analytical spectroscopy library_vol 7

511

Upload: buceco

Post on 16-Nov-2014

1.892 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Analytical Spectroscopy Library_VOL 7
Page 2: Analytical Spectroscopy Library_VOL 7

Analytical Spectroscopy Library - Volume 7

Applications of Synchrotron Radiation to Materials Analysis

Page 3: Analytical Spectroscopy Library_VOL 7

Analytical Spectroscopy Library

A Series of Books Devoted to the Application of Spectroscopic Techniques to Chemical Analysis

Volume 1 NMR for Liquid Fossil Fuels, by L. Petrakis and D. Allen Volume 2 Advances in Standards and Methodology in Spectrophotometry, edited by

C. Burgess and K.D. Mielenz Volume 3 lntroduction to Inductively Coupled Plasma Atomic Emission Spectrometry, by

G.L. Moore Volume 4 Sample lntroduction in Atomic Spectroscopy, edited by J. Sneddon Volume 5 Atomic Absorption Spectrometry. Theory, Design and Applications, edited by

S.J. Haswell Volume 6 Spectrophotometry, Luminescence and Colour; Science and Compliance, edited by

C. Burgess and D.G. Jones Volume 7 Applications of Synchrotron Radiation to Materials Analysis, edited by

H. Saisho and Y. Gohshi

Page 4: Analytical Spectroscopy Library_VOL 7

Analytical Spectroscopy Library - Volume 7

Applications of Synchrotron Radiation to Materials Analysis

edited by

H. Saisho Liaison Office, Faculty of Science and Engineering, Ritsumeikan University, Noji-cho 7916, Kusatsu, Shiga 525-77, Japan

and

Y. Gohshi Department of Applied Chemistry, Faculty of Engineering, University of Tokyo, 7-3-1 Hongo Bunkyo, Tokyo 113, Japan

ELSEVIER Amsterdam - Lausanne - Oxford - New York - Shannon -Tokyo - 1996

Page 5: Analytical Spectroscopy Library_VOL 7

ELSEVIER SCIENCE B.V. Sara Burgerhartstraat 25 P.O. Box 21 1,1000 AE Amsterdam, The Netherlands

ISBN 0 444 88857-8

O 1996 Elsevier Science B.V. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the publisher, Elsevier Science B.V., Copyright & Permissions Department, P.O. Box 521, 1000 AM Amsterdam, The Netherlands.

Special regulations for readers in the USA. This publication has been registered with the Copy- right Clearance Center Inc. (CCC), 222 Rosewood Drive Danvers, MA 01923. Information can be obtained from the CCC about conditions under which photocopies of parts of this publication may be made in the USA. All other copyright questions, including photocopying outside of the USA, should be referred to the copyright owner, Elsevier Science B.V., unless otherwise specified.

No responsibility is assumed by the publisher for any injury and/or damage to persons or pro- perty as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein.

This book is printed on acid-free paper

Printed in The Netherlands

Page 6: Analytical Spectroscopy Library_VOL 7

Preface

This book is a part of the series "Analytical Spectroscopy Library" and is devoted to X-ray

analysis by synchrotron radiation. X-ray analysis is one of the oldest and most well

established techniques in analytical chemistry. The method, however, is still on the leading

edge of instrumental analysis. X-rays are nonrestrictive and can be tuned to a very sharp

bandwidth. Their very short wavelength enables high resolution imaging down to a molecular

or atomic scale. These potential capabilities are not well realized in current X-ray analytical

instruments. The largest drawback is the low intensity of an X-ray source. Recent

developments in the synchronotron radiation (SR) X-ray source are the real breakthrough, and

the photon deficiency problem is now being solved. The number of SR facilities, however,

is limited and their distribution is not uniform in the world. Whereas research reports are

circulated in the US and EU countries very well, reports from the orient are often inaccessible

due to language barriers.

This volume is intended to describe various facets of X-ray analytical methods by SR with

some emphasis on Japanese activity. The editors hope that this volume will provide general

perspectives of X-ray analysis by SR, with the added spice of Japanese activity in the Photon

Factory and the future Spring-8 project. Chapter 1 (Mititaka TERASAWA and Motohiro

KIHARA) is a concise introduction to synchrotron facilities and the related basic

instrumentation. The chapter will be helpful to understand the discussion of machine operators

and technicians and to communicate with design people in the planning of a new ring or an

insertion device. In chapter 2 (Hideo SHAISHO and Hideki HASHIMOTO), X-ray

fluorescence analysis is discussed. SR provides tunable excitation which is very effective in

improving a detection limit (DL). The detailed discussion on DL is based on a theoretical

estimation of background and the discussion can be extended to future research planning.

Another important characteristic of SR is natural collimation, which leads to total reflection

analysis. The theoretical treatment in this chapter will be especially useful for thin layer

analysis by XRF. Chapter 3 (Shinjiro HAYAKAWA and Yohichi GOHSHI) covers

microbeam and chemical state analysis. Instrumentation for microbeam optics is completely

dependent on the fabrication technology of optical components which are state of the art. X-

ray analysts, however, can expect better performance of a microbeam optical system with the

knowledge of optical systems described in this chapter. In addition to its imaging capability,

an energy tunable microprobe can speciate analytes. Several sophisticated applications are

discussed. Chapter 4 (Hiroyuki OYANAGI) covers X-ray absorption fine structure, which is

the most widely used technique in the application of SR to material analysis. Instrumentation

Page 7: Analytical Spectroscopy Library_VOL 7

in the detection system is included together with a general description of XAFS and a variety

of applications. Chapter 5 (Toshiaki OHTA, Kiyotaka ASAKURA and Toshihiko

YOKOYAMA) covers surface structural analyses. Surface sensitive signal detection is

described, followed by SEXAFS and NEXAFS applications to surface phenomena. Other

important techniques such as surface diffraction, standing wave, and angle resolved

photoemission fine structure are also explained together with several applications. Chapter 6

(Kanji KAJIWARA and Yuzuru HIRAGI), Structure Analysis by Small-angle X-ray

Scattering, describes the powerful traditional method for organic molecules, especially

polymers. Chapter 7 (Fujio IZUMI) explains details of the Rietveld method and its

applications to synchrotron X-ray powder diffraction data. The author has developed much

software for the Rietveld method and his experience contributes to the comprehensive

description given in this chapter. Chapter 8 (Katsuhisa USAMI) and Tatsumi HIRANO), X-

ray Microtomography deals with large scale structural analysis. Energy tunability of the SR

X-ray source adds even more elemental and chemical state information to the tomographic

image of information. Though there is still a gap between atomic scale structural analysis and

mm or pm analysis, this will be bridged by the future SR X-ray method.

The editors H.S. and Y.G. hope that this volume will be of help to research scientists and

students who are interested in materials analysis by X-ray methods. H.S. and Y.G. finally

appreciate the effort and patience of all the authors and the staff at Elsevier Science.

February 1996

Y. GOHSHI

H. SAISHO

Page 8: Analytical Spectroscopy Library_VOL 7

CONTENTS

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1. Basic characteristics of synchrotron radiation and its related facilities and instrumentation . . . . . . . . . by M. Terasawa (Hyogo 671-22, Japan) and M. Kihara (Ibaraki 305, Japan)

2. X-ray fluorescence analysis . . . . . . . . . . . . . . . . . . . . . by H. Saisho and H. Hashimoto (Shiga 520, Japan)

3. Microbeam and chemical state analysis by Shinjiro Hayakawa and Yohichi Gohshi (Tokyo 113, Japan) . . . . . . . . . . .

4. X-ray absorption fine structure by H. Oyanagi (Ibaraki 305, Japan) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5. Application to surface structure analyses by T. Ohta, K. Asakura and T. Yokoyama (Tokyo 113, Japan) . . . . . . . . . . . . . . . . . .

6. Structure analysis by small-angle X-ray scattering . . . . . . . . . . . by K. Kajiwara (Kyoto 606, Japan) and Y. Hiragi (Kyoto-fu 61 1, Japan)

7. The Rietveld method and its applications to synchrotron X-ray powder data by F. Izumi (Ibaraki 305, Japan) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8. X-ray microtomography . . . . . . . . . . . . . . . . . . . . . by K. Usami and T. Hirano (Ibaraki 3 19-12, Japan)

Subject index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 9: Analytical Spectroscopy Library_VOL 7

This Page Intentionally Left Blank

Page 10: Analytical Spectroscopy Library_VOL 7

Applications of Synchrotron Radiation to Materials Analysis H. Saisho and Y. Gohshi (Editors) �9 1996 Elsevier Science B.V. All rights reserved.

CHAPTER 1

BASIC CHARACTERISTICS OF SYNCHROTRON RADIATION AND ITS RELATED FACILITIES AND I N S T R U M E N T A T I O N

Mititaka TERASAWA

Himeji Institute of Techno logy

2167 Shosha, Himeji , Hyogo 671-22, Japan

Motohiro KIHARA

National Labora to ry for High Energy Physics (KEK)

Oho, Tsukuba, Ibaraki 305, Japan

1.1. I N T R O D U C T I O N

Electromagnetic radiation emitted by charged particles when they move at a highly relativistic velocity on a circular orbit is called synchrotron radiation, or SR in s h o r t - which was named

after the first observation of the radiation in an electron circular accelerator, a synchrotron.

Although the synchrotron radiation was, in its early history, considered simply to be a useless

and harmful by-product generated in circular accelerators, it has become of great interest and is

utilized in materials science as an intense and versatile photon source. At the beginning, the

radiation was used as a powerful photon source for spectroscopy in the wavelengths ranging

from soft X-rays to the vacuum ultra-violet (VUV). From the early 1960s many of the existing

electron synchrotrons in the several hundred MeV class have been modified and turned over to

synchrotron radiation facilities.

In the mid 1970s, an electron storage ring became a normal photon source facility, in place of

the electron synchrotron. The storage rings were originally developed for collision experiments

in high energy physics. In the electron synchrotron, electrons are accelerated and, after the

maximum energy is achieved, are extracted, usually at a rate of several tens per second. In

Page 11: Analytical Spectroscopy Library_VOL 7

contrast, in the storage ring the previously accelerated electrons are injected into and stored in

the ring orbit. As a consequence this is greatly superior to the former synchrotron as an intense

and stable radiation source. Recently large storage rings in the multi-GeV class have been

developed and the wavelengths of the radiation have been extended to the hard X-ray range.

The use of such high energy X-rays is now having a great impact in studies on X-ray

scattering, diffraction, inner shell ionization, and even nuclear excitation.

Nowadays the usefulness of synchrotron radiation is well recognized in various research

fields, and many storage tings dedicated to synchrotron radiation research have been

constructed or are currently under construction. Moreover, insertion devices, which allow

radiation of much higher brilliance to be obtained, are well developed and available as practical

facilities. The synchrotron radiation is usually emitted by electrons moving in a circular orbit in

the bending magnet. The radiation from insertion devices such as the undulator and the

multipole wiggler, which are positioned on the straight section of the storage ring, is of

extremely high brilliance - - and also has a shorter wavelength with multipole wigglers than

with bending magnets. The storage tings of recent advanced synchrotron radiation facilities are

designed to have many long straight sections so as to accommodate such insertion devices as

low emittance and high brilliance photon sources. Consequently, the tings always tend to

become larger.

1.1.1. Properties of Synchrotron Radiation

Electrons submitted to an acceleration field emit electromagnetic waves. This phenomenon is

well recognized in a classic antenna where the electrons are travelling in conducting wires, the

acceleration is very weak, and the emission takes place in the radiofrequency range. With

vacuum electron tubes, such as the klystron, it is possible to increase the acceleration on

electrons which are travelling in the vacuum, and to push the emission into the ultra-high

frequency (UHF) range. In these tubes the electron energy is fairly weak. In circular high

energy electron accelerators,~with electron energies up to several giga electron volts (GeV), the

magnetic field in the bending magnets induces a very strong centripetal acceleration in the

highly relativistic electrons, with an energy E >> m c 2 where m is the rest mass of electron. The

acceleration induces an electromagnetic wave emission up to several hundreds keV in the most

energetic machines. This radiation is called synchrotron radiation. Relativistic positrons also

emit synchrotron radiation in the magnetic field by the same principle.

Thus, circular electron- and positron-accelerators and storage rings, in which the particles

move with relativistic energies, have become man-made sources of synchrotron radiation. The

radiation source is basically composed of three component facilities: a linear accelerator, the

synchrotron and the storage ring. Electrons are injected into an electron synchrotron at a

relatively low energy, say several hundred MeV, from the linear accelerator. They are then

accelerated on a fixed circular orbit. The synchrotron consists of an array of magnets for

focusing and bending the electron beam, and straight linear sections for accelerating the

Page 12: Analytical Spectroscopy Library_VOL 7

particles. The magnetic field in the deflecting magnets is increased during the acceleration in

order to keep the electrons on the same circular path as their energy is gradually increased.

Finally, when they reach the appropriate energy, the electrons are transferred to the storage

ring. Here the magnetic field remains constant. There are acceleration sections within the

storage ring which compensate for the energy losses due to synchrotron radiation. Around the

storage ring the radiation from the stored electrons can be used for various experiments. This

photon production is of extreme interest for spectroscopy.

Synchrotron radiation has a number of outstanding properties:

(1) A continuous spectrum from the infrared to the X-ray region.

(2) High intensity, owing to the high current electrons accumulated in the storage ring.

(3) Collimation of the emitted radiation in the instantaneous direction of flight of the emitting

particles (the angular spread is of the order of 1 mrad).

(4) Linear polarization, with the electric vector parallel to the plane of the orbit.

(5) Circular polarization above and below the plane of the orbit.

(6) High brilliance of the source, because of the small cross section of the electron beam and the

high degree of collimation of the radiation. (7) A time structure with pulse lengths down to 100 ps.

(8) Absolute calculability of all the properties of the source.

(9) Cleanliness of the source, since the light emission takes place in an ultra-high vacuum, in

contrast to the situation in gas discharge or spark lamps.

1.1.2. Historical Remarks

Although synchrotron radiation was first observed directly by Elder and his co-workers [1] at

the General Electric 70 MeV synchrotron in 1947, the theoretical consideration of radiation by

charged particles in circular motion goes back to the work of Lienard in 1898 [2]. Further theoretical work was made by Schott [3], Jassinsky [4], Kerst [5], Ivanenko and Pomeranchuk

[6], Arzimovitch and Pomeranchuk [7] and others through to 1946. Blewett [8] was one of the first to be concerned with the effects of the radiation on the operation of electron accelerators

and he observed the effects on the electron orbit in 1945, although he did not detect the radiation

itself.

After the observation of the radiation by Elder and his co-workers in 1947 the interest in

synchrotron radiation was renewed. Comprehensive theoretical treatments were presented by

Sokolov and his co-workers [9] and by Schwinger [10] in the late 1940s and later. With these

works the theory was fully developed so that accurate predictions could be made regarding the

intensity, spectral and angular distributions, polarization, and so on. Following the first

observation Elder and his co-workers carded out experimental investigations in the late 1940s

on the properties of the radiation, using the General Electric 70 MeV synchrotron.

In the 1950s studies of synchrotron radiation were extended by several groups [11], using the

250 MeV synchrotron at the Lebedev Institute in Moskow, by Corson [12] and Tomboulian and

Page 13: Analytical Spectroscopy Library_VOL 7

his co-workers [13] using the Comell 300 MeV synchrotron, and by Codling and Madden [14]

using the 180 MeV synchrotron at the National Bureau of Standards (NBS) in Washington

D.C. In the mid-1960s Haensel and his co-workers [ 15] were the first to utilize radiation from

a multi-GeV accelerator, the 6 GeV synchrotron in Hamburg. The investigations mentioned

above confirmed the basic theoretical predictions and provided much useful data and experience

in the use of the radiation.

1.2. PRINCIPLE OF SYNCHROTRON RADIATION EMISSION

1. 2. 1. Principle of Synchrotron Radiation Emission

The properties of synchrotron radiation (SR) can be derived by applying the methods of classical electrodynamics to the motion of relativistic electrons and positrons in circular orbits.

Hereafter we confine the following discussion to the radiation emission only by electrons,

because the principle of the emission by positrons is the same.

First of all, we consider the circular motion of an electron with momentum p in a magnetic

field B. The radius of the electron orbit, p, is given by the following equation.

pc = B e p (1-1)

where e is the electron charge and c is the speed of light. For relativistic electrons,

E 2 = p2c2+m2c 4 ~ p2c2 (1-2)

where E is electron total energy and m is the electron rest-mass. From Eqns. (1-1) and (1-2),

E = B e p (1-3)

This relation is described using practical units, by Eqn. (1-4).

