angular momentum and kinetic energy

Upload: imfendi

Post on 05-Jul-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/15/2019 Angular Momentum and Kinetic Energy

    1/15

    Vector Dynamics and Vibrations Angular Momentum and Kinetic Energy 1

    4 - 1

     CHAPTER   4  : ANGULAR MOMENTUM

    4.0  Introduction4.1  Angular Momentum of a Rigid Body in Three Dimensions4.2  Kinetic Energy of a Rigid Body in Three Dimensions4.3  ApplicationsTips and MotivationWorksheetsExercises 4.0

    4.0  INTRODUCTION

    The two fundamental principles used in the analysis of the plane motion of a rigid

     body remain valid in the most general case of the motion of a rigid body in three

    dimensions, namely,

     F   = maG 

     M G  =  H  G 

    Free-Body Diagram Equivalent Force-Couple system Kinetic Diagram

    (a) (b) (c)Figure 4.1

    We note that the system of forces acted on the body, Figure 4.1(a), can be reduced to

    an equivalent force-couple system, Figure 4.1(b), which results in the two inertia

     forces (also called effective forces) as in Figure 4.1(c).

    G

    F 1 

    F 3  F 2 

    F 4 

    G

     M G  F

    G

     H  G maG 

  • 8/15/2019 Angular Momentum and Kinetic Energy

    2/15

    Angular Momentum and Kinetic Energy Vector Dynamics and Vibrations 2

    4 - 2

    4.1  ANGULAR MOMENTUM OF A RIGID BODY IN THREE DIMENSIONS 

    Consider a rigid body having a three-dimensional motion with being the angular

    velocity of the body at the instant considered as shown.

    The position vector of the particle P  of mass

    dm can be written as

     R  =  RG  +  p 

    Its linear velocity is then given by

    v   =  R   =  R G  +  p  

    where  p  =  p 

    The linear momentum of the particle P  is

    dL  = dm v  = dm  R  

    Angular Momentum of a Rigid Body About Any Given Point O  

    The angular momentum of the particle P  about point O is

    dH O  =  R  dL  =  R  dm v  =  R  dm  R  

    = ( RG + p) dm  R  

    =  RG  dm  R   +  p  dm  R  

    and therefore, the total angular momentum of the entire body about point O is

     H O  =  RG  dm R   +  p  dm R  

    where  RG  dm R   =  RG  dm R   =  RG  mvG 

     p  dm R   =  H G  = the angular momentum about the mass center G 

    Therefore, the total angular momentum of the entire body about point O is then

     H O  =  RG  mvG  +  H G 

    which is known as the transfer theorem for angular momentum.

     z

     x

    dm

     y

    G

     RG   R

     P

  • 8/15/2019 Angular Momentum and Kinetic Energy

    3/15

    Vector Dynamics and Vibrations Angular Momentum and Kinetic Energy 3

    4 - 3

    Angular Momentum of a Rigid Body About Its Mass Center G  

     H G  =  p  dm R   =  p  dm( R G +  p )

    =  p  dm R

    G  +  p  dm p

     

    = (dm  p)  R G  +  p  dm p  

     Note that (dm  p) = 0 since it represents the first moment of the mass with respect to

    the centroidal plane i.e. the location of the mass center is itself in a coordinate plane.

    Therefore,

     H G  =  p  dm p   =  p  (  p) dm 

    Using the local coordinates, we may express p and as

     p  =  x i  +  y  j  +  z  k   and =  x i  +  y  j  +  z  k  

    and substituting them into the above expression, we have

     p  (  p) = ( x i  +  y  j  +  z  k ) [(  x i  +  y  j  +  z  k ) ( x i  +  y  j  +  z  k )]

    = [( y2 + z 

    2)  x  –   xy   y  –   xz    z  ] i  +

    [ –   yx   x  + ( y2 + z 

    2)   y  –   yz    z  ] j  +

    [ – 

      zx   x  – 

      zy   y  + ( y2

     + z 2

    )  z  ] k  

    It follows that

     p  (  p) dm  = dm [( y2 + z 

    2)  x  –   xy   y  –   xz    z  ] i  +

    dm [ –   yx   x  + ( z 2 + x2)   y  –   yz    z  ] j  +

    dm [ –   zx   x  –   zy   y  + ( x2 + y

    2)  z  ] k  

    = [ I  x x  –    I  xy y  –    I  xz z  ] i  +

    [ –  I  yx x  +  I  y y  –    I  yz z  ] j  +

    [ –  I  zx x  –    I  zy y  +  I  z z  ] k  

  • 8/15/2019 Angular Momentum and Kinetic Energy

    4/15

    Angular Momentum and Kinetic Energy Vector Dynamics and Vibrations 2

    4 - 4

    For simplicity, we may express H G as

     H G  =  H  x i  +  H  y  j  +  H  z  k  

    where  H  x  = [  I  x x  –    I  xy y  –    I  xz z  ]

