angiographic embolization in the treatment of intrahepatic arterial bleeding in patients with blunt...

6
Hepatobiliary Pancreat Dis IntVol 13No 2 April 152014 www.hbpdint.com 173 Original Article / Liver Author Affiliations: Hepatobiliary  Surgery  Department,  Chinese  PLA  Air  Force General Hospital, Beijing 100142, China (Kong YL, Zhang HY, He XJ,  Zhao G, Liu CL, Xiao M and Zhen YY) Corresponding Author: Hong-Yi  Zhang,  MD,  Hepatobiliary  Surgery  Department,  Chinese  PLA  Air  Force  General  Hospital,  Beijing  100142,  China  (Tel:  86-10-66928312;  Fax:  86-10-66927612;  Email:  kjzygdwk@163. com) © 2014, Hepatobiliary Pancreat Dis Int. All rights reserved. doi: 10.1016/S1499-3872(14)60027-8 BACKGROUND: Angiographic embolization (AE) as an adjunct  non-operative  treatment  of  intrahepatic  arterial  bleeding  has  been  widely  used.  The  present  study  aimed  to  evaluate  the  efficacy of selective AE in patients with hepatic trauma. METHODS: Seventy patients with intrahepatic arterial bleeding  after  blunt  abdominal  trauma  who  had  undergone  selective  AE in 10 years at this institution were retrospectively reviewed.  The  criteria  for  selective  AE  included  active  extravasation  on  contrast-enhanced  CT,  an  episode  of  hypotension  or  a  decrease  in  hemoglobin  level  during  the  non-operative  treatment.  The  data  of  the  patients  included  demographics,  grade  of  liver  injuries,  mechanism  of  blunt  abdominal  trauma,  associated  intra-abdominal  injuries,  indications  for  AE,  angiographic findings, type of AE, and AE-related hepatobiliary  complications.  RESULTS: In  the  70  patients,  32  (45.71%)  had  high-grade  liver  injuries.  Extravazation  during  the  early  arterial  phase  mainly  involved the right hepatic segments. Thirteen (18.57%) patients  underwent  embolization  of  intrahepatic  branches  and  the  extrahepatic trunk and these patients all developed AE-related  hepatobiliary  complications.  In  19  patients  with  AE-related  complications,  14  received  minimally  invasive  treatment  and  recovered without severe sequelae.  CONCLUSIONS: AE  is  an  adjunct  treatment  for  liver  injuries.  Selective  and/or  super-selective  AE  should  be  advocated  to  decrease the incidence and severity of AE-related hepatobiliary  complications. (Hepatobiliary Pancreat Dis Int 2014;13:173-178) KEY WORDS: angiography; selective embolization; liver injury; hepatic arterial bleeding; complication Introduction I ntrahepatic  arterial  bleeding  has  been  considered  as  an  indication  of  laparotomy  for  patients  with  blunt  abdominal  trauma  complicated  with  liver  injury,  and  accounted  for  20%-35%  of  the  patients  who  failed  in  non-operative  treatment. [1] Over  the  past  20  years,  significant  changes  have  been  made  in  the  treatment of blunt liver injury. Non-operative treatment  has become the standard therapy for hemodynamically  stable  patients  with  low-grade  liver  injuries  (I-II). [2,  3] With  angiographic  embolization  (AE)  as  an  adjunct  non-operative  treatment,  patients  with  high-grade  liver  injuries  (IV-V)  have  also  been  successfully  treated. [4] Although  the  potential  of  AE  to  expand  the  scope  of  non-operative  management  and  to  increase  its  success  rate has been recognized, the actual benefit of AE is still  unclear, and controversy remains over the efficacy of AE  for  patients  with  suspected  intrahepatic  bleeding  after  blunt abdominal trauma. [5] Over the past decade, we have performed selective AE  for the patients with active intrahepatic arterial bleeding  after  blunt  abdominal  trauma  and  have  achieved  some  experience  in  the  non-operative  treatment  of  patients  with liver injury. This study was undertaken to analyze  the  clinical  characteristics  of  such  patients,  and  to  systematically evaluate the efficacy of selective AE. Methods The  patients  with  blunt  liver  injuries  who  had  been  Angiographic embolization in the treatment of intrahepatic arterial bleeding in patients with blunt abdominal trauma Ya-Lin Kong, Hong-Yi Zhang, Xiao-Jun He, Gang Zhao, Cheng-Li Liu, Mei Xiao and Yu-Ying Zhen Beijing, China

