annex. 2.pdf

Upload: miguel-ochoa

Post on 14-Oct-2015

23 views

Category:

Documents


0 download

TRANSCRIPT

  • 5/24/2018 Annex. 2.pdf

    1/33

    4 Simposio de Investigacin en Sistemas Constructivos, Computacionales y ArquitectnicosGmez PalacioDurangoMxico

    23 y 24 de Noviembre de 2011

    1

    EXPERIMENTAL STUDY ON THE EFFECT OF UREOLYTIC BACTERIA IN

    COMPRESSIVE STRENGTH OF CEMENT MORTAR

    R. Narayanasamy1, S.O. Garca Prez

    1, A.E. Saavedra Martinez

    1, S.R. Hernandez

    Martinez2, N. Balagurusamy

    2y

    J. Betancourt Hernandez

    1

    1. Facultad de Ingeniera, Ciencias y Arquitectura de la Universidad Jurez del Estado de Durango, CalleUniversidad s/n, Fraccionamiento Filadelfia, Gmez Palacio, Durango, Mxico.

    2. Escuela de Ciencias Biolgicas, Universidad Autnoma de Coahuila, Torren, Coahuila, Mxico.RESUMEN

    Nuevas tcnicas han emergiendo en el campo de la Ingeniera Civil como la tcnica deprecipitacin de carbonato inducida por microbios (MICP) para mejorar las propiedades fsicas

    como la resistencia, rigidez y permeabilidad de la arena, cemento y piedra, para satisfacer las

    necesidades. Se utilizaron en este estudio, los organismos que viven en el suelo de la regin de

    La Comarca Lagunera que muestra la actividad de la ureasa y forma calcita. Veintids cepas debacterias fueron aisladas. De los cuales, slo seis cepas fueron seleccionados en base a

    su actividad enzimtica. El estudio se inici con la preparacin de los cubos de mortero de

    cemento con tres cepas (bacterias), junto con la muestra de control para comparar su resistencia ala compresin de 28 das. Este estudio revel un aumento significativo en la resistencia a la

    compresin debido a la adicin de las bacterias a una concentracin de 108

    clulas por ml de aguautilizada para la mezcla.

    Palabras clave:Bacteria, Cemento, Resistencia a la compresin

    ABSTRACT

    Novel techniques are being emerged in the field of Civil Engineering using microbially inducedcarbonate precipitation (MICP) to improve the physical properties such as strength, stiffness and

    permeability of sand, cement & stone to satisfy their needs. Bacteria living in the soil of Laguna

    region showing urease activity and having the ability to form calcite precipitates were used in this

    study. Out of twenty two bacterial strains isolated, only six strains were selected based on theirenzyme activity. The study was carried out by casting cement mortar cubes with three strains

    (bacteria) and compared with control not having bacteria for their 28 day compressive strength. A

    significant increase in the compressive strength was observed due to the addition of bacteria at acell concentration of 10

    8cells per ml of water used for mixing.

    Key words: Bacteria, Cement, Compressive strength

  • 5/24/2018 Annex. 2.pdf

    2/33

    Narayanasamy

    2

    INTRODUCTION

    One of the inherent weaknesses of the concrete is the developments of cracks due

    to shrinkage and temperature changes resulting in weak tension of concrete. Normallysteel reinforcements are introduced to take care of the tensile forces. But when the micro

    cracks are formed on the surface of the concrete, water and other salts seep through thesecracks and corrode the steel reinforcement, and thereby reduce the durability or life ofconcrete structures. It is observed that the ingress of aggressive environment through the

    pores of concrete leads to the corrosion of reinforcing steel and carbonation, affecting the

    durability of concrete. Prevention of crack formation has not been achieved till date andconsiderable expenses are incurred in maintenance work at regular intervals to safeguard

    the structures.

    Recent interest in the term sustainability involves use of environment friendlygreen technology, which involves the use of an agent of biological origin. In the case of

    civil engineering and construction field , there is a need to develop alternative sustainable

    technologies since the production and use of conventional Portland cement is a significantcontributor to greenhouse gases and the resultant global warming. Less dependence on

    fossil energy and the use of innovative materials are global challenges. Janine Benyus [1]

    defined the term biomimicry as innovation inspired by nature; it is looking to the

    natural world for developing sustainable technologies.

    Existing biological principles and advances in knowledge on microbially induced

    carbonate precipitation (MICP) offer opportunities to use natural stable systems to meetthese challenges. Microbial mineral precipitation involves various microorganisms,

    pathways and environments. Carbonate precipitation is carried out by ureolytic bacteria

    by the production of urease enzyme. This enzyme catalyzes the hydrolysis of urea to CO2

    and ammonia, resulting in an increase of the pH and carbonate concentration in thebacterial environment [2, 3]. Recent studies reveal that the addition of bacteria like

    Bacillus pasteuriipromoted self healing of the cracks in concrete since they are capable of

    carbonate precipitation [4]. Moreover, it is reported that the durability of the concreteincreased with the increase in the concentration of bacteria. Application of bacteria as an

    integrated healing agent to the concrete mixture would save the environment and money.

    Hence, the objective of this paper is to study the effect of ureolytic bacteria on thecompressive strength of cement mortar cubes.

    EXPERIMENTAL INVESTIGATION

    Materials used

    a) CementOrdinary Portland cement available in local market was used in this study. The cement used

    has been tested for various properties as per ASTM C187 - 98 and C191-08.

    b) Fine AggregateSand available in the local market was used in this work. The sand was graded (Fig. 1) to

    meet the requirements ASTM C 778 and ASTM 13606 specifications.

  • 5/24/2018 Annex. 2.pdf

    3/33

    Narayanasamy

    3

    c) WaterLocally available potable water confirming to ACI 318 - 2008 was used.

    d) MicroorganismsThe bacterial strains ACRN 6, ACRN 5 & ACRN 4 which showed ureolytic activity (Fig. 2)

    and which were isolated from the soil of Laguna Region were used. They were multiplied in a

    medium containing urea, harvested after 48 h and used to prepare mortar cubes.

    Compressive strength test of cement mortar cubes

    A total of 12 mortar cubes of dimensions 50 x 50 x 50 mm were prepared (Fig. 3). Three

    cubes for each bacterial strain and three cubes without bacteria (Control) were cast. Cementand sand were mixed properly in the ratio of 1:4 and a water cement ratio of 0.4 was used.

    Bacterial strains were added at a cell concentration of 108per ml of water, which was used for

    mixing to the cement sand mix. Control samples were prepared with only water to make

    cement sand paste. The mortar cubes were cast and the molds were placed in the moistcuring cabinet for 24 2 hrs. After demolding, they were cured in water for 28 days. The

    Fig. 1. Grading of sand (size and weight)

    as specified in ASTM C 136 - 06

    Fig. 2. Bacterial strains showing ureolytic activity

  • 5/24/2018 Annex. 2.pdf

    4/33

    Narayanasamy

    4

    cubes were removed from the curing chamber and wiped out well before testing for

    compressive strength. The test was done as per the requirements of ASTM C109 / C109M -

    93 Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-

    in. or [50-mm] Cube Specimens).

    RESULTS

    Compressive strength of Cement mortar cubes (28 days) prepared with differentbacterial strains at a cell concentration of 10

    8cells per ml of mixing water are presented in

    Table 1. Results showed that there is an increase in the compressive strength of mortar cubes

    due to the addition of bacterial strains ACRN 5 & ACRN 4 compared to the control

    specimens without bacteria (Fig. 4). Bacterial strain ACRN4 showed a significant increase of21.92%. Whereas ACRN 5 recorded a 7.48% increase in compressive strength. Although

    there is reduction in the compressive strength two of the specimens with ACRN 6, theaverage of 3 specimens too showed a slight increase of 2.3%.