     H  y  = [ –  I  yx x  +  I  y y  –    I  yz z  ]

     H  z   = [ –  I  zx x  –    I  zy y  +  I  z z   ]

    We can see that a new value of moments and

     products of inertia will be obtained if a

    different set of coordinate axes were used.

    If the centroidal coordinate axes were chosen such that they coincide with the principal

    axes of inertia (i.e. each of the planes is symmetry), then all the products of inertia will

     be zero. The above equation reduces to

     H G  =  I  x x i  +  I  y y  j  +  I  z z  k  

    Example 4.1 

     A homogeneous disk of mass m  =

    4.8 kg spins at the constant rate  s =

    12 rad/s relative to the uniform bentarm OAB  as shown. At the sameinstant, the bent arm OAB  rotates at

    the constant rate  p = 6 rad/s aboutthe Y  axis. Knowing that the mass ofthe bent arm OAB is 4 kg, determinethe angular momentum of theassembly about point O. Figure E4.1 

    Solution:   H O  =  RG  mvG  +  H G 

    Rod OA,  p1  = 0.25 K  ; 1  =  p  j  = 6 J  

    vG  = (6 J ) (0.25 K ) = 1.5 I   (since i  =  I )   RG  mvG  = 0.25 K   2(1.5 I ) = 0.75 J   kg m

    2/s

     I  x  =  I  y  = 121 (2)(0.5

    2) = 0.0417 kg m

    2 ,  I  z   = 0 kg m

    and  I  xy  =  I  yz   = =  I  zx  = 0 kg m2  (due to symmetry)

    O

     p 

     A

     B

    Y X

    Z

     s 

    50 cm

    30 cm

    50 cm

     Z

     X

    Y

    G

     H G 

     x

     y z

  • 8/15/2019 Angular Momentum and Kinetic Energy

    5/15

    Vector Dynamics and Vibrations Angular Momentum and Kinetic Energy 5

    4 - 5

     H  x  =  I  x   x  –    I  xy   y  –    I  xz    z   = 0  –   0  –   0 = 0 kg m2/s

     H  y  =  –  I  yx   x  +  I  y   y  –    I  yz    z   = 0 + (0.0417)(6)  –   0 = 0.2502 kg m2/s

     H  z   =  –  I  zx   x  –    I  zy   y  +  I  z    z   = 0  –   0  –   0 = 0 kg m2/s

      H G  = 0.2502 j  = 0.2502 J   kg m2/s (since j = J )

     H O (rod OA)  = 0.75 J   + 0.2502 J   = 1.0 J  kg m2/s

    Rod AB,  p2  = 0.5 K   + 0.25 I  ; 2  = 1  = 6 J  

    vG  = (6 J ) ( 0.5 K   + 0.25 I ) = 3 I   –   1.5 K  

       RG  mvG  = (0.5 K  + 0.25 I ) 2(3 I   –  1.5 K ) = 3.75 J   kg m2/s

     I  y  =  I  z   = 121 (2)(0.52) = 0.0417 kg m2 ,  I  x  = 0 kg m

    and  I  xy  =  I  yz   = =  I  zx  = 0 kg m2  (due to symmetry)

     H  x  =  I  x   x  – 

       I  xy   y  – 

       I  xz    z   = – 

      0 – 

      0 = 0 kg m2

    /s H  y  =  –  I  yx   x  +  I  y   y  –    I  yz    z   = 0 + 0.0417(6)  –   0 = 0.2502 kg m

    2/s

     H  z   =  –  I  zx   x  –    I  zy   y  +  I  z    z   = 0  –   0  –   0 = 0 kg m2/s