B[tesla] p[m] = 3.336 E[GeV] (1-4)

Angular distribution of SR

When an electron is non-relativistic (fl = v/c << 1) and the velocity is significantly low

compared to the speed of light, the electron on a circular orbit is accelerated toward the center of

the orbit, and emits a dipole radiation whose axis is in the direction of the acceleration. The

radiation power per unit solid angle, which is the energy of the electromagnetic wave emitted in

unit time from the electron with the acceleration of dv/dt, is given by

Page 14: Analytical Spectroscopy Library_VOL 7

dP(z )= e 2 (~t)2sin2z dO 4~rc 2 (1-5)

where Z is the angle between the directions of the acceleration and electromagnetic wave

transmission. Therefore the angular distribution of the radiation power based on a dipole

radiation shows the typical pattern of sin2z. As shown in Fig. 1-1, the radiation emission is at

maximum in a direction normal to the acceleration (2' = 7r/2), and there is no emission at the two

acceleration directions of Z = 0 and 27 = 7r.

-Orbit - - - . . . . ~ dv Acceleration /--~~)~'~Ujt at ) 'J

To v spectrograph

(a) (b) Fig. 1-1. Radiation patterns of electrons in circular motion at low velocity.

K K'

Ot l vt Z "JI

I

P ,-x-(x, y , z , t )

(x', y', z', t')

Z'

Fig. 1-2. Coordinate systems showing Lorentz transformation. Electrons moving at the

velocity v are on the system K', and the radiations are observed on the system K.

When an electron moves near the light speed, the properties of SR from the electron are

described by relativistic electrodynamics. If an observer is in a fixed coordinate system located

on the electron, he observes the same angular distribution of sin2z as for the non-relativistic

Page 15: Analytical Spectroscopy Library_VOL 7

case mentioned above, even if the electron moves relativistically. However, if an observer is in

the stationary coordinate system, the angular distribution becomes distorted due to the

relativistic effect.

Let us take a stationary coordinate system K(x ,y , z , t ) , and another coordinate system

K' (x ', y ",z ',t ") which is moving at speed v along the direction of the z axis. The relationship

between the two systems is given by the Lorentz transformation,

z = 7 ( z ' + vt')

X ' - X'

y = y '

t = 7 (t' + flz ' /c) (1-6)

where fl = v/c and,

1

r 41_/32 _ E

m c 2

(1-7)

(1-8)

= 1957 E[GeV] (1-9)

Here, ?'is the energy of the electron represented in units of the electron's rest mass energy, that

is mc 2 = 511 keV. For example, fl = 0.999999868 and ?' = 1957 for E = 1.0 GeV. The

electron mass becomes 1957 times the rest mass, which means that the acceleration of

relativistic particles increases the mass, while changing the velocity little, because it is almost

the speed of light. As shown in Fig. 1-2, if the SR, which is emitted at angle 0 ' from the z'

coordinate from an electron fixed at the K' system is observed at angle 0 from the z coordinate,

the following relationship is obtained, using the Lorentz transformation for velocity.

COS 0 = cos0'+ fl

1 + fl c o s O ' (1-10)

sin0 = sinO'

y(1 + fl cosO') (1-11)

then,

t a n O = l sinO'

? ' cosO '+ fl (1-12)

Page 16: Analytical Spectroscopy Library_VOL 7

The angle 0 ' = + nr/2 in the K' system, at which no radiation is emitted, is proved to

correspond to 0 = + 1/Tin the K system, according to Eqn. (1-12). The sin2z angular

distribution of radiation emission is extremely distorted and a forward focusing, in which the

radiation is concentrated within a sharp cone with its axis tangential to the electron circular orbit,

is observed, as shown in Fig. 1-3.

V

. . . . Orbit . . . . . , Acceleration dv

dt

To" spectrograph

(a) (b) Fig. 1-3. Radiation patterns of electrons in circular motion at velocity approaching that of light.

The root mean square (r.m.s.) of the radiation emission angle, which corresponds to half the

cone angle, is expressed as follows for the radiations near the emission spectrum center;

(i//2)1/2 = 1 7 (1-13)

For example, 1/7 = 0.064 mrad for E = 8.0 GeV, which means only 6.4 mm spread of the

radiation 100 m from the source point. It is understood that the SR is an ideal collimated beam.

Actually, the intensity of the radiation drops rapidly with increase in the angle ~ in the direction

vertical to the electron orbit plane, while the plane is filled with the radiation because electrons

are emitting their radiation all the way round.

Spectra

In the case when an electron moves non-relativistically on a circular orbit with radius p, an

angular frequency of radiation is equal to an electron revolution frequency, co o = v/p. When an

electron moves relativistically, the main frequency components of the radiation are significantly

Page 17: Analytical Spectroscopy Library_VOL 7

higher harmonics of the revolution frequency too. Let us consider an observer standing on a

line tangential to the electron orbit, as shown in Fig. 1-4. The observer will be subjected to the

radiation which is emitted by the electrons moving between A and B on the circular arc, the

length of the arc being 2p/7' because the radiation emission angle is about 2/7,. The time

interval of the radiation to which the observer is exposed will be the time that the radiation

travels from A to B, subtracted from the time that the electron moves along the arc AB, that is,

2p 2p sin~ 2p At = v)' c = -U~-( c - 1) (1-14)

Adopting

v/c = f l= 1 - 1/(2 7' 2) (1-15)

A t = p = 1 C7' 3 too7' 3 (1-16)

The radiation is confined to an extremely short pulse, since this time interval is in inverse

proportion to ),3. For example, At = 3.48 x 10 -20 sec in the case of E = 8.0 GeV and p = 40.1

m.

observer

Fig. 1-4. Electrons in circular motion and synchrotron radiation emitted by the electrons in

a tangential direction.

An electric field of pulsed radiation as a function of frequency, E(to), is derived as the Fourier

transformation of the time-dependent electric field, E(t). The power-spectrum of SR is

determined by E(to) 2. In the present case, E(t) is a periodic pulse with the pulse width of

p/(c7"3), and the pulse interval 27rp/c, as shown schematically in Fig. 1-5a. The quantity E(to) 2

consists of a vast number of higher harmonics of the basic angular frequency to o = c/p,

Page 18: Analytical Spectroscopy Library_VOL 7

as shown in Fig. 1-5b. The frequency tOp of the major parts in the power-spectrum is

determined from Eqn. (1-17).

2--~ = 2~ y3 too top = At (1-17/

IJJ

q 2r~p t co o

C (a) (b)

~ p

Ill ._ v

Fig. 1-5. Synchrotron radiation (SR) emitted by electrons in circular motion. (a) Time variation of the electric field induced by SR. (b) Spectrum of the radiation power.

The spectrum is understood to include extremely high order Fourier components. While the whole spectrum consists of many spectral lines with the interval of too, it actually becomes a

continuum because of the energy fluctuation of electrons caused by emitting radiations. Thus

the wavelength spectrum extends widely from the infrared to the X-ray region. We use a critical (or characteristic) angular frequency toc as a parameter characterizing the power

spectrum, that is,

toc = ~ 'Y 3 600 (1-18)

This parameter is defined to be an angular frequency at which the power spectrum is divided equally. A critical wavelength, ~,c, is then defined as

Ze = 27rc = 4 ~ P toc 3 ~,3 (1-19)

Using practical units,

A,c[A] = 5.59 p[m] _ 18.6 n

E 3 [GeV] E 2 [GeV] B [tesla] (1 -20 )

Also, a critical energy, e c, is defined by

Page 19: Analytical Spectroscopy Library_VOL 7

I0

hc

= 12.4 _ 2.22E3[ GeV] ee [keV] Ac[A] - p [m]

(1-21)

(1-22)

For example, for E = 8.0 GeV and p = 40.1 m, the basic angular frequency is 090 = 7.48 x

106/sec = 7.48 MHz, and the critical angular frequency becomes o9 c = 4.31 x 1019/sec. The

critical wavelength Zc = 0.438 A, and the critical energy e c = 28.3 keV.

Polarizat ion

An electric field vector of an electric dipole radiation is represented by the sine-squared

angular distribution as shown in Figs. 1-1 a and 1-1 b. The radiation emitted by an electron in

the plane of its orbital is completely polarized, with the electric vector parallel to the orbital

plane. Above and below this plane the radiation is elliptically polarized, to a degree determined

by the viewing angle.

- - Orbit

Accele

T v - . . s S

. ~ M SS S

~>0 '.-z .... ~ "

" ~ - - " O ~ ~'~ ~ e

(a) (b)

Fig. 1-6. Polarization of synchrotron radiation. For emission in the orbit plane the electric

vector lies in the plane, and for emission at some angle gt with respect to the orbit

plane the vector also has a component normal to the parallel component.

The polarization can be understood as a change of the acceleration vector being applied to an

electron during its circular motion, as shown in Fig. 1-6. If an observer standing near a tangent

line at the radiation source point traces the changing vector, the polarization is decided according

to the locus of the vector. When the observation is made at 1 g = 0 on the orbital plane, the

Page 20: Analytical Spectroscopy Library_VOL 7

11

acceleration vector locus is always on the horizontal plane, and the radiation is linearly

polarized. On the other hand, when the observation is made at gt > 0 and gt < 0, being off the plane, the acceleration vector locus is elliptical, and elongated in a horizontal direction, and the

radiation has elliptical polarization. The rotation of the polarization is inverted for ~ > 0 and gt

<0 .

Coherency

As we will discuss later (see Section 1.6. INSERTION DEVICES), if an undulator is

employed in the storage ring, coherent radiation with an extraordinarily higher brightness is

obtained. However, with a normal bending magnet, the radiation is incoherent, especially in

the shorter wavelength range. Therefore the intensity is the total of the radiation emitted by each

electron.

1. 2. 2. Basic Equations of Synchrotron Radiation

Radiation induced by electrons

First of all we may take the Larmor formula for the power radiated by a single non-relativistic

electron with mass m and charge e. The formula is obtained by integrating Eqn. (1-5) over

solid angle, and is described as follows;

e2/dv/2=2 e 2 /dp/2 W = 2--~ ~ dt ! 3 n ~ 3 ~ dt l (1-23)

For a relativistic electron in circular motion, Eqn. (1-23) is rewritten by replacing the momentum p by an four dimensional momentum vector (P, iE/c), where P = TP.

Adopting an intrinsic time ds =dt/?',

e 2 //dP/2 1 /dE/2~ W = ~ m2c3 |~~s ] - ~ ~-~S] |

_ 2 e___L_ 2 I(dPl 2 l / dE /2 t - 3 m2c 3 ),2 I~ dt ! 7 ~ ~-~! | (1-24)

In a circular accelerator, the change of E with time is negligibly small compared to the change in

p, and the second term in the bracket in Eqn. (1-24) is neglected.

d---PI2 = r2 m2/0v dt ! ~dt !

Page 21: Analytical Spectroscopy Library_VOL 7

12

= ,y2 m 2 (evB~

= ~, 2 m 2 c4[p2 (1-25)

Eventually,

W [erg/sec/electron] = ~_ ~_~__ ? , e 2C 4 (1-26)

Total radiation power is proportional to ~,4, i.e. E 4 , and inversely as p2. Eqn. (1-26) is the Larmor formula for a relativistic electron in circular motion.

Radiation power and photon number

Schwinger [ 10] has provided the expression for the instantaneous radiation power (C.G.S. units) emitted per unit wavelength and per radian (in vertical angle gr by a monoenergetic electron in circular orbit:

d2W Ierg/sec/rad(vertical)/cm/electron] d I/td~

-32tr3 p3 )'8{1+(?'1/~}2 K2/3(~)+ (~'l/t)2 K2/3(~) 1+()' V) 2 (1-27)

where ~ = Ac { 1+(]~r and K1/3 and K2/3 are modified Bessel functions of the

second kind, gt is the angle between the direction of photon emission and the instantaneous orbital plane, and A, c is the critical wavelength given by Eqn. (1-19).

It is noted that the angular spread of the radiation is dependent on the wavelength. If ~, is in the vicinity of ~,c, the spread Agtis almost 2/7, as given in Eqn.(1-13). If ~ is far from A, c, the

spreads are given by

[I] ,11/2 Agt--- t2~3~1 ' for ~, << Ac (1-28)

A V = , for ~ >> ~,c (1-29)

The angular distribution becomes sharp as the wavelength decreases, in general. For ~, << ~,c,

the distribution tends to a smaller angle than 2/7', while, for A, >> A, c, it spreads to a larger

angle than 2/?,, and approaches a shallow dip at gt = 0 (see Fig. 1-7).

Page 22: Analytical Spectroscopy Library_VOL 7

13

A representation of a photon number is sometimes useful instead of the powers expressed by

Eqn. (1-27). The photon number is given as follows, by dividing the power by single photon

energy, hc/L

d3N [photons/sec/rad(vertical)/cm/electron] dtdvd,~

-87r 2 h /9 2 ~, 3{1+(~#')2}2 1 + ( ~ ) 2 (1-30)

:o. 97 { (1-31)

Assuming the electron beam current in storage ring is J, the number of electrons emitting the

radiation is given by

n = 27rp j ec (1-32)

= 1.31 • 1011 p [m] J[amp] (1-33)

The photon number for the beam current of J [amp] is calculated by multiplying n to Eqn. (1-

30). For the emission angle of 1 mrad in the electron orbital plane and 1 mrad in the direction

vertical to the orbital plane, multiplying 10 -6/27r by the Eqn. (1-30) gives the photon number.

When 0.1% of band-width is adopted as a wavelength width, multiplying AA = 0.001~ =

0.001 x 47r/3 x 102 p[m]/y 3 x A/~ c gives the corresponding photon number.

Eventually, the number of photons per sec in 1 mrad 2 of solid angle, 0.1% band width, and a beam current of 1 mA is given by

d3N dtdl2dA,/&

[photons/sec/mrad2/0.1% b.w./mA]

= 3.46 x 103 'J,' 2 K22/3(~) + K2/3(~) 1 +('Bg) 2 (1-34)

This photon number is called a "brightness".

Figure 1-7 shows an example of the angular distribution of photon number for various

wavelengths [16]. As mentioned above, the shorter the wavelength, the smaller is the angular

spread.

In the orbital plane V = 0, Eqn. (1-34) is reduced to

Page 23: Analytical Spectroscopy Library_VOL 7

14

d3N ] = 3 .46x 103 yg(Xc]2~"2 [~,c dt d,QdMA, lqr=o -~--~] ~ 2/3~-~]

~d'

1

=

. 1oooA

(1-35)

l 1A - - I r . . . . . . | . . . . .

Azimuthal angle ~ (mrad) Fig. 1-7. Angular distribution of SR. Photon number as a function of perpendicular angle V,

calculated for the wavelength of radiations at E = 2 GeV and p = 5.55 m [16].

1 014

< E 013

d 012

E 01 ~ ~ 1

,,_.. ~ 101~

'- 1 n 00.01 0.1 1 1 0 1 O0 1000 Energy , KeV

�9 ,, I 1 I I I I

1000 100 10 1 0.1 0.01 Wavelength , A

Fig. 1-8. Typical spectral distribution of SR. Brilliance as a function of photon energy for (a)

PF (E = 2.5 GeV, p = 8.66 m) and (b) SPring-8 (E = 8.0 GeV, p = 40.1 m).

Examples of spectral distribution at V = 0 are shown for the cases of E = 2.5 GeV, p = 8.66 m

(PF ring ), and for E = 8.0 GeV, p = 40.1 m (SPring-8) in Fig. 1-8.

When Z =/2c, K2/3(!/2) = 1.206 and the photon number is given by

Page 24: Analytical Spectroscopy Library_VOL 7

15

d3N ) - 03 2 dtd-~MA ~o,Z=Z~- 5.04 x 1 y

(1-36)

Spectral distribution

The spectral distribution of the radiation power is reduced by integrating Eqn. (1-27) over all vertical angles.

o r

dW[erg/sec/cm/electron] = 35/2 e2c d~, 16n: 2 p3

r 7 aa(y)

dW [erg/sec/~Jelectron] = 6.83 x 10 -24 7 7 G3(y) d~, p3Em]

(1-37)

(1-38)

where,

y=~,c =e_ ec (1-39)

Here, G3(y) is the formula for n = 3 of Gn(y), which has been provided by Green [ 17].

Gn(y) = ynGo(y), G0(y) = K5 / 3( r/ )d r/

(1-40)

where/(5/3(r/) is a modified Bessel function of the second kind. The values of various Bessel

functions and integrals as a function of V are given in the Appendix of this chapter. Figure 1-9

shows the curves of Gn(y) for n - 1, 2, and 3 as a function of y. The radiation power

spectrum is decided by G3(y), which has a maximum value of 1.24 and a fwhm of 0.84 ~,c,

when y - 2.35, i.e.,/1, = 0.425 Ac.

