and development ce--tc to computer … to computer program for parameter ... method proposed by...

104
AD-AlO8 523 DAVID W TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CE--TC F/6 12/1 MODIFICATIONS To COMPUTER PROGRAM FOR PARAMETER ESTIMATION FOR -- ETC(U) MAY 77 N K OCHI UNCLASSIFIED DTNSRDC/S.772-01 L " lflli~~hlflfIlfl IIIIIIIIIIIIIIffllfllf EEIIEIIIIEEII I/II/I////////,lfflfflf IIEEEEEEEIEEEE mEEEEIIEEEEEI

Upload: buinhu

Post on 24-Apr-2018

215 views

Category:

Documents


2 download

TRANSCRIPT

AD-AlO8 523 DAVID W TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CE--TC F/6 12/1MODIFICATIONS To COMPUTER PROGRAM FOR PARAMETER ESTIMATION FOR --ETC(U)MAY 77 N K OCHI

UNCLASSIFIED DTNSRDC/S.772-01 L

" lflli~~hlflfIlflIIIIIIIIIIIIIIffllfllfEEIIEIIIIEEIII/II/I////////,lfflfflfIIEEEEEEEIEEEEmEEEEIIEEEEEI

U-11 1 1~28 jjMIll ,_. ,,,12

11 1.25 11 4 ____

MICROCOPY RESOLUTION TEST CHART

PHOTOGRAPH THIS SHEET

LEVEL gjiJ.Tg (or Nasal Shi vNORY

DOCUMENT IDENTIFICATION MAy 7?

D RYUTION STATEkENRT 'A1 Appoved for public release;

DiStuibution Unlimited i

DISTRIBUTION STATEMENT

ACCESSION FORNTIS GRAI

TAB o DTICUNANNOUNCED Q ___C

JUSTIFICA ON ELECTEDEC 14 1981

Y DBY D.DISTRIBUTION]

AVAIlaBILFY CODESDIST AVAIL AND/OR SPECIAL DATE ACCESSIONED

DISTRIBUTION STAMP

DATE RECEIVED IN DTIC

PHOTOGRAPH THIS SHEET AND RETURN TO DTIC-DDA-2

FORM DOCUMENT PROCESSING SHEETDTIC OCT 79 70A

DAVID W. TAYLOR NAVAL SHIP00 RESEARCH AND DEVELOPMENT CENTER9 I'C) Bethesda, Md. 20084

Ot

MCC MODIFICATIONS TO COMPUTERp PROGRAM FOR PARAMETER ESTIMATION

FOR THE GENERALIZED GAMMA DISTRIBUTION

by

MihlK. Ochl

LI.-U, C

12089

MAJOR DTNSRDC ORGANIZATIONAL COMPONENTS

i DTNSRDC

COMMANDER

TECHNICAL DIRECTOR01

[ 7 ERINCHARG' OFFICE R-IN-CHARGECARDEROCK 05ANNAPOLIS 0

SYSTEMSDEVELOPMENTDEPARTMENT

SHIP PERFORMANCE AVIA ;ION AND

DEPARTMENT SURFACE EFFECTS

15 DEPARTMENT 16

STRUCTURES COMPUTATION.MATHEMATICS AND

DEPARTMENT ILOGISTICS DEPARTMENT

17_ 18

[SHIP ACOUSTICS 1 PROPULSION ANDDEPARTMENT AUXILIARY SYSTEMSD 19 DEPARTMENT 27

MATERIALS CENTRAL

DEPARTMENT INSTRUMENTATION28 DEPARTMENT 29

_-

UNCLASSIFIFDqECUMITY CLASSIFICATION OF TNIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTION9REPORT DOCUMENTATION PAGE3BEFORE COMPLETING FORM

I. REPORT NUMBER 12. GOVT ACUION NO: S. RECIPIENT'S CATALOG NUMBER

SPD-772-01OA/04. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

MODIFICATIONS TO COMPUTER PROGRAM FOR PARAMETERESTIMATION FOR THE GENERALIZED GAMMA DISTRIBUTION . ROMING ORG. REPORT NUNSER

7. AUTHOR(&) S. CONTRACT OR GRANT NUMEER(e)Michel K. Ochl

9. PERFORMING ORGANIZATION NAME AND ADRESS I0. pRGR SLEMN, PROJECT, TASK

Ship Performance Department Program Element 63534NPrgam Eleen 63534NT.ux

David W. Taylor Naval Ship R&D Center Work Unit No. 1-1506-012Bethesda, Maryland 20084 ,

If. CONTROLLING OFFICE NAME AND ADDRESS I2 REPORT DATE

Naval Sea Systems Command may 1977Surface Effect Ship Project Office, PMS 304 IS NUMMEROFPAGESBethesda, Maryland 20084 96

141- MONITORING AGENCY NAME & AODRESS(f different fom ContrOllinot Office) IS. SECURITY CLASS. (of tale report)

UnclassifiedISo. DEC ASSI FIC ATION/ DOWNGRADING

SN EDU LE

IS. DISTRIBUTION STATEMENT (of thle Report)

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

I?, DISTRIBUTION STATEMENT (of the ebotre¢t entered in Block 20, If diflerent froe Report)

I. SUPPLEMENTARY NOTES

It. KEY WORDS (Continue on reerse side If necoeeoy end Ifdentfy by block ntwbr)

Extreme values, Generalized gamma distribution, Computation,Maximum likelihood

20. ABSTRACT (Continue on reverse Wide If nocoeirw and identify by block namiber)An extensive study of an existing digital computer program for determining

parameters required to represent SES IOOB trials data by a generalized gammafunction Is carried out. The purpose of the study Is to resolve the difficul-ties encountered in earlier studies. In these earlier studies, approximately5 percent of the cases analyzed produced unrealistic values for the distri-bution parameters. In order to resolve this problem, data sensitivity studiesare carried out. Based on results of the study, criteria are developed fordetermining cases that should not be orocessed. Three otcr chnliaues besides IDD 1oAN, 1473 gooToo oi INovs SOLET isNCLSSIF

S/N 0102.LF.014660t UNCLASSIFIEDSECURITY CLAIFICATION OF THIS PAGE ( hen DOMe E1te.40

.U.NCLASS I FIEDSeCI'qTY CLASSiFIC ATION OF THIS PAIGE '%%on DO$& EnttOedl

the Stacy-Mlhram method are Investigated. The most successful alternativemethod Is the maximum likelihood method, which Is Incorporated Into the newdigital computer program. A program listing and an example of the generatedoutput are Included in this report.

UNCLASSIFIED O ISI[CUORITY CL.AIOP~ICATIOld OF-T;iS P&G(llrlttl Do.l Rnftm

TABLE OF CONTENTS

Page

ABSTRACT. .. ... ...... ...... ...........

ADMINISTRATIVE INFORMATION .. .. ...... ......... 1

INTRODUCTION. .. .... ..... ...... ........

MATHEMATICAL DEVELOPMENT. .. .... ..... ....... 4

OVERVIEW .. .... ...... ..... ....... 4

MAXIMUM LIKELIHOOD METHOD .. .. ...... ...... 5

ANALYSIS. .. .... ..... ...... .......... 8

SENSITIVITY OF RESULTS ON EXPERIMENTAL DATA .... 10

EVALUATION OF MAXIMUM LIKELIHOOD METHOD .. .. ..... 13

DIGITAL PROGRAM DESCRIPTION .. .... ...... .... 14

INPUT DATA .. .... ...... ..... ...... 16

PRINTED OUTPUT. .. ...... ...... ...... 22

PROGRAM DESCRIPTIONS .. .... ...... ...... 24

Main Program. .. ...... ..... ...... 24

Subroutine GETCML. .. .... ..... ...... 27

Subroutine MLHCML. .. .... ..... ...... 30

Subroutine DIST .. .. ..... ...... ... 32

Subroutine WEG. .. ...... ...... ... 33

Function PSIl .. .. ...... ...... ... 34

FunctionPS12 .. .. ..... ...... .... 35

Function PSI. .. ...... ...... .... 36

Subroutine MGAMMA. .. ... ...... ...... 37

Subroutine MDGAM .. .... ...... ...... 38

Page

Subroutine HISTO .. .. ..... .... ..... 38

Function G. .. .... .... .... ...... 39

Function F. .. .... .... .... ...... 40

CONCLUSIONS .. ........................... 41

ACKNOWLEDGEMENTS .. .. ..... ...... ........ 42

REFERENCES .. .. ..... ................ 43

APPENDIX A -PROGRAM LISTING. .. ... ...... .... A-1

APPENDIX B - EXAMPLE OF PRINTOUT .. .. ..... ...... B-1

LIST OF ILLUSTRATIONS

Page

FIGURE

I A COMPARISON OF THE GENERALIZED GAMMADISTRIBUTION WITH EXPERIMENTAL DATA .... ......... 9

2 A COMPARISON OF THE GENERALIZED GAMMADISTRIBUTION AS DETERMINED BY THE MAXIMUMLIKELIHOOD METHOD WITH EXPERIMENTAL DATA . . .... 15

3 CARD IMAGES FOR A TYPICAL COMPUTER RUN . ....... ... 21

TABLE

1 RESULTS OF SENSITIVITY STUDY ON FOURREPRESENTATIVE CASES ........ ............... 12

2 MAJOR FORTRAN SYMBOLS USED IN MAIN PROGRAM ... ...... 25

3 MAJOR FORTRAN SYMBOLS ..... ................ ... 28

Iii

ABSTRACT

An extensive study of an existing digital computer program

for determining parameters required to represent SES 100B trials data

by a generalized gamma function is carried out. The purpose of the

study is to resolve the difficulties encountered in earlier studies.

In these earlier studies, approximately 5 percent of the cases analyzed

produced unrealistic values for the distribution parameters. In order

to resolve this problem, datasensitivity studies are carried out.

Based on results of the study, criteria are developed for determining

cases that should not be processed. Three other techniques besides

the Stacy-Mihram method are investigated. The most successful alterna-

tive method is the maximum likelihood method, which is incorporated into

the new digital computer program. A program listing and an example

of the generated output are included in this report.

ADMINISTRATIVE INFORMATION

This work was conducted at the David W. Taylor Naval Ship

Research and Development Center and authorized by Naval Sea Systems

Command, Surface Effect Ships Project Office, Program Element Number

63534N. It is identified as Work Unit Number 1-1506-012.

INTRODUCTION

A computerized procedure for evaluating the parameters of the

generalized gamma distribution from a set of random data following the

method proposed by Stacy and Mihram (see Reference 1) has been previously

developed and extensively exercised (see Reference 2 and 3). During

these earlier studies it was discovered that what appeared to be unreal-

istic values for the distribution parameters were obtained in roughly 5

percent of the cases analyzed. The initial purpose of the study, whose

results are summarized in this report, was to explore in detail a repre-

sentative sample of cases resulting in unrealistic values of the param-

eters, and if possible, to develop an alternate method for processing

these cases.

