression  of  CD4  decreased  as  expected  com-pared to the control group (Fig. 7).

DISCUSSION

CD  is one of  the  two major  forms of  inflammatory disease (IBD) and  it may affect any part of  the whole gastrointestinal tract from mouth to anus. Although it is believed to be due to a combination of abnormal gut microbiota, immune response dysregulation, environmental changes and gene variants, a full understanding of CD pathogenesis  is  still unclear.22) However, the  exaggerated  immune  responds  to  the  gut  microbial  anti-

Fig.  3.  Histological Sections of the Colon from the Each Group Three Weeks after the Anti-CD52 Treatment(a) HE staining of colon from a wild-type mouse, (b) HE staining of a control group mouse showed significant lymphocyte infiltration and distortion of colon wall struc-

ture, while (c) anti-CD52 treated mouse showed markedly decreased infiltration of inflammatory cells. (d) The histopathology scores of these three groups in the colon are presented. Representative sections from three separate groups are shown. ** p<0.01.

Fig.  4.  The Depletion of CD4+ T Cells among Colon LPMCs Three Weeks after the Anti-CD52 Treatment(A) The  percentage  of CD4+  T  cell  in  side  scatter-height  (SSC-H),  (B)  the  percentage  of CD4+  T  cell  among  colon LPMCs  in  each  group was Control  21.80±0.87%, 

normal 13.02±0.58% and anti-mouse CD52 8.03±1.64%. Values were presented means±S.E.M. (n=6 per group). ** p<0.01.

Fig.  5.  The  Th1/17  Related  Pro-inflammatory  Cytokine  Expressions  in Colon  Tissue  of  Each Group Mice  Three Weeks  after  the  Final Admin-istration

The concentration of the cytokines in each groups (normal vs.  Control  vs. anti-mouse  CD52)  were  as  follows:  TNF-α:  16.01±3.87 vs. 88.84±12.18 vs. 26.25±5.54 pg/mg,  IFN-γ:  5.75±1.43 vs.  59.92±19.58  vs.  25.66±8.09 pg/mg; IL-17 12.48±4.30 vs. 171.56±18.82 vs. 14.86±4.96 pg/mg; IL-6 7.18±3.21 vs. 64.33±13.45 vs. 19.84±3.21 pg/mg.  Values  were  presented  means±S.E.M. (n=6 per group). * p<0.05, ** p<0.01.

Page 5: Anti-mouse CD52 Treatment Ameliorates Colitis through

Vol. 41, No. 9 (2018) 1427Biol. Pharm. Bull.

gens have been reported to play important roles in beginning and development of CD. Usually, CD was assumed  to be me-diated mainly by Th1 cells, and the concentration has recently moved  to  the differentiation and balance of Th17/Tregs which has  recently been  showed  to  affect  in CD.23,24) Th17 and Treg cells play an important role in the immune homeostasis, IL-17-releasing  Th17  cells  are  well  known  for  its  primarily  pro-inflammatory  function,  while  Tregs  show  anti-inflammatory activity by the suppression of Th17 response, and the TGF-β and IL-10 secreted by Tregs are the main regulatory factors which  are  aslo  believed  could  suppress  the  differentiation  of pro-inflammatory  T  cells.25) As Th17 cells are important in intestinal  inflammation,  it  has  been  aimed  as  therapeutic  tar-

get to interfere the intestinal inflammatory. Zhang et al. found IL-17R  knockout  mice  were  significantly  protected  against 2,4,6-trinitrobenzenesulfonic  acid  (TNBS)-induced  colitis.26) Sandborn et al.27–29)  got  promised  results  in  patients with CD with  anti-IL12/23p40  antibody  (ustekinumab),  which  inhibits IL-23  mediated  Th17  responses.  The  efficiency  of  vidofludi-mus  in  IBD  patients was  separately  confirmed  by  Fitzpatrick et al.30) and Herrlinger et al.,31)  which  could  ameliorate  ex-perimental colitis by decreasing IL-17A and IL-17F levels via down-regulation  of  nuclear  factor  (NF)-κB  and  signal  trans-ducer  and  activator  of  transcription  3  (STAT3)  pathway.  Al-though the secukinumab, a mAb directed against  IL-17A, was ineffective  and  associated with more  adverse  events  than  pla-