Upload: yu-ying

Post on 30-Dec-2016

212 views

Category:

Documents


0 download

TRANSCRIPT

Angiographic embolization in hepatic trauma by BAT

Hepatobiliary Pancreat Dis Int,Vol 13,No 2 • April 15,2014 • www.hbpdint.com • 173

Original Article / Liver

Author Affiliations: Hepatobiliary Surgery Department, Chinese PLA Air Force General Hospital, Beijing 100142, China (Kong YL, Zhang HY, He XJ, Zhao G, Liu CL, Xiao M and Zhen YY)

Corresponding Author: Hong-Yi  Zhang,  MD,  Hepatobiliary  Surgery Department,  Chinese  PLA  Air  Force  General  Hospital,  Beijing  100142, China  (Tel:  86-10-66928312;  Fax:  86-10-66927612;  Email:  [email protected])

© 2014, Hepatobiliary Pancreat Dis Int. All rights reserved.doi: 10.1016/S1499-3872(14)60027-8

BACKGROUND:  Angiographic embolization (AE) as an adjunct non-operative  treatment  of  intrahepatic  arterial  bleeding  has been  widely  used.  The  present  study  aimed  to  evaluate  the efficacy of selective AE in patients with hepatic trauma.

METHODS:  Seventy patients with intrahepatic arterial bleeding after  blunt  abdominal  trauma  who  had  undergone  selective AE in 10 years at this institution were retrospectively reviewed. The  criteria  for  selective  AE  included  active  extravasation on  contrast-enhanced  CT,  an  episode  of  hypotension  or a  decrease  in  hemoglobin  level  during  the  non-operative treatment.  The  data  of  the  patients  included  demographics, grade of liver injuries, mechanism of blunt abdominal trauma, associated  intra-abdominal  injuries,  indications  for  AE, angiographic findings, type of AE, and AE-related hepatobiliary complications. 

RESULTS:  In the 70 patients, 32 (45.71%) had high-grade liver injuries.  Extravazation  during  the  early  arterial  phase  mainly involved the right hepatic segments. Thirteen (18.57%) patients underwent  embolization  of  intrahepatic  branches  and  the extrahepatic trunk and these patients all developed AE-related hepatobiliary  complications.  In  19  patients  with  AE-related complications,  14  received  minimally  invasive  treatment  and recovered without severe sequelae. 

CONCLUSIONS:  AE  is  an  adjunct  treatment  for  liver  injuries. Selective  and/or  super-selective  AE  should  be  advocated  to decrease the incidence and severity of AE-related hepatobiliary complications.

(Hepatobiliary Pancreat Dis Int 2014;13:173-178)

KEY WORDS:  angiography;                                 selective embolization;                                 liver injury;                                 hepatic arterial bleeding;                                 complication

Introduction

Intrahepatic  arterial  bleeding  has  been  considered as  an  indication  of  laparotomy  for  patients  with blunt  abdominal  trauma  complicated  with  liver 

injury,  and  accounted  for  20%-35%  of  the  patients who  failed  in  non-operative  treatment.[1]  Over  the  past 20  years,  significant  changes  have  been  made  in  the treatment of blunt liver injury. Non-operative treatment has become the standard therapy  for hemodynamically stable  patients  with  low-grade  liver  injuries  (I-II).[2,  3] With  angiographic  embolization  (AE)  as  an  adjunct non-operative  treatment, patients with high-grade  liver injuries  (IV-V)  have  also  been  successfully  treated.[4] Although  the  potential  of  AE  to  expand  the  scope  of non-operative  management  and  to  increase  its  success rate has been recognized, the actual benefit of AE is still unclear, and controversy remains over the efficacy of AE for  patients  with  suspected  intrahepatic  bleeding  after blunt abdominal trauma.[5]

Over the past decade, we have performed selective AE for the patients with active intrahepatic arterial bleeding after  blunt  abdominal  trauma  and  have  achieved  some experience  in  the  non-operative  treatment  of  patients with  liver  injury. This  study was undertaken to analyze the  clinical  characteristics  of  such  patients,  and  to systematically evaluate the efficacy of selective AE.