The results of the present investigation can be summarized as

follows:

a. In the many cases studied, it appears that the predicted

extreme design values are most sensitive to experimental

measurements and not the numerical procedure for deter-

mining the parameters. This is particularly true when

one of the parameters is negative.

b. All four methods considered in this investigation

yield probability distribution functions which represent

very well the experimentally obtained histogram even

though some of the parameter values were judged unrealisitic

in previous studies. However, the Stacy-Mihram and maximum

likelihood methods are by far the most efficient and are

the preferred procedures based on probabilistic arguments.

c. In some cases the predicted extreme design values are

unrealistically large whereas the significant values are

2

realistic. Based on an analysis of over 100 cases, it

can be concluded that cases having a nondimensional third

logarithmic moment greater than -0.5 produce unrealistic

extreme design values. Results of a data sensitivity study

have revealed that in all these cases the data may not be

considered as a sample taken from a steady-state random

phenomenon, and hence it is recommended not to carry out

statistical analysis for these cases.

3

MATHEMATICAL FORMULATION

OVERVIEW

The generalized gamma density function under consideration in

this report has the form

where X, m, and c are estimation parameters and r(m) is the gamma function.

Many other distributions such as the exponential, gamma, chi-squared,

Weibul, hydrograph, chi, truncated normal, and Rayleigh are special cases

of the generalized gamma function. Due to the general nature of f(x; X,

m, c), it is the preferred distribution particularly when the exact form

of the distribution function is unknown.

There are several techniques that can be used to estimate the

three parameters. Four such techniques are considered in this effort.

These are the Stacy-Mihram, the maximum likelihood, the nonlinear

least squares, and grid search methods. The last two methods deter-

mine the parameters by searching for that set of parameters resulting

in a minimum error between the experimental and theoretical histograms.

Since statistical inference cannot be applied in a rigorous manner, the

last two methods are not recommended. The Stacy-Mihram method

determines the parameters by requiring that the first three theoretical

logarithmic moments agree with the logarithmic moments determined from

the experimental data. The maximum likelihood method determines param-

eters such that the joint probability density function is a maximum.

4

A detailed derivation of the Stacy-Mihram method is presented

in Reference 2 pages 6 - 8. A derivation of the nonlinear least squares

procedure is presented in Reference 4. The grid search procedure merely

involves a systematic search of the X, m, c space for parameters that

minimize the error between the predicted distribution and the measured

distribution. A derivation of the equations required in the maximum

likelihood parametric estimation method is presented in the next section.

MAXIMUM LIKELIHOOD METHOD

Briefly, the maximum likelihood estimation technique involves

finding the parameter (or parameters) which maximizes the joint proba-

bility density function of a random sample X, . . . , XN from a

distribution with f(x, e) as its probability density function and e as

an element of the parameter space. The joint probability density func-

tion, referred to as the likelihood function, is given by

L. T"C-..G) (2)

Assume one has N. samples at random variable xi. Then the

maximum likelihood function will have the form

7 T(3)

-...

5

The natural logarithm of the likelihood function is used in

maximizing since it is a maximum when the function itself is a maximum,

and it proves more convenient to use. The logarithm is given by,

L = i N 1 (4)

The maximum of lnL is obtained by searching for parameters e such that,

0.0 (5)

where N = the number of parameters.p

For the generalized gamma function given by Equation (1),

the likelihood function becomes

KI

L= _ 7 <"° p <,) ")) (6)

and InL becomes

SNL i. + -A v q x~C~(7)

In the above equation, c is assumed positive. If the above equation is

differentiated with respect to cm, X and m and set to zero, the following

equations can be derived (see Reference 5).

V) (8)

6

iU

I.IIn- C. Inc k, n . N. ,,o, , N + cm(,,)

(9)

- -- In f.\ -- k- n N 9

== 0

CNC

where the summation on i is from I to K. An expression for m can be

obtained from the above equations:

*- I" .X;

The parameter c can be obtained by solving the following equation

numerically.

, r ('.'"N k \r " Y. N (12)

N

7

Once a value of c is determined by solving Equation (12),

values for X and m can be obtained via Equations (8) and (11). The

numerical method used to solve Equation (12) for c is due to Wegstein

(see Reference 5).

ANALYSIS

During previous studies in which the Stacy-Mihram method was

used to process SES lOOB data, large design extreme values were

predicted in approximately 5 percent of the cases although the most

significant values agreed with the experimental measurements. This

difficulty seemed to be associated with large values of the parameter

m and with negative values of the parameter c. In order to resolve

this difficulty, several cases were examined in detail. The results

of this investigation follows.

The first case considered in this investigation is a set

of pitching motion data measured during the SES 100B full scale trials

program at 30 kts in a seastate of 3. This particular case, identified

as ARI 3E 30, is presented in Reference 3. A comparison of the

estimated probability density function with the experimental histogram is

presented in Figure 1. As is demonstrated by the results in the figure, the

agreement is excellent. All other cases examined show similar results.

Assuming that an objective of the estimation procedure is to develop

the best representation of the data that is possible, it is con-

cluded that large values of m(> 5) are not necessarily unreasonable.

8

Q04'I

ARI E 30

UI- ,i GENERALIZED GAMMA DISTRIBUTION

C4

RAYLEIGH DISTRIBUTION

a0

M L4.0 16.. 199 Z1.6 4.40

EXCURSIONS

FIGURE 1. A COMPARISON OF THE GENERALIZED GAMMADISTRIBUTION WITH EXPERIMENTAL DATA

9

Also, since the predicted representations always represent the data

very well for both large and small m, the numerical procedure used

to solve the transcendental equations for the estimation parameters

is judged sufficiently accurate.

Further investigations revealed that in some of the cases

the predicted design extreme values were unreasonably high as

compared with the most significant values. In order to determine

more precisely a reasonable value for the ratio of the design extreme

value to the most significant value (XD/Xs), an analysis of over 100

previously processed data cases were examined. The results indicated

that unrealistically large ratios were obtained for those cases for

which the normalized logarithmic moment (see Equation 2.4 in Reference

2) is greater than -0.5. Most significant values were realisitic as

compared with those measured in trials. Consequently, in the current

data base, cases for which T > -0.5 should not be processed to deter-

mine design extreme values using the generalized gamma procedure.

The experimental histogram of ARl 3E 30 has a substantial

tail which may contribute to the large design extreme value predic-

tion. The last four bins (out of 12) each have only one observation.

A data sensitivity study was conducted in order to determine how

sensitive the design values are to the tail portion of the measured

data. The results of this study are presented in the next section.

SENSITIVITY OF RESULTS ON EXPERIMENTAL DATA

A data sensitivity study on cases ARI 3E 30, S14 3H 10,

S14 3Q 10, and S82 3Q 10 was carried out in order to make an assess-

10

-- ... ...... . ... .... ... .i 'll l . .. .... . .. ... .. .. .i III II~ l ..... ... ... . .. ....... ... .. .

ment of how sensitive predicted results are to the experimental data.

Computations were carried out for several cases for which four obser-

vations from a rather distinct tail were dropped. The results are

presented in Table 1.

The results indicate that elimination of a small percentage

of the experimental data can result in large changes in the design

extreme value, particularly when T > -0.5 and c < 0.0. Based on

these results, it appears that a substantially large number of obser-

vations in the tail portion of the experimental data is desirable

in order to predict results that are insensitive to minor errors in

the observations.

It should be noted that the data sensitivity study as conducted

above is rather severe, i.e., four points were removed in a systematic

manner from the tail portion of the measured histogram. The proba-

bility that four points from the tail would be Incorrectly measured

is rather small. One'way of determining how long an experiment should

be conducted and consequently how many observations should be made

is to monitor various statistics such as moments during any particular

experiment. Once these statistical measures reach steady state, the

sample can be Judged adequate. Proceeding in this manner may have

been impractical during a single prototype run. However, combining

several runs under nearly identical experimental conditions may prove

possible.

< I I I I

%0 LO 810

CMC%J

%D L LO0%0% -

LO ml C7 0%) . DU ON. r00

C-)

.- VLuJ

V LLJ

Oct LL. ACCo Cmdc l

LA-Z

0 C0

AZQ m Q Q I

XN 0M.- xC x xr- CM

0- 00c r.q 00

CD Q~t Q CD)p

0V N - r-N9- c c

0n 0n 0" 0"

C/) Cd) V)

12

EVALUATION OF THE MAXIMUM LIKELIHOOD METHOD

The method previously employed to determine estimation param-

eters for the generalized gamma distribution was based on the Stacy-

Mlhram method (see Reference 1 and 2). One of the advantages of the

Stacy-Mlhram method is that negative values of the parameter c

are allowed. However, based on the current analysis of over 100 cases,

it appears that cagzs for which c is negative result in unrealistically

large values of the ratio of the design extreme value to the significant

value regardle-.s of thie processing technique (Stacy-Mihram method,

grid search, nonlinear least squares method). Consequently, development

of representations of the experimental via the generalized gamma

function should be restricted to cases for which the parameter c > 0.

More detailed analysis (see comments at the beginning of this section)

has revealed that processing should be restricted to those cases for

which the normalized logarithmic moment is less than -O.5*. If the

above restrictions are imposed, the preferred processing method is

the maximum likelihood method as developed in a previous section of

this report. One of the reasons the maximum likelihood method is

preferred is that it provides unbiased and efficient parameter esti-

mates in the asymptotic limit, i.e., as the number of samples becomes

*Examination of the data shows that it cannot be adequately representedby any of the standard distributions.

13

large, provided specified regularity conditions hold (see References

6 and 7 for details). Also, the method is applied to the actual experi-

mental measurements, i.e., grouping the data into histograms is not

necessary.

A comparison of the maximum likelihood results with experi-

mental data is presented in Figure 2. As demonstrated by the figure,

the agreement between the generalized gamm~a representation and the

experimental data is excellent. The ratio of design extreme value to

most significant value is 3.65 which is less than the value obtained

by the Stacy-Mihram method is 5.58.

DIGITAL PROGRAM DESCRIPTION

The current digital program is based on a previous program

that implemented the Stacy and Mihram method. The following modifi-

cations have been made:

1. The maximum likelihood method has been incorporated

into the previous program. This is accomplished by

replacing subroutine GETCML with a new version. The

maximum likelihood method should be used only when the

numbers of observations is greater than 100, or the

number of bins is greater than 60. The Stacy-Mihram

method should be used when the number of bins is less

than 20 and the number of observations is greater than 100.

14

in

wi

KKC

--

--

LJ

z- H ~L&J

E-4 E-' I

1-I-

H H C

0 *in i L J

-oJr-4 I

In

~L4J

CL

LA-

15

2. As an added option, data can be read in the form of

densities or counts per bin.