Fig.  6.  The Percentage of CD25+Foxp3+ Regulatory T Cell among Colon LPMCs Three Weeks after the Anti-CD52 Treatment(A) FACS results of the CD25+Foxp3+ regulatory T cell in colon LPMCs. (B) The percentage of CD25+Foxp3+ regulatory T cell among colon LPMCs of IL-10 deficient 

mice, the anti-mouse CD52 group was 8.65± 0.33% and the Control group was 3.77±0.27%. Values were presented means±S.E.M. (n=6 per group). ** p<0.01.

Fig.  7.  The mRNA Expression Levels of CD4, CD25, Foxp3 and TGF-β in Colon Tissues Three Weeks after the Anti-CD52 TreatmentThree weeks after the treatment, the mRNA transcription levels of CD4, CD25, Foxp3 and TGF-β were evaluated by qPCR. The results showed that the levels of CD25, 

Foxp3 and TGF-β  in anti-mouse CD52 group were up-regulated by  the anti-CD52 administration compared  to Control group, while  the CD4 mRNA expression  level de-creased after the treatment. Values were presented means±S.E.M. (n=6 per group). * p<0.05, ** p<0.01.

Page 6: Anti-mouse CD52 Treatment Ameliorates Colitis through

1428 Vol. 41, No. 9 (2018)Biol. Pharm. Bull.

cebo,32) combined blockade of IL-17A and IL-17F may prevent the  development  of  experimental  colitis.33,34) And in another trial, the treatment to inhibit STAT3, which is important in the differentiation of Th17 cells, was proved to attenuate intestinal inflammation.35)  And  in  an  experimental  colitis  model,  Treg cells were declared  to prevent  intestinal  inflammation  and  re-duced  the  expression  of  Th17-related  cytokines.36) Meanwhile the regulatory T cell therapy in vitro and in vivo  for CD was carried out to pave the way for future clinical trials.37,38) These positive outcomes suggest that the treatment upon suppres-sion  of  Th17-mediated  inflammation  and  promotion  of  Tregs response holds potential therapeutic utility in T cell-mediated intestinal inflammation in CD.The  anti-CD52  monoclonal  antibody  (marketed  as  Cam-

path-1), which specifically targets CD52, a most abundant gly-coprotein presents on the surface of all T and B lymphocytes, monocytes and eosinophils, but not hematological precursors, can lyse the cells after binding to its receptor through numer-ous mechanisms and rapidly produce a profound lympho-penia,  particularly  the  low  levels  of  CD4+ T cells.39,40) And Campath-1  was  also  found  that  it  could  promote  increasing of Tregs in kidney transplantation and the treatment of mul-tiple sclerosis.10–12)  In  this  study, we aimed on T1/17 mediated inflammation  and  Tregs  and  tried  to  validate  the  efficacy  of anti-mouse CD52 in the treatment of IL-10−/− mouse model.C3H.IL-10−/− mice could develop colitis spontaneously

under a SPF condition as a result of their extreme bias toward a Th1/17-type environment and have many common features with the pathogenesis of human CD patients. In this study, our data showed that the administration of anti-mouse CD52 mAb significantly  reduced  disease  activity,  lowered  histopathol-ogy  scores  of  colitis  and  decreased  the  percentage  of  CD4+ T  cell  in  colon  lamina  propria,  as  well  as  the  expressions  of TNF-α, IFN-γ, IL-17 and IL-6 in IL-10−/− mice. Furthermore anti-CD52  treatment  also  could  increase  the  percentage  of CD25+Foxp3+  Tregs  in  colon  LPMCs  and  up-regulate  the mRNA expression of CD25, Foxp3 and TGF-β. Current results provide  evidence  that  anti-CD52  treatment  ameliorates  the intestinal  inflammation  of  IL-10−/− mice and it might relate to  the  suppressing  Th1/17  type  inflammation  and  promoting regulatory T-Cell response. However, the exact mechanisms of Th1/Th17  inhibition  and  Tregs  promotion  is  still  unclear,  we hypothesize that the directly depletion of mature lymphocytes by CD52 mAb might  play  the  role  like  chemotherapy  but  not to the stem cell, then the redifferentiation from naive T cell might be  something  like  the  stem cell  transplants. Because of the  empty  of  pro-inflammatory  cells  and  cytokines  by  CD52 mAb, a normalizing T-cell balance might reach in the re-dif-ferentiation, the TGF-β secreted by Tregs could suppress the differentiation of Th1/17 cells in IL-10−/− mice and it might be important in this procedure. However, further studies focus on IL-12/23 pathway, TGF-β  pathway and other pathways  related to T cell regulation should been carried out to certify the roles which CD52mAb plays in the process.In  summary,  the  current  study,  has  suggested  anti-CD52 