    Table 1. Effect of added bacteria strains on Compressive strength of Mortar cubes

    Treatments 28 day Compressive Strength of Mortar in Kg/cmSpecimen #1 Specimen # 2 Specimen #3

    Increase (%) Increase (%) Increase (%)

    Control (without

    bacteria)

    187 - 184 - 185 -

    With ACRN 6 219 17.11 169 -8.15 180 -2.78

    With ACRN 5 201 7.48 191 3.8 196 5.95

    With ACRN 4 228 21.92 201 9.24 203 9.73

    Fig.3. Preparation of mortar cube and determination of compressive strength

  • 5/24/2018 Annex. 2.pdf

    5/33

    Narayanasamy

    5

    Fig. 4. Effect of added bacterial strains on Compressive strength of Mortar cubes

    Results of this study were similar to that of other studies reported earlier [4, 5, 6 & 7]

    and found that they were similar. The increase in material strength is due to the partial

    filling of the pores by the Calcite precipitates formed due to the addition of bacteria.

    CONCLUSIONS

    The following conclusions are drawn based on the experimental results.a) Ureolytic bacteria that can form calcites are isolated from the soils of Laguna region.b) Addition of bacteria improved the hydrated structure of cement mortar.c) Addition of bacteria increased the compressive strength of mortar cubes by 21.92% in

    comparison to the conventional mortar cube.

    It can be concluded that addition of local strains of bacteria can improve thecharacteristics and performance of concrete.

    ACKNOWLEDGEMENTS

    R.N. thanks IBQ Alejandra Alvarado for her help with microbiological analyses of

    this work. Similarly, support from the Bioremediation laboratory, Escuela de CienciasBiologicas, UAdeC, Torreon and laboratory, FICA, UJED, Gomez Palacio are

    acknowledged for providing space and facilities to carry out this study.

    0

    50

    100

    150

    200

    250

    Specimen #1 Specimen #2 Specimen #3

    Control

    ACRN 6

    ACRN 5

    ACRN 4

  • 5/24/2018 Annex. 2.pdf

    6/33

    Narayanasamy

    6

    BIBLIOGRAFIA

    1. Benyus, J.M. 1998. Biomimicry: Innovation Inspired by Nature. Perennial (HarperCollins), ISBN-13: 978-0688160999

    2. Stocks-Fischer, S., Galinat, J.K. and Bang, S.S. 1999. Microbiological precipitation ofCaCO3,Journal of Soil Biology and Biochemistry, 31, 1563

    1571.3. Narayanasamy, R., Villegas Flores, N., Betancourt Silva, F, Betancourt Hernandez, J.,

    Balagurusamy, N. 2010. Concrete under severe conditions Environment and Loading,

    CRC Press, Taylor & Francis Group, London, UK, ISBN: 978-0415593168.

    4. Ramachandran, S.K., Ramakrishnan, V., Bang, S.S., 2001. Remediation of concreteusing microorganisms.ACI Materials Journal,98, 39.

    5. Ghosh, P., Mandal S., Chattopadhyay B.D., Pal S., 2005. Use of microorganism toimprove the strength of cement mortar. Cement Concrete Research, 35, 1980-1983.

    6. Jonkers, H.M., Thijssen, A., Muyzer, G., Copuroglu, O., Schlangen, E., 2010.Application of bacteria as self-healing agent for the development of sustainable

    concrete,Ecological Engineering,36 (2): 230-235.

    7.

    Biswas, M., Majumdar, S., Chowdhury, T., Chattopadhyay, B., Mandal, S., Halder,U., Yamasaki, S.2010. Bioremediase a unique protein from a novel bacterium BKH1,

    ushering a new hope in concrete technology.Enzyme and Microbial Technology, 46,

    581- 587.

  • 5/24/2018 Annex. 2.pdf

    7/33

    Evaluacin de las bacterias Ureoliticas a diferentes

    concentraciones en la resistencia a la compresin del

    morteroRajeswari Narayanasamy

    1*, Arturo Eduardo Saavedra Martinez

    1, Sixto Omar Garca Prez

    1,

    Alejandra Alvarado

    2

    , Nagamani Balagurusamy

    2

    y

    Jos Betancourt Hernandez

    1

    1. Facultad de Ingeniera, Ciencias y Arquitectura de la Universidad Jurez del Estado de Durango, Calle

    Universidad s/n, Fraccionamiento Filadelfia, Gmez Palacio, Durango, Mxico. *[email protected]

    2. Escuela de Ciencias Biolgicas, Universidad Autnoma de Coahuila, Torren, Coahuila, Mxico.

    Resumen

    Recientes estudios han revelado que la adicin de bacterias con la capacidad de producir minerales permiten

    promover la capacidad auto-curativa del concreto aumentando la durabilidad.Se utilizaron en este estudio, los organismos que

    viven en el suelo de la regin de La Comarca Lagunera que muestra la actividad de la ureasa y forma calcita. Se aadieron las

    bacterias ACRN 4 a la mezcla de cemento en diferentes concentraciones para definir la concentracin ptima que da el mximo

    resistencia a la compresin en comparacin con el mismo de cubos de morteros convencionales (los de control). La resistencia a

    la compresin de los cubos de morteros fueron analizados y se encontr que la concentracin de 105dio la mxima resistencia a

    compresin.

    Desarrollo

    Nuevas tcnicas han emergiendo en el campo

    de la Ingeniera Civil como la tcnica de precipitacin de

    carbonato inducida por microbios (MICP) para mejorar las

    propiedades fsicas como la resistencia, rigidez y

    permeabilidad de la arena, cemento y piedra, para

    satisfacer las necesidades[1]. Veinticuatro cepas de

    bacterias fueron aisladas del suelo de la regin Lagunera

    [2]. De los cuales, slo seis cepas fueron seleccionados en

    base a su actividad enzimtica. El estudio se inici con la

    preparacin de los cubos de mortero de cemento con tres

    cepas (bacterias), junto con la muestra de control para

    comparar su resistencia a la compresin de 28 das. Este

    estudio revel un aumento significativo en la resistencia ala compresin debido a la adicin de las bacterias a una

    concentracin de 108 clulas por ml de agua utilizada

    para la mezcla. Las bacteria ACRN 4 dio mayor resultado

    comparando con otros cepas bacterianas[3]. Con este

    base, avanzo la investigacion para seguir con este bacteria

    en diferentes concentraciones.

    Materiales y Mtodos

    Se utilizo cemento Portland. El agua utilizada en el

    mezclado esta libre de cidos, grasas y aceites; de materia

    vegetal y orgnica; potable y adecuada para la

    elaboracin. Granulometra del Arena acuerdo con ASTM

    C 136 06 y modificada. La bacteria ACRN 4 aislada y

    cultivada despus de 48 horas.

    Los morteros tienen una relacin de cemento y arena de

    1:3 y agua cemento de 0.4. Se colaron 16 cubos de

    morteros con bacteria de cada concentracin. Los

    concentraciones hicieron son 104, 10

    5, 10

    6, 10

    7y 10

    8y de

    control (sin bacteria). Se probaron en una mquina

    universal de las edades 7, 14, 21 y 28 das para todos los

    especmenes de mortero.

    Resultados

    Estos resultados se coinciden con los resultados que

    menciona en [4].

    Conclusin

    La concentracin 105de la bacteria ACRN 4 dio la mxima resistencia a compresin comparando con las otras

    concentraciones y de control (sin bacteria).

    Bibliografa1. Narayanasamy, R., Villegas Flores, N., Betancourt Silva, F, Betancourt Hernandez, J., Balagurusamy, N. 2010. Concrete under severe conditions Environment

    and Loading, CRC Press, Taylor & Francis Group, London, UK, ISBN: 978-0415593168.