3. Printer plots of Rayleigh, generalized gamma function,

and experimental data are generated.

4. Since the extreme values are a function of the number of

observations (time), time effect plots are generated along

with tabular results.

Three proprietary programs supplied by DTNSRDC are used in

the present system. These are PLOTPR, MGAMMA, and MDGAM. PLOTPR is

used to produce printer plots of data written on unit 3, MGAMMA computes

the gamma function, and MDGAM computes the incomplete gamma function.

Printer plot programs and programs for the gamma function are readily

available on most computer systems. Hence, replacing these with programs

available at different installations should present no major difficulties.

The incomplete gamma function can be obtained from the gamma function via

a simple integration procedure. However, due care must be exercised to

assure sufficient numerical accuracy.

A complete description of input data, printed output, and

subroutines follows. A listing of the program is presented in Appendix

A. An example of print out is presented in Appendix B.

INPUT DATA

A description of input data follows. Card images of a typical

run stream are illustrated in Figure 3.

16

Card Variable Cols. Format Description

1 IC(l) 1-2 12 option to convert inputdata from frequencies todensities.HNEW = HOLD/(N x DEL)

ON: IC(l) = 1

2 IC(2) 3-4 12 option to convert L valuesfrom time to sample/run timeL = (L /Run time) x NNEW OLD

ON: IC(2) = 1

3 IC(3) 5-6 12 option to change randomvariable values to midpointvaluesON: IC(3) = 1

I IC(4) 7-8 12 option to convert inputdata by factor CALON: IC(4) = 1

1 IC(5) 9-10 12 option to plot Histogram,Rayleigh and Gamma with"PLOTPR"ON: IC(5) = 1

1 IC(6) 11-12 12 option to plot above inMKS units (change byfactor CONVER)ON: IC(6) a I

1 IC(7) 13-14 12 option to plot L in hoursvs. XD, XG (Time effect

plots)ON: IC(7) = 1

1 IC(8) 15-16 12 option to plot above inMKS units

ON: IC(8) = 1

1 IC(9) 17-18 12 option to print gammafunctions for all L valuesOFF: IC(9) a 1ON: otherwise

17

Card Variable Cols. Format Description

1 IC(lO) 19-20 12 option to print above inMKS unitsON: IC(lO) = 1

1 IC(ll) 21-22 12 scale on Time Effect PlotsEach dot will be spaced by10 ** (IC(ll)).-9 < IC(ll) < 99Default: .05, 1-5 hrs.

1 IC(12) 23-24 12 IC(12)=O calculates designvalues and option for plots.IC(12)=l no design valuescalculated and no plotsprintedIC(12)=2 no design valuescalculated, but option forplots.

1 IC(15) 29-30 12 debug printout for Stacy-Mihrammethod

1 IC(16) 31-32 12 number of double pages onplotDefault: 1 double pageminimum is 1 double page(2 pages)

1 IC(20) 39-40 12 IC(20)=l: Use maximum likeli-hood method in estimatingparametersOtherwise: Use Stacy-Mihrammethod

1 ISTOPD 41-50 110 Number of increments inexcess of 200 to be usedin determining variousstatistical measures.Recommended value is zeroor one.

I IPLOT 51-55 15 IF IPLOT 0 0, Calcompplots will be generated

1 IRAY 56-60 15 IF IRAY # 0, Rayleighdistribution will begenerated

18

Card Variable Cols. Format Description

I CONVER 61-70 F10.0 Conversion factor to gofrom English to MKS units

1 CAL 71-80 F10.0 Conversion factor of inputdata to measurement desired

2 IOP(1) 1-2 12 IOP(1)=O: c = 2.0 asinitial guess for use inWegstein iterationIOP(1)=l: Initial c valueread in.

2 IOP(2) 3-4 12 IOP(2)=l: Write initialc value

2 IOP(3) 5-6 12 IOP(3)=1: Write c, m, Xestimates obtained bymaximum likelihood estimation

2 IOP(5) 9-10 12 IOP(5)1l: Debug printout

3 N 1-5 15 Total number of samples

3 K 6-10 15 Number of d#vsions

3 ALP 11-20 F10.0 Value of I - F(x) corres-ponding to the desiredextreme value

3 DEL 21-30 F10.0 Division size

3 CMNT(1-5) 31-80 5A10 Description of the setof data

4 NL 1-10 110 Number of L values to beconsidered. Up to fivecan be used (See Equation2.15 in Reference 2.)

4 ELL(1-5) 11-60 5F10.0 up to five values of L

5 X(l), H(1) 1-80 8F10.0 K pairs of ordinate andexperimental density valuesto be analyzed 4 pairs percard.

19

Multiple cases are processed by stacking the data sets with

the last card as a blank to serve as a flag indicating the last

case. However, the option cards (first two cards) are only read

once. A run consisting of two sets of data is illustrated in Figure 3.

20

XXXXXXX.C' T7n Oo T , 4.C14 A R GE 9 TTTT* NNNNNNNNNNCC K.AT I TACH.B I 1 Aq BBBBBBBBBbD. I tl TTTT-ATT &CHI9 R DC.ATTACH914SL.

Tir, T (LS SLNPC1 NAP.

.311 195 0.01 11.0 ;2 H 3

.0075 in. .0147 30., .0217 A;. nJ7454. .0101 FG. o01V,! 7A. in

"o " fl. .001A

1 2. .0005 114. OW 126. .000! t!P. .0150. .0 162. .1 174. .000'261 14 0.01 3.0 "? .r In

t.5 .01527 pick IP°1 I - •~ f)Frlq R 9 I n W %O4qfi2

13.5 .0559A 16.5 oA343i 13.0 .04071 2?.!' 001"A25.5 *f1272 >.5 .0076! 31. .i0'' 3., .0012737.5 .00127 40.5 0fl025 4

nLANK CARDI

FIGURE 3. CARD IMAGES FOR A TYPICAL COMPUTER RUN

21

PRINTED OUTPUT

The printed output is dependent upon the options that are

chosen. A general description of the printout follows. A sample run

is shown in Appendix B.

The first page consists of the user options chosen. The

options are only printed once for all the data sets. The initial guess

for c, the value of c at each iteration used in finding c and the

estimated parameters are next, if maximum likelihood method is chosen.

If Stacy-Mihram method is chosen the iterations for finding m are given.

The second page identifies the data set being processed. The

number of observations, number of bins, a, and bin size are next

printed followed by the bin widths, the histogram data. Next the log-

arithmic moments of the data follows; y, s, and T. The last items in

the header are the calculated generalized gamma parameters m, c, X as

computed by the maximum likelihood method or Stacy-Mihram method.

Eight columns follow: the values of the random variable, the

value of the random variable in MKS units if CONVER is given and Option

6 of the IC options is chosen, the corresponding Rayleigh predicted

frequencies, the corresponding measured densities, the corresponding

Rayleigh predicted densities and the corresponding generalized gamma

predicted densities.

The values of L, the density function, the cumulative distri-

butions, and corresponding random variables are printed for each value

22

of L. These occupy eight columns of output arranged as follows:

Column 1 - running index

Column 2 - value of the random variable.

Column 3 - f(x), (Equation 1 in Reference 1)

Column 4 - f(x), (Equation 11 in Reference 1)

Column 5 - f(x)L

Column 6 - G(x), (Equation 12 in Reference 1)

Column 7 - h(x), (Equation 14 in Reference 1)

Column 8 - H(x), (Equation 15 in Reference 1)

The following page gives the Rayleigh design values for all L values.

The fourth page gives the generalized gamma design values

for one L value. These include xM, xO , xS, XGP XGA, x0, and XDA. To

the right of these values, xO, xG, XGA, xDo and XDA as computed by

a table look-up procedure are printed. This page is repeated for

each L value.

After these pages there is a comparison of design values for

all L values. The next pages consist of a printer plot which show

the measured density, the density as predicted by the generalized

gamma function, and the density predicted by the Rayleigh density

function.

The following pages consist of a time effect printer plot

which give L in hours vs. x. and xG. The CalComp plots generated

replicate the printer plots.

23

L. - _

PROGRAM DESCRIPTIONS

Main Program

The main program serves as a driver for the entire digital

program. In addition, many of the required computations are performed

in the main program. A description of program flow follows.

All data required for the program is read from unit 5. A

description of this data is presented earlier in connection with the

input data.

After reading the data, the moments of the logarithms of the

random variables are computed along with the Rayleigh parameter and

maximum histogram value The normalized third logarithmic moment, T,

is tested against the value -0.5. If T >-0.5, the case is not processed.

The parameters m, c, and X are computed by a call to subprogram GETCML

via the maximum likelihood or Stacy-Mihram methods.

Once values for m, c, and A are determined, the various statis-

tical measures are computed for up to five values of L. The density

functions and cumulative distributions are printed for each L value

considered, followed by the extreme, most probable, and significant

values. The extreme, most probable, and significant values are obtained

by the Wegstein iterative method (see Subroutine WEG).

After the above computations are performed, CalComp and printer

plots are generated. These consist of comparisons of the measured den-

sity function with the generalized Gammna density function and with the

Rayleigh density function.

Descriptions of major FORTRAN symbols are presented in Table 2.

24

TABLE 2

MAJOR FORTRAN SYMBOLS USED IN MAIN PROGRAM

FORTRAN MathSymbol Symbol Description

N N total number of samplesK K number of divisionsALP a value of l-F(x) corresponding to

the desired extreme valueDEL AX bin sizeNL number of L valuesELL L array of L valuesISTOPD number of increments in excess of

200 to be used in determiningextreme values

X x array of ordinate valuesH f. experimental density values

S S value related to second logarithmicmoment

YBAR 7 first logarithmic momentT T value related to third logarithmic

momentR R Rayleigh parameterC c parameter cM m parameter m, realAMBDA X parameter lambdaXO x ordinate valueFOXO f(x;X,m,c) predicted density functionBFOXO F(x) cumulative distribution function

BFOXL F(x)L cumulative distribution raised tothe Lth power

GOFX g(x) density function corresponding toF(x)L

HLO h(x) asymptotic density functionHHO H(x) asymptotic cumulative distributionXSUBM* xv most probable valueXSUBO* x value at which F(x) = 2/3

0

XSUBS* x significant value

XSUBG* x most probable exteme valueg

*These symbols are used as labels in the printed output generated by

the program.

25

TABLE 2

MAJOR FORTRAN SYMBOLS USED IN MAIN PROGRAM (Cont.)

FORTRAN Math

Symbol Symbol Description

XSUBGA* x most probable asymptotic value

XSUBD* x design extreme value

XSUBDA* Xda extreme asymptotic value

* These symbols are used as labels in the printed output generated bythe program.

26

Subroutine GETCML

Purpose: To determine the parameters of a generalized gamma

distribution from statistical measures of input data by either

Stacy-Mihram method or maximum likelihood method.