The radiation power for the electron beam current of 1 mA is represented by

dW [erg/sec//~/mA] = 8.94 x 10 -16 y 7 G3(y) dA p2[m] (1-41)

Moreover, the power for the emission angle of 1 mrad in a horizontal direction is represented by

dW [erg/sec/mrad(horiz.)/]k/mA] = 1.42 x 10 -19 ~t 7 G3(y) d0dZ p/Em] (1-42)

Page 25: Analytical Spectroscopy Library_VOL 7

16

where 0 is an angle in the horizontal direction. By dividing Eqn. (1-37) by hc/&, the power is

converted to the photon number.

d2N [photons/sec]cm/electron] = 33/2e 2 it 4 G2(y) dt dA, 47rh /92 (1-43)

o r

d2N [photons/sec//~/electron] = 1.44 x 10- 5 ~,4 G2(y) dt dA, /921111] (1-44)

101

1 0 ~

10 -1

1 0 -2

10 -3 0.1

I - ' . . . . . . . I ' . . . . . . . I . . . . . . . . I ' ' ' ' ' " 1

:

I 10 100 1000 1/y

Fig. 1-9. Curves of Gn(y) for n = 1 , 2 a n d 3 . The radiation power spectrum is decided

by G3(Y).

The photon number spectra is decided by G2(y), which is shown in Fig. 1-9. G2(y) has a

maximum value 0.683 at y = 1.32, i.e., ~ = 0.76 2c, and has a fwhm 2.3 ~ .

The photon number for an electron beam current of 1 mA is given by

d2N [photons/sec/,2k/rnA] = 1.88 x 103 ~' 4 Gz(y) dt d,~, p2[m] (1-45)

and the number for the emission angle of 1 mrad in a horizontal direction is given by

d2N [photons/sec//~/mrad(horiz.)/mA] = 3.00 x 10 -1 y4 G2(y) dtd0d~, p2[m] (1-46)

Page 26: Analytical Spectroscopy Library_VOL 7

17

Moreover, the photon number for a band width of AZ = 0.001 g is given by

d3N dtdOdZi-----------~[photons/sec/mrad(horiz.)/O.l% b.w./mA] = 1.26 x 107 ?'GI(y) (1-47)

The photon number represented by Eqn. (1-47) is called "flux".

1 0 2 ..................... ~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ~ ..................... p ..................... .=. .....................

, o o ........... 1 0 . . . . . . . p = , i 6 m

2

"~ 10-2

10 .4

~ . 1 0 s

10 -e 0 .001 0.01 0.1 1 1 0 1 O0 1 0 0 0

;~ (A) Fig. 1-10. Spectral distributions of synchrotron radiation represented by the radiation power

for various electron energies at an electron orbiting radius of 40 m.

1 0 e ......................... ; ........................ ! ........................................................................ i i ~

o ~

1 0 5

103

0.01 0.1 1 10 100 1 0 0 0 ~(A)

Fig. 1-11. Spectral distributions of synchrotron radiation represented by the photon numbers

for various electron energies at an electron orbiting radius of 40 m.

Page 27: Analytical Spectroscopy Library_VOL 7

18

The flux spectra depend on G l(y), shown in Fig. 1-9. G l(y) has a maximum value 0.92 at y

= 0.29, i.e., ~, - 3.4 ~,c. The photon number at peak in the flux spectra is calculated by

d3N - - [photons/sec/mrad(horiz.)/0.1% b.w./mA] = 1.16 x 107 ~' dtdOdM~, (1-48)

Figures 1-10 and 1-11 are the spectral distributions of the radiation power and the photon

number, respectively, showing the wavelength dependencies for various electron energies at a

definite electron orbiting radius. The power and the photon number have remarkably wide

spectral ranges of wavelength, and broad peaks. With an electron energy increase the peak

shows an increase in the amount of power and the photon number, and a shift to shorter

wavelength. The spectra have sharp cut-offs in the shorter wavelength range where both the

power and photon number decrease steeply with increasing electron energy. In long

wavelength range both spectra show gradually decreasing characteristics which is not likely to

change much with electron energy.

P o l a r i z a t i o n

The radiation is predominantly polarized with the electric vector parallel to the acceleration

vector. The two terms in the last bracket of Eqn. (1-25) are associated with the intensities in the

two directions of the polarization, Ip and I N, having the electric vector parallel and normal to

the orbital plane, respectively. Figure 1-12 shows the angular distribution of the two components [ 18]. As is evident in Fig. 1-12a, the parallel component Ip has a sharp peak at ~r

= 0 on the plane, while the normal component I N is zero at V = 0 and has small peaks above

and below the plane (V > 0 and gr < 0). A degree of linear polarization Pl is defined as follows,

Pl = ~ /p - IN

Ip + IN (1-49)

K~/3 (~) _ (]i i11) 2 K2/3 (~) l+(rv)

(1-50)

Fig. 1-12b shows P l as a function of ~. At gr = 0, the radiation is of complete linear

polarization and Pl = 1 (100% polarization). As I~ increases, PI decreases.

Since the two components of the electric vector have a well defined phase relationship with

respect to each other, namely +n/2 or-~/2 above or below the orbital plane, there is a degree of

Page 28: Analytical Spectroscopy Library_VOL 7

19

circular polarization, Pc, with the decomposition of the elliptically polarized wave into right- and left-hand waves with intensities I R and I L, respectively.

pc = IR - IL = +_ 1lip IN

IR + IL Ip + IN ( 1 - 5 1 )

The positive and negative signs correspond to gt > 0 and gt < 0, respectively. As is evident in Fig. 1-12c, the circular polarization, Pc, is 0 at g t - 0. As I~ increases, the radiation tends to the circularly polarized condition, Pc - 1, although the total intensity decreases rapidly.

e = 10 e V e = 1 O0 e V e = 1 0 0 0 0 e V

"1 ~ ~1 + ' ' . _ _

m (a) g .s

0 " " ..... ~ . . . "~ 0-- I - -2 0 2

.9

' ~ . + -o "iI__ 0 I - 2 1 2 0 .~ .;

-1 t '-

.9 . I . . J

(c) .s " " - ~ . ,

_ ! . . . .

u I 0 I 2 o 1 2 0 .I .2

V (mrad) • (mrad) V (mrad) Fig. 1-12. Angular distribution of intensity components with electric vector parallel (Ip) and

normal (IN) to the plane of the synchrotron, linear polarization and circular

polarization (from decomposition into left (IL) and fight (IR) hand circularly

polarized components) for a storage ring with p = 12.12 m and an energy of E =

3.5 GeV calculated for three photon energies, gtis the electron angle perpendicular

to the orbital plane [17].

By integrating Eqn. (1-27) over all wavelengths, the angular distribution of radiation power is obtained.

Page 29: Analytical Spectroscopy Library_VOL 7

20

dW [erg/sec/rad(vertical)/electron] d~

{1-7-6 - 165 (Tgt)~ } =e2Cp275{1+(71//)2}-5/2 + 1+(~/i}2_ _ (1-52)

In this formula, the first and second terms in the last bracket correspond to parallel and vertical component of the polarization, respectively. Integration of Eqn. (1-27) over all angles and all

wavelengths yields about 75% polarization in the orbital plane.

Total radiation power and total photon number

Total number is obtained by integrating Eqn. (1-37) over all wavelengths and the result is in

agreement with Eqn. (1-26). The energy which a single electron loses by emitting radiation

during one turn is given by

AE [erg/electron/tuml = c2ZP W= 4z ep]t42 (1-53)

If we adopt practical units,

AE [keV/electron/tum] = 88.5 E 4 [GeV]

p[m] (1-54)

When the electron beam current is J, the total radiation power is given by

W_4ze2 _ __~ __p__ ,ff 4 j (1-55)

In practical units,

W[kW] = 88.5 E 4 [GeW] J [anlp]

p[m]

= 26.6 E 3 [GeV] B [tesla] J[amp] (1-56)

For example, in the case of E = 2.5 GeV and p = 8.66 m, AE = 399 keV/electron/tum and W =

120 kW for J = 0.3 amp. In the case o f E = 8.0 GeV a n d p =40.1 m, AE = 9.04

MeV/electron/tum and W = 892 kW for J = 0.1 amp. The radiation power per 1 mrad on the horizontal plane is calculated for a beam current of 1

mA, as follows:

Page 30: Analytical Spectroscopy Library_VOL 7

21

dW [watts/mrad]mA] = 0.0141 E 4 [GeV] dO p[m] (1-57)

Then, the total number of photons emitted per unit time per electron, by integrating Eqn. (1-43)

over all wavelengths, is

_ 5 ff'e2~ z dNdt [photons/sec/electron] ~ hp

(1-58)

Moreover, the photon number per electron per turn is given by

AN [photons/electron/turn] = 2 z p dN = 5 z ot 7 c dt (1-59)

where a = 2 ~ 2 / ( h c ) = 1/137 is the fine structure constant.

Brightness and brill iance

Previously we discussed the radiation emission from an electron in ideal circular motion. In

practice, since the electron in the storage ring moves in an equilibrium orbit with some amount

of fluctuation in space and angle, some corrections are necessary for the exact calculation of the

spectral and angular distributions and the degree of polarization of the synchrotron radiation.

Let us take x- and y-axes in the plane perpendicular to the tangent direction (z-axis) of a

circular orbit, as shown in Fig. 1-13. Assuming that the electron beam has a Gaussian

distribution in the xy-plane, and the standard deviations of the spatial distribution are

represented by crx and Cry in the x- and y-directions, respectively, then the cross section of the

electron beam, i.e., the size of the radiation source, is 2.352 Crx Cry (because the full width at

half maximum is 2.35 times the standard deviation). The extents of angular distribution are

also similarly represented by the standard deviations of Crx' and Cry'.

The values of crx, Crx', Cry and Cry' are variable, depending on the location along the electron

orbit. However, there is an interrelation between Crx and Crx', and also Cry and Cry'. We define

an emittance e x and ey as follows,

Ex = axax' (1-60) ey = Cryay" (1-61)

The emittance is independent of electron motion, according to Liouville's theorem. When the

spatial distribution of the electron beam is small, the angular divergence becomes large, and

vice versa. Moreover, there is a correlation between e x and ey, depending on the storage ring

structure and the oscillatory motion of electron beam in orbit.

Page 31: Analytical Spectroscopy Library_VOL 7

22

r X

-Orb i t ~ / 12.35 y

y -< 2.35o'x

�9 50'x'

L. .J ' ..._1

2 .35~y ' z

Fig. 1-13. Schematic diagram showing the size and angular divergence of synchrotron radiation source.

As mentioned previously, the photon flux, which is the photon number emitted per unit time,

per unit angle in the horizontal plane, and unit band width, is defined by

d3N [photons/sec/mrad(horiz.)/O.1% b.w./mA] dtd OdA/~

The flux is decided only by the electron energy, and is not related to the size and angular spread of the electron beam. Brightness, which is the flux represented for unit solid angle, i.e., the

photon number per unit time, unit solid angle and unit band width, is defined by

d3N [photons/sec/mrad2/0.1% b.w./mA] dtdl-2dA/~,.

According to this definition, the angular divergence is given by convolution of the angular

width of the electron beam with the intrinsic angular width of the radiation. High brightness

would be required in many synchrotron radiation experiments, especially when one uses an

aberration-free optical system. "Brilliance" is the brightness divided by the size of the radiation source, i.e., the photon

number per unit time, unit solid angle, unit area,.and unit band width. The brilliance is defined

by

Page 32: Analytical Spectroscopy Library_VOL 7

23

d ~ dtdl'2dSdA/A

[photons/sec/mrad2/mm2/0.1% b.w./mA]

where S represents the area of the radiation source, being related to the size and angular spread

of the electron beam. When one needs a focused sharp radiation, high brilliance is necessary.

The low electron beam emittance gives high brightness and high brilliance.

1.3. TYPICAL SYNCHROTRON RADIATION SOURCES

The synchrotron radiation facility is typically composed of a linear accelerator, synchrotron,

and storage ring, although several variations are possible. The major part of the facility is of

course the storage ring. High energy electrons accelerated by the linear accelerator and

synchrotron are injected and stored in the storage ring. In this section we discuss the

characteristics of the source facility in general and describe typical facilities in operation and

under construction.

1.3.1. General System of SR Source

In the storage ring, as a radiation source, high energy electrons moving in a definite circular

orbit are stored for more than several hours. The electrons are injected into the storage ring after

being accelerated up to a final storage energy by the linear accelerator, and by the synchrotron

in the case of full energy injection. Sometimes, especially in small or intermediate size SR

facilities, the injection system is designed to be operated at a lower energy than the final storage

energy, and there must be one or more radiofrequency cavities in the storage ring in order to

accelerate electrons to full energy. When the electron energy is several 100 MeV, the SR

spectra have a peak around soft X-ray to VUV range. And when the energy is several GeV, the spectral peak is in the X-ray range.

Dipole magnets are arranged along the electron orbit to bend the electron beam. The magnetic

field of the magnets is kept constant in the storage ring because the electron beam energy has to

be kept constant. There are photon beam ports at the location of the dipole magnets so that the

synchrotron radiation may be utilized. Between the dipole magnets on the straight beam line

section there are quadrupole magnets, which provide magnetic fields with gradients to act as

lenses for the electron optics system. The electron beam is maintained in a stable oscillation

(betatron oscillation) around an equilibrium orbit by the lens action with the magnets.

The electron circulating in the ring loses energy by emitting synchrotron radiation. This

energy loss is again supplied by radiofrequency cavities, which are set up on a straight section

of the ring, and an associated power supply. The radiofrequency may be selected so as to be an

integer multiple of the electron orbital revolution frequency. The integer is called the harmonic

number of the ring. With this scheme of radiofrequency acceleration, electrons in the ring can

be grouped in bunches of the harmonic number. The radiation is, therefore, pulsed at definite

Page 33: Analytical Spectroscopy Library_VOL 7

24

intervals. A fairly high total electron current is available since many discrete bunches of

electrons are in the ring, although there is a limitation to the number of electrons stored in one

bunch.

If time-analysis experiments are intended, the electrons should be stored in a small number of

bunches, with the interval of the radiation pulse being spread. When the electrons are

assembled in a single bunch, the photon pulse interval is the maximum and equal to the time

when electrons turn over the ring. The radiation is pulsed to the bunch width, which is

typically about 10% of the radiofrequency period. The electron beam should be of small

emittance so that we obtain a radiation source having high brilliance.

The chamber in which the electrons circulate has to be maintained at an ultra-high vacuum.

For the stored electron beam's decay time to be of the order of many hours, the average

pressure must be in the 10 -9 to 1 0-10 Torr range to minimize scattering of the stored electrons

by the residual gas atoms.

In the current SR facility design, insertion devices such as wigglers and undulators are widely

employed in the storage ring. The insertion devices are other magnetic structures, which for

many experiments are more effective sources of synchrotron radiation than the dipole bending

magnets. The principles of the radiation emission from the devices (wiggler and undulator) are

shown in Fig. 1-14a and 1-14b. Both wiggler and undulator magnets are inserted into the

periodically deflected, although there is no net deflection or displacement of the beam from the

equilibrium orbit.

2

(a) 2

(b) Fig. 1-14. Radiation from insertion devices; (a) Multi-pole wiggler and (b) undulator.

Let us define a parameter K in order to characterize the synchrotron radiation emitted from the

insertion devices, as follows.

Page 34: Analytical Spectroscopy Library_VOL 7

25

K = eBoAu 2nmc 2 (1-62)

= 0.934 Bdtesla] Au[Cm] (1-63)

Here, B o is the peak field and )~u the magnet period in cm. K is called "deflection parameter",

being independent of the electron energy. A maximum angle with which an electron oscillates

around the axis (z-axis) is given by K/),. On the other hand, instantaneously emitted photons

are focused in a very small cone with angular width 1/?'. Thus, in the case of K >> 1 (Fig. 1-

14a), the radiation can be observed in the z-axis only when electrons move near the top of their

oscillating trajectories. This photon emission is evident via the wiggler (multi-pole wiggler).

The radiation shows an increase in the critical energy, and a shift of the overall spectrum to

higher energies compared to the dipole bending magnet radiation, although the spectral profiles

are similar in both two magnets. If the wiggler is composed of N poles, the electrons oscillate

N times within the wiggler and the radiation intensity (brightness) is increased to N times.