    2. C. L. Obregn Calvillo, A. G. Alvarado Rodrguez, R. Narayanasamy, N. Balagurusamy, SISCCA 2010. Biorremediacin - una tcnica novedosa en la construccin.3. R. Narayanasamy, S.O. Garca Prez, A.E. Saavedra Martnez, S.R. Hernndez Martnez, N. Balagurusamy yJ. Betancourt Hernndez, SISCCA 2011.

    Experimental study on the effect of ureolytic bacteria in compressive strength of cement mortar.

    4. Ghosh, P., Mandal S., Chattopadhyay B.D., Pal S., 2005. Use of microorganism to improve the strength of cement mortar. Cement Concrete Research, 35,1980-1983.

  • 5/24/2018 Annex. 2.pdf

    8/33

  • 5/24/2018 Annex. 2.pdf

    9/33

    EVALUACION DE LAS BACTERIAS UREOLITICAS A DIFERENTES CONCENTRACIONES ENLA RESISTENCIA A LA COMPRESIN DEL MORTERO

    Rajeswari Narayanasamy1*, Jos Humberto Perales Villareal1, Arturo Eduardo SaavedraMartinez1, Alejandra Alvarado2, Nagamani Balagurusamy2, Jos Betancourt Hernandez1

    RESUMEN

    Nuevas tcnicas han emergido en el campo de la Ingeniera Civil como la tcnica de precipitacin de

    carbonato inducida por microbios (MICP) para mejorar las propiedades fsicas de la arena, concreto y piedra.

    Se utilizaron los organismos que viven en el suelo de la regin Comarca Lagunera que muestra la actividad de

    ureasa y tener la capacidad para formar calcita. Se agregaron bacterianas ACRN 1 y ACRN 4 a la mezcla de

    cemento y arena 1:3 en diferentes concentraciones para definir la concentracin ptima que da el mximoresistencia comparando con cubos de morteros convencionales (control). Este estudio revel un aumento

    significativo en la resistencia a la compresin con una concentracin de 105 debido a la adicin de las

    bacterias.

    ABSTRACT

    New techniques are emerging in the field of Civil Engineering as the technique of Microbial induced

    carbonate precipitation (MICP) to improve the physical properties of sand, cement and stone, to meet the

    needs. In this study, the organisms that live in the soil of the region which show urease activity and form

    calcite were utilized. Bacterial strains ACRN 1 and ACRN 4 were added to the cement mixture in various

    concentrations to determine the optimal concentration that gives the maximum compressive strength in

    comparison with the same conventional mortar cubes (the control). This study revealed a significant increase

    in compressive strength with a concentration of 105due to the addition of bacteria ACRN 1 and ACRN 4.

    INTRODUCCIN

    Una de las debilidades inherentes del concreto es la formacin de las grietas debido a los cambios de

    contraccin y temperatura. Normalmente se introducen refuerzos de acero para cuidar de las fuerzas de

    traccin. Pero cuando los micros fisuras se forman sobre la superficie del concreto, el agua y otras sales se

    filtran a travs de estas grietas, corroen el acero de refuerzo y reducen la durabilidad o vida de estructuras de

    concreto. La prevencin de la formacin de grietas no se ha logrado hasta la fecha y los gastos considerables

    ocasionados por los trabajos de mantenimiento a intervalos regulares para proteger las estructuras.

    El reciente inters en el termino Sustentabilidad involucra el uso de la tecnologa favorable al medio

    ambiente, lo que implica la utilizacin, de un agente de origen biolgico. En el caso de la Ingeniera Civil y

    sector de la construccin, hay una necesidad de desarrollar tecnologas alternativas sustentables como la

    produccin y el uso de cemento Portland convencional ya que es un importante contribuyente a los gases deefecto invernadero que resulta en el calentamiento global. Menos dependencia de energas fsiles y el uso de

    1 Facultad de Ingeniera, Ciencias y Arquitectura de la Universidad Jurez del Estado de Durango,Calle Universidad s/n, Fraccionamiento Filadelfia, Gmez Palacio, Durango. Tel: (871) 715 2017;

    [email protected] (1*Estudiante del programa de doctorado interinstitucional en ingeniera civil)

    2 Escuela de Ciencias Biolgicas, Universidad Autnoma de Coahuila, Torren, Coahuila, Mxico.

    mailto:[email protected]:[email protected]:[email protected]
  • 5/24/2018 Annex. 2.pdf

    10/33

    VII Ctedra Nacional de Ingeniera Civil, 13-15 Junio 2012, Zacatecas

    materiales innovadores son los desafos globales. Janine Benyus define e l termino biomimetismo como la

    innovacin inspirada por la naturaleza, que esta mirando hacia el mundo natural para el desarrollo de

    tecnologas sustentables [Benyus, 1998].

    Los principios biolgicos existentes y la diversidad de avances en el conocimiento de la precipitacin de

    carbonato microbiana inducida (MICP) ofrece oportunidades para utilizar los sistemas naturales estables para

    enfrentar estos desafos. La precipitacin de carbonato se lleva acabo por bacterias ureoliticas por la

    produccin de la enzima ureasa. Esta enzima cataliza la hidrolisis de la urea en CO2 y amoniaco, resultando

    en un aumento del pH y la concentracin de carbonato en el medio ambiente bacteriana [Stocks- Fischer, et

    al., 1999& Narayanasamy, et al.,2010]. Estudios recientes revelan que la adicin de bacterias como Bacillus

    pasteuriipromueve la auto curacin de las grietas en el concreto [Ramachandran, et al.,2001]. La aplicacin

    de las bacterias como un agente curativo integrado a la mezcla de concreto salva el medio ambiente y dinero.

    Veinticuatro cepas de bacterias fueron aisladas del suelo de la regin Lagunera [Obregn Calvillo, et al.,

    2010]. De los cuales, slo seis cepas fueron seleccionados en base a su actividad enzimtica. El estudio se

    inici con la preparacin de cubos de mortero de cemento con ACRN 4, 5 y 6, la cepa bacteriana ACRN 4

    mostro un aumento significativo de 21.92% en la resistencia a la compresin de 28 das con una

    concentracin de 108 comparando con el control [Narayanasamy, et al., 2011]. Con esta base, el estudio

    sigui con dos cepas bacterianas ACRN 1 y 4, junto con la muestra de control para comparar su resistencia a

    la compresin de 7, 14, 21 y 28 das.

    El objectivo de este articulo es realizar un estudio experimental para evaluar el efecto de las bacterias

    ureoliticas en diferentes concentraciones y obtener una concentracion optima en la resistencia a la

    compresion de los cubos de mortero Cemento.

    MTODOS Y MATERIALES

    Los materiales Utilizados:

    a) CementoSe utilizo Cemento Portland disponible en el Mercado local en este estudio. Se ha sido probado para diversas

    propiedades segn la norma ASTM C 18798 y C 19108.

    b) Agregado FinoSe utilizo la arena que esta disponible en el mercado local para este trabajo. Se modifico la arena (Fig.1) para

    cumplir con los requisitos que menciona en las especificaciones ASTM C 778 y ASTM 13606.

    Figura 1. La clasif ic acin de arena (Tamao y p eso) como se especi f ica en la n orm a ASTM C 136-06.

    c) AguaSe utiliza Agua potable disponible a nivel local, confirmo a ACI 318 2008.

    d) MicrorganismosSe agreg las cepas bacterianas ACRN 4 y ACRN 1 que mostraron actividad ureoliticas (Fig.2) fueron

    aislados de la tierra de la Regin Lagunera. Ellos se multiplicaron en un medio que contiene urea,

  • 5/24/2018 Annex. 2.pdf

    11/33

    cosechndose despus de 48 horas y utilizada para preparar cubos de mortero Cemento [Obregn Calvillo, et

    al.,2010].

