announcements - university of california, berkeleybwrcs.eecs.berkeley.edu/.../lecture23-prml.pdf ·...

21
EE290C - Spring 2004 Advanced Topics in Circuit Design High-Speed Electrical Interfaces Lecture 23 Case Studies Disk Drive Read/Write Channels Borivoje Nikolić April 13, 2004. 2 Announcements Homework #3 (the last one!) posted, due in 10 days Feedback on project, e-mailed to you today

Upload: vuongthuy

Post on 11-Feb-2018

216 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Announcements - University of California, Berkeleybwrcs.eecs.berkeley.edu/.../Lecture23-PRML.pdf · 1.20 1.40 00 04 0 8 12 16 20 24 28 32 36 40 44 48 Normalized Frequency Amplitude

1

EE290C - Spring 2004Advanced Topics in Circuit DesignHigh-Speed Electrical Interfaces

Lecture 23Case Studies

Disk Drive Read/Write ChannelsBorivoje NikolićApril 13, 2004.

2

Announcements

Homework #3 (the last one!) posted, due in 10 daysFeedback on project, e-mailed to you today

Page 2: Announcements - University of California, Berkeleybwrcs.eecs.berkeley.edu/.../Lecture23-PRML.pdf · 1.20 1.40 00 04 0 8 12 16 20 24 28 32 36 40 44 48 Normalized Frequency Amplitude

2

3

OutlineWrap up EthernetDisk-drive signal processing

32

‘Marvel of Technology’

Page 3: Announcements - University of California, Berkeleybwrcs.eecs.berkeley.edu/.../Lecture23-PRML.pdf · 1.20 1.40 00 04 0 8 12 16 20 24 28 32 36 40 44 48 Normalized Frequency Amplitude

3

33

Disk Drives1956 IBM engineers in San Jose introduced the first computer disk storage systemThe 305 RAMAC (Random Access Method of Accounting and Control) could store five million characters (five megabytes) of data on 50 disks, each 24 inches in diameter.

34

Today’s DisksHitachi (IBM) Travelstar 70 Gb/in2

Experimental densities: 100+Gb/in2; every square inch of disk space could hold 12 GB -- nearly as much data as a three 5.25-inch diameter DVD-ROMs. (4.7 GB per surface) or 20 CD-ROMs (each 650 MB).

Desktop drives 300 GBNotebook drives 80 GBMicrodrive (1-inch) > 4 GB.

Page 4: Announcements - University of California, Berkeleybwrcs.eecs.berkeley.edu/.../Lecture23-PRML.pdf · 1.20 1.40 00 04 0 8 12 16 20 24 28 32 36 40 44 48 Normalized Frequency Amplitude

4

35

Trends in Magnetic Disk Drives

Exponential growth in capacity is due to:reduction of head flying heightreduction of the gap size in the headreduction of the media thicknessadvanced signal processing methodsadvanced digitalintegrated circuits

Areal density of datain disk drives:

10

100

1000

10000

100000

1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005

Year

Are

al D

ensi

ty [M

b/in

2 ]

Super Paramagnetic Limit

30Gb/in2 Demo

3 Gb/in2 Demo

1 Gb/in2 Demo

60% CGR

30% CGR

36

IBM’s Areal Densities

http://www.storage.ibm.com/technolo/grochows/grocho01.htm

Page 5: Announcements - University of California, Berkeleybwrcs.eecs.berkeley.edu/.../Lecture23-PRML.pdf · 1.20 1.40 00 04 0 8 12 16 20 24 28 32 36 40 44 48 Normalized Frequency Amplitude

5

37

Areal Density Trends

0.01

0.1

1

10

100

1000

10000

100000

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005

MR Head/ PRMLTechnologies

30% CGR

60% CGR

Are

al D

ensi

ty (M

bits

/sq.

in.)

TimeH.Thapar

GMR Head

38

Datarate Trends in Disk Drives

Source: ISSCC + vendors’ web sites

10

100

1000

10000

1990 1992 1994 1996 1998 2000 2002Year

Dat

a R

ate

[Mb/

s]

Data rate increase throughtechnology scaling

Data rate trendsin read channels

Page 6: Announcements - University of California, Berkeleybwrcs.eecs.berkeley.edu/.../Lecture23-PRML.pdf · 1.20 1.40 00 04 0 8 12 16 20 24 28 32 36 40 44 48 Normalized Frequency Amplitude

6

39

Flight Height

Rotation speeds: 4500 – 15000 rpm

40

Price Trends

Page 7: Announcements - University of California, Berkeleybwrcs.eecs.berkeley.edu/.../Lecture23-PRML.pdf · 1.20 1.40 00 04 0 8 12 16 20 24 28 32 36 40 44 48 Normalized Frequency Amplitude

7

41

Magnetic Recording Fundamentals

Magnetic Disk Track Recording

Magnetization Levels

Detected signal in the Head

42

Magnetic Recording Fundamentals

ReducedAmplitude

PeakShift

IsolatedPulses

SuperposedPulses

Increased recording density results in:• reduced peak amplitude• peak shift

Page 8: Announcements - University of California, Berkeleybwrcs.eecs.berkeley.edu/.../Lecture23-PRML.pdf · 1.20 1.40 00 04 0 8 12 16 20 24 28 32 36 40 44 48 Normalized Frequency Amplitude