In the case of K ~ 1 or K < 1 (Fig. 1-14b), the radiation is observed without intermission in

the z-axis. This emission of radiation is evident in the undulator. The electric vector of the

undulator radiation changes sinusoidally. Therefore, the radiation spectrum, which is described

by its Fourier transformation, is quasi-monochromatic and a primary wave is prominent. The

radiation, which is emitted at an angle 0 with respect to the z-axis, has its k-th order higher harmonics of the wavelength 2 k, given by

= K 2 ,~k 2 k ~ ( 1 + - ~ + ~'202)

(1-64)

In the case of K << 1, the major component of the radiation is the primary wave, with wavelength/1,1 = Au/(27'2), on the z-axis (0= 0). As we will see later, an electron emits waves

which add coherently. The radiation intensity varies with the square of N, and the spectral

width A&/A is of the order of I/N, where N is the number of periods of the undulator. Electrons travel incoherently with respect to each other, and the photon intensity is proportional

to the number of electrons. Undulators are extremely intense tunable radiation sources.

1.3.2. Typical Synchrotron Radiation Source Facilities

In response to a rapidly increasing demand a number of synchrotron radiation facilities have

been built or are under construction or planning throughout the world. All the existing or

planned SR facilities fall into three general classes: (i) small scale facilities with the electron energy less than 1 GeV and e c < 1 keV; (ii) intermediate scale facilities with the 1 GeV to 3 GeV

electrons and 1 < e c < 10 keV; and (iii) large scale facilities with the electron energy higher than

3 GeV and e c > 10 keV. Generally speaking, the larger scale facilities can produce higher

Page 35: Analytical Spectroscopy Library_VOL 7

26

energy photons or X-rays. However, of course, what decides the photon energies is the orbital

radius as well as energy of the electrons. Even if the electron energy is low, higher energy

photons are emitted with a high dipole-magnet field, which makes the electron orbital radius

small.

The first class facilities, which mainly produce radiation with wavelengths from soft X-rays

to vacuum ultraviolet (VUV) radiations or longer, are useful for research in photo-electron

spectroscopy (XPS), photochemistry, and photoabsorption in the soft X-ray to VUV range,

and lithography and photo-etching. On the other hand, using the small scale facilities is not

always beneficial for X-ray spectrochemical analysis, because X-rays with energy higher than 1

keV are usually employed as primary X-rays in the analysis.

Intermediate and large scale facilities may be preferable for X-ray spectrochemical analysis.

The large scale ones, especially, can produce X-rays with energy higher than 100 keV with

high intensity, which make possible the excitation of K X-rays of even the heaviest element,

uranium. In this Section, we describe, as examples, three of the typical facilities dedicated for

SR studies, that is, the National Synchrotron Light Source (NSLS) at Brookhaven National

Laboratory, USA, the Photon Factory (PF) at National Laboratory for High Energy Physics

(KEK) at Tsukuba, Japan and the Super Photon Ring (SPring-8) at Harima Science Garden

City, Japan (under construction).

National Synchrotron Light Source (NSLS)

The NSLS was designed and built as a combined light source for VUV and X-rays. The

overall layout of the facility is shown in Fig. 1-15. Electrons are accelerated in a linear accelerator to 100 MeV, and injected into a booster synchrotron and accelerated up to 700 MeV.

Then the electron beam is transferred either to the 700 MeV VUV ring or to the 2.5 GeV X-ray

storage ring.

Table 1.1 Parameters of the VUV- and X-ray- storage tings in the National Synchrotron Light Source.

Parameters VUV Storage Ring X-ray Storage Ring

Normal operating energy 745 MeV Maximum operating current 1.0 amp Lifetime Circumference 51.0 m Number of beam ports of dipoles 17 Number of insertion devices 2 Maximum length of insertion devices 2.5 m

~c (ec) 25.3 A (486 eV)

B (p) 1.23 T (1.91 m)

2.5 GeV 0.25 amp --20 hr 170.1 m 30 5 < 4 . 5 m

2.48/~ (5.0 keV) at 1.22 T 0.60 A (20.8 keV) at 5.0 T

1.22 T (6.875 m)

Page 36: Analytical Spectroscopy Library_VOL 7

27

Table 1.1 (continued)

Parameters VUV Storage Ring X-ray Storage Ring

Damping times, lr x = Vy

~e Electron orbital period Lattice structure (Chasman-Green)

Number of superperiods

Nominal tunes, v x , Vy Momentum compaction RF frequency

Natural energy spread (ix E / E)

Horiz. dumped emittance (e x )

Vert. dumped emittance (ey)

Source size, tr h, tr v

17 msec 6 msec

9 msec 3 msec

170.2 nsec 567.7 nsec separated function separated function quad., doublets quad., triplets 8 bending 16 bending

3.14, 1.20 9.15, 6.20 0.023 0.0065 52.88 MHz 52.88 MHz

4.5 x 10 -4 8.2 x 10 -4

1.5 • 10 -7 m-rad 1 x 10 -7 m-rad

22.8 x 10-10 m-rad 1 x 10 -9 m-rad

0.5 mm, > 0.006 mm 0.35 mm,0.15mm

The details of the facility design have been described by van Steenbergen and the NSLS staff

[19]. Recent operating parameters of the VUV and X-ray storage ring are listed in Table 1.1

[20]. The basic ring structure consists of 8 bending dipole magnets in the VUV ring and of 16

in the X-ray ring, delivering continuum synchrotron radiation with e c = 486 eV (~.c = 25.3/~),

and e c = 5.0 keV (~.c = 2.48 !k), respectively. There are several insertion devices; i.e., four

undulators (U5U, U13TOK, X1 and X13) and three wigglers (X17, X21 and X25). (see Table

1.2) With the incorporation of the high field superconducting wigglers in the X-ray ring, the

wavelengths can be extended to hard X-rays exceeding 100 keV.

Table 1.2

Energy parameters for the insertion devices in NSLS (January 1991).

Parameters U5U U13TOK X1 X13 X17 X21/X25

Magnetic field - Bma x [T]

Number of poles Periodic length

- ~, [ c m ]

Wiggler characteristic

energy- e c [keV] Energy range [eV] - Undulator fund. Deflection parameter range - K Gap range [cm]

0.46-0.01 0.72-0.05 0.31-0.03 0.31-0.03 [email protected] 1.1 2poles @2.6

55 44 69 20 7 27 7.5 10 8 8 17.4 12

0.265

11.3-70 2.2-50 0.19-0.73 0.19-0.73

22.2 4.57

for 5.2T poles 10-100 4-30

3.2-0.08 6.7-0.4 2.3-0.2 2.3-0.2 84

3.4-12.0 3.35-12.0 3.3-9.8 3.3-9.8 3.2

12.3

2.4-12

Page 37: Analytical Spectroscopy Library_VOL 7

X5

X - R A Y

X19

- ~ = Inser t ion Device Contro l R o o m ~ Beaml ine

VUV

% U3

u 7

tO OO

Fig. 1-15. Overall layout of the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory (by the courtesy of N. F. Gmuer).

Page 38: Analytical Spectroscopy Library_VOL 7

29

10 le

E I0 Is

'~ 1014

~I013

10 ~

..... VUV, 1:800mA " .U~U --XRAY, 1:250mA -=-_ -.0.._. . . . . . . .-...

~ X21 ,X25

- \ \ u , o u , , , . . . . . . . \ \ \

Ill!

102 105 104 105 Photon Energy [eV]

Fig. 1-16. Radiation spectra for NSLS bending magnet and insertion device (undulator and

multipole wiggler) sources. The undulator curves are the envelopes of the first,

third and fifth harmonics, 0.5 < K < 3.

Figure 1-16 shows the radiation spectra (photon energy vs. flux curves) for the NSLS

bending magnet and insertion device sources. Although the horizontal angular dependence of

the bending magnet radiation is constant, output of the wiggler peaks on the axis, and falls to

zero at ~ / y , where K is a deflection parameter given in Table 1.2 and y= Ering/mc 2 ; Ering =

745 MeV (VUV ring) and Ering = 2.5 GeV (X-ray ring). For the wigglers, the flux within one

mrad (horizontal) centered on the axis is shown, even though most beam lines can collect more

than one mrad horizontally. For the undulators, the central cone flux is plotted: the angular size

of the cone depends on both the undulator and the electron beam parameters. Most beam lines

can accept this entire cone. The undulator curves in Fig. 1-16 are the envelopes of the first,

third and fifth harmonics, 0.5 < K < 3.

In order to maintain precise control of the source locations and exit angles of the synchrotron

radiation an elaborate electron beam deflection and correction system is incorporated in both

storage tings. The VUV ring has 16 ports, and the X-ray ring 29 ports, of which some ports

are split into two or more branches.

Photon Factory (PF)

The PF is an X-ray storage ring fully dedicated to synchrotron radiation research. Figure 1-

17 shows the layout of the facility [21 ]. A linear accelerator can accelerate both electrons and

positrons up to 2.5 GeV. These are injected and stored in the storage ring. Since the full

energy injection system is employed, there are two advantages in that the locations of the

Page 39: Analytical Spectroscopy Library_VOL 7

30

sources of synchrotron radiation in the ring are controlled precisely and with good

reproducibility, and the beam injection can be made in a shorter time.

Table 1.3

Major parameters of the Photon Factory ring.

Normal operating energy Maximum operating current Lifetime Circumference Bending radius Betatron tunes, horiz./vert. Emittance, horiz.

vert. RF frequency

2.5 GeV (max., 3.0 GeV) 360 mA (e-), 350 mA (e +) 15 hr (300 mA), 30 hr (150 mA) 187 m 8.66 m 8.38 / 3.18 1.3 • 10 -7 m-rad 2.0 x 10 -9 m-rad 500 MHz

0 25m , , i i '

IA ~ . . . . . . . . ,

2Bz

16C

~\11B \ 13m~"4 138z

Fig. 1-17. Layout of the Photon Factory at Tsukuba.

Page 40: Analytical Spectroscopy Library_VOL 7

31

The storage ring has an elliptical shape with diameters of 68 m and 50 m. The structure of the

ring consists of 28 bending magnets, 58 quadrupole magnets and many small magnets for orbit

corrections. Table 1.3 lists the main operation parameters of the PF facility. The radiation

emitted from the electrons deflected by the bending magnets has a continuous energy spectrum

with the critical energy of 4.11 keV (3.0 A). An electron loses energy of 400 keV per turn of

the 187 m circumference, which means that a 300 mA electron beam loses 120 kW by emitting

synchrotron radiation. The radiations from the bending magnets and the insertion devices are

available at 24 ports, among which 15 ports are for the experiments and 3 ports are used for

beam diagnosis.

Table 1.4

Parameters for the insertion devices in PF.

Line Type 2 u [cm] N Gmi n [cm] Bma x [T] Kma x hv [keV] U 0 [keV]

BL02 U 6.0 60 2.8 0.3 1.7 0.4 / 5.0 1.37 0.4 2.3 0.25 / 5.0 2.44

BL13 MPW/U 18.0 14 2.7 1.5 25.0 0.03 / 70 22.4

BL14 WS 5.0 6.0 < 100 50.0

BL16 MPW/U 12.0 26 1.8 1.5 16.8 0.03/70 27.8

BL19 U 5.0 46 3.0 0.3 1.3 0.01 / 1.1 0.71 7.2 32 3.0 0.4 2.7 1.5

10.0 23 3.0 0.5 5.0 2.6 16.4 14 3.0 0.6 9.5 3.5

BL28 C 16.0 12 3.0 1.0 15.0 0.01 / 20 7.2 11.0 0.2 3.0

U, undulator: MPW/U, multipole wiggler and undulator: WS, wavelength shifter: C, circular

polarization source: Au , magnet period: N, number of periods: Gmi n , minimum gap: B,

magnetic field: K, K value: U 0, radiation loss.

The storage ring has two long straight sections (5 m long) and eight intermediate ones (3.5 -

3.75 m long). There are an electron injection apparatus, two sets of radiofrequency cavities and

several insertion devices in the straight sections. Table 1.4 shows the major parameters of the insertion devices. An undulator made of SmCo 5 permanent magnets is installed in the long

straight section (BL02). The undulator has 60 periods (6 cm each period) and the field is

comparatively low (0.31 tesla maximum), producing high brilliance radiations with energy 0.4

to 5.0 keV. In BL16 is set a multi-pole wiggler (MPW), which has 26 periods with 12 cm

length per period, producing the radiations between 0.03 and 70 keV with very high brilliance

(almost 100 times that of the bending magnet radiations). The MPW is a complex of NdFe

Page 41: Analytical Spectroscopy Library_VOL 7

32

permanent magnets (NEOMAX30H) and Permendur with the magnetic field variable from 1.5

to 0.05 tesla, by which one can select alternatively its operational mode,-- either the wiggler

mode (fixed at 1.5 tesla) or the undulator mode (variable from 0.05 to 0.5 tesla). In BL14 a

wiggler with super-conducting magnets of 6 tesla (maximum) is fitted to deflect electrons

vertically to the orbital plane, which is useful for hard X-ray experiments. Other kinds of

insertion devices are also available, which have been developed and installed recently.

Super Photon Ring (SPring-8)

Up to the end of the 1980s more than twenty synchrotron radiation facilities have come into

operation throughout the world, and studies using them have been made in many research

fields. In due course, the need for high brilliance SR facilities was envisaged and new projects

to construct the next generation SR facilities have started in Europe, the United States and

Japan. The SPring-8, which is an 8 GeV SR source facility, is one of them. Construction

started in 1990 and will be finished in 1997. Several requirements have been considered in

designing the SPring-8 facility [22]. They are for: (i) a high brilliance source for both soft and

hard X-ray radiations, (ii) a widely and easily tunable photon energy, (iii) a superior time

structure of the photon beam (selective use of single- and multi-bunch beam), and (iv) a photon

beam which has both a stable position and intensity.

Insertion devices are to be the principal radiation sources for the next generation of SR

sources. In particular, undulators with different spectral characteristics and polarization will be

the most important radiation sources. In order to accommodate as many insertion devices as

possible, the SPring-8 has a sufficient number of long, dispersion-free straight sections. A full

energy injection method is adopted to make the beam position very stable. The injection system

consists of a 1GeV linear accelerator as preinjector and a synchrotron to accelerate the electrons

up to 8 GeV.

Table 1.5

Major parameters of the SPring-8 storage ring.

Energy 8 GeV Synchrotron tune 0.0102 Current (multi-bunch) 100 mA Momentum compaction 1.49 x 10 -4 Current (single bunch) 5 mA Natural chromaticity - 13.17 Circumference 1435.95 m - 43.32 Dipole magnet field 0.665 T Energy loss in the arc 9.04 MeV/rev Bending radius 40.098 m Energy spread 0.108%

Number of cells 48 (44 + 4) Damping time, z x 8.473 msec

Straight section length 6.4 m z z 8.481 msec

Natural emittance 6.89n nm-rad z e 4.242 msec Critical photon energy 28.32 keV Harmonic number 2436

Tune, v x 51.22 RF voltage 17 MV

Vy 16.16 RF frequency 508.58 MHz

Page 42: Analytical Spectroscopy Library_VOL 7

.~t 3 I 8 I

Experimental Hall \,/

Storage Ring Linac

-~ /~I~,~ "~~,.~~-~chro iron

Long Beam Line (30Ore)

Storage Ring Tunnel

Long Beam Line (I kin)

" - - " - ' - ' - ' - - - ~ : : z : ~

r-------1

Fig. 1-18. Plan view of the Super Photon Ring (SPring-8) at Harima science Garden City (by the courtesy of H. Kamitsubo).

Page 43: Analytical Spectroscopy Library_VOL 7

34

The major parameters of the storage ring are summarized in Table 1.5 and a plan view is

shown in Fig. 1-18. The circumference of the ring is 1436 m and is divided into 48 cells.

Among them 44 are normal cells, each of which contains two 2.8 m bending magnets, ten

quadrupoles, seven sextupoles and a 6.5 m dispersion-free straight section, whereas four are

straight cells, which contain two 6.5 m dispersion-free straight sections, two 3-m long straight

sections (in places of the bending magnets in the normal cells), and the same number of

quadrupoles and sextupoles as in the normal cell. In addition to these, there are 12 steering

magnets in each cell for closed orbital distortion (COD) correction and for dynamic feedback of

the beam position movement. The chromaticity is corrected by three harmonic sextupoles

which are located in the dispersion section between two bending magnets.