    Figura 2. Las cepas bacter ianas que mu estran act iv idad Ureol i t ica

    Prueba de Resistencia a la compresin de los cubos de mortero de cemento

    Se elaboroun total de 16 cubos de mortero de dimensiones 50 x 50 x50 mm (Fig.3) para cada concentracin

    de cepa bacteriana. Se aadi las cepas bacterianas con diferentes concentraciones de 104, 105, 106, 107y 108

    por ml de agua con la mezcla de arena y cemento. Se mezclo adecuadamente el cemento y arena en una

    proporcin de 1:3 y con una relacin de agua y cemento de 0.4. Las muestras de control (sin bacteria) fueron

    preparadas solo con agua para hacer la pasta de cemento y arena. Despus de colado, los moldes se colocaron

    en la cmara de curado hmedo de 24 2 horas. Se curo los cubos despus del desmolde, en agua durante 28

    das. Se retiraron los cubos de la cmara de curado y se seco a cabo mucho antes de las pruebas de

    resistencia a la compresin. Se probaron en una mquina universal de las edades 7, 14, 21 y 28 das para

    todos los especmenes de mortero. Se realizo las pruebas segn los requisitos de la norma ASTM C 109 /

    C 109 M 93, mtodo de prueba estndar para resistencia a la compresin de los morteros de cemento

    hidrulico.

    Figura3. Preparacin de cubo de mortero y la determinacin de la Resistencia a la compresin

    Resultados

    Se presenta las resistencias a la compresin de los cubos de mortero de cemento preparado con 2 cepas

    bacterianas ACRN 1 y 4 a diferentes concentracin celular de 104, 105, 106, 107y 108por ml de agua con la

    mezcla de arena y cemento en la tabla 1 y 2. Los resultados mostraron que hay un aumento en la resistencia a

  • 5/24/2018 Annex. 2.pdf

    12/33

    VII Ctedra Nacional de Ingeniera Civil, 13-15 Junio 2012, Zacatecas

    la compresin de los cubos de mortero, debido a la adicin de cepas bacterianas ACRN 1 y 4 en comparacin

    con las muestras de control sin bacteria.

    Tabla 1: Efecto de la adicin de cepas de b acteria ACRN 1 en la resistenc ia a la com presin delos cubos de mor tero

    Los morteros que preparo con las cepas bacteriana ACRN 1 con una concentracin de1x 105por ml de agua

    (ver Fig. 4) mostro un aumento significativo de 12.7, 15.7 y 22.9% en resistencia a compresin despus de 7,

    14 y 28 das de vida comparando con otros concentraciones y el control (sin bacteria) como muestra en la

    tabla 1.

    Figur a 4. La Resistenc ia a la com presin Vs Vida en das (ACRN 1)Tambin los morteros que preparo con las cepas bacteriana ACRN 4 con una concentracin de1 x 105por ml

    de agua (ver Fig. 5) mostro un aumento significativo de 23.12%, 16.4% and 14.4% en resistencia acompresin despus de 7, 14 y 28 das de vida respectivamente comparando con otros concentraciones y el

    control (sin bacteria) como muestra en la tabla 2.

    Concentracin de

    bacteria por

    ml de agua

    ACRN 1

    Resistencia promedio de los especmenes (kg/cm2)

    7 das 14 das 21 das 28 das

    Aumento(%)

    Aumento(%)

    Aumento(%)

    Aumento(%)

    Control 184.5 - 228.5 - 277 - 252.25 -

    1 x 108 174 -5.7 186 -18.6 187 -32.5 235 -6.84

    1 x 107 196 6.23 224 -1.97 264 -4.7 299 18.5

    1 x 106 214 13.8 228 -0.22 258 -6.8 250 -0.89

    1 x 105 208 12.7 271 15.7 249 -10.1 310 22.9

  • 5/24/2018 Annex. 2.pdf

    13/33

    Tabla 2: Efecto de la adicin de cepas d e bacteria ACRN 4 en la resistenc ia a la com presin delos cubos de mor tero

    Concentracin de bacteria

    por ml deagua

    ACRN 4

    Resistencia promedio de los especmenes (kg/cm2)

    7 das 14 das 21 das 28 das

    Aumento(%)

    Aumento(%)

    Aumento(%)

    Aumento(%)

    Control 184.5 - 228.5 - 277 - 252.25 -

    1 x 108 203 10.0 214.25 -6.2 214.75 -22.5 205.75 -18.4

    1 x 107 185 0.3 230.25 1.75 245.5 -11.4 253 0.3

    1 x 106 204 10.6 216.25 -5.36 233.5 -15.7 255.5 1.3

    1 x 105 240 23.12 266 16.4 263.75 -4.8 288.75 14.4

    1 x 104 196.5 6.5 207 -9.4 219.75 -26.05 243.75 -3.4

    Figur a 5. La Resistenc ia a la com presin Vs Vida en das (ACRN 4)Se encontr los resultados de este estudio fueron similares a los de otros estudios que hicieron anteriormente

    [Ramachandran, et al.,2001, Ghosh, et al.,2005, Jonkers, et al.,2010 y Biswas, et al.,2010]. El aumento de

    la resistencia del mortero es debido al llenado parcial de los poros por la calcita precipitada formado debido a

    la adicin de bacteria.

    CONCLUSIONES

    Las conclusiones de los resultados experimentales son

    a) Las bacterias Ureoliticas que pueden producir calcitas son aislados de los suelos de la regin Laguna.b) Adicin de bacteria mejora la estructura hidratada de mortero de cemento.

    c) La concentracin 105 de la bacteria ACRN 1 y 4 dio a la mxima resistencia a compresincomparando con las otras concentraciones y de control (sin bacteria).

    d) Adicin de bacteria ACRN 1 aumento la resistencia a la compresin de los cubos de mortero por12.7, 15.7 y 22.9% despus de 7, 14 y 28 das de vida comparando con otros concentraciones y el

    control (sin bacteria).

    e) Adicin de bacteria ACRN 4 aumento la resistencia a la compresin de los cubos de mortero por23.12%, 16.4% and 14.4% despus de 7, 14 y 28 das de vida comparando con otros concentraciones

    y el control (sin bacteria).

  • 5/24/2018 Annex. 2.pdf

    14/33

    VII Ctedra Nacional de Ingeniera Civil, 13-15 Junio 2012, Zacatecas

    Se puede concluir que la adicin de cepas locales de bacteria puede mejorar las caractersticas y rendimiento

    del concreto.

    AGRADECIMIENTOS

    El apoyo de laboratorio de Biorremediacin, la Escuela de Ciencias Biolgicas, UA de C, Torren y

    Laboratorio de materiales de FICA, UJED, Gmez Palacio son reconocidos por proporcionar el espacio y las

    instalaciones para llevar a cabo este estudio.

    BIBLIOGRAFIA

    Benyus, J.M. 1998. Bio mimicry: Innovation Inspired by Nature. Perennial (Harper Collins), ISBN-13: 978-

    0688160999

    Biswas, M., Majumdar, S., Chowdhury, T., Chattopadhyay, B., Mandal, S., Halder, U., Yamasaki, S.2010.

    Bioremediase a unique protein from a novel bacterium BKH1, ushering a new hope in concrete technology.

    Enzyme and Microbial Technology, 46, 581- 587.

    Ghosh, P., Mandal S., Chattopadhyay B.D., Pal S., 2005. Use of microorganism to improve the strength of

    cement mortar. Cement Concrete Research, 35, 1980-1983.

    Jonkers, H.M., Thijssen, A., Muyzer, G., Copuroglu, O., Schlangen, E., 2010. Application of bacteria as self-

    healing agent for the development of sustainable concrete,Ecological Engineering,36 (2): 230-235.