      H G  = 0.2502 j  = 0.2502 J   kg m2/s

     H O (rod AB)  = 3.75 J   + 0.2502 J   = 4.0 J  kg m2/s

     Disk ,  p3  = 0.5 K   + 0.5 I  ; 3  = (6 J   + 12i)

    vG  = (6 J ) (0.5 K  + 0.5 I ) = 3 I   –   3 K  

       RG  mvG  = (0.5 K  + 0.5 I ) 4.8(3 I   –  3 K ) = 14.4 J  k g m2/s

     I  y =  I  z   = 41 (4.8)(0.3)2 = 0.108 kg m2,  I  x  = 2

    1 (4.8)(0.3)2  = 0.216 kg m2 

    and  I  xy =  I  yz  =  I  zx = 0 (due to symmetry)

     H  x  =  I  x   x  –    I  xy   y  –    I  xz    z   = 0.216(12)  –   0  –   0 = 2.592 kg m2/s

     H  y  =  –  I  yx   x  +  I  y   y  –    I  yz    z   = 0 + 0.108(6)  –   0 = 0.648 kg m2/s

     H  z   =  –  I  zx   x  –    I  zy   y  +  I  z    z   = 0  –   0  –   0 = 0 kg m2/s

      H G  = 2.592i  + 0.648 j  = 2.592 I  + 0.648 J   kg m2/s (since i= I  , j = J )

     H O (disk)  = 14.4 J  + 2.592 I  + 0.648 J   = 2.592 I   + 15.048 J   kg m2/s

    Finally we obtain for the entire assembly,

     H O, total   = 2.592 I   + 20.05 J   kg m2/s [ Ans]

  • 8/15/2019 Angular Momentum and Kinetic Energy

    6/15

    Angular Momentum and Kinetic Energy Vector Dynamics and Vibrations 2

    4 - 6

    4.2  KINETIC ENERGY OF A RIGID BODY IN SPATIAL MOTION 

    The kinetic energy of a rigid body having a three-dimensional motion with being the

    angular velocity of the body at the instant considered can be derived as follows.

    Consider a particle of mass dm on the rigid

     body. The kinetic energy of this particle is

    given by

    dT   =2

    1 dm (v P •v P )

    and from v P  =  R  =  R G +  p , we now have

    dT   =2

    1 dm( R G +  p )•( R G +  p )

    Expanding the terms and noting that  p  =  p , we obtain

    dT   =2

    1 dm[ R G• R G + 2( R G• p ) + (  p   • p )]

    Substituting  p  =  p, we have

    dT   =2

    1 dm[( R G• R G) + 2( R G•(  p)) + (  p)•(  p)]

    The total kinetic energy for the entire body is, therefore,

    T  = dT  

    =2

    1 dm[( R G• R G) + 2( R G•(  p)) + (  p)•(  p)]

    =2

    1 dm[( R G• R G) + dm( R G•(  p) + 21 dm(  p)•(  p)

    =2

    1 m(vG•vG) + 21 dm(  p)•(  p)

    where (  p) = (  x i  +  y  j  +  z  k ) ( x i  +  y  j  +  z  k )

    = (  y  z   – 

       z   y) i  + (  z   x  – 

       x  z ) j  + (  x  y  – 

       y  x) k  

    (  p)•(  p) = ( y2 + z 2)  x

    2  + ( z 2 + x2)  y2  + ( x2 + y2)  z 

     –  2( xy   x y  +  yz    y z   +  yz    y z )

     z

     x

    dm

     y

    G RG 

     p

     R

     P

  • 8/15/2019 Angular Momentum and Kinetic Energy

    7/15

    Vector Dynamics and Vibrations Angular Momentum and Kinetic Energy 7

    4 - 7

    dm(  p)•(  p) = ( y2 + z 

    2)dm   x

    2  + ( z 

    2 + x

    2)dm   y

    2  + ( x

    2 + y

    2)dm   z 

     –  2(  xy dm   x y  +  yz  dm   y z   +  yz  dm   y z )

    =  I  x   x2  +  I  y   y

    2  +  I  z    z 2  –  2( I  xy   x y  +  I  yz    y z   +  I  zx   y z )

    We obtain finally

    T   =2

    1 m(vG•vG) + 21 (  I  x   x

    2  +  I  y   y

    2  +  I  z    z 

    2 )

     –  ( I  xy   x y  +  I  yz    y z   +  I  zx   y z )

    If the axes coincide with the principal axes of inertia, the kinetic energy is merely