MethodsThe  patients  with  blunt  liver  injuries  who  had  been 

Angiographic embolization in the treatment of intrahepatic arterial bleeding in patients with blunt abdominal traumaYa-Lin Kong, Hong-Yi Zhang, Xiao-Jun He, Gang Zhao, Cheng-Li Liu, Mei Xiao and Yu-Ying Zhen

Beijing, China

Hepatobiliary & Pancreatic Diseases International

174 • Hepatobiliary Pancreat Dis Int,Vol 13,No 2 • April 15,2014 • www.hbpdint.com

admitted  to  our  hospital  from  January  1,  2002  to December  31,  2011  were  retrospectively  studied.  This study was conducted in compliance with the Declaration of Helsinki (revised in 2000) and approved by the Ethics Committee  of  the  Chinese  PLA  Air  Force  General Hospital  (Trial  Registration  Number:  KZ2012024). Since the study was retrospective, the Ethics Committee waived the requirement  for  informed consent  from the patients. 

Inclusion  criteria  included:  (1) patients  who  were hemodynamically  stable  on  admission  or  stabilized by  initial  resuscitation;  (2) patients  with  blunt  liver injuries  associated  with  injuries  of  solid  organs  such as  the  kidney,  pancreas  and  spleen,  which  were  within the  scope  of  non-operative  management;  (3) patients with no symptoms and signs of peritonitis; (4) patients with  no  signs  and  signs  of  gastric  or  intestinal rupture;  and  (5) patients  who  underwent  selective AE  during  the  non-operative  treatment  because  of high-risk  intrahepatic  arterial  bleeding.  Exclusion criteria  included:  (1) patients  with  abdominal  trauma caused  by  penetrating  injuries;  (2) patients  who  were hemodynamically  unstable  after  resuscitation  in  the Emergency Department and transported directly to the operating room for abdominal exploration; (3) patients with  temporary  stable  hemodynamics  who  developed peritonitis  and/or  unstable  hemodynamics  during the  non-operative  management  and  were  subjected  to abdominal exploration in the operation room.

Selective AE was performed under digital subtractive angiography (DSA) by the right-sided femoral approach after local anesthesia. With fluoroscopic guidance, a 5-F reverse curve Mickelson (Cook, Bloomington, IN, USA) catheter  was  introduced,  and  the  celiac  and  hepatic arteries were selectively catheterized. After identification of  the  extravasation  of  the  contrast  medium  from  the hepatic  arterial  branches,  selective  embolization  was 

performed  using  the  microcatheter  system  to  deploy multiple  Tornado  coils  (Cook)  of  various  sizes  into the  segmental  or  main  branches  of  the  hepatic  artery. Follow-up  imaging  confirmed  the  position  of  the  coils. Specific procedure was performed for each patient at the discretion  of  the  attending  interventional  radiologist. Follow-up  imaging was not routinely performed unless new  symptoms  or  signs  appeared.  Successful  selective AE  was  defined  if  there  was  no  active  bleeding  shown angiographically after embolization.

Demographics,  grading  of  liver  injury,  mechanism of blunt abdominal trauma, associated intra-abdominal injury,  indications  for  AE,  angiographic  findings,  type of  AE,  and  AE-related  hepatobiliary  complications  of the patients were all reviewed. Liver injuries were graded according  to  Trauma Classification  (revised  in  1994) of  the  American  Association  for  Surgery.[6]  AE-related hepatobiliary  complications  included  liver  abscess, hepatic  necrosis,  gallbladder  infarction,  bile  peritonitis, bile leak, and biloma formation.[7]

ResultsSeventy  patients  with  blunt  liver  injury  underwent selective  AE  because  of  active  bleeding  of  the intrahepatic  artery.  These  patients  comprised  52  men and  18  women,  with  a  mean  age  of  36.3  years  (range: 16-62).  Trauma  mechanism  included  motor  vehicle collision  in  32  (45.71%)  patients,  motorcycle  crash  in 11  (15.71%),  pedestrian  vs  auto  in  4  (5.71%),  falling injury  in  15  (21.43%),  sports  injury  in  2  (2.86%),  and explosive blast injury in 6 (8.57%). According to Trauma Classification  of  the  American  Association  for  Surgery, 13  patients  (18.57%)  had  liver  injuries  of  grade  II,  25 (35.71%) grade III, 23 (32.86%) grade IV, and 9 (12.86%) grade V (Table 1). 

