and reliable ultra low power rfid networkspeople.csail.mit.edu/jue_w/papers/buzz_poster.pdfefficient...

1
2012 Inaugural Retreat MIT Center for Wireless Networks and Mobile Computing Efficient and Reliable Ultra Low Power RFID Networks Jue Wang, Haitham Hassanieh and Dina Katabi Reader shines an RF signal on nearby RFIDs Tag reflects the reader’s signal using ONOFF keying Motivation • Wireless protocols require power and computation RFIDs are very flaky • No power source • Ultralow cost not much circuitry RFIDs can’t perform typical functions like carrier sense or rate adaptation MachineGenerated Data RFID will be a major source of such traffic “number of RFID tags sold globally is projected to rise from 12 million in 2011 to 209 billion in 2021.” – McKinsey Big Data Report 2011 In Oil & Gas – about 30% annual growth rate In Healthcare – $1.3B revenue annually Are Our Wireless Protocols Ready? Background Backscatter Communication Node Identification Problem Challenge: RFIDs cannot hear each other Collisions Applications: Inventory management Shopping cart Each object has an ID Reader learns IDs of nearby objects Data Communication Problem Data communication in RFID networks performs poorly because it lacks rate adaptation RFIDs always send 1 bit/symbol Can’t exploit good channels to send more bits Inefficiency Can’t reduce rate in bad channels Unreliability ID = 1 ... ID = 2 ID = 4 ID = 3 ID = 5 ID = N ID = 6 System is represented by a vector if node with ID = is in cart NetworkBased Compressive Sensing 0 500 1000 1500 2000 4 8 12 16 Number of Tags Our Design Slotted Aloha Number of Symbols to Identify Nodes 5.5× reduction in symbols needed for identification Reliability Message Loss Rate TDMA CDMA Our Design 0.57 bits/symbol 1.7 bits/symbol 3.2 bits/symbol 0% 10% 20% 30% 40% 50% Medium SNR (5dB 9dB) High SNR (10dB 20dB) Low SNR (0dB 4dB) Efficiency Evaluation • Reader implementation on GNURadio USRP • UMass Moo programmable RFIDs NetworkBased Rate Adaptation Nodes transmit messages and collide Reader collects collisions until it can decode good channel decode from few collisions worse channel decode from more collisions b 1 b 2 b 3 b K y 1 y 2 y 3 y 1 =h 2 b 2 +h K b K y 2 =h 1 b 1 y 3 =h 2 b 2 +h 3 b 3 +h K b K Collisions act as a distributed rateless code Adapts bit rate to channel quality without feedback Collisions act as a sparse random code Quickly decode using a Belief Propagation decoder 0 1 0 0 1 0 0 Node with ID = transmits Collisions mix bits on the air is distributed across all nodes! is Sparse Want the network to emulate a compressive sensing sender Reader decodes using a Compressive Sensing decoder Bits transmitted by different nodes Received wireless symbols

Upload: others

Post on 12-Mar-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: and Reliable Ultra Low Power RFID Networkspeople.csail.mit.edu/jue_w/Papers/Buzz_Poster.pdfEfficient and Reliable Ultra Low Power RFID Networks Jue Wang, Haitham Hassanieh and Dina

2012 Inaugural Retreat

MIT Center for Wireless Networks and Mobile Computing

Efficient and Reliable Ultra Low Power RFID Networks

Jue Wang, Haitham Hassanieh and Dina Katabi

Reader shines an RF signal on nearby RFIDs

Tag reflects the reader’s signal using ON‐OFF keying

Motivation

• Wireless protocols require power and computation

• RFIDs are very flaky 

• No power source

• Ultra‐low cost  not much circuitry 

• RFIDs can’t perform typical functions like carrier sense or rate adaptation

Machine‐Generated Data

RFID will be a major source of such traffic

• “number of RFID tags sold globally is projected to rise from 12 million in 2011 to 209 billion in 2021.”

– McKinsey Big Data Report 2011

• In Oil & Gas – about 30% annual growth rate

• In Healthcare – $1.3B revenue annually

Are Our Wireless Protocols Ready?

Background

Backscatter 

Communication

Node Identification Problem

Challenge: RFIDs cannot hear each other

Collisions

Applications:

• Inventory management

• Shopping cart

Each object has an IDReader learns IDs of nearby objects

Data Communication Problem

Data communication in RFID networks performs poorly because it lacks rate adaptation

RFIDs always send 1 bit/symbol 

Can’t exploit good channels to send more bits     Inefficiency

Can’t reduce rate in bad channels       Unreliability

ID = 1 ...ID = 2 ID = 4ID = 3 ID = 5 ID = NID = 6

System is represented by a vector 

if node with ID = is in cart

Network‐Based Compressive Sensing

0

500

1000

1500

2000

4 8 12 16

Number of Tags

Our Design

Slotted Aloha

Number of Symbols to 

Identify Nodes

5.5× reduction in symbols needed for identification

Reliability

Message Loss Rate

TDMA

CDMA

Our Design

0.57 bits/symbol

1.7bits/symbol

3.2bits/symbol

0%

10%

20%

30%

40%

50%

1 2 3Medium SNR(5dB  9dB)

High SNR(10dB  20dB)

Low SNR(0dB  4dB)

EfficiencyEvaluation

• Reader implementation on GNURadio USRP

• UMass Moo programmable RFIDs

Network‐Based Rate Adaptation

• Nodes transmit messages and collide

• Reader collects collisions until it can decode 

• good channel  decode from few collisions

• worse channel  decode from more collisions

b1

b2

b3

bK

y1

y2

y3

y1 = h2 b2 + hK bK

y2 = h1 b1

y3 = h2 b2 + h3 b3 + hK bK

Collisions act as a distributed rateless code

Adapts bit rate to channel quality without feedback

Collisions act as a sparse random code

Quickly decode using a 

Belief Propagation decoder

0 1 0 0 1 0 … 0

Node with ID = transmits 

Collisions mix bits on the air

is distributed across all nodes!

is Sparse

Want the network to emulate acompressive sensing sender

Reader decodes  using a 

Compressive Sensing decoder Bits transmitted by different nodes

Received wireless symbols