    T   =2

    1 m(vG•vG) + 21 (  I  x   x

    2  +  I  y   y2  +  I  z    z 

    2 )

    Alternatively, the kinetic energy of a rigid body moving with the angular velocityand the velocity of its mass center vG can be expressed in general form as

    T   =2

    1 vG• L  + 21  • H G  where  L  = mvG 

    When a rigid body is constrained to rotate in three-dimensional space about a fixed

     point O or when there is a point O in the body which momentarily has zero velocity,

    the kinetic energy of such body reduces to

    T   =2

    1  • H O 

  • 8/15/2019 Angular Momentum and Kinetic Energy

    8/15

    Angular Momentum and Kinetic Energy Vector Dynamics and Vibrations 8

    4 - 8

    Example 4.3 

     A homogeneous disk of mass m  =

    4.8 kg spins at the constant rate  s =

    12 rad/s relative to the uniform bentarm OAB  as shown. At the sameinstant, the bent arm OAB  rotates at

    the constant rate  p = 6 rad/s aboutthe Y axis. Knowing that the mass ofthe bent arm OAB is 4 kg, determinethe total kinetic energy of theassembly. Figure E4.3 

    Solution:

    T total   = T rod OA  + T rod AB  + T disk  where

    T  =2

    1 m(vG•vG) + 21 ( I  x x

    2 +  I  y y

    2 +  I  z z 

    2 ) –  ( I  xy x y +  I  yz y z  +  I  zx y z )

    From Example E4.1, we have

    Rod OA, vG  = 1.5 I   m/s

    T rod OA  = 21 (2)(1.5)

    2  +

    2

    1 (0.0417)(6)2  = 3.0 J

    Rod AB, vG  = 3 I   –   1.5 K   m/s

    T rod AB  = 21 (2)[(3)

    2  + (1.5)

    2] +

    2

    1 (0.0417)(6)2  = 12.0 J

    Disk B, vG  = 3 I   –   3 K   m/s

    T disk   = 21 (4.8)[(3)2  + ( – 3)2] +

    2

    1 [(0.216)(12)2  + (0.108)(6)2 ] = 60.7 J

    T total   = 3 + 12 + 60.7 = 75.7 J [ Ans] 

    O

     p 

     A

     B

    Y X

    Z

     s 

    50 cm

    30 cm

    50 cm

  • 8/15/2019 Angular Momentum and Kinetic Energy

    9/15

    Vector Dynamics and Vibrations Angular Momentum and Kinetic Energy 9

    4 - 9

    Example 4.4 

    The assembly which consists of tworectangular plates, each of mass 0.1 kg,

    attached to a uniform slender arm ofnegligible mass spins about its axis at a

    constant rate of 2 = 4 rad/s. The arm at the

    same instant rotates at a constant rate of 1 = 2 rad/s about its Y -axis shaft. For theinstant represented in Figure Q4, determinea) the angular momentum of the assembly 

    with respect to point  A, andb) the kinetic energy of the assembly.

    Figure E4.4 

    Solution:

     H  A = RG  mvG + H G 

    [Note that the C.G is as shown at point G (neglecting size of rod AB)]

     RG  = (l  +2

    a) I  = 0.24 I   m [note that p = 1 and q = 2  ]

    arm  =  p  =  pj  = 2 J   rad/s (since j = J )

    vG  = arm   RG  = (2 J ) (0.24 I ) =  –  0.48 K   m/s

     RG  mvG  = (0.24 I ) (0.2)( –  0.48 K ) Note: total mass is m = 0.2 kg

    = 0.02304 J   kg m2/s

     I  x  = 121 (0.2)(0.2)

    2  = 0.000667 kg m

    2 ;  I  y  = 12

    1 (0.2)(0.12)2  = 0.00024 kg m

     I  z   = 121 (0.2)(0.122+ 0.22) = 0.000907 kg m2 ;

     I  xy

      =  I  yz 

      =  I  zx

      = 0 kg m2 (due to plane of symmetry)

     plate  =  p + q = 2 j  –   4i  [Note that i = I ,  j = J , and k  = K  ]

     H  x  =  I  x   x  –    I  xy   y  –    I  xz    z   = 0.000667( –  4)  –   0  –   0 =  –  0.002668 kg m2/s

     H  y  =  –  I  yx   x  +  I  y   y  –    I  yz    z   =  –   0 + 0.00024(2)  –   0 = 0.00048 kg m2/s