Associated  injuries  of  intra-abdominal  organs  were 

Table 1. Liver injuries and severity of the 70 patients

Grade Number   (n, %)

Hematoma  Laceration  Vascular 

I   0 Subcapsular, <10% surface area Capsular tear, <1 cm parenchymal depth -

II 13 (18.57) Subcapsular, 10%-50% surface area;   intraparenchymal, <10 cm in diameter

1-3 cm parenchymal depth, <10 cm long -

III 25 (35.71) Subcapsular, >50% surface area or expanding;   ruptured subcapsular or parenchymal hematoma

Intraparenchymal hematoma >10 cm or expanding,   >3 cm parenchymal depth

-

IV 23 (32.86) - Parenchymal disruption involving 25%-75% of hepatic   lobe or 1-3 Couinaud's segments within a single lobe

-

V   9 (12.86) - Parenchymal disruption involving >75% of hepatic lobe   or >3 Couinaud's segments within a single lobe

Hepatic venous   injuries

VI   0 - - Hepatic avulsion

Angiographic embolization in hepatic trauma by BAT

Hepatobiliary Pancreat Dis Int,Vol 13,No 2 • April 15,2014 • www.hbpdint.com • 175

found  in  16  (22.86%)  patients,  including  10  splenic injuries,  3  renal  injuries,  and  3  pancreatic  injuries. Indications  for  AE  included  active  extravasation  on contrast-enhanced  CT  in  27  (38.57%)  patients,  an episode  of  hypotension  or  decreased  hemoglobin  (Hb) level during the non-operative treatment in 29 (41.43%), high-grade liver injury demonstrated by CT in 5 (7.14%), and required angiogram for other injuries (injury of the spleen  or  aorta)  in  9  (12.86%).  Angiography  revealed multiple  extravasations  during  the  early  arterial  phase involving segment I in 2 (2.17%) patients, segment II in 7 (7.61%), segment III in 10 (10.87%), segment IV in 11 (11.96%),  segment  V  in  12  (13.04%),  segment  VI  in  14 (15.22%), segment VII in 17 (18.48%), and segment VIII in 19 (20.65%). But no patient had active extravasation from the hepatic  trunk  in  the early arterial phase. The late  arterial  phase  depicted  active  extravasation  from the proximal left hepatic artery in 4 patients, and from the proximal  right hepatic artery  in 9 patients. Neither bleeding from the juxtahepatic veins nor supplementary contrast  pooling  was  found  during  the  portal  phase. Simple  selective  embolization  involving  the  arterial branches  was  done  in  57  (81.43%)  patients  using  a coaxial microcatheter, and 31 of them underwent super-selective  embolization  (embolization  of  the  terminal 

Fig. 1. A 33-year-old female with liver injury of grade III after a motor vehicle collision. A: CT scan showing intraperitoneal exudation around liver (arrow). B: Coronal CT showing hepatic laceration (white arrow) and  intraparenchymal hematoma in segment IV and V (black arrows). C: Hepatic angiography before arterial embolizaiton: active intrahepatic arterial bleeding from parenchymal  laceration (black arrow) and segment IV (white arrow) in late arterial phase under DSA. D: Hepatic angiography after selective and super-selective embolization and effective control of the intrahepatic arterial bleeding.

Fig. 2. A 25-year-old male with liver injury of grade IV after a falling accident. A: Enhanced CT scan, arterial phase: subcapsular hematoma (white arrow) and active bleeding (black arrow) within right hepatic lobe; B: Enhanced CT scan, delayed phase: active extravasation around right  liver  lobe; C: Hepatic angiography before arterial embolizaiton: active intrahepatic arterial bleeding in segment V and VIII (white arrow) in late arterial phase under DSA; D: Hepatic angiography after selective coil embolization: disappearance of contrast extravastion.