therapy may reverse the clinic symptoms and tissue patho-logical process in IL-10−/− mouse model. It may relate to the depletion  of  CD4+ T cells in colon tissue, inhibition of Th1/Th17  mediated  inflammation  and  the  promotion  of  Tregs  re-sponse. Therefore,  the anti-CD52 mAb may be a firenew way for  the  treatment of CD patients. However,  further studies are 

required to determine the long-term maintaining effects and adverse reactions of anti-CD52 treatment.

Acknowledgments This  study  was  supported  in  part by  funding  from  the  National  Science  Foundation  of  China (Grant  Nos.  81170365,  81200263  and  81600434),  Jiangsu Natural Science Foundation  (Grant No. BK20160572),  Jiangsu Provincial  Medical  Youth  Talent  (Grant  No.  QNRC2016514), and  the  China  Postdoctoral  Science  Foundation  (Grant  No. 2018M630581).  The  present  study  was  also  partly  supported by  the  Model  Animal  Research  Center,  Nanjing  University (Nanjing, China).  The  authors would  like  to  acknowledge  the expert  technical  assistance  of  Professor  Xiang  Gao  and  the members  of  his  lab  (the  Model  Animal  Research  Center  of Nanjing University, China).

Conflict of Interest The  authors  declare  no  conflict  of interest.

REFERENCES

  1)  Kaser  A,  Zeissig  S,  Blumberg  RS.  Inflammatory  bowel  disease. Annu. Rev. Immunol., 28, 573–621 (2010).

  2)  Baumgart  DC,  Sandborn WJ.  Crohn’s  disease.  Lancet, 380,  1590–1605 (2012).

  3)  Brand S. Crohn’s disease: Th1, Th17 or both? The change of a para-digm: new immunological and genetic  insights  implicate Th17 cells in the pathogenesis of Crohn’s disease. Gut, 58, 1152–1167 (2009).

  4)  Olsen  T,  Rismo  R,  Cui  G,  Goll  R,  Christiansen  I,  Florholmen  J. TH1 and TH17 interactions in untreated inflamed mucosa of inflam-matory bowel disease,  and  their potential  to mediate  the  inflamma-tion. Cytokine, 56, 633–640 (2011).

  5)  Weaver  CT,  Hatton  RD.  Interplay  between  the  TH17 and TReg cell lineages:  a  (co-)evolutionary  perspective.  Nat. Rev. Immunol., 9, 883–889 (2009).