    Narayanasamy, R., Villegas Flores, N., Betancourt Silva, F, Betancourt Hernandez, J., Balagurusamy, N.

    2010. Concrete under severe conditions Environment and Loading, CRC Press, Taylor & Francis Group,

    London, UK, ISBN: 978-0415593168.

    Narayanasamy, R., Garcia Prez, S.O., Saavedra Martinez, A.E., Hernndez Martinez, S. R., Balagurusamy,

    N . yBetancourt Hernndez, J. SISCCA 2011. Experimental study on the effect of ureolytic bacteria in

    compressive strength of cement mortar.

    Obregn Calvillo, C.L., Alvarado Rodrguez, A. G., Narayanasamy, R., Balagurusamy, N. SISCCA 2010.Biorremediacin - una tcnica novedosa en la construccin.

    Ramachandran, S.K., Ramakrishnan, V., Bang, S.S., 2001. Remediation of concrete using microorganisms.

    ACI Materials Journal,98, 39.

    Stocks-Fischer, S., Galinat, J.K. and Bang, S.S. 1999. Microbiological precipitation of CaCO3, Journal of

    Soil Biology and Biochemistry, 31, 15631571.

  • 5/24/2018 Annex. 2.pdf

    15/33

    MICROBIAL BIOTECHNOLOGY: AN ECO-SUSTAINABLE APPROACH TOINCREASE COMPRESSIVE STRENGTH OF CEMENT MORTAR

    Rajeswari Narayanasamy1, Sara R. Hernndez

    2, Alejandra Alvarado

    2, Jos H.

    Perales1, Jose Betancourt

    1and Nagamani Balagurusamy

    2*

    1Facultad de Ingeniera, Ciencias y Arquitectura, Universidad Jurez del Estado deDurango, Gmez Palacio, Durango, Mxico.2Laboratorio de Biorremediacin. Escuela de Ciencias Biolgicas, Universidad Autnomade Coahuila, Carretera Torren-Matamoros km 7.5, Torren, Coahuila, Mxico.* Tel & Fax: (871) 7571785; e-mail:[email protected];[email protected]

    mailto:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]
  • 5/24/2018 Annex. 2.pdf

    16/33

    1. INTRODUCTION

    Cracks and fracturing is perennial problem in concretes and various commercial

    products, viz., structural epoxy, resins and epoxy mortar are available for quick

    remedy [Neville, 1996]. Prevention of crack formation has not been achieved till

    date and considerable expenses are incurred in maintenance work at regular

    intervals to safeguard the structures. A novel strategy to restore corroded

    structures and repair concrete cracks is microbiologically induced calcite

    precipitation (MICP) [Bang et al.,2001, Ramachandran et al.,2001, Ramakrishnan

    et al., 2005].

    Recent interest in the term sustainability involves use of environment friendly

    green technology, which involves the use of an agent of biological origin. In the

    case of civil engineering and construction field , there is a need to develop

    alternative sustainable technologies since the production and use of conventional

    Portland cement is a significant contributor to greenhouse gases and the resultant

    global warming. Less dependence on fossil energy and the use of innovative

    materials are global challenges. The term bio mimicry was defined by Janine

    Benyus as innovation inspired by nature; it is looking to the natural world for

    developing sustainable technologies [Benyus, 1998].

    Existing biological principles and advances in knowledge on microbial induced

    carbonate precipitation (MICP) offer opportunities to use natural stable systems to

    meet these challenges. Microbial mineral precipitation involves various

    microorganisms, pathways and environments. Carbonate precipitation is carried

    out by ureolytic bacteria by the production of urease enzyme. This enzyme

  • 5/24/2018 Annex. 2.pdf

    17/33

    catalyzes the hydrolysis of urea to CO2and ammonia, resulting in an increase of

    the pH and carbonate concentration in the bacterial environment [Bang et al.,

    2001, Day et al., 2003]. Recent studies reveal that the addition of bacteria like

    Bacillus pasteurii promoted self healing of the cracks in concrete since they are

    capable of carbonate precipitation [Ramakrishnan et al., 2005]. Moreover, it is

    reported that the durability of the concrete increased with the increase in the

    concentration of bacteria. Application of bacteria as an integrated healing agent to

    the concrete mixture would save the environment and money.

    Table 1. Brief review work done earlier using Micro organisms

    Bio-agent Application Reference

    B. pasteurii Sand Consolidation Kantzas et al.,1992B. pasteurii Sand Consolidation Gollapudi et al.,1995B. pasteurii Microbial Plugging in sand and cracks Zhong et al.,1995

    in graniteB. pasteurii Remediation of concrete Ramachandran et al.,2001B. SphaericusOn mortar surfaces and on concrete Heirman et al.,2003

    surfacesB. pasteurii Concrete crack remediation Day et al., 2003Myxococcus Consolidation and protection of porous Navarro et al.,2003

    Xanthus carbonate stones used in sculptural sphaericus Bacillus sphaericus Bacillussph and architectural heritageB. pasteurii Concrete crack remediation Ramakrishnan et al., 2005Shewanellasp., Improvement of mortar compressive Ghosh et al.,2005Escherichia colistrengthShewanellasp., Crack filling of concrete Mandal & Chattopadhyay, 2006B. pseudofirmus Self healingconcrete Henk et al., 2009& B. CohniiB. Subtilis Improvement of strength of Concrete Sunil et al., 2010B. Sphaericus Improvement of stength of Concrete Gavimath et al., 2012

    The Importance of microbial mineral precipitation has been widely recognized in

    Petroleum, Geological and Civil Engineering based on the investigation reports of

    the remediation of cracks in rock formations, especially in oil reservoirs, sand

    consolidation, ornamental stone repair, etc. The applications made so far are given

  • 5/24/2018 Annex. 2.pdf

    18/33

    in chronological order (Table 1). After analyzing the behavior of microorganisms in

    plugging the pores of rock by adhering to the available surfaces through

    extracellular organic compounds, the research has been initiated in remediation of

    cracks in man-made structures such as concrete. So far, the research groups from

    United States of America (USA), Spain, Belgium, India, United Kingdom (UK) and

    Netherlands are concentrating to solve this macro problem by using

    microorganisms.

    The first life-size experiments were carried out on the south-east tower of the

    Saint Medard church (limestone) built during 12

    th

    century in Thouars, Deux Sevres,

    France [Heirman et al.,2003]. The biomineralisation treatment was evaluated after

    6 months and 1 year of application and found that the calcite layer behaves like the

    natural calcin and it ages in the same way as the stone.

    This study is aimed at isolation and selection of urease producing bacterial

    strains from the soils of Comarca Laguneraof North-East Mexico. Twenty four

    strains were tested, only six were selected due to their highest activity during the

    scanning tests. Such strains were identified as ACRN1 (L2), ACRN2 (L1), ACRN3

    (L2), ACRN4 (L2), ACRN5 (L1) and ACRN6 (L2). In this paper, the behavior of

    bacterial strains ACRN 5 which showed ureolytic activity was studied and their

    potential in increasing the compressive strength of cement mortar under different

    cell concentrations were evaluated.

    2. MATERIALS USED & METHODS

    2.1. Cement

    Ordinary Portland cement available in local market was used in this study. The

  • 5/24/2018 Annex. 2.pdf

    19/33

    cement used has been tested for various properties as per ASTM C187 - 98 and

    C191-08.

    2.2. Fine Aggregate

    Sand available in the local market was used in this work. The sand was graded

    (Fig. 1) to meet the requirements ASTM C 778 and ASTM 13606 specifications.

    Figure 1. Granulometry of Sand

    2.3. Water

    Locally available potable water confirming to ACI 318 - 2008 was used.