Fig. 3. A 23-year-old male with liver injury of grade V after a military training accident. A: CT scan of 2 hours after  injury: multiple parenchymal lacerations (arrows); B: CT scan of 15 hours after injury: active exudation in large amount around the liver (arrows); C : Hepatic angiography before arterial  embolizaiton: active intrahepatic arterial bleeding from the lacerations of segment V and VI (black arrows) and the right hepatic artery (white arrow) in late arterial phase under DSA; D: Hepatic angiography after combined embolization: combined occlusion of the right hepatic artery (white arrow) and disappearance of contrast extravastion.

Hepatobiliary & Pancreatic Diseases International

176 • Hepatobiliary Pancreat Dis Int,Vol 13,No 2 • April 15,2014 • www.hbpdint.com

Eight patients were treated conservatively. The 16 patients with  AE-related  hepatobiliary  complications  recovered uneventfully.  The  clinical  results  of  the  70  patients  are shown in Table 2.

Discussion Non-operative  management  of  blunt  liver  injury  as the  standard  of  care  whenever  possible  reflects  the enormous  progress  in  the  field  of  abdominal  trauma. AE helps to diagnose and treat hepatic arterial bleeding in  early  stage,  and  is  responsible  for  the  significant improvements  in  patient  outcome  after  non-operative management.  In  this  study,  we  used  AE  in  three situations.  First,  when  there  is  no  proof  of  active  and massive  bleeding.  For  patients  whose  blood  pressure  is unstable  after  vigorous  fluid  resuscitation,  laparotomy should  be  performed  without  hesitation,  and  as  an adjunct  to  non-operative  treatment,  AE  can  only  stop arterial  bleeding  who  are  hemodynamically  stable.[8-10] Second,  when  there  is  no  severe  associated  solid  organ injury and no gastric or  intestinal  rupture.  In  fact,  the decision-making of non-operative therapy for blunt liver injury  should  be  dependent  on  the  overall  evaluation for  all  associated  injuries  rather  than  on  liver  injury only.  Third,  when  there  is  an  evidence  of  inadequate hemostasis. Arterial contrast extravasation on CT,  liver injury above grade IV, and fluctuation of hemodynamic parameters  during  non-operative  treatment  should  all be considered as indications for AE because of the high risk of intrahepatic arterial bleeding. [11] 

In  this  study,  32  (45.71%)  patients  undertook  AE because  of  indications  confirmed  by  CT.  From  our experience, successful non-operative treatment depends on  early  and  timely  imaging  examination  in  order  to perform AE to control arterial bleeding, and we suggest CT as the first choice if condition permits. Initially, we used  sonography  and  conventional  dual-phase  CT  for hemodynamically  stable  patients  in  our  department to  evaluate  liver  injury  and  rule  out  associated  intra-abdominal  injuries.  However,  the  limitations  in  image quality  of  conventional  dual-phase  CT  made  it  often difficult  to grade  the  liver  injury, although  the grading is  extremely valuable  for  identifying associated  injuries that  might  require  immediate  operation.  We  noticed that in this study, 9 (12.86%) patients were subjected to AE  because  of  spleen  or  aorta  injuries,  whereas  initial conventional  dual-phase  CT  revealed  no  obvious  signs of  intrahepatic  arterial  bleeding.  In  the  recent  5  years, Dual-source  CT  (DSCT)  enhanced  with  intravenous contrast has become a new method for hemodynamically stable  patients  with  suspected  liver  injuries  in  our 

Table 2. Clinical results of the 70 patients

Variable Results (n, %)

Associated intra-abdominal organ injury

  Splenic injury 10 (14.29)

  Renal injury   3 (4.29)

  Pancreatic injury   3 (4.29)

Indications for AE 

  Active extravasation on CT 27 (38.57)

  Hypotension or decreased Hb 29 (41.43)

  High-grade liver injury on CT   5 (7.14)

  Other primary reason   9 (12.86)

Liver segment involved in AE

  Segment I   2 (2.17)

  Segment II   7 (7.61)

  Segment III 10 (10.87)

  Segment IV 11 (11.96)

  Segment V 12 (13.04)

  Segment VI 14 (15.22)

  Segment VII 17 (18.48)

  Segment VIII 19 (20.65)

Type of AE

  Simple selective embolization 57 (81.43)

  Super-selective embolization 31 (44.29)

  Combined embolization 13 (18.57)

AE-related hepatobiliary complications 19 (27.14) 

  Liver abscess   9 (12.86)

  Hepatic necrosis  11 (15.71)