  6)  Franke A, McGovern DP, Barrett  JC, Wang K, Radford-Smith GL, Ahmad T,  Lees CW, Balschun T,  Lee  J, Roberts R, Anderson CA, Bis JC, Bumpstead S, Ellinghaus D, Festen EM, Georges M, Green T,  Haritunians  T,  Jostins  L,  Latiano  A, Mathew  CG, Montgomery GW, Prescott NJ, Raychaudhuri S, Rotter JI, Schumm P, Sharma Y, Simms LA, Taylor KD, Whiteman D, Wijmenga C, Baldassano RN, Barclay M,  Bayless  TM,  Brand  S,  Buning  C,  Cohen  A,  Colombel JF, Cottone M, Stronati L, Denson T, De Vos M, D’Inca R, Dubin-sky M, Edwards C, Florin T, Franchimont D, Gearry R, Glas J, Van Gossum A, Guthery SL, Halfvarson J, Verspaget HW, Hugot JP, Karban A, Laukens D, Lawrance I, Lemann M, Levine A, Libioulle C, Louis E, Mowat C, Newman W, Panes J, Phillips A, Proctor DD, Regueiro M, Russell R, Rutgeerts P, Sanderson J, Sans M, Seibold F, Steinhart AH, Stokkers PC, Torkvist L, Kullak-Ublick G, Wilson D, Walters T, Targan SR, Brant SR, Rioux JD, D’Amato M, Weers-ma  RK,  Kugathasan  S,  Griffiths  AM,  Mansfield  JC,  Vermeire  S, Duerr RH, Silverberg MS, Satsangi J, Schreiber S, Cho JH, Annese V, Hakonarson H, Daly MJ, Parkes M. Genome-wide meta-analysis increases  to  71  the  number  of  confirmed Crohn’s  disease  suscepti-bility loci. Nat. Genet., 42, 1118–1125 (2010).

  7)  Alinari  L,  Lapalombella  R,  Andritsos  L,  Baiocchi  RA,  Lin  TS, Byrd  JC.  Alemtuzumab  (Campath-1H)  in  the  treatment  of  chronic lymphocytic leukemia. Oncogene, 26, 3644–3653 (2007).

  8)  Reiff  A.  A  review  of  Campath  in  autoimmune  disease:  biologic therapy in the gray zone between immunosuppression and immuno-ablation. Hematology, 10, 79–93 (2005).

  9)  Morris  PJ,  Russell  NK.  Alemtuzumab  (Campath-1H):  a  system-atic review in organ transplantation. Transplantation, 81, 1361–1367 (2006).

Page 7: Anti-mouse CD52 Treatment Ameliorates Colitis through

Vol. 41, No. 9 (2018) 1429Biol. Pharm. Bull.

10)  Bloom  DD,  Chang  Z,  Fechner  JH,  Dar  W,  Polster  SP,  Pascual  J, Turka  LA,  Knechtle  SJ.  CD4+CD25+FOXP3+regulatory T cells increase de novo in kidney transplant patients after immunodeple-tion with Campath-1H. Am. J. Transplant., 8, 793–802 (2008).

11)  Hester  J, Mills N, Shankar S, Carvalho-Gaspar M, Friend P, Wood KJ.  Th17  cells  in  alemtuzumab-treated  patients:  the  effect  of  long-term maintenance immunosuppressive therapy. Transplantation, 91, 744–750 (2011).

12)  Hersh CM, Cohen JA. Alemtuzumab for  the  treatment of relapsing-remitting multiple sclerosis. Immunotherapy, 6, 249–259 (2014).

13)  Zhu WM,  Li  Y,  Yu  C,  Li  N,  Li  JS.  Antimouse  CD52  monoclonal antibody  inhibits  established  spontaneous  colitis  in  IL-10-deficient mice. Inflamm. Bowel Dis., 17, E72–E73 (2011).

14)  Wang H, Dong J, Shi P, Liu J, Zuo L, Li Y, Gong J, Gu L, Zhao J, Zhang  L,  Zhang W,  Zhu W,  Li  N,  Li  J.  Anti-mouse  CD52  mono-clonal antibody ameliorates intestinal epithelial barrier function in interleukin-10  knockout mice with  spontaneous  chronic  colitis.  Im-munology, 144, 254–262 (2015).

15)  Bristol  IJ,  Farmer MA, Cong Y,  Zheng XX,  Strom TB,  Elson CO, Sundberg JP, Leiter EH. Heritable susceptibility for colitis in mice induced  by  IL-10  deficiency.  Inflamm.  Bowel  Dis., 6, 290–302 (2000).

16)  Spencer DM, Veldman GM, Banerjee S, Willis  J, Levine AD. Dis-tinct  inflammatory mechanisms mediate  early  versus late colitis in mice. Gastroenterology, 122, 94–105 (2002).

17)  Wei  XW,  Gong  JF,  Zhu  J,  Wang  P,  Li  N,  Zhu  WM,  Li  JS.  The suppressive effect of triptolide on chronic colitis and TNF-alpha/TNFR2  signal  pathway  in  interleukin-10  deficient  mice.  Clin. Im-munol., 129, 211–218 (2008).