Usage: CALL GETCML(AT,U,E,S,YBAR,GAMMA,OOC,T)

COMMON/PARAMS/,/PRNT/,/HIST/,/INPUT/,/OPT/,/IOUNIT/

Subroutines and Subprograms Called:

MLHCML Maximum likelihood estimation

WEG Wegstein iteration

PSI Digamma function

PSIl Trigamma function

DIST Evalutes measured and observed

frequencies and densities

MGAMMA Gamma function

Description of Parameters: See Table 3.

Remarks:

(1) If XD does not converge, a check value is sent

to calling routine.

27

f

TABLE 3

MAJOR FORTRAN SYMBOLS

Name Location Description

AMBDA /PARAMS/ X parameter of output distribution

C /PARAMS/ c parameter of output distribution

M /PARAMS/ m parameter of output distribution

X(I) /INPUT/ random variable values

ICKI /OPT/ Check value. If ICKl=l, c rootwas not found via maximumlikelihood method

IOP(1) /OPT/ options

YBAR argument logarithmic mean of input data

S argument second log moment of input data

T argument third log moment of data

CMNT(I) /INPUT/ header label for GETCML output

FOBS, FTH /PRNT/ computed values for observedand theoretical frequencies

DENO, DENT /PRNT/ computed values for observedand theoretical densities

OOC argument reciprocal of c

ICK argument check value. If XD does not

converge, ICK=l is sent backto calling routine.

U argument trigamma function of finalm value

E argument digamma function of finalm value

28

L ...

. . . . . . . . .o . . . . . . . . . . . . . .

TABLE 3

MAJOR FORTRAN SYMBOLS (Cont.)

Name Location Description

AT argument absolute value of the thirdlog moment of data

H(I) /HIST/ densities corresponding torandom variable values.

29

-I . . .. . ... . . . .i ililml -" • .. . . Hm , -- ...

Subroutine MLHCML

Purpose: To estimate parameters X, c, and m by the maximum

likelihood method for the generalized gamma function.

Usage: CALL MLHCML

COMMON/PARAMS/,/HIST/,/INPUT/,/IOUNIT/,/PRNT/,/OPT/

Subroutines and Subprograms Called:

WEG Wegstein iteration

PSI Digamma function

F Function of parameter c

G Function used by WEG to determine c

Description of Parameters:

Name Location Description

AMBDA /PARAMS/ X parameter of outputdistribution

C /PARAMS/ c parameter of outputdistribution

M /PARAMS/ m parameter of outputdistribution

X(I) /INPUT/ random variable values

0(0) /HIST/ densities corresponding torandom variable values

IOP(I) /OPT/ options

ICKI /OPT/ check value. If ICKl=I,c root was not found

Remarks:

(1) c is restricted to values greater than zero.

30

(2) If a root for F(c) is not found, a check value is

sent to the calling routine.

(3) An initial guess for c for use in WEG may be

read in. Otherwise a default value of 2.0

is used.

31

Subroutine DIST

Purpose: To calculate frequency and density distributions

for Rayleigh and generalized gamma distributions.

Usage: CALL DIST (all parameters and arguments are passed

in COMMON Blocks)

Subroutines and Subprograms called:

MOGAM evaluates incomplete Gamma function

Description of Variables:

Variable Location Description

X(I) /INPUT/ random variables values

H(I) /INPUT/ array of histogram ordinatesfor input data

K /HIST/ number of bins in inputhistogram

N /INPUT/ number of observationsin input histogram

FTH(I), /PRNT/ computed values for theFOBS(I) observed frequency distri-

bution and theoreticalfrequency distributions

DENO(I), /PRNT/ computed values for theDENTR(I) observed density distri-

bution and theoreticalfrequency distributions

Remarks: The input histogram need not be evenly spaced in

the abscissa x.

Method: Generalized gamma cumulative distribution is

evaluated by MDGAM. The density function is obtained by

numerically differentiating the obtained cumulative. The

Rayleigh density distribution is obtained in a like manner.

32

Subroutine WEG

Purpose: To determine root of x = f(x) by Wegstein iteration.

Usage: CALL WEG (I, X, J, N)

Description of parameters:

I - input, iteration count. Initialization action is

taken when I = 1.

X - input, estimate of root of x - f(x). On output,

refined estimate of root.

J - number of significant digits of accurary desired in x

for solution -- used only in initialization.

N - output - completion flag

0 convergence not obtained

1 convergence is within given accuracy

Remarks: The function whose root is to be found is computed

externally. The calling sequence is as follows.

(1) Initialize by issuing CALL WEG (1, XG, J, N) where

XG is the initial guess for the root and J is the

tolerance described above. N is irrelevant.

(2) Set up a loop to calculate XN=F(X) using output

X from WEG

(3) The simplest calling sequence would then be

X=XG Initialize X to guess valueDO 1 I=l,ITERCTCALL WEG(I,X,ITOL,N) First pass will inialize WEGir N.EQ.1) GO TO 2X - F(X)

I CONTINUEC MAXIMUM NUMBER OF ITERATIONS REACHED WITHOUT CONVERGENCE

STOP2 CONTINUEC ROOT FOUND WITHIN TOLERANCE

33

Method: The Wegsteln method refines the root of the equation

x = f(x) by calculating an improved estimate xi+1 which is the

intersection point of the line y = x and the secant line of

f(x) based on the previous two evaluations of f(x). This

method requires only one function evaluation per iteration.

The equation for the intersection point is given by

CX) it -

Completion code N is set 1 when

x x I

i.e., when the change in X between iterations is less than

one part in lOJ .

Function PSIl

Purpose: To evaluate the trigamma function, '(x)

Usage: PSII(x)

Description of Parameters:

PSIl(x) - value of the trigamma function at argument

X.(Output)

X - argument of the function (Input)

Remarks:

(1) Argument x must be greater than zero.

(2) The trigamma function is the second derivative of

the natural logarithm of the gamma function.

34

I I l . . .. . . . . .. . . . . . II lill I ll lll I . . .. .. . I . . .. . .II. .. . ... .. II . .. . . .. . .. . . . . .. .. . . . ..' ' " . . ... ... . .. "

I7

Method: For arguments greater than 13 an asymptotic expansion,

YaI-- - _LA rax 6 3 oy X 4Ly 3oXI

is used. The truncation error associated with the above expan-

sion is less than 1 x 10-10 for x > 13. For arguments between

0 and 13, the recursion relation

is used, where m is chosen as the smallest integer for which

x + m >.13. '(m + x) is evaluated by the previous formula.

The formulas are obtained from Reference 8.

Function PSI2

Purpose: To evaluate the tetragamma function, '"(x)

Usage: PSI2(x)

Description of Parameters:

PSI2(x) - value of tetragamma function at argument X

(Output).

X - argument of the function (Input).

Remarks:

(1) argument must be greater than zero.

(2) the tetragamma function is the third derivative of

the natural logarithm of the gamma function.

35

Method: For arguments greater than 13, the asymptotic

expansion,

is used. The truncation error associated with the above

expansion is less than 1 x 10-10 for x > 13.

For arguments between zero and 13, the recursion relation

YK

is used, where m is the smallest integer which satisfies

x + m > 13, and T"(x + m) is evaluated by the previous formula.

The above formulas are obtained from Reference 8.

Function PSI

Purpose: To evaluate the digamma function, '(x).

Usage: PSI(x)

Description of Parameters:

PSI(x) - value of digamma function at argument X (Output)

X - argument of function (Input)

Remarks:

(1) Argument X must be greater than zero.

(2) The digamma function is the derivative of the

natural logarithm of the gana function.

36

Method: For arguments greater than 13 an asymptotic expansion

is used:

The truncation error associated with the above expansion is

than 1 x 10-10 for x > 13. For arguments less than 13, the

recursion relation

is used, where m is the smallest integer which satisfies

x + m > 13, and T(x + m) is evaluated by the previous formula.

The above formulas are obtained from Reference 8.

Subroutine MGAMMA

Purpose: To evaluate Gamma function

Usage: CALL MGAMMA (X, GAMMA, IER)

Description of Parameters:

X - input, argument of Gamma function

GAMMA - output value of Gamma function at X

IER - error code

Remarks: This is a library routine supplied by DTNSRDC.

User must attach library (IMSL).

Error code meaning is unknown.

37

Subroutine MOGAM

Purpose: To evaluate incomplete gamma function

Usage: Call MDGAM(T, X, PR, IE)

Description of Parameters:

T input, limit of integral

X input, exponent in integral

PR output, value of incomplete gamma function

IE output, error code

Remarks:

(1) This is a library provided by DTNSRDC

(2) User must attach IMSL library

(3) Meaning of error code unknown

(4) Function evaluated is given by,

S f T "

P el

U

0

Subroutine HISTO

Purpose: To set up labels and plot the experimentally measured

density function.

Usage: Call HISTO

Subprograms and function called: SCALE, AXIS, SYMBOL, LINE

Remarks: This program takes the measured density, which is

passed in COMMON and uses these values to generate data for

a CalComp plot.

38

Function G

Purpose: To be used by WEG in evaluating the c parameter

by the maximum likelihood method.

Usage: G(c)

Subroutines and Subprograms Called: PSI

Description of Parameters:

G(c) - value of function (Output)

c - argument of the function (Input)

Remarks: c must be greater than zero.

Method: To implement the Wegstein technique the equation

f(x) = 0 must be put into the form x = g(x). The equation

used is given by

±L 0 1 4 S

v~04

+

V.A, Y. 0 Z

01 is the density

Xi is the value of random variable

39

Function F

Purpose: To evaluate the function used to find the c parameter

by the maximum likelihood method.

Usage: F(c)

Subroutines and Subprograms Called: PSI

Description of Parameters:

F(c) - value of the function used to find the

parameter c (Output)

c - argument of the function (Input)

Remarks: c must be greater than zero

Method: The equation used is given by

L \4 .. S.oi-

- 7~

01 is the density

Xi is the value of the random variable

40

4

CONCLUSIONS

An extensive study of an existing digital computer program

for determining parameters required to represent SES 100B trials data

by a generalized gammna function was carried out. Difficulties encountered

in earlier studies in which approximately 5 percent of the cases analyzed

produced unrealistic values for the distribution parameters have been

resolved. In order to resolve this problem, data sensitivity studies

were carried out and three other techniques besides the Stacy-Mihram

method were investigated. Based on results of the study, criteria are

developed for determining cases that should not be processed. A summnary

of major conclusions follows.

a. The Stacy-Mlhram, maximum likelihood, grid search, and

nonlinear least squares methods all yield estimated proba-

bility distribution functions which represent very well

the experimentally measured histograms.

b. Design extreme values are more sensitive to the experi-

mental measurements than to the numerical procedure used

in determining the estimation parameters.