     H  z   =  –  I  zx   x  –    I  zy   y  +  I  z    z   =  –   0  –   0 + 0.1323(0) = 0 kg m2/s

     H G  =  –  0.002668 I   + 0.00048 J   kg m2/s

     H  A  =  –  0.002668 I   + 0.02352 J   kg m2/s [ Ans]

    T   =2

    1 m( Gv Gv ) + 21 (   x I 

      2

     x  +  y I   2

     y  +  z  I   2

     z   )  –   (  xy I   x y +  yz  I   y z  +  zx I   z x)

    T  plate  = 21 (0.2)( –  0.48)

    2 +

    2

    1 [0.000667( –  4)2 + (0.00024)(2)

    2 + (0.000907)(0)

    2 ] –  [0]

    = 0.02304 + 0.005816

     A

    Y

     X

     Z

    l

    a

     B

    b

    b

    Given:

    a = 120 mm

    b = 100 mm

    l  = 180 mm

    G

     z

  • 8/15/2019 Angular Momentum and Kinetic Energy

    10/15

    Angular Momentum and Kinetic Energy Vector Dynamics and Vibrations 10

    4 - 10

    T  plate  = 0.028856 J [ Ans]

    Alternatively, since both angular motions 1 and 2 pass through the same point A (i.e. motion

    about a fixed point A), we may consequently compute H  A using

     H  A  = ( I  X    X   –   I  XY   Y   –   I  XZ    Z ) I   + ( –  I YX    X  + I Y   Y   –   I YZ    Z ) J   + ( –  I  ZX    X   –   I  ZY   Y  + I  Z    Z ) K  

    where  plate  =  p + q = 2 j  –   4i  = 2 J   –   4 I   =>  X  =  –  4 , Y  = 2 ,  Z  = 0

     I  X   =  I  x  = 121 (0.2)(0.2)

    2  = 0.000667 kg m

     I Y   =  I  y  + m(l  +2

    a)

    2  =

    12

    1 (0.2)(0.12)2 + 0.2(0.18 + 0.06)

    2  = 0.01176 kg m

     I  Z   =  I  z   + m(l  +2

    a)

    2  =

    12

    1 (0.2) (0.122+ 0.2

    2) + 0.2(0.18 + 0.06)

    2  = 0.012427 kg m

     I  XY   = 0 kg m2  (due to symmetrical plane ZX )

     I YZ   = 0 kg m2  (due to symmetrical plane ZX )

     I  ZX   = 0 kg m2  (due to symmetrical plane XY )

     H  A  = ( I  X    X   –   I  XY   Y   –   I  XZ    Z ) I   + ( –  I YX    X  + I Y   Y   –   I YZ    Z ) J   + ( –  I  ZX    X   –   I  ZY   Y  + I  Z    Z ) K  

    = 0.000667( –  4) I   + 0.01176(2) J  

     H  A  =  –  0.002668 I   + 0.2352 J   kg m2/s [ Ans]

    For this type of motion, the kinetic energy is then given by

    T   =2

    1    H  A  = 21  (2 J   –   4 I ) ( –  0.002668 I   + 0.2352 J ) = 0.028856 J [ Ans]

  • 8/15/2019 Angular Momentum and Kinetic Energy

    11/15

    Vector Dynamics and Vibrations Angular Momentum and Kinetic Energy 11

    4 - 11

    Figure E4.5 

    Example 4.5 

     A thin rectangular plate of mass m  = 1.2 kg isdesigned to spin at a constant rate of q = 1.5 rad/s

    relative to arm  AB  which at the same instantrotates at the constant rate of  p = 3 rad/s relativeto arm OA which itself rotates at the constant rate

    of = 2 rad/s. Determine(a) the angular momentum of the plate about

    point O, and(b) the kinetic energy of the plate.