    2.4. Microorganisms y Isolation of urease producing bacteria & assay of

    enzyme activity

    Bacterial strains ACRN 5 which showed ureolytic activity were isolated and

    multiplied in a medium containing urea, harvested after 48 h and used to prepare

    mortar cubes. Urease producing bacteria were isolated from Comarca Lagunera

    soilsby using a selective medium containing (g/l) NaHCO3, 2.12; urea, 20; peptone,

  • 5/24/2018 Annex. 2.pdf

    20/33

    0.5; meat extract, 1.5; NH4Cl, 2.12; CaCl22H2O, 30 mM; agar, 20. One unit of

    urease activity is defined as the release of one mol of ammonia per min at 37 C

    [Obregon et al.,2010].

    2.5. Cement Mortar cube preparation and resistance test

    Cement and sand were mixed properly at the ratio of 1:3 and a water cement

    ratio of 0.4 was used. A total of 16 mortar cubes of dimensions 50x50x50 mm were

    prepared by adding bacteria at different cell concentrations (104, 10

    5, 10

    6, 10

    7y 10

    8

    per ml of water) to the water used for preparing the cement mortar. Control

    samples were prepared with water only. Mortar cubes were cast and the molds

    were placed in water in the moist curing cabinet. After 7, 14, 21 and 28 days, the

    cubes were removed; wiped clear of water and the compressive strength were

    determined by following the protocols mentioned in ASTM C109/C109M-93

    Standard Test Method for Compressive Strength of Hydraulic Cement Mortars.

    Scanning electron micrograph of the mortar prepared was also studied.

    3. Results and Discussion

    3.1 Growth of bacteria and enzyme activity

    All strains reached their exponential phase after 24 hr, and dead phase after

    three days. ACRN4 showed the highest biomass generation, while ACRN6 did not

    grow at the same rate as the others (Figure 2).

    According to the results of extracellular protein (Figure 3) strains ACRN2,

    ACRN6, ACRN5 y ACRN3 increased protein production at 24 hr. of incubation at

    35C, suggesting a rapid activity. In the case of strain ACRN1 extracellular protein

    production was induced after two days, while in ACRN4 this happened after four

  • 5/24/2018 Annex. 2.pdf

    21/33

    Figure 2. Cellular growth of the isolated ureolytic bacteria

    days. In the case of cellular protein, ACRN6 and ACRN1 had the highest initial

    concentration of 0,168 mg/ml both of them. ACRN1 strain reduced the amount of

    protein in a 41.66% while the strain ACRN6 reduced 23.8%.

    Figure 3. Extracellular protein (lines) and cellular protein (bars) of the ureolyticstrains isolated from soil of the Comarca Lagunera

  • 5/24/2018 Annex. 2.pdf

    22/33

    Results of enzymatic activity show that all strains except ACRN5 reached their

    maximum activity after 24 hours (Table 2 & Figure 4). ACRN6 displayed the

    highest activity of 37.35 mol/ml, followed by ACRN3.

    Table 2. Enzymatic activity of selected strains

    Figure. 4. Enzyme activity (mol/ml).

    After 72 hr. of incubation, cellular activity of ACRN1, ACRN4, and ACRN6 ACRN5

    was measured. Unlike results in extracellular protein, ACRN4 showed better

    activity, followed by ACRN1, ACRN5 and finally by ACRN6, which showed the best

    extracellular activity. All strains resulted to be positive in the Gram test, and most of

    them are rod-shaped bacteria.

    Hour 0 24 48 72

    ACRN 1 0 7.28 0.83 0.37

    ACRN 3 0 18.65 2.89 0.15ACRN 4 0 37.35 1.22 1.72

    ACRN 5 0 0 2.86 1.32ACRN 6 0 0 0.28 0.25

  • 5/24/2018 Annex. 2.pdf

    23/33

    2.5. Compressive strength of mortar cubes

    The results were noted in Table. 3 and comparative study has been made with

    the control ones and also with the different concentrations of bacteria such as 10 8,

    107, 106, 105and 104. It was observed that the compressive strength of mortar

    Table 3. Average Compressive strength of the specimens with variousconcentrations of bacteria per ml of water.

    Fig . 5. Compressive strength of mortar cubes in relation to bacterial population

    0

    50

    100

    150

    200

    250

    300

    350

    400

    0 7 14 21 28

    CONTROL

    1X10^8

    1X10^7

    1X10^61X10^5

    1X10^4

    Days

    ACRN 5

    ACRN -5

  • 5/24/2018 Annex. 2.pdf

    24/33

    cubes increased due to the addition of ACRN 5 strain at a concentration of 105

    cells per ml of water after 7, 21 & 28 days of curing (Fig. 5). SEM photomicrograph

    of cement mortar prepared with bacteria showing calcite formation is shown in

    Fig.6.

    Fig. 6. Scanning Electron Micrograph ofcement mortar prepared with bacteria

    4. Conclusions

    Addition of ureolytic bacteria isolated from the soils of Laguna region

    improved the hydrated structure of cement mortar and increased the material

    strength by the calcite precipitates formed, which partially filled the pores. From the

    results it can be concluded that MICP is an efficient method for self-healing of

    concrete. Addition of ACRN 5 strain at a concentration of 105cells per ml of water

    resulted in higher compressive strength of 37.7, 35.29 and 29.46% after 7, 21 and

    28 days of curing compared with the other concentrations and the control

    specimens. But, further research on growth phase of bacteria, their survival in

    cement mortar and their self-healing property is warranted for authentication of this

    technology.

  • 5/24/2018 Annex. 2.pdf

    25/33

    5. REFERENCES

    Bang, S.S., Galinat, J.K., Ramakrishnan, V., 2001. Calcite precipitation induced by

    polyurethane-immobilized Bacillus pasteurii. Enzyme Microb. Technol. 28, 404

    409.

    Benyus, J.M. 1998. Bio mimicry: Innovation Inspired by Nature. Perennial (Harper

    Collins), ISBN-13: 978-0688160999

    Day, J.L., Ramakrishnan, V., and Bang, S.S., "Microbiologically induced sealant for

    concrete crack remediation," Proceedings of the 16th Engineering Mechanics

    Conference, Seattle, WA, 2003.

    Gavimath. C.C., Mali B.M., Hooli V.R., Mallpur J.D., Patil A.B., Gaddi D.P.,

    Ternikar C.R. and Ravishankera B.E. (2012). Potential application of bacteria to

    improve the strength of cement concrete, International Journal of Advanced

    Biotechnology and Research,3(1), 541- 544.

    Gollapudi, U.K., Knutson, C.L., Bang, S.S., Islam, M.R., 1995. A new method for

    controlling leaching through permeable channels. Chemosphere30, 695705.

    Ghosh, P., Mandal S., Chattopadhyay B.D., Pal S., 2005. Use of microorganism to

    improve the strength of cement mortar. Cement Concrete Res 35(10):1980-

    1983.

    Heirman, G., Herremans.T., Vangheel.T., Van Gemert. D., 2003. Biological repair

    of damaged concrete and mortar surfaces: Biomineralisation. 6th Int. Conf. on

    Materials Science and Restoration (MSR VI). Karlsruhe, 16-18 September

    2003, 501-508.

    Henk M. J., Arjan T., Gerard M., Oguzhan C., Erik S., 2008. Application of bacteria

  • 5/24/2018 Annex. 2.pdf

    26/33

    as self-healing agent for the development of sustainable concrete, Ecological

    Engineering, 2009.

    Kantzas, A., Ferris, G.F., Jha, K.N., Mourits, F.M., 1992. A novel method of Sand

    Consolidation through Bacteriogenic Mineral Plugging, paper presented at

    the CIM Annual Technical Conference, Calgary, June 8-10.