The radiofrequency system (505.58 MHz) consists of four 1 MW klystrons and 32 cavities which are installed in 4 low-fi x straight sections each 6.5 m.long. The energy loss per turn due

to SR emission in the bending magnets is 9.0 MeV, whereas the energy loss due to the insertion

devices is estimated to be 3.2 MeV, and others due to the cavities and vacuum chambers are

evaluated to be 0.5 MeV. In addition to this, an overvoltage is required for obtaining a long

quantum lifetime. Calculations give the maximum peak voltage needed in the cavity as up to 17

MV.

Table 1.6

Typical values brightness, flux and size of photon beam from SPring-8

Devices Brightness Flux* Size A u L K E 0 [photons/s/ [photon/s/ [mm] [cm] [m] [keV] mrad/0.1% b.w.] 0.1% b.w.]

Undulator 1 2 x 1019 1 x 1014 4 x 2 3.3 5 1 12.3

Undulator 2 2 x 1020 7 x 1014 3.3 30 1 12.3

Wiggler 2 • 1018 3 x 1014 200 x 9 18 2 25 63.9

Bending 2 x 1013 1 x 1013

* Flux; Undulator, photons through a hole ( ~ 0 - 64 mrad).

Wiggler and Bending, photons / mrad.

Table 1.6 lists typical values of brightness and flux for the radiations from the undulators,

wigglers and bending magnets, calculated assuming a stored electron current of 100 mA. From

the bending magnets and insertion devices 23 and 38 beam lines are available, respectively.

The average lengths of the beam lines are 80 m from the exit of the insertion devices or bending

magnets to the photon beam dump at the end of the beam line. For studies requiring longer

beam lines, 8 beam lines can be extended up to 300 m and three can be lengthened to 1000 m.

Page 44: Analytical Spectroscopy Library_VOL 7

35

1.4. I N J E C T O R S

A synchrotron radiation source is composed of a storage ring, which accumulates and stores

electrons (or positrons) over many hours, and attached beam lines for extracting the radiation to

the experimental hall. The source of particles to a storage ring is called the "injector".

One can classify injectors into two groups, depending on their energy relative to the operating

energy of the storage ring. In many existing storage tings, as can be seen in Table 1.7, the

injection energy is lower than the operating energy of the storage ring. In these cases, electrons

must be accelerated to the operating energy by ramping the magnetic fields of the storage ring.

In modern storage tings, however, the injector has the same energy as the operating energy.

This scheme is called the full-energy injection.

Table 1.7

List of typical synchrotron radiation facilities classified by their injector system

Facility Storage ring Injector name energy energy rep. rate

[GeV] [GeV] [Hz]

Status

(a)Synchrotron NSLS VUV (BNL) UVSOR (IMS) SRS (Daresbury) NSLS X (BNL) SPEAR (SSRL) INDUS-I (Indore) SRRC (Taiwan) ALS (LBL) APS (ANL) S P-8 (RIKEN/J AERI)

(b) Linear accelerator SUPER-ACO(LURE) HESYRL (Hefei) Photon Factory(KEK) BEPC (Beijing) ELET1RA(Tfieste) PLS (Pohang)

(c) Microtron MAX (Lund) ALADDIN(Wisconsin)

0.75 0.75 0.66 op 0.8 0.6 2.5 op 2.0 0.6 10 op 2 . 6 - 2.8 0.75 0.66 op 4.0 2.3 30 op 0.45 0.45 2 c 1.3 1.3 10 c 1.9 1.5 1 c 7.0 7.0 2 c 8.0 8.0 1 c

0.8 0.8 12.5 op 0.88 0.2 1 op 2 . 5 - 3.0 2.5 25 op 2.8 1.4 50 op 2.0 2.0 10 c 2 . 0 - 2.5 2.0 10 c

0.55 0.1 10 op 1.0 0.108 1.25 op

op: in operation c: in construction

Needless to say, an injector is much more expensive for higher energies. However, the beam

is generally subject to instabilities if it is injected at low energies and, in particular, is very

sensitive to the operating parameters in the "low-emittance" storage tings which have been quite

Page 45: Analytical Spectroscopy Library_VOL 7

36

common for several years in high-brightness synchrotron radiation sources. Table 1.7 shows

that full-energy injection will be widely adopted in forthcoming storage rings.

The accelerators which have been used as injectors for storage tings are synchrotrons, linear

accelerators, and microtrons. Short descriptions of these accelerators will now be given.

1.4.1. Synchrotron

The synchrotron is a circular magnetic accelerator which uses time-variable magnetic fields to

bend and focus electrons. Since the magnetic field strength varies with the energy of the

electrons, the orbit radius is always kept constant. Acceleration is achieved with the aid of

radiofrequency (rf) accelerating cavities. In general, the rf frequency of a synchrotron must be

changed with time in order for particles and fields to synchronize all the way. For an electron

synchrotron, however, the time of revolution of the electrons around the ring does not depend

on energy because of the constancy of their velocity, even at relatively low energies. Hence, a

fixed rf frequency is adequate for electron synchrotrons. This simplifies their construction and

operation, and makes it easy to operate them with a high repetition rate.

As shown in Fig. 1-19, the basic components of a synchrotron are magnets for bending and

focusing electrons, radiofrequency (rf) cavities for accelerating electrons, and specially

designed pulsed magnets for injecting and extracting electrons. The electron beam passes

through a hollow metal or ceramic pipe having a lateral size typically 5 cm x 10 cm. The pipe,

which is called the vacuum chamber, is evacuated to a pressure of the order of 10 -6 Torr.

extr

j l__l j . . . . . .

w IflJt~ULUI- ~ ~ c r o s s s e c t i o n rf cavity of magnet

Fig. 1-19. Schematic of a synchrotron.

A small linear accelerator or microtron is used as the injector for a synchrotron. Electrons are

injected into the synchrotron when its magnetic field is low (e.g. 1/10 to 1/20 of the maximum

field strength), and are accelerated as the field strength increases. At the crest of the magnetic

Page 46: Analytical Spectroscopy Library_VOL 7

37

field, electrons are extracted by means of pulsed magnets. This cycle is repeated at regular

intervals. Usually, electron synchrotrons operate at a repetition rate between 1 Hz and 50 Hz.

Ca)

~t

(b)

--~t

Fig. 1-20. Magnetic field waveforms of synchrotron; (a) slow-cycling and (b) rapid-cycling.

The synchrotrons are generally considered in two classes; the slow-cycling synchrotrons and the fast-cycling synchrotrons. The slow-cycling synchrotron, which operates at around 1 Hz,

uses rectifying circuits for generating magnetic fields, and the field waveform is triangular

(Fig. 1-20a). On the other hand, the rapid-cycling synchrotron repeats at a frequency of 10 to 50 Hz, and utilizes resonant circuits for generating magnetic fields. Hence, the field waveform

is sinusoidal (Fig.l-20b).

Generally speaking, a shorter injection time is better from the viewpoint of increasing the time

available for the synchrotron radiation research. The injection time depends on the repetition

rate and the number of particles which the injector can provide every cycle. Since there is a limit

on the intensity which can be accelerated in a cycle, the rapid-cycling synchrotron gives us a

shorter injection time. For technical simplicity and construction cost, however, the slow- cycling synchrotron may be superior to the rapid-cycling synchrotron, since most technical components of the former are simpler. In the rapid-cycling synchrotron the magnet system needs an unusual high-power resonant circuit technique, while the thyristor rectifier used for the slow-cycling synchrotron is a popular component in power engineering. In rapid-cycling synchrotrons one also needs complicated corrugated or ceramic chambers to reduce eddy currents produced by the rapidly-changing magnetic field, and much higher power rf cavities.

1.4.2. Linear Accelerator

Radiofrequency linear accelerators have been the most popular injectors for synchrotrons, and

can also be the direct injectors for storage rings. Figure 1-21 shows a simplified block diagram

of a travelling-wave linear accelerator. The linear accelerator comprises an electron gun (a

source of electrons), sections of microwave waveguides as the accelerating structure, and

solenoid coils or quadrupole magnets for focusing electrons. The phase velocity of the

microwave travelling down waveguide coincides with the velocity of electrons. Therefore,

electrons which maintain the proper phase relationship with the microwave can be accelerated

Page 47: Analytical Spectroscopy Library_VOL 7

38

continuously by the electric field pointing in the direction of motion. The most common

accelerating structure is the disk-loaded waveguide working at a microwave frequency of about

3,000 MHz.

Linear accelerators with energy lower than 20 MeV are widely used for medical applications

and non-destructive inspection, and are commercially available. Their accelerating gradient per

unit length of accelerator guide is typically 10 MeV/m, and a single microtron or klystron is

used as a microwave power source. Linear accelerators of higher energies, which have been

built for research applications, need many sections of accelerator guides and klystrons. For

example, in the 2.5-GeV linear accelerator at the Photon Factory of KEK at Tsukuba, Japan,

there are 160 sections of accelerator guides, each 2m long, with 40 klystrons used to energize

them. A microwave power of 30 MW amplified in a klystron is split and fed into four

accelerator guides. The KEK linear accelerator operates at a repetition rate of 50 Hz. The peak

current of the accelerated beam is 50 mA in a pulse of 2 Its, in normal operation. The

accelerating gradient per unit length of accelerator guide is 10 MeV/m. Accelerating structures

with higher gradients, in the range of 30-50 MeV/m or even 100 MeV/m, are under

development. Klystrons with powers of 50 to 100 MW are also becoming available.

Fig. 1-21. Travelling-wave linear accelerator; (a) accelerator guide and (b) disk-loaded

waveguide.

As mentioned before, linear accelerators have been used as injectors for synchrotrons. An

energy of 20-30 MeV is appropriate for a synchrotron of an energy less than several hundred

MeV, while an energy of 500 MeV to 1000 MeV will be necessary for a synchrotron of multi-

GeV. Linear accelerators have also been used for the direct injection to a storage ring. Most

high energy linear accelerators in the multi-GeV range were built as injectors for high-energy

electron-positron colliders for elementary particle physics, and some storage tings for

synchrotron radiation rese~ch take advantage of these accelerators in parasitic use. However,

Page 48: Analytical Spectroscopy Library_VOL 7

39

since high-energy linear accelerators are more expensive, synchrotrons are preferred as injectors

for the direct injection into the storage ring, unless the beam is shared for other purposes.

When positrons are stored in the storage ring a high-energy, high-intensity linear accelerator

will be inevitable. Positrons can be produced by high-energy electrons bombarding a heavy

metal target, such as tantalum. In the Photon Factory of KEK, a high-intensity linear

accelerator of 230 MeV is used to produce positrons. Low energy positrons (around 5 MeV)

produced at various angles and with various energies are focused using high-field magnetic

solenoids, and accelerated to an energy of 250 MeV by another linear accelerator. The positron

beam so produced is transferred to the main accelerator, in which the positron is accelerated to

the final energy. Generally, the yield of positrons is roughly proportional to the beam power

(i.e. the energy times the current) of the incident electron beam. At the Photon Factory the

number of positrons accelerated to the final energy is around 0.1% of the number of the incident

electrons.

1.4.3. Microtron

The microtron is a circular accelerator in which a static magnetic field is used, and so the

radius of curvature of the circular orbit grows with increasing energy. Acceleration is achieved

by an rf accelerating cavity. As shown in Fig. 1-22a, each time the electron passes through the

cavity it gains energy, and the orbit radius grows in discrete steps. If a proper relation holds

between the energy and rf voltage, the orbits overlap at the position of the cavity.

i agnet

e

f

f

(a) \rf cavity (b)

Fig. 1-22. Schematic of microtron; (a) circular and (b) race-track.

Small microtrons in an energy range of 10 to 50 MeV are commercially available, and are

used in medical applications. The race-track design shown in Fig.l-22b has been applied to

higher-energy microtrons of around 50 MeV. By this means, a cavity of multiple gaps can be

inserted in a straight section between magnets, and a high accelerating energy per pass can be

achieved. Although the intensity obtainable from microtrons is usually lower than from linear

accelerators there are advantages in the beam quality, such as the excellent energy-spread and,

more importantly, the cost is lower than that of linear accelerators.

Page 49: Analytical Spectroscopy Library_VOL 7

40

Some synchrotron radiation sources have used a microtron of energy higher than 100 MeV as

the injector to the storage ring. In addition to the examples listed in Table 1.7, a compact

storage ring developed for micro-lithography has used a microtron of around 100 MeV.

However, high-energy microtrons are not yet popular.

1.5. STORAGE RING

A storage ring is a circular ring, whose structure is essentially the same as a synchrotron's,

and which keeps a beam of electrons (or positrons) circulating at relativistic velocities over

many hours. It comprises magnets for bending and focusing the circulating beam, rf

accelerating cavities for making up for energy lost as synchrotron radiation, and vacuum chambers for keeping an ultra-high vacuum along the particle trajectory.

Figure 1-23 illustrates the principal functions of a storage ring. The magnetic system consists

of bending magnets and focusing quadrupole magnets. Along the circular path in the bending

magnets, synchrotron radiation is emitted in a tangential direction. Many beam lines for

extracting the synchrotron radiation can be attached to normal bending magnets. Between the

magnets there are straight sections which are free for installation of auxiliary components including rf accelerating cavities, pulsed magnets for injecting the beam, small magnets for

controlling the orbit, diagnostic instruments, and vacuum pumps. In addition, insertion

devices, which will be described later, are placed in the straight sections of the storage ring.

devlce ' ~

l~bendlng magnet L ~

7 "~quadrupole m agnet / from \ ^ _ r f cav l ty _ , . / <synchro t ron Injector ~l_l[__7,r_] ~ I r~di-atio n

Fig. 1-23. Schematic of storage ring.

Page 50: Analytical Spectroscopy Library_VOL 7

41

1.5.1. Storage Ring Parameters

The principal parameters which characterize the performance of a storage ring will now be

described.

Energy

The energy of the storage ring is related to the spectrum of the synchrotron radiation. As

described in the previous section, the spectral distribution of the synchrotron radiation is a

function of the electron energy and the radius of curvature of the circular path. For normal

bending magnets the critical wavelength of the radiation, Ac[A] = 18.6 / B[tesla] E2[GeV], as

given by Eqn. (1-20). For high energy storage tings, the field strength of the bending magnet

is usually chosen to be between 0.5 and 1 tesla, since these values are optima for economical and technical reasons.

However, for compact storage rings which are designed for X-ray lithography,

superconducting magnets with a field strength around 4 tesla have often been used. The

advantages of taking high magnetic fields are that the size of the storage ring is reduced because

of the small orbit radius, and that low electron energies are sufficient to give the radiation

spectrum required for lithography.

As described before, recent synchrotron radiation sources are based on the comprehensive

use of insertion devices, particularly undulators. In this case, the required energy of the storage

ring is determined by considerations different from those above, as will be described later.

Emittance

While travelling in the storage rings, an electron makes a quasi-sinusoidal oscillation in the lateral direction owing to the focusing action provided by quadrupole magnets. This oscillation

is called the "betatron oscillation"(Fig. 1-24). The electron with the design energy oscillates around the central orbit (the design orbit).

Fig. 1-24. Betatron oscillation.

Page 51: Analytical Spectroscopy Library_VOL 7

42

Let s be the azimuthal coordinate along the orbit. The betatron oscillation is expressed by the

following

y(s) = (e / fl (S))I/2cos(O (S)+qbO) (1-65)

where fl (s), which is called the betatron function, is a function of the azimuthal position, s.

Here r (s) is the phase function which is given by $ (s)= ~(1/fl (s))ds, and $0 is an arbitrary

phase: e is an arbitrary constant relating to the amplitude of oscillation and is called the

"emittance". Equation (1-65) represents a pseudo-harmonic oscillation, whose amplitude and

phase are modulated during motion, as shown in Fig. 1-24.

If an electron has a slightly different energy from the design value, the orbit around which it

oscillates will differ from the central orbit. This property is called dispersion. The equilibrium

orbit for the off-energy electron is called the off-energy orbit. The quantity relating the orbit

deviation to the energy is the dispersion function, usually designated as r/(s). The orbit

deviation, Ay(s), for an electron of energy deviation AE/E is given by

Ay(s) = I"1 (s)AE/E (1-66)

The betatron function fl (s) and the dispersion function r/(s) are uniquely determined if the

magnetic configuration of the storage ring is given. Electron storage rings usually contain a

periodic structure of magnets, and hence both betatron and dispersion functions have the same

periodicity as the magnetic configuration. The amplitude and phase of the oscillation varies for the particles within the stored beam,

which causes it to have a finite lateral size and angular spread. According to custom, we can

define the emittance of the stored beam as the largest emittance within the beam. Roughly speaking, the emittance of the beam, which is defined independently in the

horizontal and vertical direction, is given by the product of a lateral beam size and an angular

spread. It is a measure of the transverse coherence of the electron beam and is a crucial

parameter for determining the brightness of the synchrotron radiation.