8

43

Lorentzian Pulse

-2 -1.5 -1 -0.5 0 0.5 1 1.5 20

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Time t/PW50

Am

plitu

de o

f Ste

p R

espo

nse

PW502

50

21

1)(

+

=

PWt

ts

Lorentzian:

44

Bandlimited Channels

Spectral control(ISI control)

SNR limitation

Towards Shannon

capacity

Equalization- Partial response

Channel coding- Trellis/Parity coding

Combined coding andEqualization- Iterative coding

Going to 1Tb/in2 density will lower the SNR by another 6dB

Page 9: Announcements - University of California, Berkeleybwrcs.eecs.berkeley.edu/.../Lecture23-PRML.pdf · 1.20 1.40 00 04 0 8 12 16 20 24 28 32 36 40 44 48 Normalized Frequency Amplitude

9

45

Signal Equalization

Lorenzian Pulse

Equalization (1−D)(1+D)n

1.0

0.5

PW50

PR4 EPR4 E2PR4

(1-D)(1+D) (1-D)(1+D)2 (1-D)(1+D)3

1 1

2

13

( ) 2

50

21

1

+

=

PWt

tl

User density = PW50/T

46

0 5 10 15 20 25 30 35 40 45 50

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time

Am

plitu

de

Recording Channel Input/Output PW50/T = 1.4

0 5 10 15 20 25 30 35 40 45 50

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time

Am

plitu

de

Recording Channel Input/Output PW50/T = 3.0

Signal Response

Simulated readback signal

User density = 1.4 User density = 3.0

Page 10: Announcements - University of California, Berkeleybwrcs.eecs.berkeley.edu/.../Lecture23-PRML.pdf · 1.20 1.40 00 04 0 8 12 16 20 24 28 32 36 40 44 48 Normalized Frequency Amplitude

10

47

Amplitude Spectra

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

0.00

0.04

0.08 0.12

0.16

0.20

0.24

0.28

0.32

0.36

0.40

0.44

0.48

Normalized Frequency

Am

plitu

de

pw50/T=1.0pw50/T=1.4pw50/T=1.8pw50/T=2.2pw50/T=2.6pw50/T=3.0

48

Equalization Targets

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

0.00 0.04 0.08 0.12 0.16 0.20 0.24 0.28 0.32 0.36 0.40 0.44 0.48

Frequency

Mag

nitu

de PR4(n=1)

E2PR4(n=3)

EPR4(n=2)

Page 11: Announcements - University of California, Berkeleybwrcs.eecs.berkeley.edu/.../Lecture23-PRML.pdf · 1.20 1.40 00 04 0 8 12 16 20 24 28 32 36 40 44 48 Normalized Frequency Amplitude

11

49

Read Channel Building Blocks

50

Eye Diagrams

PR4

EPR4

Page 12: Announcements - University of California, Berkeleybwrcs.eecs.berkeley.edu/.../Lecture23-PRML.pdf · 1.20 1.40 00 04 0 8 12 16 20 24 28 32 36 40 44 48 Normalized Frequency Amplitude

12

51

Maximum Likelihood Detection

52

The Viterbi Detector

Equalization Response Memory StatesPR4 1−D2 2 4 (2)EPR4 (1−D)(1+D)2 3 8E2PR4 (1−D)(1+D)3 4 16

Alternative is to use DFE;not used in practice because of error propagation

Page 13: Announcements - University of California, Berkeleybwrcs.eecs.berkeley.edu/.../Lecture23-PRML.pdf · 1.20 1.40 00 04 0 8 12 16 20 24 28 32 36 40 44 48 Normalized Frequency Amplitude

13

53

Error DistancesChannel input error sequence:

)()(ˆ)( DxDxDex −=

Channel output error sequence:)()(ˆ)( DyDyDey −=

Squared Euclidean error distance:

( ) ( ) ( ) 222 )( DhDeDeEd xy ==

54

Error Probability

Probability of misdetection of sequence Sk by Sk’ is a function of error distance, dKPerformance of the PRML system is determined by the minimum distance error events

σ

≈2min

mindQKP de

Q () - Error functionError event distancespectrum

Page 14: Announcements - University of California, Berkeleybwrcs.eecs.berkeley.edu/.../Lecture23-PRML.pdf · 1.20 1.40 00 04 0 8 12 16 20 24 28 32 36 40 44 48 Normalized Frequency Amplitude

14

55

Signal Processing Trends

PEAK DETECTMFM

(2,7)

(1,7)