    Mandal, S., Chattopadhyay, B.D., 2006. Big Patents India, A process for preparing

    modified bioconcrete, Application 263/KOL/2006 published 2006-04-28, filed

    2006-03-27.

    Neville. A.M., 1996. Properties of concrete, 4

    th

    edition, Pearson Higher Education,

    Prentice Hall, NJ.

    Obregn Calvillo, C.L., Alvarado Rodrguez, A. G., Narayanasamy, R.,

    Balagurusamy, N. SISCCA 2010. Biorremediacin - una tcnica novedosa

    en la construccin.

    Ramachandran, S.K., Ramakrishnan, V., Bang, S.S., 2001. Remediation of

    concrete using microorganisms. ACI Materials Journal, 98, 39.

    Ramakrishnan, V., Panchalan, R.K., and Bang, S.S. 2005. Improvement of

    Concrete durability by bacterial mineral precipitation. Proceedings of the 11 th

    International conference on Fracture, Turin, Italy.

    Rodrguez- Navarro, C., Rodrguez-Gallego, M., Ben Chekroun, K., and Gonzlez-

    Muoz, M.T., 2003. Conservation of ornamental Stone by Myxococcus

    Xanthus- Induced Carbonate biomineralization, Appl. Environ. Microb. 69,

    2182-2193.

    Sunil Pratap Reddy S., Sheshagiri Rao M.V., Aparna P., Sasikala C.H. (2010).

  • 5/24/2018 Annex. 2.pdf

    27/33

    Performance of standard grade bacterial concrete, Asian Journal of Civil

    Engineering, 11(1), 43-55.

    Zhong, L. and Islam, M.R. (1995). A new microbial plugging process and its impact

    on fracture remediation (SPE 30519). Proceedings of the 70 thAnnual Technical

    Conference and Exhibition of the Society of Petroleum Engineers, Dallas,

    Texas, 703-715.

  • 5/24/2018 Annex. 2.pdf

    28/33

    Ghent University Magnel Laboratory for Concrete ResearchTechnologiepark-Zwijnaarde 904 B-9052 Ghent (Belgium)

    Tel : +32 9 264 55 18 Fax : +32 9 264 58 45 [email protected] www.ICSHM2013.be

    Conference Chairs

    Professor Nele DE BELIEGhent University, Belgium

    Professor Sybrand VAN DER ZWAAGDelft University of Technology, the Netherlands

    Symposium SecretariatMarijke Reunes

    e-mail:[email protected]: www.ICSHM2013.be

    BELGIUM Ghent

    16 20 June 2013

    Prof. M. Ing. Rajeswari Narayanasamy

    Universidad Juarez del Estado de Durango

    RFC : UJE 570321 HBO

    Constitucion No. 404 Sur,

    Col. Centro, Durango, Durango, Mexico 34000

    Ghent, 2013-04-04

    Letter of invitation

    Dear Prof.,

    It is my pleasure to invite you to the ICSHM2013 Fourth International Conference on Self-Healing Materials in Ghent (Belgium) on 16-20 June 2013.

    It is very important for us that you come to Ghent to present your paper (ID no. CM-56

    Potential of soil bacteria from the Comarca Lagunera, North-East Mexico for bioconcrete

    development and to share your experiences on self-healing materials and to make the

    conference more meaningful.

    The Conference fee will be 340 euro.

    We are looking forward to welcoming you in Ghent in June 2013.

    Sincerely,

    Prof. Dr. Ir. Nele DE BELIE

    Conference Chair

    mailto:[email protected]:[email protected]
  • 5/24/2018 Annex. 2.pdf

    29/33

    Dear author,

    We are pleased to inform you that your submission (Previous ID no. : BIM-07; NewID no. : CM-56) has been accepted for anoral presentation at the InternationalConference on Self-Healing Materials which will take place in Ghent (Belgium)

    from 16 till 20 June 2013. Possibly, the abstract ID No of your contribution haschanged, based on the comments of the reviewers.

    The comments of the reviewers are inserted below.REVIEWER #1: No comments

    REVIEWER #2: No comments

    Please revise your abstractin correspondence with these commentsand prepare your four-page manuscript(including the abstract) according tothe instructions given on the website (http://www.icshm2013.be).

    The four-page manuscript and the revised abstract can be e-mailedas anattachment to the symposium secretariat [email protected] before 15March 2013 (word and pdf document). Please indicate in the subject of your e-mailyour abstract ID No (as given above by the symposium secretariat).

    Please do not forget to revise your abstract (max. 300 words), taking into accountthe remarks of the reviewers. Only the 300-words abstracts will be published in anabstract book. The manuscripts will be distributed to the participants via USB.

    The early registration deadlineat reduced fee is 15 March 2013. Please do not

    forget that at least the presenting author has to be registered before 15 March2013 in order to guarantee that the contribution will be part of the conferenceprogram and proceedings.

    Please also communicate this notification of acceptance to the co-authors of yourpublication.

    Please do not hesitate to contact the symposium [email protected] in case of any questions.

    Kind regards,Reunes MarijkeSecretariat___________________________________________________________

    The 4thInternational Conference on Self-Healing Materialswill be held in the city of Ghent from 16 to 20 June 2013.

    For more information about this event, we refer tothe conference websitewww.ICSHM2013.be.

    http://www.icshm2013.be/mailto:[email protected]:[email protected]:[email protected]://www.icshm2013.be/http://www.icshm2013.be/http://www.icshm2013.be/http://www.icshm2013.be/mailto:[email protected]:[email protected]://www.icshm2013.be/
  • 5/24/2018 Annex. 2.pdf

    30/33

    Potential of soil bacteria from the Comarca Lagunera, North-EastMexico for bioconcrete development

    R. Narayanasamy1, A. Alvarado2, J. Sanchez Medrano1, J. Betancourt Hernandez1

    and N. Balagurusamy2

    1 Facultad de Ingeniera, Ciencias y Arquitectura, Universidad Jurez del Estado de Durango,Av. Universidad S/N Fracc. Filadelfia, C.P. 35010, Apdo. Postal 36 B, Gmez Palacio,Durango, Mxico. e-mail:[email protected];[email protected];[email protected] Laboratorio de Biorremediacin, Escuela de Ciencias Biolgicas, Universidad Autnoma deCoahuila, Carretera Torren- Matamoros km 7.5, C.P.27000, Torren, Coahuila, Mxico.e-mail:[email protected];[email protected]

    Keywords: concrete, cement mortar, bacteria, self-healing, compressive strength

    Abstract No: Previous ID no. : BIM-07; New ID no. : CM-56

    Sustainability or environment friendly green technology is based on the use of agentsof biological origin that can mimic nature in their process applications. The productionand use of conventional Portland cement is significant contributor to emission ofgreenhouse gases and the resultant global warming. Microbial induced carbonateprecipitation (MICP) is an emerging technology to minimize the environmentalproblems, to improve the concrete qualities, and more importantly as a self-healingagent.

    This study was aimed at isolation, selection and evaluation of urease producingbacterial strains from the soils of Comarca Lagunera of North-East Mexico.Carbonate precipitation is achieved by urease enzyme, which catalyzes thehydrolysis of urea to CO2 and ammonia, resulting in an increase of the pH andcarbonate precipitation.

    Out of twenty four bacterial strains isolated, six were selected based on their ureaseactivity and were denoted as ACRN1 to ACRN6. All strains recorded their maximumgrowth after 24 h and death phase after three days. ACRN4 showed the highestbiomass production at 35C, while ACRN6 recorded the least growth rate. Initially theACRN4, ACRN5 and ACRN6 were evaluated for their potential in increasing thecompressive strength of cement mortar by varying the cell concentrations and wereobserved that addition of bacteria at 105cells significantly increased the compressivestrength around 35%.