C. In some cases the predicted extreme design values are

unrealistically large whereas the significant values are

realistic. Based on an analysis of over 100 cases, it

is concluded that cases having a nondimenslonal third

logarithmic moment greater than -0.5 produce unrealistic

extreme design values. Results of a data sensitivity

41

study have revealed that in all these cases the data

may not be considered as a sample taken from a steady-

state random phenomenon, and hence it is recommnended

that statistical analyses for these cases not be carried

out.

Kd. The Stacy-Mihram method should be used when the number

of bins (number of divisions used in the analyses) is

small (< 20) and when the number of samples is large (> 100).

e. The maximum likelihood method should be used when the

number of bins is large (> 60) or when the sample size is

large (> 100).

ACKNOWLEDGEMENTS

The author expresses appreciation to Operations Research, Inc.

for providing the analytical services necessary to carry out this

investigation.

42

REFERENCES

1. Stacy, E. W. and Mihram, G. A., "Parameter Estimationfor a Generalized Gamma Distribution," TechnometricsVol. 7, No. 3 (1965).

2. Ochi, M. K., "Computer Program for Estimation ofExtreme Values Based on the Generalized Gamma Distri-bution," DTNSRDC Report SPD-692-Ol (1976).

3. Ochi, M. K., "Extreme Values of Surface Effect Ship(SES) Responses in a Seaway, Part II Analysis of SES-100B Test Results," DTNSRDC Report SPD-690-02 (1976).

4. Whalen, J. E., "A Rapidly Convergent Nonlinear LeastSquares Procedure for Representing Hydrofoil Data,"Operations Research, Inc., Report 810, (1973),Contract No. N00167-73-C-0254.

5. Parr, B. van and Webster, J. T., "A Method for Discrim-inating Between Failure Density Functions Used InReliability Predictions," Technometrics, Vol. 7,No. 1 (1965).

6. Wegstein, J., "Algorithms 2," Communications of theAssociation for Computing Machinery, Vol. 3, Iss 2 (1960).

7. Johnson, N. and Katz, S., Distributions in Statistics,Continuous Univariate Distributions, John Wiley andSons (1970).

8. Zacks, S., Theory of Statistical Inference, John Wileyand Sons (171).

9. Abramowltz, M. and Stegun, L. A., Eds., Handbook ofMathematical Functions, National Bureau of Standards(1964).

43

APPENDIX A

COMPUTER PROGRAM LISTING

A-i

EAL vA~Z- . )- !' !) 9 Z fr -1 *F"' fDQ 11 ~ Cfl 2 ' A 0/ 4

!E"SIY V~lv0(7)*ELTf7)9 S()q "

'OCr~fqPLO:P.UNPLC.TeTP( ) 9ZTYtf,.r* TTV,,

~T -J' * p ~

C14 m~ -14 /0 14 C /1 laT IC 17

"'' I'4 T/ 12-9 1 T) TY'Tv.C%T 1 7- ~. P 1"Tv1;71/ .

40ITC(C.113) ILT1.t

2?1 GPCTIC- US'ED I* T-LS P1,.N SrT)

r1O 979 ,11CI I.!12

L?7q C3 TILEIF( C INvro.'a. . ) CO~IVT =1 .0r" ~ T (2 7 !.10 9215 9'F 1 .o

C C' TIN LEVNI I ) =.

C..* REAO IPUT 6NC PQpT *.

C

110 CR4q ATf2I5.2'1O.Q,5A1O)

C FA L 'JAL'ffS

OED(*12)'L fLL I~I=%'L

IM= 1. -ALP

c DEL. RE'. I'. c~r . AR')IYc IF STARTTI 011*T M.E. Gq! -SIG"' JILL P"rCFrE"C TH-E STARTT\,r VALLE "lYVE' AS OrL.

2~vW=DFLiIF(2IEL."'.1.01 ': TIjaST=-JEL

DSU u 0 (1v (I1) 5!

?I IN6 Q )=r( 11J SU Zsu'.CT

!c( 'CCI .E' . 0 c~Lj IT TFLr.E1.1) 'n Tn 1002'

q T-1 1.3

c IPTT3'J 1: roC;VEr:T !':PIJT I'" CE'lSITY IFTE r-rc

it -Q!) = '(l) I (=L'3ATrN)*'(l))

lt1'TC"'; 2: 'OOlcy L VALUFS !F %ECrS-,A~Y

'TI ME =ELL(1)~12 !=1,'L

C OT 2 12 !: I.DJUST T-PUT Y( T) TP3 MIrPnTNT Or !TFRVtL.S !r ''Cr'z5-Qv3 TrCIfr'.)NE.1) GC TP3

.0 1' T =I~ (f) =Y(fl 4 07/.C OPT1O0J 4: C'of.VFRT INPUT T3 "ESUREME'NT 'Es IREr4 IF( IC ( 4 Nc'.I ) 10 TI 9

DO 7 T I.K"M= wfl) 0 CAL

Off )=Off )*CAL7 XC!) = (l) * CAL5 CONTINLrC IF L VALLES ARE 0% O I" A! SAmOLFS DEQ TP". TOTEOVIL,C CIT M0 UTE TIT vE VALUES F2R PLMT

IF(ICC2).E*".l) "0 O P:?TI 'E:FLL (1)/ll':0 57 1 1.L

-5 r7LT(!) FLL(t) *P'E.

6 CON TIN LE

YlvA X =0

*9* 0 -

C

20 1 1=19K

IFcT!.'!T.YVAV)YvAY=Tl,

P=RTII)2

YT3 ='rI -V 12

! CCNTI*Y!

C *.** CV"UTE YPAI% S. T .*

Y94 0 S I

T4=v AO.YBA2

T= T2*rS3- 3.*YEAO.T3.VPIQ*f3..T4-T ) )/ .'1 ,

1237 'CRAT (1"O .A5'T IS Vj"EA TEP TH4AN -. F 'e - Tn NrYT 'ITS .~

4T=AeS (T)

c c~

!FUTCK.EG.1) GO TO zoIF~ifI.r0.tl 7,0 TO ig

Q-114 r" mTf1.V1,22l4PYLEVIr4 r ETIGM VALtJE ~

'JPYTEf6.P013) FLLCJ)*XRD*YQD4SQnl?2 CO0.JT !01 r:

16:13 .4)IF(ICf!21.F'.l) r0 Tr I C4

C*** C04PUTE Cv9LAMoOA OO"CTS FnO LATER U~r ,.

111=TI-1.

C 10000 Li 0 -41OO TwE' L VALUES

c INflITIAL GUESSES FCQ X AN~D v *

C:Y

TYS C.

Tyr)Azi ,a.

cL=ELL FIL)

IF (E2L .1T. 303) GO Tl 0 011

'.I T' A^1

I I C (Y' E C 'JP I T T0; 71'X1'4) )4

710 FZRAAT (iP/* FYTRAPO3LATE VALUE! */I)rSTOP = 200*!ST'Pl)

c * SET UP w1ST.nGRA% PADAr D!s

r =0

TAX X= -)" *Y .LEN(:0

W LL=: 3D 120.

R ES=(FI A~0 TSC I ff2 11(p0

YTO = YC . 11000 L000.

C "* C0vcUTE SIOALL cfX), PQOOAETLITY 'rkSry 9P! ..

C

T45=( A Y9 A -Y 7**CYSzFvt(-T40)

Oyo= -*4TC

IIIP.E7.5JO0) GC TO I ~C2C TOI~

ST? =XO *)( TINX =2. *Y TI *r YOC YT2)

r( Rv') .3. A )YA='

11002 C04 T !!4Lr

C *..COvPUTE CA'rT A L F (Y. 0' CofoI TTY 'IS T~lI LIT C11--'

CALL T * 9 *

S 1 FCQ'AAT.:-H FORCR IN "A~f rOIVTRT~JTC2 CL'PXTI)N u~r~

IF (C .LT. 0.)'I= .P

Tv (TTT.LT.-!03.) 't' T'" PtG3

-^G! rFOYL =^A 14 ONT!J)LF

C *...',COUTFC SV LL C-MX, 1;"ALL P(Y), CA0ITL wfX)

C

a4 r L*f(VFOYfL/l3F0Wn)fl).p)0

Ic (EX.LT.-31P.) rf- T- .4010

-4L3 EL.C'Iyr*Ev

10 Tn 111

14LOO = L .-'H0 m-E v I

IF (TF *GT. 1) flO TO 12001X WNS CI ) = X * CCN V'FOXOMSCI) =FOYT I CO X'VrR')FGf 1) Rr%2

r§Ffl) =G"FY / CO*JVE0,M.'MStl) = HL9/CNVE'HMO0"SCI) = liMO

YCOM I

Icy

c I*** [IT IALI ? T09! .**

TX=A FS ferOVL.414 A)7!r ( x-TYC) 000,99019,001

!~ (.CE.~X)Gf3 Tr, 9012

9 02 CCI NL E

IF f'X-TY9) 9903q9V>,t043 0 3 7 a T X

'4 04 POITTIF (TX^A *rE. 6AL) to7 an

300S TYA X

90C9~ C04T NL-

TV =: IO.L

4101 TA '!X

E12 y 3 A v .1104 S'

11003 CCNITIA!LrXS=YC(0).llr ) 0 LL

71 FC~A( f9FX9LE.Q4 991H'2 W. *~TO /1

211 O';IT-- 6711c J,(,STJ)I X'Dt).F f . F L

11C0 C0OIT14LE

17~G TO 17NL

94ITEC(123Eq2)0 0TO17Dc1C tc~

C iI F 6p j ) Jp S J o O n*-( ) t( ) r % ( ) !c v t~

C "L *.** qp''lSOLV )

C 0TMc

Tgrc~iEl2 CO T J)*Q7^

XSJFVS = X0'J Ay C~l VE

CC t** SOLVE --CR X USJP~ WISTF!I ITE04TTVE vl:Twnr *..

TT=ALD#F~L

CALL dEC. '1 U,*,O)C ** ST,2T !l'E~rEVl LO~ *

23 T45 =(AoQtrA*U)*.C17ALL ~fa..,TIF (C *Ll. 0.) - O I.-DO

C 'f=J.TT#5UL!CP*)CALL WE~f?,U90."C)

C 4OITE fg;92'5) U*P,T'TT

IF ('!E *LT. c0) ro TO llt

30CI CON T !JMEt'('C.F.~'C*C T^~ 33

C32 V 7j 2r) =

CC EVILUATE G&vUA DIST019UT~rk FuLIPM!