It is a unique property of the electron storage ring that the emittance does not depend on the

injection condition, but is determined by the magnetic configuration (usually called the "lattice")

and the electron energy. Owing to the emission of synchrotron radiation (or more precisely,

owing to the compensation by rf cavities of the lost energy), the amplitude of the transverse

oscillation is damped in an exponential manner with time, with a damping time which is given

by the magnetic configuration of the storage ring and the electron energy. This effect is called

the "radiation damping". However, due to the quantum nature of radiation and the randomness

in the betatron oscillation phase at which a photon is emitted, the oscillation behaves like a

Brownian motion, and its amplitude tends to grow. This effect is called the "quantum

fluctuation". As a consequence of the existence of both effects, an equilibrium state is

eventually reached. The distribution of the oscillation amplitude in the stored beam becomes

Page 52: Analytical Spectroscopy Library_VOL 7

43

Gaussian, reflecting the probabilistic nature of the phenomenon. Hence we can define the

r.m.s, beam size for any electron storage ring and, correspondingly, the r.m.s, emittance. The

r.m.s, horizontal emittance, which is called the "natural emittance", has a particular meaning in

the storage ring design, because it is determined just by the lattice structure and the electron

energy. On the other hand, the vertical emittance is determined in practice from the horizontal

emittance, through coupling between the horizontal and vertical oscillations, and it is usually a

few percent of the horizontal emittance.

Bunch number and bunch length

A storage ring applies the method of radiofrequency acceleration to make up for the radiation

loss. If an electron is at a phase ~s, the energy gain balances the energy loss, and the electron

will remain at this phase (Fig. 1-25). The phase ~s is called the equilibrium phase. An electron

whose energy and phase deviate from the specified value is still stable if the deviations are

small. In the stable condition the phase and energy oscillate around the equilibrium values.

This represents "phase stability", and the oscillation is called the "synchrotron oscillation".

According to the theory of phase stability, the stable area of the synchrotron oscillation is

given by a separatrix which separates the stable and unstable areas of oscillation in the phase

space made of phase and energy (Fig. 1-26). The area in which the phase stability holds is called the rf bucket. In consequence, electrons in a storage ring are bunched around a specified

phase of sinusoidal rf voltage. The frequency of the applied voltage must be a multiple of the

revolution frequency with which electrons circulate around the storage ring, in order for the

electron and the rf field to synchronize. This ratio is called the harmonic number, and gives the

maximum number of electron bunches which can be stored in the storage ring.

0 >

~ ) = V s i n 2 ~ f t

/0 ~s ~ _ ~ 2 r ~

radlatlon]oss Urad energy galn Vsin ~s

v

Fig. 1-25. Sinusoidal rf waveform. The equilibrium phase is determined by the balance

of radiation loss and energy gain.

Page 53: Analytical Spectroscopy Library_VOL 7

44

(a)

0 2 ~

(b)

t v

Fig. 1-26. (a) Rf bucket and (b) electron bunch.

For the same reason as in the lateral distribution, the longitudinal distribution (in the moving

direction) of electrons in a bunch also becomes Gaussian. In this case the r.m.s, length of the

bunch is called the bunch length (usually expressed in units of sec). The rf frequency has been

chosen between 100 and 500 MHz for technical reasons; hence the number of bunches will be

several hundreds, or even more than a thousand in large storage rings. A typical value of the

r.m.s, bunch length is 100 ps at the rf frequency of 500 MHz.

If every rf bucket is filled with electrons, the radiation is observed at intervals of the rf period,

and the radiation is effectively continuous in time from the experimenter's viewpoint. This is

called the multi-bunch mode of operation. However, if a single rf bucket is filled, a train of

very short pulses of radiation is observed at intervals of the revolution period. This is called the

single-bunch mode of operation. Since the revolution time is of the order of gs in a typical

high-energy storage ring, the single bunch operation is useful in studies of relaxation

phenomena.

Beam current

The circulating beam contains a large number of electrons. The number of electrons (or

intensity) is sometimes expressed by the circulating current (in units of mA). The radiation

intensity is proportional to the stored current, so that higher currents are always desirable.

However, the stored current is limited by instabilities of various kinds. Among them, the

interaction of the beam with the metallic surroundings, and the ion-trapping effect, are dominant

effects which limit the stored current. When the beam passes through conducting enclosures

Page 54: Analytical Spectroscopy Library_VOL 7

45

such as rf cavities and vacuum chambers, the induced electromagnetic fields influence the beam

and result in its instability. The ion-trapping effect is a phenomenon in which positive ions,

produced through scattering of electrons by the residual gases, are trapped in the electron beam

by electric attraction between electrons and positive ions. This can bring about complicated

instabilities when the beam current increases. The ion-trapping effect can usually be observed

as a growth in the lateral beam size. This leads to a reduction in brightness and brilliance of the

synchrotron radiation. If the stored particles are positrons instead of electrons, however, no

instabilities due to ion-trapping have been observed. This is the main advantage of selecting

positrons as the stored particles.

The stored current in most radiation sources ranges from 100 mA to 500 mA in the normal

operation of multi-bunch mode. In the single-bunch mode of operation, however, the stored

current is limited to several tens of mA because of the existence of single-bunch instabilities.

Beam lifetime

The number of electrons stored in the ring decays exponentially with time. The time in which

it decays to half is called the beam lifetime. The main cause of decay is the loss of electrons

through scattering by residual gases in the vacuum chamber. The dominant processes are a loss

of energy through the emission of Bremsstrahlung radiation and the Mr scattering with

atomic electrons. If the energy lost in collision is greater than the energy acceptance of the

stable area (rf bucket) of the synchrotron oscillation, the electron leaves the stability region of

the synchrotron oscillation, and is eventually lost. Therefore, an electron storage ring requires

a vacuum of the order of 10 -10 Torr or lower in order to keep the beam alive over several

hours. It is not necessarily an easy task to maintain this pressure while storing the beam, since

the synchrotron radiation illuminates the wall of the vacuum chamber and this is the main cause

of desorption of molecules and atoms. Therefore, the beam lifetime depends on the stored

current.

When the aperture of the vacuum chamber is extremely small, the Rutherford scattering, the

scattering by atomic nuclei, causes a loss of circulating electrons. If the deflection angle of an

electron exceeds a critical value, which is determined by the betatron function and the gap of the

vacuum chamber, the scattered electron hits the wall of the vacuum chamber at the narrowest

gap as it circulates in the storage ring. Since the probability of the Rutherford scattering

increases at small angles, the rate of loss due to this scattering becomes significant when part of

the ring vacuum chamber is extremely narrow. This is true when an insertion device such as an

undulator with a narrow gap is placed in the storage ring.

In low-energy storage rings the lifetime of the electron beam is affected by the Touschek

effect. When the stored beam current is high, electrons in the same bunch collide with each

other, and gain or lose the energy in the direction of movement. Some of them exceed the

energy of acceptance of the rf bucket and are lost. A cure for this effect is to increase the

applied rf voltage.

Page 55: Analytical Spectroscopy Library_VOL 7

46

1.5.2. Low-Emittance Lattice

The importance of the low-emittance electron beam can be understood easily by thinking of

the brightness or brilliance of the radiation. For high resolution spectroscopy radiation with a

high brilliance is essential. Brilliance is a quantity conventionally defined as the number of

photons emitted per unit of four-dimensional phase space, per unit bandwidth, per unit time.

The size of the point source is given by the size of the electron beam, while the angular

divergence of radiation is given by convolution of the angular divergence of the electron beam

and the intrinsic angular divergence of the synchrotron radiation. As described in the previous

sections, the intrinsic angular divergence of synchrotron radiation is very small; i.e. of the order

of 1/y. Therefore, a low-emittance electron beam is essential in order to obtain the high-

brilliance synchrotron radiation, particularly using undulators. As stated before, the horizontal emittance of the electron beam is determined by the betatron

and dispersion functions and the electron energy. Hence the horizontal emittance depends on

the type of lattice. Roughly speaking, in order to reduce the horizontal emittance the dispersion

function should be as small as possible at the position of the bending magnets. The reason is

easily understood by thinking of the nature of quantum fluctuations (Fig. 1-27). If the

dispersion function is non-zero at the position of the quantum emission by an electron, the

equilibrium orbit for the electron will change suddenly, due to the change of energy, and so the

amplitude of oscillation changes, because the instantaneous position of the electron is not

changed. Therefore, the growth of the amplitude of oscillation due to quantum emission

depends on the dispersion function at the position of the quantum emission. The growth rate is

small when the dispersion function is small. Since the horizontal emittance is determined by the balance of radiation damping and quantum fluctuation, small dispersion functions are essential

to make the horizontal emittance small.

equi l ibr ium orbi t

\ x~ / \ \ electron t ra jec to ry

orb i t jump / X . / AY = ~l AE/E | -

i

L-emission of a quantum

Fig. 1-27. Illustration of the amplitude growth of the betatron oscillation owing to the

emission of synchrotron radiation.

Page 56: Analytical Spectroscopy Library_VOL 7

47

The most basic type of lattice which provides low emittances is the achromatic arc

configuration (Fig. 1-28). The structure of this lattice consists of straight sections, for the

installation of insertion devices, separated by an achromatic arc. The simplest achromatic arc is

the double focusing achromat, commonly known as the Chasman-Green lattice, which uses a

combination of two bending magnets with a quadrupole magnet placed at the middle. In this

case, the dispersion function can be zero outside the bending magnets on both sides, as shown

in Fig. 1-28, if an appropriate focusing strength is chosen for the central quadrupole magnet.

The quadrupole doublets on both sides tailor the betatron functions.

AV V A QF QD

center of straight section

achromatic arc

J

I--'i , , dispersion

, 0 ,i.._,V AIAV B QF B QD QF

I center of symmetry

Fig. 1-28. Chasman-Green configuration.

(a) Expanded Chasman-Green dispersion - .f/

VAV ,_.-.,/~fA AV'i.--_, VAV AVA'~ 'AV VA'~ 'AVA

(b) Triple-bend achromat(TBA) / , -- . . . . A \ ~ , IlsperA 8iOn

AV 'A V I_.-"i I I I VLV 'V' 'V' 'AV B B B

Fig. 1-29. Typical low-emittance configurations.

Page 57: Analytical Spectroscopy Library_VOL 7

48

There are many variations of the Chasman-Green lattice (Fig. 1-29). One can expand it by

replacing the central quadrupole with several quadruploles. One can also make an achromatic

arc with triple bending magnets and two focusing quadrupoles, called the triple bend achromat

structure. Quadrupole doublets on both sides of the achromatic arc can be replaced by

quadrupole triplets. In all cases, flexibility in the design of the optics and in the operation of

storage tings can be improved with increasing numbers of quadrupole magnets, at the expense of cost and space.

It should be noted that the horizontal emittance is strongly dependent on the angle of a

bending magnet, or equivalently the number of bending magnets in the storage ring. As may be

imagined from the nature of the dispersion function, the smaller the bending angle, the smaller

is the dispersion function. According to calculations, the horizontal emittance is written in a general way as

e = F . O . M . x E 2 / N 3 (1-67)

where E is the electron energy and N is the number of bending magnets. F.O.M. represents the

figure-of-merit of a lattice with respect to emittance, which depends on the type of the lattice.

1.6. INSERTION DEVICES

Insertion devices are new, powerful radiation sources. They are placed in straight sections of

a storage ring and generate radiation with spectral properties different from those obtained using normal bending magnets. An insertion device comprises periodic magnets, whose polarity

alternates periodically in the direction of motion of the electron beam. Therefore, the trajectory

of electrons inside the insertion device wiggles like a section of sinusoidal curve. The effect of

the magnetic field en the electron orbit is localized in the position of the insertion device, and the

orbit is unperturbed in the rest of the ring.

Insertion devices wb.ich have been used in operating synchrotron radiation sources are

wavelength shifters, multi-pole wigglers and undulators. The wavelength shifter is sometimes

just called the wiggler.

Free-electron lasers (FEL) have seen unique progress in the past two decades. It has been

conceived that they might bring us new technologies of generating very coherent, powerful

radiation through the interaction of radiation with electrons passing through an undulator. The

spectral range which FELs cover will be from the microwave to the vacuum ultraviolet region,

or hopefully to the X-ray region. For the long-wavelength FELs electron beams from linear

accelerators are used, while for the short-wavelength FELs electron storage rings are used. In

any case, many proof-of-principle experiments have been done so far, and extensive

developments are continuing.

In the following section the basic properties of the insertion devices will be described.

Page 58: Analytical Spectroscopy Library_VOL 7

49

1.6.1. Wavelength Shifter and Multi-Pole Wiggler

The simplest insertion device is the "wavelength shifter". Consider three dipole magnets of

alternating polarities shown in Fig. 1-30. If the field strength of each magnet is properly

chosen, the electron trajectory makes a bump and the synchrotron radiation comes out of the

magnets. The continuous nature of the spectrum of the synchrotron radiation from wavelength

shifters is similar to that of the bending magnet radiation. Since the critical wavelength varies inversely with the magnetic field strength, however, wavelength shifters can generate shorter

wavelengths than those achievable in normal bending magnets. To show an example, we

consider the Photon Factory, at which the electron energy is 2.5 GeV. The field strength is 5

tesla for a superconducting wiggler magnet, while it is 0.96 tesla for the normal bending

magnet. The corresponding critical wavelengths are 0.6A and 3.1A, respectively. It is clear

that wavelength shifters with high magnetic fields provide practical means to obtain X-rays or

even hard X-rays at moderate electron energies.

A simple extension of the wavelength shifter concept is the "multi-pole wiggler". This is an

array of many dipole magnets (the number of the magnets greater than three but not so many),

and the radiation emitted in the forward direction is intensified by the number of magnetic

periods. These magnets can be electro-magnets, either superconducting or normal ones, but are

more often permanent magnets.

+

Fig. 1-30. Schematic of wavelength shifter.

1.6.2. Undulator

When the number of periods increases, the synchrotron radiation exhibits particular features

which are quite different from those of ordinary synchrotron radiation. As electrons pass

through a periodic magnetic field, a quasi-monochromatic radiation, with a higher brightness

than can be obtained from bending magnets, is generated by the interference effect. The devices using this concept are called "undulators".

Let us consider a plane undulator, as shown in Fig. 1-31, with a magnetic field of the form

By(s) = Bo cos(2zrS/&u) (1-68)

Page 59: Analytical Spectroscopy Library_VOL 7

50

where Zu is the period length of the undulator. If the field strength is weak, the electron

follows a sinusoidal trajectory as

x(s) = (Zu/2Zr)(K/ y) cos(2nrS/Zu) (1-69)

where K is the deflection parameter, K = eBo ,~,u/2a'mc 2, as given by Eqn. (1-62). One sees

from Eqn. (1-69) that the maximum deflection angle is a = K/y. In weak undulators the

relationship K<<I holds. By solving the equation of motion, one gets the average velocity and energy in the forward (s) direction

fl* = fl(1 - (K/2fly) 2) and y* = y/(1 + K2/2) 1/2 (1-70)

e

__4

[

Fig. 1-31. The principle of the plane undulator.

If the electron is observed in the frame which moves, on average, with the electron passing

through the undulator, the motion of the electron becomes a simple harmonic oscillation. Then

dipole-radiation with a wavelength equal to the Lorentz-contracted undulator period, Z*=Zu/?'*

is emitted. In the laboratory frame, the radiation is Doppler-shifted to a shorter wavelength

which is given by

~1 =(,~,u/2T2)[ 1 + K2/2 + (719) 2] (1-71)

where 0 is the observation angle. By Lorentz transformation the angular distribution in the

laboratory frame is confined to the narrow forward cone 0 < 1/),, as shown in Fig. 1-32a. The

wavelength of the undu!ator radiation varies with the observation angle, but if one observes the

Page 60: Analytical Spectroscopy Library_VOL 7

51

radiation at a specified angle one sees monochromatic radiation of wavelength A1. As Eqn. (1-

71) shows, for the weak-field undulator the wavelength of the radiation is determined primarily

by the magnetic periodicity, Au, and the electron energy, 7.

~ ) x - ~ I -- Iu

s-oscillation 21/,t

in moving frame In lab frame Fig. 1-32. Distribution of undulator radiation with the acceleration vector lies, (a) in the

x-axis, and (b) in the s-axis.

Fig. 1-33. Figure-eight shaped trajectory of electron in the moving frame.

