answer 1(b) (2011)

27
1

Upload: siti-hajar-ghazali

Post on 24-Oct-2014

45 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: answer 1(b) (2011)

1

Page 2: answer 1(b) (2011)

LOGO

iugaza2010.blogspot.com

Chapter 7

Magnetostatic field

Part 2

Page 3: answer 1(b) (2011)

3

. .enc

L

I H dl J dS

Ampere’s

path

Current

Surface

.enc vQ D dS dv

Page 4: answer 1(b) (2011)

4

. ( ) .enc

L

I H dl H dS J dS

J H

Page 5: answer 1(b) (2011)

5

Application of Ampere’s law

(1) An infinite line current

2

0

.

2

2

enc

L

I H dl

H d H

IH

a a

a

(2) Infinite sheet of current

1

2nH k a

Page 6: answer 1(b) (2011)

6

(3) Infinitely Long Coaxial Transmission Line

Example in your book

Page 7: answer 1(b) (2011)

7

Plane y=1 carries current K=50 az mA/m (K:surface current density ) find H at (a) (0,0,0) (b) (1,5,-3)

1 1( ) (50 ) ( ) 25 mA/m

2 2

1 1( ) (50 ) ( ) 25 mA/m

2 2

n z y x

n z y x

a H k

b H k

a a a a

a a a a

Page 8: answer 1(b) (2011)

8

Plane X=10 carries 100mA/m along az while line X=1,y=-2 carries 20∏ mA along az . Find H at (4,3,2)

Page 9: answer 1(b) (2011)

9

1

2 φ x y

x y

x y y x

φ

3y x

2 x y

1 2

1 1(0.1 ) ( ) 0.05 A/m

2 2

IH = , (4,3,2) (1, 2,2) 3 5

2

3 5 , | |= 34 ,

34

3 5 3 5( )

34 34

3 520 10H = ( ) 1.47 0.889

2 ( 34) 34

n z x y

z

z

H k

Htot H H

a a a a

a a a

a aa a a

a a a aa a

a aa a

Page 10: answer 1(b) (2011)

10

A hollow conductor cylinder inner radius a and outer radius b carries current I along az find H everywhere.

enc

enc

H.dl=I =0

I H.dl = J.dS

(amp. path) (current surf.)

(1)for ρ < a

(2)for a < ρ < b

Page 11: answer 1(b) (2011)

11

2 2

2

2 2

2 2 2 2

0

2 2

2 2

2 2

2 2

amp. path= H.dl (2 ) ...........(1)

I I(current surf.)= J.dS= . .

S b a

I I[ a ]................(2)

b a b a

(1) (2)

I(2 ) [ a ]

b a

I a[ ]

2 b a

a

H

dS d d

d d

H

H

a

Page 12: answer 1(b) (2011)

12

2 2

2 2

amp. path= H.dl (2 ) ...........(1)

I I(current surf.)= J.dS= . [ a ]................(2)

S b a

(1) (2)

(2 )

I

2

H

dS b

H I

H

(3) for ρ > b

a

Page 13: answer 1(b) (2011)

13

Page 14: answer 1(b) (2011)

14

Consider the two-wire transmission line whose cross section is in fig. Each wire is of radius 2 cm and the wires are separated 10 cm. I=5A , find H at (5cm,0)

1

1

2

1 1

tot 1 2

H2

5 , , ( ) ( )

5H 15.915 A/m

2 (0.05)

2

H2

5 , , ( ) ( )

515.915 A/m=H

2 (0.05)

H =H +H 31.83 A/m

x z x y

y y

x z x y

y y

y

I

cm

I

cm

H

for(1)

a

a a a a a a

a a

for( )

a

a a a a a a

a a

a

Page 15: answer 1(b) (2011)

15

Magnetic flux Density

2

7

,( / ) ( )

: of free space

4 10 H/m

magnetic flux: .

o

o

o

B H W m or Tesla

permeability

B dS Webers

Page 16: answer 1(b) (2011)

16

For a magnetic flux density equal to 1 tesla, a force of 1 newton must act on a

wire of length 1 meter carrying 1 ampere of current.