PRMLEPRML PARITY CODING

d=0 ord=1

Density

Time

ANALOG DIGITAL

E PRML, GEnPRMLn

TURBO CODING

d=0

H. Thapar

56

Current Implementation Approaches

Function Approach System Architecture EPR, E2PR, or generalized E2PR with

16/17 or 8/9 codes

Equalization Digital FIR, analog FIR, orcontinuous-time filter

ADC Flash, typically 6 bits

Detection Full Viterbi detector or Viterbidetector with post-processor

Gain control First-order loop with digital or analogintegration

Timing Recovery Second-order PLL using synchronousor interpolated timing

Page 15: Announcements - University of California, Berkeleybwrcs.eecs.berkeley.edu/.../Lecture23-PRML.pdf · 1.20 1.40 00 04 0 8 12 16 20 24 28 32 36 40 44 48 Normalized Frequency Amplitude

15

57

Parity-Coded Channel

P(D)

+

ViterbiDetector

DelayErrorCorrelate

CheckParity

Maximum

CorrectError

Detect Error

Determine Likely Error Location

Data

-rk nk

xk

58

Architecture #1

READSIGNAL

VGAVITERBIDETECT

TIMINGCONTROL

GAINCONTROL

DETECTEDDATA

Low passfilter

FIREq.

Key Features: • All analog

SSI, ’90-’97

Page 16: Announcements - University of California, Berkeleybwrcs.eecs.berkeley.edu/.../Lecture23-PRML.pdf · 1.20 1.40 00 04 0 8 12 16 20 24 28 32 36 40 44 48 Normalized Frequency Amplitude

16

59

Architecture #2

READSIGNAL

VGAVITERBIDETECT

TIMINGCONTROL

GAINCONTROL

ADC

DETECTEDDATA

Low passfilter

FIREq.

Key Features: • Analog FIR equalizer• 40-levels in ADC

Lucent

60

Architecture #3

Key Features: • Digital FIR equalizer• Full 6-bit ADC

READSIGNAL

VGA VITERBIDETECT

TIMINGCONTROL

GAINCONTROL

ADCDETECTEDDATA

Low passfilter

FIREq.

Dominant:TI (SSI), Marvell, Datapath, IBM

Page 17: Announcements - University of California, Berkeleybwrcs.eecs.berkeley.edu/.../Lecture23-PRML.pdf · 1.20 1.40 00 04 0 8 12 16 20 24 28 32 36 40 44 48 Normalized Frequency Amplitude

17

61

Architecture #4

Key Features: • Digital FIR equalizer• Interpolated timing recovery• Full 6-bit ADC with >(1/T) samples/sec.

READSIGNAL

VGAVITERBIDETECT

TIMINGCONTROL

GAINCONTROL

ADC

DETECTEDDATA

Low passfilter

FIREq.

Interpolationfilter

Cirrus Logic

62

Design Examples

1st generation chip170 Mb/s, 1.3W, 5V, 27.5mm2, 0.56mmPublished in 1997 ISSCC Paper 19.7

2nd generation chip240 Mb/s, 1.4W, 5V, 18.5mm2, 0.54mmUnpublished

3rd generation chip400 Mb/s, 1.1W, 3.3V, 13.5mm2, 0.29mmPublished in 1999 ISSCC Paper 2.2

H. Thapar, et al, CICC’98

Page 18: Announcements - University of California, Berkeleybwrcs.eecs.berkeley.edu/.../Lecture23-PRML.pdf · 1.20 1.40 00 04 0 8 12 16 20 24 28 32 36 40 44 48 Normalized Frequency Amplitude

18

63

Analog Front-EndPre-equalization in analog domain

64

Design ChallengesOne of the first Systems-on-a-Chip (SoC)> 2Gb/s ratePower limited (<2W, preferably 1W), inexpensive (<$2.5)Single step vs. lookahead/parallelReduced SNR, complex detectionIntegration with controller gives opportunities for more powerful coding and processingIterative decoders (Turbo, LDPC)

Page 19: Announcements - University of California, Berkeleybwrcs.eecs.berkeley.edu/.../Lecture23-PRML.pdf · 1.20 1.40 00 04 0 8 12 16 20 24 28 32 36 40 44 48 Normalized Frequency Amplitude

19

65

Architectural ChoicesEqualizer

6-10 taps, >1Gb/sChoices of interleaving, pipelining, recoding, carry-save“Infinite” speed at the expense of power

66

Architectural ChoicesViterbi Decoder

16 – 32 state, trellis coded with prostprocessor, variable equalization targetsRadix-2 vs. Radix-4, ACS vs. CSABit-level pipelining

Page 20: Announcements - University of California, Berkeleybwrcs.eecs.berkeley.edu/.../Lecture23-PRML.pdf · 1.20 1.40 00 04 0 8 12 16 20 24 28 32 36 40 44 48 Normalized Frequency Amplitude

20

67

Future Signal ProcessingSNRs will continue to decreaseIterative decoding – LDPC based

Can we control the byte error rate?Complexity?Timing recovery at low SNRs

Vertical recording is already backMulti-track recording?

68

IBM’s Advanced Storage Roadmap

Page 21: Announcements - University of California, Berkeleybwrcs.eecs.berkeley.edu/.../Lecture23-PRML.pdf · 1.20 1.40 00 04 0 8 12 16 20 24 28 32 36 40 44 48 Normalized Frequency Amplitude

21

69

Holographic Storage

70

IBM’s MIllipede

http://domino.research.ibm.com/Comm/bios.nsf/pages/millipede.html