    Solution:

     H O  =  RG  mvG  +  H G  note that point G = B

     RG  = 0.24 J  + 0.36 I   ; = + p  =  –  2 K   –  3 J  

    vG =  RG = ( – 2 K   –  3 J ) (0.24 J  + 0.36 I )

    = 0.48 I   –  0.72 J  + 1.08 K   m/s

     RG  mvG  = (0.24 J  + 0.36 I ) (1.2)(0.48 I   –  0.72 J  + 1.08 K )

    = 0.311 I   –  0.467 J   –  0.449 K  

     I  y = 121 (1.2)(0.09)

    2 = 0.00081 kg m

    2,  I  z  = 12

    1 (1.2)(0.12)2 = 0.00144 kg m

     I  x = 121 (1.2)(0.12

    2 + 0.09

    2) = 0.00225 kg m

    2;  I  xy =  I  yz  =  I  zx = 0 (symmetry)

     plate  = + p + q =  –  2k   –   3 j  + 1.5i  (i = I , j = J , k  = K )

     H G  =  H  x i  +  H  y  j  +  H  z  k  

    where  H  x =  I  x x  –   I  xy y  –   I  xz    z  = 0.00225(1.5) –  0 –  0 = 0.003375

     H  y = –  I  yx x +  I  y y  –   I  yz z  = –  0 + 0.00081( – 3) –  0 = –  0.00243

     H  z  = –  I  zx x  –   I  zy y +  I  z z  = –  0 –  0 + 0.00144( – 2) = –  0.00288

     H O = (0.311 I   –  0.467 J   –  0.449 K ) + (0.003375 I   –  0.00243 J   –  0.00288 K )

    = 0.314 I   –  0.469 J   –  0.452 K   = 0.314 I   –  0.469 J   –  0.452 K   kg m2/s

    T  = 21

    m(vG vG) + 21

    ( I  x2

     x  +  I  y2

     y  +  I  z 2

     z  ) – 

      ( I  xy  x y +  I  yz y z  +  I  zx z x)

    T  plate  = 21 (1.2)[(0.48)2  + ( – 0.72)2+ (1.08)2] +

    2

    1 [(0.00225)(1.5)2 + (0.00081)( – 3)

    2 + (0.00144)( – 2)

    2 ] –  [0]

    = 1.1491 + 0.00906 = 1.1582 J [ Ans]

    O

    360

    240

    120

    q

    A

     X

    Y

     Z

     p90

     x

     y

     z

    B

    O

    360

    240

    120

    q

    AB

    X

    Y

    Z

     p 90

  • 8/15/2019 Angular Momentum and Kinetic Energy

    12/15

    Angular Momentum and Kinetic Energy Vector Dynamics and Vibrations 12

    4 - 12

    Figure W4.1 

     Worksheet 4.1 :

     A 5.1-kg homogeneous disk of radius 90

    mm rotates at the constant rate 2 = 10rad/s with respect to arm OAB, which

    itself rotates at the constant rate 1 = 2rad/s about the Y   axis. Determine theangular momentum of the disk aboutpoint O and also its kinetic energy.

    O2  A

    B

     Z

     X

    Y

    400 mm

    90 mm

    280 mm

  • 8/15/2019 Angular Momentum and Kinetic Energy

    13/15

    Vector Dynamics and Vibrations Angular Momentum and Kinetic Energy 13

    4 - 13

    Figure W4.2 

     Worksheet 4.2 :

     A thin rectangular plate of mass m  = 1.2 kg is

    designed to spin at a constant rate of q = 1.5 rad/s

    relative to arm AB (m = 0.9 kg) which at the sameinstant rotates at the constant rate of  p = 3 rad/srelative to arm OA which itself rotates at the

    constant rate of = 2 rad/s. Determine(a) the angular momentum of arm  AB  about

    point O, and(b) the kinetic energy of arm  AB.

    Solution:

    O

    360

    240

    120

    q

    AB

    X

    Y

    Z

     p 90

    O

    360

    240

    120

    q

    A

     X

    Y

     Z

     p90

     x

     y

     z

    B

  • 8/15/2019 Angular Momentum and Kinetic Energy

    14/15

    Angular Momentum and Kinetic Energy Vector Dynamics and Vibrations 14

    4 - 14

    Figure W4.3 

     Worksheet 4.3 :

     A thin homogeneous disk of radius r  

    rotates at the constant rate q  rad/swith respect to the fork-ended rod ABCD  which itself rotates at theconstant rate  p rad/s about the y  axis.Determine the angular momentum ofthe disk about the support at B  andalso the kinetic energy of the disk.

     A  B

     x

    a b

     z

    C  Dr

  • 8/15/2019 Angular Momentum and Kinetic Energy

    15/15

    Vector Dynamics and Vibrations Angular Momentum and Kinetic Energy 15

    4 - 15

    Exercise 4.0:4-1 

    End of Chapter 4