For K > 1 the motion of the electron in the moving frame is not a simple harmonic oscillation,

but shows a figure-eight shape (Fig. 1-33). In this case, the oscillation is decomposed to a

good approximation into the x-oscillation (Fig. 1-32a) and the s-oscillation (Fig. 1-32b). Since

the oscillation is not simple harmonic, the radiation includes higher harmonic components in the

spectrum, with peaks at

,~,k = ,~,1 [ k (k = integer) (1-72)

Page 61: Analytical Spectroscopy Library_VOL 7

52

As Fig. 1-33 suggests, the spectrum of the radiation from the x-oscillation includes only odd

harmonics, but that from the s-oscillation contains both even and odd harmonics.

In the plane undulator the radiation is linearly polarized along the undulator axis, and

elliptically polarized at non-zero angles. So far, we have assumed that the number of periods is quite large (N -.- oo). With a finite

number of periods, however, the spectral line width of each line grows. Calculations show that

the line width of the radiation from an N-period undulator is given by

A~, / Ak =1 / Nk. (1-73)

This is called the natural line width. It can also be shown that the peak power at the central

wavelength is proportional to N 2. Therefore, the central brightness of the undulator is

extremely high, about 104 times that from the bending magnet. However, the total power is proportional to N, since the line width is proportional to N -1. Considering that the maximum

deflection angle, a, is small in undulators, the total power they radiate is relatively small.

Fig. 1-34. Plane undulator using permanent magnets: (a) basic design with permanent

magnets only, and (b) hybrid design with soft iron as magnetic poles. Arrow

indicates the direction of magnetization of permanent magnet.

If one observes the radiation over a cone of finite angle, 0o, to the forward direction, the line

width is broadened, as expected from Eqn. (1-71).

A~ / ~ k .~ ~2 0o2 / (1 + K 2) (1-74)

Page 62: Analytical Spectroscopy Library_VOL 7

(a)

Comparing Eqns. (1-73) and (1-74), one can see that the line width becomes appreciable compared with the natural line width, unless the viewing angle is small enough;

Oo <- 1 / ~'(Nk) 1/2 (1-75)

Equation (1-75) also shows the requirement on the angular spread of the electron beam in

order to obtain a monochromatic radiation from an undulator. As described in Section 1.5.1.,

the electron beam has finite lateral size and angular spread which are determined by the betatron

functions at the position of the undulator and by the emittances. Unless the angular spread of

the electron beam is smaller than given in Eqn. (1-75) the spectral bandwidth becomes larger

than the natural line width. Therefore, at the position of the undulators, the electron beam

should be parallel to the undulator axis as far as possible. A focusing or diverging beam at undulators is not appropriate.

53

(b)

(c)

" ' d ! I I I I I I ! I I ] I

" - & l ! I I I I I I I I I 1

i l l s l I L . .

rV % e

Fig. 1-35. (a) Helical undulator using double helix coils, (b) helical undulator using permanent magnets and (c) crossed field undulators.

Page 63: Analytical Spectroscopy Library_VOL 7

54

A plane undulator is made of permanent magnets such as SmCo5 and Nd-Fe-B. An

advantage is that small magnets can produce strong fields, and a short magnet period is possible

compared with electro-magnets. The simplest configuration for undulator magnets is the so-

called Halbach configuration, as is shown in Fig. 1-34a. The so-called hybrid configuration

shown in Fig. 1-34b uses pole pieces made of soft iron as well as permanent magnets.

Figure 1-35a shows a helical undulator which uses a double helix configuration (a pair of

helical coils carrying electric currents in opposite directions). The direction of the magnetic

field vector rotates along the undulator axis, and the electron follows a spiral orbit. The

circularly polarized radiation is obtained on the axis of the undulator. The helical field can also

be obtained with permanent magnets.- Figure 1-35b shows the magnet configuration of a helical

undulator, in which permanent magnet pairs are placed alternately in horizontal and vertical

directions. An example in Fig. 1-35c is a more elegant configuration which generates radiation

with any polarization. Two plane undulators, one in the horizontal direction and the other in the

vertical direction, are placed separately with a distance so as to keep the proper phase relation

between two undulator radiations.

In conclusion, undulators are powerful radiation sources, with high brightness, tunability of

wavelength, and with the availability of various polarization states. The spectrum can be tuned

by varying the magnetic field strength while keeping the magnetic structure and the electron

energy constant. With permanent magnets the magnetic field is changed by varying the magnet

gap (stronger fields can be obtained with narrower gaps).

1.6.3. Free Electron Laser

The possibility of operating a free electron laser was first demonstrated by the experiments

made at Stanford in 1975 and 1977 [23, 24]. Madey and co-workers observed the stimulated emission of infrared radiation (~ = 10.6 l.tm) by relativistic electrons in a spatially periodic

transverse magnetic field. Figure 1-36 shows the experimental setup. The periodic magnetic

field, of strength 2.4 kG, was generated by a superconducting double helix with a 3.2 cm

period and a length of 5.2 m. The electron beam and the infrared radiation were steered to pass

through the magnet on the axis. A gain of 7% per pass was obtained at a current of 70 mA of

24 MeV electrons. The first operation of a free electron laser (FEL) was demonstrated by the

same group, using the experimental apparatus shown in Fig. 1-37. In the experiment the

injector was pulsed to emit a single bunch every 84.6 ns, equal to the round-trip transit time of

the radiation between mirrors. Using the 43 MeV electron beam with a peak current of 2.6 A

gave a peak power of 7 kW, which is greater by a factor of 108 than the spontaneous radiation,

at a wavelength of 3.4 l.tm. The spontaneous radiation represents the usual radiation from the

undulator. Since then, many FEL facilities have been built aiming at the wavelength range from

microwave to infrared by using low-energy, high-current accelerators such as rf linear

accelerators, and induction linear accelerators.

Page 64: Analytical Spectroscopy Library_VOL 7

55

HELICAL MAGNET (3.2 crn PERIOD]

- 4 - . . . . . . , , " . - . " 7 . ~ ~ _ . , . , , . , . , . . . . . , ..,-'"II~-- /'-M,RaoR ~ M,RROR.--

MOOULATEO 10.6~ RADIATION TO

Cu:Ge DETECTOR MOLECTRON ANO T - 2 5 0

MONOCHROMATOR CO z LASER

24 MeV BUNCHED - ' - ELECTRON

BEAM

Fig. 1-36. FEL experimental setup. The electron beam is magnetically deflected around

the optical components on the axis of the helical magnet.

HELICAL MAGNET (3 .2 cm PERIOD) 43 MeV BUNCHED

. . . . . . . . .. . . . . . ELECTRON =

Fig. 1-37. Schematic diagram of the free electron laser oscillator.

The principle of operation of an FEL is that the electron loses (or gains) energy by interacting

with the electromagnetic radiation in the periodic magnetic field, and that the radiation gains (or

loses) the same amount of energy as that lost (or gained) by the electron. This process is a

stimulated emission, which means a net amplification of the radiation. When the optical cavity

is placed on each side beyond the undttlator one gets an FEL oscillator, if the gain in the radiation is greater than losses of radiation power in the optical cavity.

Pt~ ~ s

I let let

Fig. 1-38. Principle of the interaction of electrons with the radiation field in the undulator.

Page 65: Analytical Spectroscopy Library_VOL 7

56

In the following, the classical model developed by Colson [25] will be applied to describe the

basic principle of operation of an FEL. Let us consider a plane undulator as shown in Fig. 1-

31. The static undulator field wiggles the electron orbit, and gives the electron a transverse

velocity fit. As a result, the energy of the electron changes by interaction with the transverse

electric field E t of the radiation, by an amount proportional to fltEt . Whether the radiation

gains or loses energy depends on the relation between the electron energy, 7, the wavelength of

radiation, X, the undulator period, Xu, and the phase of the radiation, ~, at the time when the

electron passes through the undulator. Consider the transit times for the electron and the

electromagnetic radiation to traverse one period of the undulator. One obtains

and

Xu / fl*c for the electron

Xu / c for the radiation

where t * is the velocity with which the electron moves, on average, in the forward direction

(see Eqn. (1-70)). The electron keeps a constant phase relationship relative to the

electromagnetic radiation over many undulator wavelengths, if the difference of these transit

times equals one period of the radiation (see Fig. 1-38), that is, when the following relationship

holds:

I c = Zu ( 1 / f l * c - 1/c ) (1-76)

Using Eqn. (1-70) for the average velocity one obtains the "resonance" condition:

7r 2 = (Au12A)( 1 + K212) (1-77)

One should note that Eqn. (1-77) gives the same relationship as Eqn. (1-71), the frequency of

the spontaneous radiation emitted on axis by the electron of an energy 7r from a plane undulator

of a period Xu and a magnet parameter K.

Fig. 1-39. Phase space ($, 7) describing the motion of electrons interacting with the radiation.

Page 66: Analytical Spectroscopy Library_VOL 7

57

As calculations show, the energy and phase motion of the electron in the field of the

electromagnetic radiation is described by equations similar to those describing the synchrotron

oscillation of electrons in a storage ring, but without radiation loss. Hence, the electron

trajectories are represented by the phase space (~,),), which is shown in Fig. 1-39. If the

electron is at a fixed point, at which the energy equals the resonance value ~'r and the phase

relative to the radiation lies on 7r, the electron stays at equilibrium all the time, and there is no

net effect on the electromagnetic radiation. However, if the electron lies at any point in the

phase space other than the fixed point, it will move in the phase space along a corresponding

trajectory, and the electron will change in energy. This produces a gain or loss in intensity of

the electromagnetic radiation.

Consider a case of a more realistic energy-phase distribution function for the electron beam.

In most FELs one can assume that the electron beam is continuous in the phase direction, and

that the energy distribution is narrow. If the electron energy is at resonance, some of the

electrons gain energy, some of them lose it, and the amounts of energy gain and loss are

balanced, so there is no net effect on the electromagnetic radiation. Calculations show,

however, that if the electron energy is above (or below) the resonance value, the electron beam

as a whole loses (or gains) energy, and the electromagnetic radiation is intensified (or faded).

The energy gain, G, in the electromagnetic field intensity during one traversal of the undulator

is calculated [26] for a helical undulator as:

G = -32 x 21/2 7r2 ro ~ u 1/2 ,~,3/2pe N 3 { K2[(1 +K2) 3/2 } f ( x ) (1-78)

Here ro is the classical electron radius (2.8 x 10 -13 cm), Pe the electron density, and it is

assumed that the transverse cross section of the electron beam is equal to that of the

electromagnetic radiation. The functionf(x) is called the gain function, which is given by

f ( x ) = ( l [ x 3 ) { c o s x - 1 + (x/2)sinx} (1-79)

and

x = 47rN(?' o - ~)1~ (1-80)

and is plotted in Fig. 1-40.

When the electrons interact with the radiation field, both the energy distribution and the phase

distribution change. When observed at the undulator exit, the phase distribution of the electrons

is modulated at the radiation wavelength, and the energy distribution is broadened. If the

energy spread is larger than 1/2N (the line width of the spontaneous radiation of an ideal FEL)

during passage in the undulator, the energy conversion rate is strongly reduced, and the gain

reaches saturation.

Page 67: Analytical Spectroscopy Library_VOL 7

58

f ( x ) ~ 0.08

O.06

0 .04

0.02

-I0 -5 - 0 . 0 2

- 0 . 0 4

- 0 . 0 6

-0.08

t I I0

Fig. 1-40. The gain functionf(x).

These energy-phase behaviors have brought us an idea of the "optical klystron". The idea of

prebunching the beam was proposed by Vinokurov and Skrinsky in 1977 as a way to increase

the gain over the uniform undulator [27]. A merit of prebunching can be easily understood by remembering that, if N electrons are bunched within an extremely small time scale (equal to, or smaller than, one period of the electromagnetic radiation), the radiation intensity is proportional to N 2 instead of the ordinary factor N. The basic scheme of the optical klystron is shown in

Fig. 1-41. It comprises two undulator magnets separated by a specially designed dispersion

section (a simple drift-space is adequate in principle, but it takes a much longer space to obtain

an adequate bunching).

k/V /k kjV Fig. 1-41. Principle of the optical klystron. The electron is energy-modulated in the first

undulator and bunched during passage through the bunching section between

two undulators.

Page 68: Analytical Spectroscopy Library_VOL 7

59

In the first magnet system, the electrons are energy-modulated as well as bunched. During

passage through the dispersion section, the electrons are bunched at intervals of the radiation

wavelength. The second undulator is for transferring the energy to the radiation field. The gain

enhancement by using an optical klystron has been demonstrated experimentally to be a factor

of 5to 10.

For shorter-wavelength FELs electron storage rings have been conceived superior to linear

accelerators, since storage rings can provide a beam with a high peak current (higher than 100

A) and a good emittance, and hence a high electron density, and good energy resolution (less

than 0.1%). In the storage-ring FELs, however, the energy-spread of the beam grows, due to

the interaction with the electromagnetic radiation, because the same bunch of electrons traverses

the FEL many times. The energy-spread of the beam reaches an equilibrium, by balance with

the radiation damping caused by the synchrotron radiation emission all around the ring. When

the energy spread becomes comparable to the natural line width, 1/2N, the effective gain

decreases and the laser power saturates.

The first operation of a storage-ring free-electron laser was demonstrated at A =6500/~ on the

ACO storage ring at Orsay (France) in 1983 [28]. Since then, several experiments have been

made, mainly in the visible region, and one experiment was made in the ultraviolet region at

Novosibirsk in 1988 [29]. As seen in Eqn. (1-78), the gain varies as the 3/2-power of the

wavelength of the electromagnetic radiation, so a beam of extremely good emittance and high

current is needed for obtaining a sufficient gain at shorter wavelengths. New storage ring

projects dedicated to the FEL are now in progress. Storage rings with a small emittance, of the order of several nm-rad, have been conceived.

1.7. BEAM LINE

The synchrotron radiations generated in the bending magnets or insertion devices are taken from the ports of the ring and delivered to the experimental station through a beam line. The

beam line is a light-path connecting the storage ring and the experimental station, and performs

the function to extract or cut off the photon beam.

Various kinds of optical instruments, such as reflection mirrors and monochromators, are set up in the beam line according to the characteristics of the synchrotron radiation to be used and

the purpose of the experiment. Since one beam line can accept sufficient radiation (about 30

mrad) to serve several simultaneous experiments, the "main beam line" usually has several branch beam lines downstream.

1.7.1. Main Beam Line

Figure 1-42 gives an example of the layout of the front end of the main beam line in the

Photon Factory (KEK) [21]. In order to shield high energy ),-rays and neutrons from the

storage ring, a concrete shield wall 40 - 90 cm thick separates the ring from the experimental

Page 69: Analytical Spectroscopy Library_VOL 7

Z;

o 5b" "&.

�9 .

UMATIC

A B S O R B E R

Fig. 1-42. Layout of the front end of main beam line.

Page 70: Analytical Spectroscopy Library_VOL 7

61

area. The front end of main beam line functions to protect the ultra-high vacuum of the storage

ring and to deliver synchrotron radiation to the branch beam lines. The vacuum upstream of the

main beam line is to be kept as low as that of the storage ring (10--10 Torr). This is attained by

use of four triode ion pumps and two titanium sublimation pumps. As shown in Fig. 1-42, the

line is typically composed, moving downstream along the light path, of a manual valve, a

water-cooled absorber, isolation pneumatic valves, fast-closing valves, mask slits, an acoustic

delay line, beam shutters and a large pneumatic valve.

The manual valve is used to cut off the vacuum between the ring and beam line in the event of

maintenance of the line. The light absorber is made of oxygen-free copper plate about 20 mm

thick, cooled with flowing water, and serves to protect the beam shutter and valves from

overheating by the synchrotron radiation. The mask slit is used to define the size of the photon

beam delivered. The fast-closing valve, which is driven by compressed air or springs, is to

isolate the vacuum from the storage ring, and acts within about 15 msec so that any accidental

venting in the branch beam line, caused by equipment failure or experimenter error will not

have an adverse effect on the storage ring. The acoustic delay line (ADL) is also used to

provide a 200 - 300 msec delay in the arrival time of a sonic wave that could be initiated by an

abrupt vacuum failure. The ADL in the Photon Factory is a stainless steel tube 31 cm in

diameter and 200 cm in length, loaded with an array of nine conical diaphragms each having a

rectangular aperture. To ensure that the valves close in the event of an accident, and that they

can only be opened under proper vacuum conditions, a control system is essential. This system

permits the storage ring operators or the experimenters to open gate valves only when the

pressure measured by a vacuum gauge is below a preset level. The beam shutter, made of a

copper and stainless steel block is to ensure that hard X-rays or T-rays do not escape

downstream.