  Gallbladder infarction    5 (7.14)

  Bile peritonitis    2 (2.86)

  Bile leak   3 (4.29)

  Biloma formation    3 (4.29)

branches of the bleeding intrahepatic artery). Combined embolization  involving  the  intrahepatic  branches and  extrahepatic  trunk  was  performed  in  13  (18.57%) patients  using  metal  and  coaxial  microcoils.  Nineteen patients  (27.14%)  developed  AE-related  hepatobiliary complications after embolization, including liver abscess (9 patients), hepatic necrosis (11), gallbladder  infarction (5),  bile  peritonitis  (2),  bile  leak  (3),  and  biloma formation  (3).  CT  and  selective  AE  images  of  patients with  blunt  liver  injuries  are  shown  in  Figs. 1-3.  AE-related hepatobiliary complications occurred in 6 patients after  selective  embolization  (including  2  patients  after super-selective  embolization)  and  in  13  patients  after intrahepatic and extrahepatic embolization. Laparoscopic cholecystectomy  was  performed  in  5  patients  with gallbladder  infarction.  Percutaneous  aspiration  and catheter drainage guided by ultrasound were performed in 7 patients with liver abscess and/or biloma formation. Laparoscopic  peritoneal  lavage  and  drainage  was performed in 3 patients with bile leak and bile peritonitis. 

Angiographic embolization in hepatic trauma by BAT

Hepatobiliary Pancreat Dis Int,Vol 13,No 2 • April 15,2014 • www.hbpdint.com • 177

department.  DSCT  is  superior  in  detecting  small quantities  of  blood,  and  allows  for  rapid  and  accurate grading  of  hepatic  injuries  in  predicting  the  need  of subsequent  interventions.[12]  In  the  27  patients  who were subjected to AE for active extravasation and the 5 patients who underwent AE  for high-grade  liver  injury, 18 (66.67%, 18/27) and 3 (60.00%, 3/5) were detected by DSCT  respectively.  Thus  DSCT  plays  a  significant  role in  detecting  patients  who  are  only  temporarily  stable and require AE to control intrahepatic arterial bleeding during the non-operative treatment. 

Consensus  on  operative  exploration  is  conclusive for  hemodynamically  unstable  patients  with  suspected high-grade  liver  injury,  but  for  hemodynamically stable  patients  with  high-grade  liver  injury,  there  is still  controversy  over  the  efficacy  of  non-operative treatment.[13]  From  our  experience,  hepatic  arterial bleeding  in  the  deep  liver  parenchyma  is  difficult  to control  even  by  operative  packing,  and  postoperative or  preoperative  angiography/embolization  may  be useful  for  patients  with  deep  liver  parenchyma  injury. Letoublon et al found that 52% of patients with IV and V  liver  injuries  who  had  undergone  staged  laparotomy showed  postoperative  intrahepatic  bleeding  on angiography  and  required  embolization.  He  suggested that  AE  should  be  performed  for  patients  with  active extravasation regardless of the grading of liver injury.[14] In  our  series,  AE  and  non-operative  treatment  were effective  in  32  patients  with  high-grade  liver  injuries (IV-V).  Fourteen  patients  showed  intrahepatic  arterial bleeding  in  segment  VI  and  17  in  segment  VII.  The bleeding  in  these  patients  was  hard  to  control  by operation  because  of  its  deep  location.  We  suggest that  for  patients  with  high-grade  liver  injuries,  if  their general condition allows, AE should be considered as an important therapeutic method. Non-operative treatment is now commonly used for patients with low-grade liver injuries;  however,  intrahepatic  arterial  bleeding  is  not rare,  and  in  such  patients,  AE  can  avoid  the  potential risk of  surgical  intervention.[15]  In our  series, over 50% of  the  patients  (38/70)  who  received  AE  to  control intrahepatic  arterial  bleeding  had  only  grade  II  or  III liver injuries. Another factor that needs special attention is  the  mechanism  of  trauma.  Direct  impact  on  the body  surface  where  the  liver  locates  caused  by  vehicle collision  or  falling  to  obstacles  on  ground,  accounts for  most  cases  of  intrahepatic  arterial  bleeding  with low-grade liver injuries, and this often causes failure of non-operative  treatment.[16]  In  our  series,  47  patients (67.14%)  received  AE  because  of  the  mechanisms  of trauma  mentioned  above.  We  suggest  that  the  risk  of intrahepatic  bleeding  should  be  ruled  out  for  patients 

even with low-grade liver injuries.Nineteen patients (27.14%) in this study had various 