A Newton : the force required to accelerate a 1 kg weight at one meter per

second squared .

The most powerful superconducting electromagnets only produce magnetic

fields of around 20T.

A gauss , another unit for measuring magnetism, is 1/10,000th of a tesla.

A large loudspeaker magnet generates 1T.

tesla

flux line: closed ,no beginning or end.

doesn't cross each other

Page 17: answer 1(b) (2011)

17

In an electrostatic field, the flux passing through a closed

surface is the same as the charge enclosed .

It is possible to have an isolated electric charge

it is not possible to have isolated magnetic poles

(or magnetic charges).

Page 18: answer 1(b) (2011)

18

flux passing through a closed surface is the same as the

charge enclosed .

.D dS Q . 0B dS Gauss's law for electrostatic fields Gauss's law for magnetostatic fields

0B law of conservation of magnetic flux

Page 19: answer 1(b) (2011)

Maxwell’s equations for static fields

enc

enc

D d S Q

B d S 0

E d L 0

H d L I

vD

B 0

E 0

H J

Page 20: answer 1(b) (2011)

20

If H=yax-xay A/m on plane Z=0 (a)Determine the current density(b) Verify Ampere’s law by taking circulation of H around the

edge of the rectangle: Z=0 , 0<X<3 , -1<y<4

2

4 3

y=1 0

1 2 3 4

3 3 3

1 1y= 1

x=0 x=0 x=0

3y=

. ( ) .

2 A/m

. 2 30 A ......(1)

H.dl= + + +

(1) H .dl = ( ).dx = dx= 3

(2) ( ).dy = 3dy= 15

enc

L

z

enc

x

x y x

x y yx

I H dl H dS J dS

J H

I J dS dxdy

x

y x

(a)

a

(b)

a a a

a a a

4 4

y= 1 1

Page 21: answer 1(b) (2011)

21

0 0

43 3

1 1

0y=4 4

(3) ( ).dx = 4dx = 12

(4) ( ).dy = (0)dy=0

(1) (2) (3) (4) 30A as in (1)

x y xy

x x

x y yx

y

y x

y x

a a a

a a a

Page 22: answer 1(b) (2011)

22

Magnetic scalar potentials (Vm)

Vector Magnetic potentials (A)

POTENTIALS

mH V

B A

. ( ). .S S L

B dS dS A dl A

Wb/m

Page 23: answer 1(b) (2011)

23

An infinitely long wire carries 2A along az find:(a)B at (-3,4,7)(b)Flux through the square loop 0<ρ<6 , 0<z<4 , Φ=90

1

1

o o

4 6 4 6

o

0 2 0 2

o

( )

H2

4 3 4 3 4 34 3 , , ( ) ( )

5 5 5

4 32H 50.93 38.2 A/m

2 (5) 5

B= H= ( 50.93 38.2 ) T

( )

.2 2

ln( )|2

y x y x x y

y x z

x y

x y

x y

z z

a

I

b

IIB dS d dz d dz

I

a

a a a a a aa a a a a

a aa a

a a

a a

6 46

2 0

z | 1.76 10 Wb

Page 24: answer 1(b) (2011)

24

Which of the following fields represents an electrostatic or magnetostatic field in free space

( ) cos( ) ( )

sin( ) 0

0

neither electrostatic nor magnetostatic field

0 is ES

0

0 is MS

0

x

x za A y ax y e

A ya ax

A

A

CC

C

CC

C

a a

vD

B 0

E 0

H J

Page 25: answer 1(b) (2011)

25

The magnetic vector potential A=15e-ρ sin Φ az Wb/m

(a)Find H at (3,pi/4,-10)(b) find the flux through ρ=5 , 0<Φ<pi/2 , 0<Z<10

o

10 / 2

0 0

15cos 15 sin

(3, / 4, 10) 0.176 0.528 T

BH= (140 420 ) kA/m

15. cos 1.011 Wb

.

S z

L

B A e e

B

B dS e d dz

A dl

(a) a a

a a

a a

other solution :

Page 26: answer 1(b) (2011)

26

Page 27: answer 1(b) (2011)

LOGO

[email protected]