C

C CALL *JCr~A'( TTo.,pF.TE)

712 rOR'AT (* 00*OQ Gv

C *'.SOlLVE rlP 4 I!ST'S WFrlSTFIPI TT-?C&II!vf:T'CC

CA =C*A080A

"L'4 =EL-I.130 = O ^U =UO

**STAOT ''FOATTOJ LOt)5

43 IU Aon2AUC 8I'..C

TF(AUC *LT- 20.) SO TA 9ACO

1; T C 6:r~,fot C 0RiT If14L

C&LL 11"05A!AALCw9PR91E

6 1 Cn'JT'JUrCtLL 'Jr!2,1),O,0C

C WQ~IT (GTG3) U.PR,F.C.EYPTY'CvAUC*ALq,T7

.)3

COMA (* DP!-47

TF U! r'E. 1. 10 Tri 6003

PD TI 435

'! * IIF ("E .LT. 1!91 SO Tm 1-1100

4000 CO' NL -

c~ C'%JD ITFOATT-0-4 97" If

'a 7 r IN T I LC

C.. SOLVE !'Q USING 'JESTEI': 1TcPAT1'E mETwV'*..

C

VK~g( /3IJO0 x (K

='iL 'Jr lt~l

C .* ST40T JTTP5T'TO9 LOOt';.07 AU YAU

AIJC IU**CCALL MtCGAl'ALC",PRTE,Y' (C .LT. 0.) PP

It .TTu-PRCALL WEG(2*li.O,'!C)

C iPIT!:(69703) Uoc'IF (U.2E.0) SO TO SOO&

C " 0J')= . E-13

6004 CO34TP4(!7' - ME 4'1

IF (NE.Ll.50) q0 TO 6O1!'4RITE (SP2100)

20aO CORMATrAH 'ff COP.VERO-'Ettr fITAPJE FO P Xr!J9C)U 0

oTr- 'n0

S 1 9 CDVTTNLE

C .. ENO ITrPATIlt F! Y

lJlS = * C -F

3 v 1

S *TYSUFI *,rl2.4,3Xq*TsUPOM4WS)= ,1~A

C *'*.* CC14UTE SICNIFICANT VAL"E

IF: Cj .E9. 1.) 0='EXfl

CALL MAMAETGA~f1E*)

,j F:)0mlT(4w -'QCR 114 GAm41 FWJCTT"I CEOQIJATTJ TQ

A.UC a,.

IF IC *LT. * '

UvS = L * CO'VER

3 l~ roqAAT(?X7HX4SU~Er: ,Fl2 .4q3W,2HYSU!"(mwr) *1.9y

1 9.TYSLF:= qF12.4,3XqI3"TXStF'Gl KS)= 9 F]'.4)C

SO~LVE FC SUTTCVALUV F Y USING

EU = L/Ga "AtF (C *LT. 1.) rLOG=-EL~r

IJSE JXG AA.,

CALL 'F1;(jU,vO)

C ** STigT ITERATION Ln-Y ''.310 IF fU *LT. 300) GO TO QIE01

UT =3 .1,0 TI Pr

A9'31 UJT = U*"*Exr(-LU)-91 'J=Cv~'C*FLCl,*UT

CALL WEG(29U,09NC)

JO:UD+C( 1):2 Uo

J~I . c- 36011 CONTINUE

'5312 C(40'J"L

11C )c A( W! CNER~irD T ITAN FO FK l~A

'44TE69OX U9^0CCO"POE0

':n TI E113I )UUS YG "A

-1 Ca~J'PJLE

C1C 1*4* SOLV *~ *11T TI CC'J "A -Q I''j jPli

C M *CNE

"3T!~C3% U."S)OA*,(

631 cR"A l' q*XU9 A

,PTF"(IC *Ls. ) PPfOYU~~E~~n

615 ':RAf~,YU~. *F24jY*S.0"v) gU?&

CA=LLm(2UO,")

"JE =E4I

TcN.L.0 *G ST Ta EAT' LO*

IFI C LT0..P .r!I' =V [JO4

'A* F(J.' r! TO 6041

C *' ENO ITCQATG' TO 6044

IJIE (909

-V U * : -:EEO EXCA * C^NV~v

6-45 itTr( 9~44) LU.UmqEVCAEXDAm6046 Oq'ATf2X,.YlUCA= *9Fl2.4.2x,*XSU trPmw) *.F11.4.1Y,

$ TYStUefYA: *9j..X*~rU"( ) -,F!2.4/~//)

6047 FOR'A M~(1119T3,q"TIM- c!T?0yg~, 4 T! HP I 9

..7 VPLfl,1U2,?

ESCM = ELTfI) / 60.0

$!77.F1 0. 4,Tq?%*FIl'4)

cC ^D~TTJN 9: OL^T HISTOGGA" WITHI *L'MT DIe~f:

q7! !;fI t(c).LT.1) ' ' TI3 "7

C C'2PUTVE HT4STO'RA' VALUES

ICN

,Y) 93 1 1.1cC4T =ICOJT + 1

IO 92I I1I

~IF( 'P.L.lS O8

I(1 2lL.~)S O9

91 M ) .

4ANSCA. 2 1I~SP

ITP(2) 2 6IE' *3A

TT )2 6w RAYL

TTP(9) 2 E0-r!tHT T2 f ) = 6HL^TSTTW(I) =2 WAUITX(2) = 6-09~ OAN

!TY()) = 6wOC" Va I

ITX~f) = 2P

T TY fI) I PI S!rTY (2 )=SH

TTY ( I) = 2 C UTTY f4) = 2 N "

TTY ( ) = 411

c 'Cf5)2 6R1TE VALUES -FR OLOTTT!'

TX 1 ) = 6u 'wDo9 1 = 2 V

7w 1 ) 7(l / C:%IVER

OrNMS ( I z F'111) /CCZ';VEQ

'!I Tn112~I

C ONT T'J ~ ! T"sWCT:~T ~ G~C

1 9G1 1 0 1

7 CC" TO N L

CALL PLdO~TlqI14IA

c IPTONT: TIM EFFFCTE PLOTS ~ LO~AUTI u~ro

I F1I~''.0I " 39

'JPL2 I2T

C OPTION 1 1: ?CALE FmR r"OEr-r5.0E'T VARTIFL7 T'I PLOT( 'EA'!LT. I I

"AXSCA =

ITI .1= jFFECT

IT*(!) =6fMOLOTS

TTX '?) 6-fl HOUP

1TYC1) ri1 !',1 11TY(") 6H VALUE

:VA P (,) 4vf'lVARe3) SHXSUR

TVAP(4) =fC 10TION A : TT"c' EFFE:CT PLOTS T%' '4VS !JITTIICC

lFf1CtF).NE.1) rnT^~ "0

!VAR f2) -,WYfl..F(s

ITY CA)

S . 1T' (E 7C (jI9 X(jL'xfJ

Sl Tn E5

65 CC4INLECALL OLOTPO(709IVAR)

!F(TDLCT.E^.0) Gn T' IqC ENO. l' O 000 L^IF***C

C PLOT* RC.SULTS

'ILL 0Lr'Tr"LLp.fl.-3)

CALL HISTC

XN( lP.0)=LNELX

ON( T P+ 2) =0 9: L

CALL LllIE(XNJqFllolP,1q,p' )!r(!QAY.Eq.0) Gfv TO 10014

IC014 C3NTINILIFGO TO 59

11013 TF(IPLCT.E0.C) STOPCALL PLOT(CXLL90.,999-)STOP

SU9ROUT I 'E !ETCML( AT UlrqSqYQARVGAm!nO -C4 t .Z1

"11!E S1CCI: YEW.1 CC ,F "Sf 1

C* IC *** S)L'IE C' " USTIJ' V7GSTrVP TTFQATTVFr vETL.4-

C

r .. ST12T rTT TION LOO

CALL WFJ(2q*Co C

IC(UC.Lr.,s~i cc To 22o,^

6% rOqu8T(2tfM * Cl'!VE1rENCE 'RTAj,"! F*V D l

2COO IF(v.GE.P.) O T' 2' 01

?1.1 C04 T IN LEIF(PIC.-'I.9 -0 T' 3

C ".10. ITERATION pF'D

C .**COvPUTE CC

rONT!TJtr

'J2 P I IC SIRTfU2/S)

Ic=1. 1CC

C.. CCuPUTF, LAwC!A *.

4 AP31 =EXot-Y8AR+U1*or)5 CONJTINUE

'F(IC(2:).E0.11 CALL 'LMM~IF$ ICKI.Eg.1 I ETUR'U

IA~(* )CN

1 O "~ AT Q i-I . A10

CMA t .- AL1,,iIF(r.l6 CC IVER *COL

c COM PUTr W((I( ) VIC.' ^EL("'(')

1' XMi(StIi) = (JT) * ~rC F1'JD MKS VaLfl$. OF~ YE

wRIT (,001 NvvALO.

297 F014AT(l1X,*rEL ARRAY*)

F 3R'AT(1l- ,14tA2v!2v1W4)97.4,2y))

296 0R ikTWX4.EL ARRAY(MV1 ).)!F(C^4VE'D.PE.1) WRIT(o?9?) ('"rAC(I i,'(f')r1

E'"ALUATF 1,A"mA rUIC TY 31

103 cO&"T(464 FQFCO IN C6kt"A FU*!CiTZ'I CPAUTATTJV. E:Plp .1.

CILL 011T

!OC:1.dCCALL lrC,-4m 8 "GA"MA, TEI

Pm< = * (C0NVER-1~)

IFlIC12').E2.1) 0ET~l.HwAYImU" LI

I !12.4#2v.1 L&4DA('e~l ('719.4*93140

= .'1?.4,Q4(mvlZ =t/,74 9 IA AqAR,7WM(TS4I'4YORDO81-P AYLE H

110 FOR'lAT(T'.;'HVALE Oc.Tlq9Al'VALUr OFTloPrA1R~TjIA8 ,T'65-HGA 'A.TS 2,eU4rA ,!JPEC ,OP ,AP eTll&* 5'4'ZA"vk~

$"H'Q EDICTED ,T82.7HDE-"SITT0T ,*HPQEr) TCTE' ,Tl ~qPC"IT: 1

1210 FOq"&T T!,FP.4.T199,Q.8.T37.r'12.4A7ACO.rlr.4.%.C1~r2o.

' T9 'I2 4 94 l' 4, ll . 1 . )-ETUTo

SIU3R'UTT'iF HISTC14 10 '~ I l. "0) .Y'lAV XL :.YLF.i.C"J'e

D1wE: S 10%~ Xf2f0 ),Y C2n) 9R VAf9)

3jD (N2)=YAAX

C Cl'qPLTE SCILE CO v-AY!SC CR0 IS THE APPAY OF W4ElrT4S FnQ THEI FTNS

*C YLEN. IS T E LENGTH 1'% TICHES (-F To4 v-ylX 7EF;5,tfl p1

C a DATA STATE"C'IT 11! THE 'AATP F'r3ip To -- a C CH-C N? IS TH4E N)Umn'E. OF PC!IJTS 11: (on~f ip; *i SAYS FVEDY '0PE? I^,C TO 9E PLOTTEDC FIRSTv TH4E FT 9ST Y 'ILUE ANNOTATED ('5; THE Y-AYIS IS RETTJ2' EOc III T~ 1 2+1 L"CATIZON OF ')pr

C OELY THE SCALE VALUE - AvOUNT (NF ATA PF INCu- I11;~~EC DY 'SCALr IN THF '!2+' Lc!CATfI'. ^F CPC

CALL SCALE(OPO ,YLENNZ. *1)FI.RSTY-oQUE)N2+1O)ELY=O9DfNJ'42)TITLX=IP4EXCv!KS IONSTTTLY=7HI)F'SITY')RD ('12 )=I.