18) Trinchieri G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat. Rev. Immunol., 3, 133–146 (2003).

19)  Lee SH, Kwon JE, Cho ML. Immunological pathogenesis of inflam-matory bowel disease. Intest. Res., 16, 26–42 (2018).

20)  Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, Weiner HL, Kuchroo VK. Reciprocal  developmental  pathways  for  the  gen-eration of pathogenic effector TH17 and regulatory T cells. Nature, 441, 235–238 (2006).

21)  Collins CB, Aherne CM, McNamee EN, Lebsack MD, Eltzschig H, Jedlicka  P,  Rivera-Nieves  J.  Flt3  ligand  expands  CD103+ dendritic cells  and  FoxP3+  T  regulatory  cells,  and  attenuates  Crohn’s-like murine ileitis. Gut, 61, 1154–1162 (2012).

22)  Colombel J, Watson AJM, Neurath MF. The 10 remaining mysteries of inflammatory bowel disease. Gut, 57, 429–433 (2008).

23)  Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, Weiner HL, Kuchroo VK. Reciprocal  developmental  pathways  for  the  gen-eration of pathogenic effector TH17 and regulatory T cells. Nature, 441, 235–238 (2006).

24)  Xu L, Kitani A, Fuss I, Strober W. Cutting edge: regulatory T cells induce CD4+ CD25−  Foxp3− T cells or are self-induced to become Th17  cells  in  the  absence  of  exogenous  TGF-β. J. Immunol., 178, 6725–6729 (2007).

25)  Chaudhry A, Samstein RM, Treuting P, Liang Y, Pils MC, Heinrich JM,  Jack  RS,  Wunderlich  FT,  Bruning  JC,  Muller  W,  Rudensky AY. Interleukin-10 signaling in regulatory T cells is required for suppression  of  Th17  cell-mediated  inflammation.  Immunity, 34, 566–578 (2011).

26)  Zhang  Z,  Zheng M,  Bindas  J,  Schwarzenberger  P, Kolls  JK.  Criti-cal  role  of  IL-17  receptor  signaling  in  acute TNBS-induced  colitis. Inflamm. Bowel Dis., 12, 382–388 (2006).

27)  Sandborn  WJ,  Feagan  BG,  Fedorak  RN,  Scherl  E,  Fleisher  MR, Katz  S,  Johanns  J,  Blank  M,  Rutgeerts  P,  Ustekinumab  Crohn’s Disease Study Group. A randomized trial of Ustekinumab, a human interleukin-12/23  monoclonal  antibody,  in  patients  with  moderate-to-severe Crohn’s disease. Gastroenterology, 135, 1130–1141 (2008).

28)  Sandborn WJ, Gasink C, Gao LL, Blank MA, Johanns J, Guzzo C, Sands BE, Hanauer SB, Targan S, Rutgeerts P, Ghosh S, de Villiers WJ, Panaccione R, Greenberg G, Schreiber S, Lichtiger S, Feagan BG,  CERTIFI  Study  Group.  Ustekinumab  induction  and  mainte-nance  therapy  in  refractory Crohn’s  disease. N. Engl. J. Med., 367, 1519–1528 (2012).

29)  Feagan BG, Sandborn WJ, Gasink C,  Jacobstein D, Lang Y, Fried-man  JR,  Blank  MA,  Johanns  J,  Gao  LL,  Miao  Y,  Adedokun  OJ, Sands  BE,  Hanauer  SB,  Vermeire  S,  Targan  S,  Ghosh  S,  de  Vil-liers  WJ,  Colombel  JF,  Tulassay  Z,  Seidler  U,  Salzberg  BA,  Des-reumaux P, Lee SD, Loftus EV Jr, Dieleman LA, Katz S, Rutgeerts P,  UNITI–IM-UNITI  Study  Group.  Ustekinumab  as  induction  and maintenance  therapy  for  Crohn’s  disease.  N. Engl. J. Med., 375, 1946–1960 (2016).