AE-related  hepatobiliary  complications  mostly  caused by  combined  embolization  involving  the  intrahepatic branches  and  the  extrahepatic  trunk  (13/19,  68.42%). The  hepatobiliary  complications  should  be  considered as  the  clinical  evolution  of  AE,  and  with  the  wide  use of  AE,  there  will  be  an  increase  in  the  incidence  of such  complications.[17]  Although  it  is  unavoidable,  the incidence  and  severity  of  hepatobiliary  complications can  be  lowered  by  selective  AE.  No  laparotomy  or lobectomy  was  performed  in  these  patients  because  of hepatic  necrosis,  especially  in  those  with  grade  IV  and V  liver  injuries. The  incidence of gallbladder  infarction could  be  reduced,  if  not  avoided,  by  embolization beyond the level of the cystic artery in the right hepatic artery.  Liver  abscess  was  also  delayed  after  super-selective  AE  by  avoiding  occlusion  of  lobar  arterial branches, especially in patients with grade IV or V liver injuries.  In  our  series,  minimally  invasive  treatments, including  laparoscopic  cholecystectomy,  percutaneous aspirate  and  catheter  drainage,  and  laparoscopic peritoneal  lavage/drainage,  were  given  to  14  patients with  gallbladder  infarction,  liver  abscess  or  biloma formation,  and  bile  leak  due  to  selective  AE.  These complications  mostly  happened  6-8  weeks  after  liver injury and there was no severe side effect. Embolization of  the  extrahepatic  arterial  trunk  was  done  in  13 patients  because  of  their  active  extravasation  in  late arterial  phase.  During  the  embolization,  complete occlusion of  the extrahepatic  trunk was not considered as a target, but used to control active extravasation and keep  hemodynamics  stable.  Combined  selective  AE was  also  performed  to  stop  the  intrahepatic  arterial bleeding.  Selective  AE  can  decrease  the  risk  of  hepatic ischemia, and avoid the rare complication of abdominal compartment syndrome.[18]

In  conclusion,  AE  is  an  adjunct  treatment  for  liver injuries. It is effective in controlling intrahepatic arterial bleeding  in  hemodynamically  stable  patients  with high-grade  liver  injuries.  Indications  for  AE  should  be considered with the hemodynamic condition of patients, trauma  mechanism,  and  associated  intra-abdominal injuries.  Selective  and/or  super-selective  AE  should  be advocated in order to decrease the incidence and severity of AE-related hepatobiliary complications.

Acknowledgements: We  thank  Dr.  Zi-Ming  Huang  of  Chinese PLA Air Force General Hospital for help with the study design and data collection.Contributors: ZHY proposed  the  study. KYL performed research and wrote the first draft. HXJ, ZG and LCL collected the data. XM and ZYY analyzed the data. All authors contributed to  the design 

Hepatobiliary & Pancreatic Diseases International

178 • Hepatobiliary Pancreat Dis Int,Vol 13,No 2 • April 15,2014 • www.hbpdint.com

and  interpretation  of  the  study  and  to  further  drafts.  ZHY  is  the guarantor.Funding: This  study  was  supported  by  grants  from  the  National Science and Technology Support program of China (2012BAI15B08) and  the  Chinese  PLA  Air  Force  Logistics  Department  Science Support program (BKJ02J001).Ethical approval: This study was approved by the Ethics Committee of Chinese PLA Air Force General Hospital.Competing  interest: No  benefits  in  any  form  have  been  received or  will  be  received  from  a  commercial  party  related  directly  or indirectly to the subject of this article.

References1  Huang YC, Wu SC, Fu CY, Chen YF, Chen RJ, Hsieh CH, et 

al. Tomographic findings  are not  always predictive of  failed nonoperative management in blunt hepatic injury. Am J Surg 2012;203:448-453.

2  van  der  Vlies  CH,  Olthof  DC,  Gaakeer  M,  Ponsen  KJ,  van Delden  OM,  Goslings  JC.  Changing  patterns  in  diagnostic strategies  and  the  treatment  of  blunt  injury  to  solid abdominal organs. Int J Emerg Med 2011;4:47.