C SCALES SET UZI BY AXIS TO HE USED -Y LINE TO PLOT

C >mINTS - Y-AYIS LENGTH IS CCSTANIT AHOC IS oEFINjEj 1 1C DATA STATPO~tIT IN THE M"L! PPe,-AM Tj N E 11 T"C'~cSC THJE IXIS ANNfTAT17N 'JILL QE DONE WITHOUT TH~E USE IFC AXIS SO THAT THE NU~~cERS LI~4r UP WITw TPE :11'S IIA,*

'(OJNT I

IF ('RINLC.EFl.%.C) GO TO 5

(('I = INLrO

5 1 =O 102.!,

'(OUNT o!T110 COVT1NL'r

CALL SCALE(XXLE'IvN2.4I)FIqSTX= X('12+110ELX = (J2+2)

C OUT flF'1 67 nRIGIIN

CALL PL.3T(0..93)JO 20 I=l.P?2STEP X(I)*LNIT

c DRA. AXIS PORTION F~fO" CUDRENT LOCATI'ng TO ENE) OF NEXT BI%CALL PL'T(STF040.,2)

c DRA'A TICK( 4ARKCALL PLOT(STEP9-.1,2)

C APINCTATE AVIS WITH NUIAERALSCALL 'UM'ERISTEP-.21 .-. 'I..1,X(I),0.tqO')

C RFTLRP' PEN To~ AXIS L!NF' WITHOUT ORAWI'.G LT'IFC CONtTtIUE DRAW1ING AXIS! AND AN%,nTATP1IG IT FOR THE 097*4AI'InEf: OF TME VALUES

20 CONTINUE

C TTTC TH AXISCALL SY"'FOL(4.299-.52,. 14,TTTLX,3.l,10)CALL AA1S(0.,0.,TITLY,.7,YLENo? .,F!'PSTY,'J)ELY)QA'V(1)=1TH*RAYLEYG4

RAYC!) =IO!4-CC1'PIJTEDPAY(4) = lasiALUEPAYf5) = CG4X~A GEzXLr'-? .g

CALL SkOLv0A(EYOAGE..14,OA(1),0.0.11,)YPk3E=XP AGE*1.4CALL SY COL PA'EYPAG!,*.14,RA(2)f1l .lt)YPAGE=ALENJ-? *

YPASE=YLEM-1.CALL SY EOL(YPAG6!,Y

0AGE,.14,OAY(1),0 .0910)

YP ̂ E=X AGE+ 1 . ACALL SY 01 L(PArgYPAGE..149AY(4v),0 .0,1")XPA GE=XPAGF+. .CALL SYAP0IL(YPAr .Y AGE,.14, AY(0-),C .0 91n)

YPA4 YO A GE-.5

CALL SYtAC0LCXPAC-EYPAGE,.14,CVJT).0.5')

X (2) =6 I'

AT X A(J-1 * TON I)Y (J =2XTV =J1) (I)

A (J = Y T

CO'J'INLFX(J+ I) =P TRSTY

v(*I U F IR STYY(J+2):0'LyCALL LV!JEtX, YJ ,I,0,0)PET IR-1

c UI~~ FUPICT10J PSI EVtLUATES TWE OILFAF'M CU'lCT1.V; DST~w) F^R

C Aq~~,JU*EKT M. PSIQ') IS THE DERIVATIVE YPT M4 OF TH4E L14 -IFC THE CAvvA FUNCTIONJ.

')ATA CIG ,Ci126/.1666666E7,.O79!65OA/

Tj 0.

IF(.J.GT.13.) GC' TO 2

14 . -W'4 .1

I TI TI I ./tr~ + I)

2 O'cw 1./V

DSI ALC,('W) * .5*'QCW~f-I. 4 PCW(-Cil * RC?.4*..1CIl - C!!".4RCWj2))) -TI

'4ETURJ.EN

C FL'NCTT'T PST1 EVALI)ATFS Twr TQt"-AmM- FtUh'CTION CST (m)c C* ARGU"E'"T M. PSlT'4M) tS T4r IO[QTVATrvs WPT .C3.12.I67."3 TW$72~

C 0108y!'A FUNCTICM.

TI 0

1Ff ..~T.1!)'~C TO 2

4 '

I TI Ti * a.WI)**:?c V. tT .13

? 0 cW 1.,,Y4C42 RC'4..2

"Sri 2 C ''CJ2*f)ioT'

! FuP1

FU4~CTrtflH PS12(M)

c FL'JCTION PS12 EVALUATES THE TETPAGAMIAA FUNCTION CSr W

c FCR 4RGU"E*IT M4. PSI2(m) IS THE ?NrO rERIVATIVE WRY m mr

C T14E O!5l'P'A FUNCTICNi.

REAL MLATA C16,C!6/.166666'4,? ..83 333333/

cTI 0.

IF(4.GT.13.1 'O TO 2C w.LE.13

DO 1 1=1.4.

I TI =TI - 2.1(0 * 1)**3

C o.IT.132 qCd~1./W

PS12 = PCY2*f-1. *RC J*( -1. *PC'*(-.1, +PCW2*(ClI *C'J.(Sj+:?CW2.f.! -CS6* PCW2)')) -Ti

PrTUOP4

SUaBnUTI"!41E 4 tJ~

C WVlSTEPi ITERATIVE flLUTICP METHO~D FOR X =FIK

c INY1TIALrZ4TiopiTF(T.NE.1) 311 Tf' 2

XTOv

RET U N

FIRST ITERATIONI2 tF(.(.NE.1) IC TO 4

KI =

PETURIJ

SUC 'Ik! TTEO&Tr?"IS4 XSNPI=

IF( A8SrKXP-V2AlP1)~ ~7 (XTFuc*XP) :r

S) T 1 7

OFT U R 4

__D_

SUPR('u71%E AXIS

EFJTP Y L

7N~TR Y PLOENTR YY F80T

EN1T PY PLi'SRET UP

~UNCT!CJ G(Cl

'rOSUIG.YL.OSUM=0O

YL3StJ*= iVLOS'J - AL1'rfX())*(Y(I).'C).O(I)

I? CONTINLEARG r(LnSw./WSU) -(LSUMSU0fl)

$ S!V1./CISP)))AOGC)

OET UO

* PFUNCTIC'! F(C)

CO0 !w")N 0 1tSPUT~IL, / ~ y 0 L HA O5 1r O I( L0 Tr qIYA.LEC J t '5

VfSU"=O.X(LOSUM=(:CIL4 SU"=O .

:)o 10 T~lg'vXISUM= YCSUMq (()*C&'T

F' LOf).A=LOG(XOSU"'()-A ALGEQG-L0GU(YP(1.(C)R

AR'.=C.OL SUM'jSUMO-C~FIlSPO

R F U q N

SU9ROUTIN : 'LHC*'LcC "Axl4)JV L!'(ELY'4C00 ESTT"A!O':

CO-m'N /OPT/T^P (20) ,IC9K1

1 C't IP (I)P45.1 ) 0 TO 10C PAYLEIGH4 PAPA-ETEOS

1) REAU(Tq5*I21) C

30 !'1 ().'1 RITCrI!1;102) C

~5 5 r-,RMA!Tf' 9,ITERAT1O4j'S FIR F1NCPll~G C Pn^T)'4ITr'! ,551 P

"0 1 1=1 .91CALL WFI(ICA.IKE)

CC=AP(C)

I ^''JT I NU!C "AY'U" %IUMr-ED ^F TTER.4.'!O'S QEiCHE0 V!THr'UT C'NJV!'1GE'Cc'

4-71 Tr( 1069A441

444 C(OmATf1'0916HC POOT R'OT FOUND)

22 C3'lT!%t2rC C RIOT FOLNC WITHI4N TOLERVICEC FTKC 'I

X LOSLVA 0.SS 1) 0

SUWOt =P

'LOSUXLOSUP * AO(()*vT*0O?

'sUml= CcI).SU"C'3 CONTI'JLE

C FlUND 'U--SOLVr FOR LAM8OA

YFI VPf3).E').1) ;prT!T0A9100)APf)hpA9"qc10') FIR"ATf1U0, 'PAPAMETED

0; ECTT-ATE) 9- V4VYT12- LT'(ELY'9'-ln

SIlV' ES'T "&TTC%//1iOETURN

SUoBoUf1i .E OISTREAL '4

COP404/0LVDRA"C/N .AMBOA,C.P

POTT~m = 0.0. 'lz1.0

D2m1 . 0.)O ID I =1 PK

C OPT 10*1 1P: TF 3 9 1.NS ITY =IN')./0 IN)~I

!F( ICEI1S).E1.0) CIV=D(r)!Ff ICC 1P).E(1.l7 02=0)(I)

CALL mCi.S4(AR'q,"oTO0 . JEP)

CC (IRSERVEO FOEQUtEjCY

CC 0QSER',fD DENSITY

C THEORETICAL 0AYLFf'3H(EXPO FNTTAL) FREOUEr.CY

C RAYLEISM(EX01"ENTIAL) 0ENTTYDE4~TQ(I) =(qUjfIN - 0)f!

CC THEORETI CAL GAw~f FREQUtENCY

IFC1ER.497.n) ':0 TO If!FT'4(1) = TIO - PCTT"4M).

C GA'AMA CR.EO!CTEC OE.SITY

V')TT.314 TO2P1i C0'JTIJE

QETUDPJ

EN

APPENDIX B

SAMPLE OUTPUT

B-1

I, c

II C

0 cc

1

0~ ~ ~ a .0

0~ Cr

9- - 6I

CY

onP

* -LaZ c4rC

cr LLw we~ CL 0a a

Q -~-co ******

Q

ft % .aAMac

10 r N C oLaoa a.aL. w -

oa a o,-0

pp.

0 a oil.~ NNYNNYN&NNN =

0- a z r D Z47 it cy.. FWr w 'r 4..L..1 . 4.1 r..w

*0 LAI !i

1 4"

aC - aU a0 1U.. ~W ~ Ln C a,0 .JW

an e 0 Na Fn a, v.C in 0,

.j -t It0

14 I - -

C~~ a w .2 * 4 * e . * .