30)  Fitzpatrick  LR,  Small  JS,  Doblhofer  R,  Ammendola  A.  Vidofludi-mus inhibits colonic interleukin-17 and improves hapten-induced colitis in rats by a unique dual mode of action. J. Pharmacol. Exp. Ther., 342, 850–860 (2012).

31)  Herrlinger KR, Diculescu M, Fellermann K, Hartmann H, Howaldt S, Nikolov R, Petrov A, Reindl W, Otte JM, Stoynov S, Strauch U, Sturm A, Voiosu R, Ammendola A, Dietrich B, Hentsch B, Stange EF. Efficacy, safety and tolerability of vidofludimus in patients with inflammatory bowel disease: the ENTRANCE study. J. Crohn’s Co-litis, 7, 636–643 (2013).

32)  Hueber W, Sands BE, Lewitzky S, Vandemeulebroecke M, Reinisch W, Higgins PD, Wehkamp  J, Feagan BG, Yao MD, Karczewski M, Karczewski  J,  Pezous  N,  Bek  S,  Bruin  G,  Mellgard  B,  Berger  C, Londei  M,  Bertolino  AP,  Tougas  G,  Travis  SP,  Secukinumab  in Crohn’s  Disease  Study  Group.  Secukinumab,  a  human  anti-IL-17A monoclonal  antibody,  for  moderate  to  severe  Crohn’s  disease:  un-expected  results  of  a  randomised,  double-blind  placebo-controlled trial. Gut, 61, 1693–1700 (2012).

33)  Wedebye  SEG,  Larsen  HL,  Kristensen  NN,  Poulsen  SS,  Lynge PAM, Claesson MH, Pedersen AE. TH17 cell  induction and effects of  IL-17A  and  IL-17F  blockade  in  experimental  colitis.  Inflamm. Bowel Dis., 19, 1567–1576 (2013).

34)  McLean  LP,  Cross  RK,  Shea-Donohue  T.  Combined  blockade  of IL-17A  and  IL-17F  may  prevent  the  development  of  experimental colitis. Immunotherapy, 5, 923–925 (2013).

35)  Fitzpatrick  LR,  Stonesifer  E,  Small  JS,  Liby  KT.  The  synthetic triterpenoid  (CDDO-Im)  inhibits  STAT3,  as  well  as  IL-17,  and improves DSS-induced  colitis  in mice.  Inflammopharmacology, 22, 341–349 (2014).

36)  Ogino  H,  Nakamura  K,  Ihara  E,  Akiho  H,  Takayanagi  R. CD4+CD25+ regulatory T cells suppress Th17-responses in an experimental colitis model. Dig. Dis. Sci., 56, 376–386 (2011).

37)  Danese  S,  Fiorino  G,  Rutella  S.  Regulatory  T-cell  therapy  for Crohn’s  disease:  in vivo veritas. Gastroenterology, 143,  1135–1138 (2012).

38)  Canavan  JB,  Scotta  C,  Vossenkamper  A,  Goldberg  R,  Elder  MJ, Shoval  I, Marks E, Stolarczyk E, Lo  JW, Powell N, Fazekasova H, Irving PM, Sanderson JD, Howard JK, Yagel S, Afzali B, MacDon-ald TT, Hernandez-Fuentes MP, Shpigel NY, Lombardi G, Lord GM.  Developing  in vitro  expanded  CD45RA+ regulatory T cells as  an  adoptive  cell  therapy  for  Crohn’s  disease. Gut, 65,  584–594 (2016).

39)  Coles AJ, Cox A, Le Page E, Jones J, Trip SA, Deans J, Seaman S, Miller  DH,  Hale  G, Waldmann  H,  Compston  DA.  The  window  of therapeutic  opportunity  in multiple  sclerosis:  evidence  from mono-clonal antibody therapy. J. Neurol., 253, 98–108 (2006).

40)  Coles AJ, Compston DA, Selmaj KW, Lake SL, Moran S, Margolin DH, Norris K, Tandon PK, CAMMS223 Trial  Investigators. Alem-tuzumab vs. interferon beta-1a in early multiple sclerosis. N. Engl. J. Med., 359, 1786–1801 (2008).