    However, concrete specimens were prepared with ACRN4 at same concentration, inthe presence and absence of water reducing additives showed an increase of 4%and a decrease of 6.64% in their compressive strength on 14th day, and a decreaseof 6% and 7.6% on 28th day, with and without additive respectively. Scanningelectron microscopic and X-ray diffraction studies are in progress to understand thephenomenon observed.

    mailto:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]
  • 5/24/2018 Annex. 2.pdf

    31/33

    1. INTRODUCTION

    Recent interest in the term sustainability involves use of environment friendly greentechnology, which involves the use of an agent of biological origin.Existing biologicalprinciples and advances in knowledge on microbial induced carbonate precipitation

    (MICP) offer opportunities to use natural stable systems to meet these challenges.Recent studies reveal that the addition of bacteria like Bacillus pasteurii, Bacillussphaericus, Shewanella sp., Bacillus pseudofirmus, B. Cohnii and Bacillus Subtilispromoted self healing of the cracks in concrete since they are capable of carbonateprecipitation [1]. This study was focused to evaluate the behavior of bacterial strainson the bio concrete.

    2. MATERIALS & METHODS

    Ordinary Portland cement, gravel and sand available in the local market were usedfor this study. Distilled water was used for the isolation of bacterial strains. Locally

    available potable water (tap water) was used for the preparation of mortar cubes andconcrete cylinders. Out of 24 bacterial strains from the soils of Comarca LagunaofNorth-East Mexico which has the ability to produce Urease were isolated, evaluatedand the best six (ACRN1 to ACRN6) were selected based on their urease activity forthe mortar and concrete preparation. Bacterial strains were multiplied in the ureamedium and harvested after 48 hrs. were used to prepare mortar cubes and concretecylinders.Cement Mortar Cubes preparation and Compressive Strength Testinga) Three cubes of dimensions 50 x 50 x 50 mm for each bacterial strain and threecubes without bacteria (Control) were cast. Bacterial strains ACRN 4, ACRN 5 andACRN 6 were added at a cell concentration of 108per ml of water to prepare thecement mortar. The compressive strength was determined after 28 days of curing.b) Mortar cubes were prepared by adding bacteria ACRN 4 (higher compressivestrength compared to other strains) at different cell concentrations (104, 105, 106, 107y 108per ml of water) to the water used for preparing the cement mortar. The tapwater was used for the dilutions of the bacteria cells and was used directly for thepreparation of mortar samples. After 24 hrs. of casting, all the specimens with orwithout cells were demolded and were cured under water in the moist curing cabinet.The compressive strength was determined after 7, 14, 21 and 28 days.Concrete cylinder preparation and Compressive Strength TestingCement, coarse aggregate and fine aggregate were mixed properly to obtain a

    concrete of strength, fc 200 kg/cm

    2

    . A total of 60 concrete cylinders of dimensions150 mm diameter with 300 mm height were prepared by adding bacteria ACRN 4 atits optimum concentration (identified from the mortar cube samples) of 105per ml ofwater to the water used for preparing the concrete. After 24 hrs. of casting, all thespecimens with or without bacteria were demolded and were cured under water inthe moist curing cabinet. The compressive strength of the cylinders was determinedafter 3, 7, 14 and 28 days.SEM analysis of Concrete Cylinder specimensThe broken concrete cylinder samples (with / without bacteria) collected aftercompressive strength testing were thinned down to small pieces and were coatedwith carbon prior to SEM examination. The prepared samples were examined in

    ESEM (FeiQuanta 600 ESEMTM

    ) with Tungsten Filament (W) with high vacuummode to take the microphotographs.

  • 5/24/2018 Annex. 2.pdf

    32/33

    3. RESULTS & DISCUSSION

    Compared to control, the mortar cubes prepared with bacterial strain ACRN 4 with108cells per ml of water showed higher compressive strength of 21.92 % after 28

    days (Table 1). From the compressive strength results of the mortar cubes preparedwith 108, 107, 106, 105and 104 cells per ml of mixing water, it was found that theoptimum cell concentration of the bacterial strain ACRN 4 was 105 cells per ml(Figure 1) with an increase of 18.83% compared to the control after 28 days, which isalmost similar to the results reported earlier [2].

    Table 1. Effect of added bacteria strains on Compressive strength of Mortar cubes

    Treatments 28 day Compressive Strength of Mortar (Kg/cm2)

    Specimen #1 Specimen # 2 Specimen #3

    Increase (%) Increase (%) Increase (%)

    Control(withoutbacteria)

    187 - 184 - 185 -

    With ACRN 6 219 17.11 169 -8.15 180 -2.78

    With ACRN 5 201 7.48 191 3.8 196 5.95

    With ACRN 4 228 21.92 201 9.24 203 9.73

    Figure 1: Compressive strength of Cement mortar cubes in relation to different cellconcentrations of bacterial strain ACRN 4.

    The addition of ACRN 4 strain at a concentration of 105 cells per ml of water inconcrete cylinders resulted in higher compressive strength (4.11% increase) after 14days of curing compared with the control specimens. The cylinders prepared withbacteria added with admixture showed lower compressive strength (7.60 %decrease) after 28 days of curing period. But the cylinders prepared with admixtureonly showed higher compressive strength (8.57% increase) after 28 days of curingperiod (Figure 2). The prepared broken samples of concrete cylinders, control oneand with bacteria and admixture were examined (Figure 3). Figure 3(b) revealed theformation of calcite crystals with well-formed rhombohedrical shape as reported [3].SEM image (Figure 3(c)) showed the presence of microorganisms on the surface of

    the concrete cylinder sample prepared with bacteria and admixture.

    0

    100

    200

    300

    400

    0 7 14 21 28

    Compressivestrength

    (kg/cm2)

    ACRN-4

    CONTROL

    1X10^81X10^7

    1X10^6

    1X10^5

    1X10^4

    Days

  • 5/24/2018 Annex. 2.pdf

    33/33

    Figure 2: Compressive strength of Concrete Cylinders in relation to bacteria

    Figure 3: SEM images of Concrete Cylinder Samples (a) control (b) & (c) withbacteria and additive

    4. CONCLUSION

    Ureolytic bacteria that can form calcites are isolated from the soils of Laguna region.Cell density (ACRN 4) of 105 per ml of water was found to be optimum concentration,which increased the compressive strength of concrete cylinders. SEM studiesconfirmed the formation of calcite crystals and the presence of bacteria on thesurface of the broken samples of concrete cylinder.

    ACKNOWLEDGEMENTS

    Authors gratefully acknowledge the help of M.C. Juan Fernando de la Rosa, CIDT,Peoles, Torreon in SEM analysis.

    REFERENCES[1] W. De Muynck. N. De Belie, W. Verstraete, Microbial carbonate precipitation inconstruction materials: A review, Ecological Engineering 36 (2009)118136.[2] M. Biswas, S. Majumdar, T. Chowdhury, B. Chattopadhyay, S. Mandal, U. Halder,S. Yamasaki, Bioremediase a unique protein from a novel bacterium BKH1, usheringa new hope in concrete technology, Enzyme and Microbial Technology 46 (2010)581- 587.[3] J. Dick, W. de Windt, B. de Graef, H. Saveyn, P. Van der Meeren, N. de Belie &

    W. Verstraete, Bio- deposition of a calcium carbonate layer on degraded limestoneby Bacillus species, Biodegradation (2006) 17: 357-367.

    0

    50

    100

    150

    200

    250

    0 3 7 14 28

    Compre

    ssive

    strength(kg/cm2)

    Concrete SpecimensCONTROL

    with bacteria

    control withadditivewith bacteria& additive

    Days

    (a) (b) (c)