I- aa 6. 21 09 1111

6. -t aa .' a a a aOr' 0

C a- CY

4 - - - 01 i 0.I np

.~ it a ' It 1.4 4 00 * ~ I. a aoo aaa aaa

pr

it 1. .1

oCC.

"I c 'o

49 It If 11-Co -

* .''o 0~ W, 09!

( Ni'

It 1

(Ir. ~x

ar a

4. W7 N g-

I i

ff It U

%a tr C%, 0 C

Ir

0; leN xn x

if of- *

16 it -

Y6h me c

0 C 0 1 "

br -4. 4.it-1 4r i

- -C, 39

- I-

If. 0, 4r rInrAi r to

II U

toII I If- If A

m~s cc*, IZ'*

00x 34 X0- -

CS "

I. 4r 4rf

If it

33 11 1z

16

N ...1

of it

In ao- V) a too 0mO. a go CL I

If 11 0 0 *

Q C', a9

It It

on (A39 V.bW. x~

a

(4 .(40 0 W

a : c " a.

a cc Wac

P. P- I

aI a

do 644 Lol 1o4,

* p .D(r -*P0

:; I , :.* bC s

If I5-5 tt :I zI zFM Ow ccf

a ma

a AN 4

aG' to 14 aY I a F Mme.- ~ le

c, 0, c 0 c O

. 0 0 14 Gn , 4to D -C lo P C 1

& P , 4

* ECOO~w-0. 0 .

*~ CD4* ~ Z cir B

'-4r F

a cc4

A *M

- -.-. ~-.--'--------.- --. .-------------.--.-.--. - U-

U

a a * . . . . .

= . . . . . . . . S

IC S * * a a * . . S a

cC. a * * S a * ap a . . a . . . a

CCC a * a * * a * * a *see . . . . . . . aCCC. * * * * * aCUe . . . . . . . . a

-a. S . a . a . .

.J~oCc . . S * * S S S S~ a * * * a a S56CC 5 * S . . S S

:13D- . . . . . a . . a a-c . . . . . . S a

S UUCC.CtC 64006* *Ut3UU taUt:...

tO S a U*~=C=C S63~.J02 . a S . e.C.. *CCr a l.a...CC. a . C4ttt* *44 * SIC *l.JL30% LU.4.tC 4.40 *S *Q.C. . a . . . CU S = USI . * * S~ a .C. U-~ a . . a C U * CCIC * CSU S * S 63C. S C U S - 3.* SOC . . . . S S.5 CCC. * * C U* a S 0.* CCC S LU -

CCC . . . . . . . . S 5 .3.- CL....................

*CC*C at S* C*U S a a a

Let . . a a U * . . a a a

CC. * C US * .

* * SC U a a a a .

S CS a . - .

CCC . S C. U S * . . . SCCC . . a . . S . a aS = US S S

C C*C44 S S S

OC* * S a * a a a a a.me . . . . S S .e.G S a . . S a . . Seec S S a . a a . S.@e C US . aS

o .~ US C -O C U C Sal* C - *4 -, C* -, 'U C* U. U

ICCCC. CCCCOI btK.S3UC..3L

eels

- -- -

Lmmm~

S----- -- - r

if

Li S' '.

* * L * * * * * * • ,•S * *5• • * • • * * • ••.* , •5• , * o

- °i5S

,,o 5 *** •, . .•.5 • ••• •* ** o , .* *, ,* * • * S , ** , ,

=.L °

... .... S ... " .. .. .. ... .. .. ... .. .. ... .. .. .

* .5 . Li . . * •

* S

- C ~:~D o r,

* . * * . * S S S S

* . . . . . . S S S

* . S * S S S S S S Sp . S S S S S S S S S S S* S S S S S S S S S S

* S S S S S S S S S S S* S S S S S - S S S S S

* S S S S S S S S S S* S S S S S S S S S S S* S S S S S S * S S S

* S S S S S S S S S S

* S S S * S S S S S S S* S S S S S S S S S S

* S S S S S S S S S ** . S S S S S S S S S S

* S S S S * S S S S S

* * S S S * S * S S S

* S S S S S S S S S S S

* S S S S * S S S S S* S S S S S S S . S S

* S S S S * S S S S S

S S S S S * S S S S S

* S S S S S S S S S *

* . S * S 5 5 5 5 . S

* . . . S S S S S S S

* . S S S S S S S S SS S S * . S S

S S . . S .

* S . . . S .* . . . . . . . . SS . S . . . . S

S . . 5 SS . . . S S**.S..tStc)S S S S*US.SSJS.SW.SSS

- .0 - .0 SN S .0 - 55N P .0 S .0 r- N N 55 .0 .0

* .8 .0 N r* C .0 .0 .0 .0

,

L. 4

00I-

u 00-0 10

C~ ~ KnMf

W. ~ 3 4r:::

o-MN e t

4-I

@0 0 F.

* @0 0

- IN .-- -- C-C n np)41 .

0 a a , 00 C, S a II

-C dc 6h;~h44 L:E fl U

0 In

C:I Nmi 41 caac aawca P.c

Q I- Lj~ ip N p~ C a~c 0:Z 14 N h U

W 96L *a 0~

1.1000

Sr

ccI. i w 1.-... w w .A. I.-17 C, 0 cc :c :ccec

a f I'- aa as a aa

cc a aC;

ac cdo

W-w a 1-6

o4 t0 17- * N~ cNNN NC %& - Calcc %C 9% Ilcc -aafr Z ccN , %

a- 4- * ***.4 III %i1 1 . W

a.. WL J I..

o~~~~~ o Se iO Ca'a.SNsa

C, L- . *. W , L- 6 6e* .

Jo 0 IN-

-- C

a- C

V, a,2aJL cccc(P cac Ac a

a In - I

at aau W Lh0' a 0C2 -f C) -6 0'. 1 .Cc, .0 ar~.0CO.0.

CL0 cc e C w.iao cC, 0 0cNoaccoC Oa 4 NoL C NN4NV

oo 2.4 C0-

ar a-Ia - C. ) NNN NNN~...

Y af 4 z . . ,. C 4

cc so- 10~

010

(401

0 . 0

10W

m n r

~00 atva

of 1a of

0 D0 0c

pC 0 Q0 @

a. itIt II of

gr x x t

x VC 3K 3t- -

0 C2,C

W0 @0

IN N z.

0t tot Cco c CC W W

x )K 31 X

Ft30L C a, 00F- , *, IL 1 m

1: . * 00 ol .

ift

CIDC . co c

ev In

z S o0 Ixff

hi I- = =

at , 07 0

It ~ ~ ~ f 31 93 3 1

It tt 1

a2 0

CD@

: :* CC

it .c. it*

7- 01C

10

a -I C. C4

29 2c c cc

co 00 cc

R a, 9 - % .

* C'4' iron C.

110)4 £1

41 c C1C 0

of X ~ K xx AxX

0 C0 0a C

IN,4 4. 1.0It

3L w x V

91 1'.

C4 0 V

CD co nO

C,

It I

oY 0-3 C

C u aw l

CV C1 l~

0 . C, a-- Nn% t ol

w %at C r

44r 00 (0

is I-I CO 44 1 001.

aE' i~Dcf

Lc. a

450 C

rCN

C,

Ic

(l. t. u

CN

C, C

. on

%DoE

AD-AlGa 523 DAVID W TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CE--ETC F/G 12/1MODIFICATIONS TO COMPUTER PROGRAM FOR PARAMETER ESTIMATION FOR -ETC(U)N AY 77 M K OCHI

UNCLASSIFIED DTNSRDC/SPD-772-O1 M

_ _ _

Ll

1.1.25 Jil LA 1 .6

MICROCOPY RESOLUTION TEST CHART

+ + °i . + + : - '+ - L Z . .. . . . . .. +.. . .... . . .. . . . . . . .. . . - - . " . .. .. . . + _ 7- . . . . . .- . . . . r

. . • * *

CC . : .. . . . .. .•.. : . . . .. . •. .. . . . . . .

CC C ..,i.

C- • . . . . . .. . . . • ,

.. . .... . . . .. .*.. . . . ..*. . .. . . . . . . .C, .... . . . . .

* .Q :* + . .: . .. • * ., . :

d: C a * +. .

• e e • * i t •C • • •*

• . m., - . ". + . ,.a- . ... . . :W,,+ .

oo. * . • a. • C *U+P

* • , a' : . . C • •

Li. * a *a . .• . • • : , •D

g * .• . . .. .. .. 0 * .... , " . . . . .C . . .. . .

* C * * * I*

* L a.- J . o+ .z ,. + t. . .,..

.e , - P

I

__________________________________________________________ j_________________________ - - -

1'

* C C C C C C C C C C

* C C C C C C C C C C

t C C C C C C C C C C C* C C C C C C C C C C

* C C C C C C C C C C* C C C C C C C C C C

CCC. *~*~~~C; ~ C C C C C C C C C

* s.~* C C C C C C C C C* C.. C C C C C C C C C* C CCC C C C C C C C C* C ~C*CSSC C C C C C C* C .c.CCC.CCCS C C C C C C C* C C *~CJqJCCCttSCS C C C C C* C C C *CeCC*CCC******C***CC*CC*CC*C C

* UUtJUU~UUUU.J*..C*CCC*C CCC ~C *C -~ 4 -~* vC C. VC - CC. CC C~C fl* U C. . C. U * U

* C. C - q C.- U I - CC C

.9.C. * UC2=C

-C - ) .'~

-J 4~

* C C C C C C C C C C C

£ C C C C C C C C C C

* C C C C C C C C C C

* C C C C C C C C C

* C C C C C C C C C C

* C C C C C C C C C C

- - q a - r- a -, - a

* . CC C'CCC C. C a CCC

Ci 4 a a4 - a - CCC

*.a-aaa~

DTNSRDC ISSUES THREE TYPES OF REPORTS

(1) DTNSRDC REPORTS. A FORMAL SERIES PUBLISHING INFORMATION OFPERMANENT TECHNICAL VALUE, DESIGNATED BY A SERIAL REPORT NUMBER.

(2) DEPARTMENTAL REPORTS. A SEMIFORMAL SERIES, RECORDING INFORMA-TION OF A PRELIMINARY OR TEMPORARY NATURE, OR OF LIMITED INTEREST ORSIGNIFICANCE, CARRYING A DEPARTMENTAL ALPHANUMERIC IDENTIFICATION.

(3) TECHNICAL MEMORANDA, AN INFORMAL SERIES. USUALLY INTERNALWORKING PAPERS OR DIRECT REPORTS TO SPONSORS, NUMBERED AS TM SERIESREPORTS; NOT FOR GENERAL DISTRIBUTION.

a1

8.I

$

$

S . . . . . . . . . . . . . . . . . .. . . i . . . . . . . . . l l i - - . . . ,