3  Yi IK, Miao FL, Wong J, Narasimhan KL, Lo RH, Yee L, et al. Prophylactic embolization of hepatic artery pseudoaneurysm after  blunt  abdominal  trauma  in  a  child.  J  Pediatr  Surg 2010;45:837-839.

4  Wang YC, Fu CY, Chen YF, Hsieh CH, Wu SC, Yeh CC. Role of  arterial  embolization  on  blunt  hepatic  trauma  patients with type I contrast extravasation. Am J Emerg Med 2011;29: 1147-1151.

5  Ochiai  T,  Igari  K,  Yagi  M,  Ito  H,  Kumagai  Y,  Iida  M,  et  al. Treatment strategy  for blunt hepatic  trauma: analysis of 183 consecutive cases. Hepatogastroenterology 2011;58:1312-1315.

6  Moore  EE,  Cogbill  TH,  Jurkovich  GJ,  Shackford  SR, Malangoni MA, Champion HR. Organ injury scaling: spleen and liver (1994 revision). J Trauma 1995;38:323-324.

7  Misselbeck  TS,  Teicher  EJ,  Cipolle  MD,  Pasquale  MD,  Shah KT,  Dangleben  DA,  et  al.  Hepatic  angioembolization  in trauma  patients:  indications  and  complications.  J  Trauma 2009;67:769-773.

8  Kozar  RA,  Moore  FA,  Moore  EE,  West  M,  Cocanour  CS, 

Davis J, et al. Western Trauma Association critical decisions in trauma: nonoperative management of adult blunt hepatic trauma. J Trauma 2009;67:1144-1149.

9  Velmahos GC, Toutouzas K, Radin R, Chan L, Rhee P, Tillou A,  et  al.  High  success  with  nonoperative  management  of blunt hepatic  trauma:  the  liver  is a  sturdy organ. Arch Surg 2003;138:475-481.

10  Yanar  H,  Ertekin  C,  Taviloglu  K,  Kabay  B,  Bakkaloglu H,  Guloglu  R.  Nonoperative  treatment  of  multiple  intra-abdominal solid organ injury after blunt abdominal trauma. J Trauma 2008;64:943-948.

11  Hashemzadeh  SH,  Hashemzadeh  KH,  Dehdilani  M,  Rezaei S. Non-operative management of blunt trauma in abdominal solid  organ  injuries:  a  prospective  study  to  evaluate  the success  rate  and  predictive  factors  of  failure.  Minerva  Chir 2010;65:267-274.

12  Richardson JD. Changes in the management of injuries to the liver and spleen. J Am Coll Surg 2005;200:648-669.

13  Jiang  H,  Wang  J.  Emergency  strategies  and  trends  in  the management of liver trauma. Front Med 2012;6:225-233.

14  Letoublon C, Morra I, Chen Y, Monnin V, Voirin D, Arvieux C. Hepatic arterial embolization in the management of blunt hepatic  trauma:  indications  and  complications.  J  Trauma 2011;70:1032-1037.

15  Bhullar IS, Frykberg ER, Siragusa D, Chesire D, Paul J, Tepas JJ  3rd,  et  al.  Selective  angiographic  embolization  of  blunt splenic  traumatic  injuries  in  adults  decreases  failure  rate of  nonoperative  management.  J  Trauma  Acute  Care  Surg 2012;72:1127-1134.

16  Letoublon  C,  Chen  Y,  Arvieux  C,  Voirin  D,  Morra  I,  Broux C,  et  al.  Delayed  celiotomy  or  laparoscopy  as  part  of  the nonoperative management of blunt hepatic  trauma. World J Surg 2008;32:1189-1193.

17  Kozar RA, Moore JB, Niles SE, Holcomb JB, Moore EE, Cothren CC, et al. Complications of nonoperative management of high-grade blunt hepatic injuries. J Trauma 2005;59:1066-1071.

18  Chen RJ, Fang JF, Lin BC, Kao JL. Laparoscopic decompression of  abdominal  compartment  syndrome  after  blunt  hepatic trauma. Surg Endosc 2000;14:966.

Received October 6, 2012Accepted after revision July 22, 2013