1.7.2. Branch Beam Line

The main beam lines are divided into several branch beam lines. The branch beam lines are

classified into two categories; VUV beam lines for VUV radiations and soft X-rays, and X-ray

beam lines for X-rays and hard X-rays. The VUV beam lines are directly connected to the

storage ring through the main beam line, which means that the beam lines must be kept at ultra-

high vacuum with an oil-free specification and that optical instruments in the lines, such as

reflection mirrors and diffraction gratings are maintained totally clean. In designing the optical

system special care is necessary to minimize deterioration of the optical devices by photon beam

exposure and to remove beam-induced heat by means of flowing water or liquid metal coolants.

The vacuum system of X-ray beam lines is usually separated from the main beam lines by a

beryllium window, through which X-rays can pass to the experimental station. Even in the X-

ray beam lines the vacuum should be maintained below 10 -7 torr so that reflection mirrors and

other optical devices are always clean. Some X-ray beam lines are directly connected to the

storage ring without a beryllium window, just like VUV beam lines.

Page 71: Analytical Spectroscopy Library_VOL 7

T M P

. . . . . . . . . . l ~ ! M _ ! r T ~ ! ~ ~ ~ ~ " i11111 - f ~ ~ - ~ l ~ ~ >

TO CONSTANT DEVIATION �9 .

LARGE / ,MONITOR MIRROR AI~U~F..R vAF~L,UI~TIC / ,,..B~..ANCH BEAM LINE LIGHT ABSORBER BRANCH BEAM LINE LIGHT ABSORBER /~ TO SEYA-NAMIOI'r

. . . . / / \ M!RROR ADJUSTERS FOR G R A S ~ R ~ \ / / \ ~ A___NO CONSTANT DEVIATION ~ M MIRROR AD,,IUSTERS FOR SE_YA,NAMIOKA / - PNEUMATIC VALVE

I SUPPORT STRUCTURE \ X , Y , Z ADJUSTER

Fig. 1-43. Layout of the beam-splitting section of VUV beam line (BL11 of PF).

Page 72: Analytical Spectroscopy Library_VOL 7

63

Figure 1-43 shows the beam-splitting section of the VUV beam line (BL11 of the Photon Factory), located just outside the shielding wall. The front end is split into four beam lines.

These are equipped with a Seya-Namioka monochromator, a grasshopper monochromator, a

toroidal grating monochromator (TGM) and a double-crystal monochromator. Chemical-

vapor-deposited silicon carbide (CVD-SiC) plane mirrors are installed in the mirror chambers.

In the downstream part of the beam-splitting section are situated the beam transport tube,

vacuum valves, optical system (monochromator, mirror, and so on), slits, pumps, vacuum

gauges and the beam position-monitoring system. At the back end of the X-ray beam lines is

set a beryllium window for extracting a beam to the atmosphere. The window and the

experimental apparatus are accommodated in the shielded room which is protected from hard X-

rays and ),-rays. At the back end of the VUV beam line are located a specimen chamber and

other experimental apparatus, directly connected to the storage ring.

BL-10 (X-RAY) DOUBLE CRYSTAL EXPERIMENTAL MONOCHROMATOR HUTCH (Si 111! TOROIDAL MIRROR |

SL,r, I / c

,,,P"~' I ' J EXAFS ~ ' / / z ~ A SLIT \

/ ~ . A - - DOUBLE CRYSTAL FLAT SINGLE " ~ MONOCHROMATOR MONOCHROMATOR ~ (Si 311) (graphite / Si 111) " FOUR CIRCLE

DIFFRACTOMETOR

5 10m BL-I I (VUV)

~ GRASSHOPPER

C. lm SEYA-NAMIOKA D. 2m CONSTANT DEVIATION

-,o,,~_.,,, ",..,,IV ~ r -" ~" B MASK MIRROR ~/A///////~,//~y,7`~/////////////////////////////////////////////////////////////////////////////`//.

~) 5 l~)m

Fig. 1-44. Layout of typical X-ray beam line and VUV beam line. The beam lines: BL10

(X-ray) and BL11 (VUV) of PF are shown.

Figure 1-44 gives examples of the layout of an X-ray beam line (BL10) and VUV beam line

(BL11), showing typical arrangements of the optical system and experimental station. The

characteristics for these branch beam lines are described in Table 1.8 [21]. For BL10A a

pyrolytic graphite is used as a dispersive crystal monochromator for obtaining a large integrated

Page 73: Analytical Spectroscopy Library_VOL 7

64

intensity. For BL10C, a tuneable double-crystal monochromator is housed upstream, and a

mirror downstream (See Chapter 6, Section 6.2 for the detail of BL10C). In order to have a

fixed exit beam position in this monochromator either the first or the second crystal is translated

along the incoming beam direction while rotating both crystals. The two crystals are driven

independently by a microcomputer controlled unit.

Table 1.8a

Optics of the branch beam line BL10 in PF.

Branch Horizontal Monochromator Mirror Energy Energy beam line acceptance resolution range

[mrad] (AE / E) [keV]

BL10A 1 graphite none 5 x 10 -3 6 - 24 germanium 5 x 10 -4

BL10B 2 channel cut none 1 x 10 -4 4 - 10 crystal, Si 311

BL10C 4 double crystal Si 1:1 focusing 2 - 3 x 10 -4 4 - 10 fixed beam height toroidal Pt-coated

Table 1.8b

Optics of the branch beam line BL11 in PF.

Branch Horizontal Pre-mirror Monochromator Energy beam line acceptance resolution

[mrad] (~,/A~,)

Energy range

[AI

BLl lA 1.3

BLl lB 4.0

BLl lC 4.8

BLl lD 2.6

M0:88 ~ plane Grasshopper MI: 88~ spherical Mark VII

2400 lhnm

(A~, =0.02/~) 10 - 145

89 ~ bent cylinder double crystal fixed beam height

> 2000 2 . 8 - 15

77.5 ~ plane 42.5 ~ concave

1 m Seya-Namioka 2000- 3000

4 0 0 - 3500

86 ~ cylinder 86 ~ plane

2 m constant 1000- deviation 2000 monochromator

60 - 600

Page 74: Analytical Spectroscopy Library_VOL 7

65

10-m GRAZING INCIDENCE BL-2 (SOFT X-RAY UNDULATOR) LINEAR TRANSLATOR MONOCHROM.

CONDENSER FRESNEL ).--1"'"~ ~ ~ : : ] ~ . ~ ~

p,N~G EXIT SLIT BEAM BEAMLINE FAST CLOSING / ~ ~ - ~ . . . . . / . . . . .~- .... - ~ \ ~X!T~,S..I'-I SHUTTER DIAPHRAGM VALVE " r ~ ~ ~ ~ U ~ / ~ \ G R A T I N G

UR y i P ~ �9 i I 'l Iv nTrnllTlv v SLE A �9 i , ~ �9 �9 = a �9 '. �9 ' t = ' - - i' iJ,iJiJiiJAi

/===~ ~ ~ SECON6CRYSTAL I STRAIGHT DEFLECTION HUTCH | ROTATABLE DOUBLE CRYSTAL 7-RAY BRANCH MIRROR "PHOTODIODE MONOCHROMATOR STOPPER

Fig. 1-45. Schematic diagram showing the beam lines for soft X-rays from undulator

(BL2 of PF).

Figure 1-45 gives an example of the beam lines for soft X-rays from an undulator (BL2),

schematically showing an arrangement of beam-line components [30]. Two branch beam lines

are installed, one utilizing the radiation deflected by a mirror, and the other being set on the line

along the undulator. The two beam lines are used in a time-sharing mode, because the beam

from the undulator is of extremely high directivity and small size, and consequently one cannot

use both lines simultaneously.

1 . 7 . 3 . B e r y l l i u m W i n d o w

A beryllium window is used to separate X-ray experimental areas from the ring vacuum. The

windows must be thin, to ensure high X-ray transmittance, but thick enough to ensure

mechanical strength and thermal conductivity. Figure 1-46 shows the window assembly for an

X-ray beam employed in the Photon Factory. The beryllium foils 0.2 mm thick are set up at

both ends of the assembly. In front of the upstream window, A graphite foil 20 l.tm thick is

fixed to a copper frame in front of the upstream beryllium window in order to decrease the

thermal load imposed by synchrotron radiation. This upstream window faces an ultra-high

vacuum environment. The cross-shaped pipe is evacuated to 10 -6 Tort with an ion pump. The

beam transport ducts from the downstream window to the experimental apparatus are f'flled with

purified helium at 760 Torr, because air causes too much X-ray beam attenuation and

scattering. The downstream window, therefore, has to bear the helium pressure, but is only

exposed to small thermal loads because of the absorption of low-energy radiation components

by the upstream window.

A major problem in utilizing thin foils lies in joining the beryllium to other materials so that it

can be made part of the vacuum system. Several techniques are being employed, such as

brazing or soldering the beryllium to copper or aluminum in an inert atmosphere, diffusion

bonding to copper or Monel, glass-frit bonding to Monel, electron beam bonding to aluminum,

or mechanical sealing with indium wire as a gasket.

Page 75: Analytical Spectroscopy Library_VOL 7

66

HELIUM GAS i

0 5 loom i . . . . i . . . . i

?'-~--L_ t . J - " " ~ 1 [ il S~'NCH~Or~ON i _

LL i LI v=~uuM ~L*~E I I

ION PUMP

Fig. 1-46. Schematic diagram of double beryllium window assembly.

1.8. OPTICAL SYSTEM

Much effort is being devoted to the development of experimental equipment for synchrotron

radiation research. Instrumentations that have been developed to meet the specific requirements

of particular researches are described in the following chapters of this book. In this section we

give an introduction and a general survey of the instn~mentation. The principal instruments are

mirrors, monochromators and detectors. They are usually designed as components of vacuum or ultra-high vacuum systems, because they are accommodated in the vacuum chamber.

1.8.1. Mirrors

Mirrors have the functions of deflection, focussing and filtration for synchrotron radiations.

With beam splitting mirrors part of a single radiation beam can be deflected so that several

experimental stations can share a single beam with space between them for equipment. Curved

(cylindrical or toroidal) mirrors are used to obtain an image of the source point at some distant

location. Filtration by mirrors is a function which makes a sharp cut-off in reflectivity above a

certain photon energy. They can also act as low-pass filters, absorbing unwanted X-rays in

VUV beam lines and achieving control over harmonics in VUV and X-ray lines.

The reflectivity of a mirror depends on the photon energy, the angle of incidence, the mirror's

surface material, and its smoothness. Figure 1-47 shows an example of the reflectivity as a

function of the grazing angle of incidence for various photon energies [31 ]. The cut-off energy

varies inversely with the grazing angle. Consequently harmonics can be controlled by varying

the grazing angle of beam incidence.

Page 76: Analytical Spectroscopy Library_VOL 7

67

1.0 - - - - - - T ~ ~ ---'---"

"X " " ~ ~+ " A

" 5 - - , I

~w 0 5 " ' ~ i | ' , tt.

,

0.1

0 /. 8 12 GRAZING ANGLE e (DEGREES)

Fig. 1-47. The measured reflectivity of Au and C as a function of the grazing angle of

incidence for various photon energies.

Various materials are used as mirror substrates, including Be, Cu, SiC, fused SiO 2, zerodur,

electroless nickel phosphorus (Kanigen), and float glass. The most frequently used coatings are

Au and Pt, although uncoated mirrors are also used. The surface smoothness achievable varies for the various materials. In the case of fused SiO 2 and SiC, a micro-roughness lower than 5/~

r.m.s, has been attained by recent polishing techniques [32]. It becomes harder to achieve the

surface smoothness in larger and more complex curved mirrors. It is reported that the auto-

covariance distribution of the surface micro-roughness becomes more important in X-ray

ranges than does the micro-roughness height [33].

For mirrors in rather low energy storage ring beam lines, where thermal loading is not serious, fused SiO 2 is being employed. Even in high energy storage tings fused SiO 2 can

sometimes be used for grazing incidence mirrors with an angle higher than about 88 ~ , because

much of the beam power is reflected and the absorbed power is distributed over a large area.

However, surface deterioration is inevitable after long term use. When thermal loading is

severe, as in the direct X-ray beam lines of multi-GeV storage tings, SiC or Kanigen-coated

copper or aluminum, can be used. The former is the superior material, with a low thermal

expansion coefficient and high thermal conductivity. The latter can be polished easily but,

owing to its high thermal expansion coefficient, the surface will deform by thermal loading.

The mirror must be cooled by flowing water or liquid metal in these applications. Segmented

Page 77: Analytical Spectroscopy Library_VOL 7

68

mirrors are sometimes used where length of the mirror is especially required, as with in the case

of an extreme grazing angle of incidence.

Curved mirrors can be used to image the electron- or photon-beam source point at VUV and

X-ray wavelengths. Magnification by the mirror system depends on the curvatures of the

mirror surface, the grazing angle of incidence, and the mirror's location in the beam line.

Demagnifying optics are used to obtain a high flux-density on samples as small as 100 l.tm in

diameter. Magnifying optics are used to illuminate several square centimeter areas, as is

required for pattern replication by soft X-ray lithography.

1.8.2. Monochromators

Since most synchrotron radiation experiments are carded out by choosing a particular

wavelength from the continuum and often scan over a range of wavelengths, a tuneable

monochromator is indispensable. Many specialized monochromator systems have been

developed for use in the VUV, soft X-ray, and hard X-ray regions of the spectrum. At

synchrotron radiation facilities the light source, the beam line with the relevant optical

components, the monochromator, and the experimental set-up have to be considered as a whole

in order to maximize the flux of monochromatized photons onto the sample.

V U V m o n o c h r o m a t o r s

VUV monoehromators fall into two classes, namely normal incidence monochromators

(NIM) for the spectral range from about 6 eV to 50 eV photon energies, and grazing incidence

monochromators (GIM) for the range about 30 eV to 600 eV.

Three types of NIM are commonly used with synchrotron radiation sources, i.e., the standard

(McPherson) NIM, the Seya-Namioka monochromator, and the modified Wadsworth

monochromator, which are shown schematically in Figs. 1-48a, 1-48b, and 1-48c. They are

all conventional mounts of concave spherical gratings with focusing properties. The

McPherson NIM is a monochromator operating in a mode close to the Rowland, with one

optical component , - a grating. In order to vary the wavelength the grating can be rotated and,

to maintain focusing, can be translated at the same time. This system has the capability of high

resolution with its ultimate values of the grating's constant and the radius of curvature.

The Seya-Namioka monochromator has the simplest scanning mechanism, i.e., a single

rotation of the grating about an axis through its center. Because of the fairly large angle of

incidence this monochromator has abominable astigmatism, if a point light source is used near

the entrance slit. However this drawback can be corrected by using, for example, an additional

focusing mirror. The Wadsworth monochromator exploits one of the particular properties of

synchrotron rad ia t ion- small d ivergence- because it requires the light source to be at infinity

for optimum performance. Wavelength scanning is achieved by simple rotation of the grating.

Page 78: Analytical Spectroscopy Library_VOL 7

69

I

FM

(a) Mc Pherson Normal Incidence

----,, FG

i

(b) Seya-Namioka

(c) Modified Wadsworth Fig. 1-48. Schematic diagrams of various normal incidence monochromators for use

with synchrotron radiation. FG, focusing grating: FM, focusing mirror: PM,

plane mirror.

Various types of grazing incidence monochromators have been used in conjunction with

synchrotron radiation. As typical examples of GIM, the plane grating monochromator and

Rowland-type monochromator are shown in Figs. 1-49 and 1-50, respectively. Figure 1-49a

shows the simplest instrument, with only one optical surface, a plane grating. Wavelength

change is achieved by means of rotating a Soller slit system around an axis parallel to the grating grooves. Only moderate resolution is attained with this mounting. The instrument shown in Fig. 1-49b uses a plane grating and a spherical mirror. The grating is rotated by small

angles so that the sum of the entrance and exit angles is fixed. The exit beam is spatially fixed, which allows its use in complex experimental facilities. Suppression of higher orders is made

in only a limited wavelength range, by suitable choice of incident angle at the grating and the

following mirror. Sometimes a plane mirror is used as a pre-mirror, so as always to illuminate

the center of the grating in the arrangement shown in Fig. 1-49b.

Figure 1-50 schematically shows the two typical grazing incidence monochromators based on

the Rowland circle mounting. The entrance slit, grating, and exit slit are all located on the

Rowland circle to minimize aberrations. This mounting can provide the best resolution for

grazing incident monochromators. Figure 1-50a shows the simplest arrangement of a Rowland

mounting. For absorption type experiments with the samples in front of the spectrometer, the

Page 79: Analytical Spectroscopy Library_VOL 7

70

Rowland spectrograph is extremely useful, because the photographic plate or position-sensitive

detectors allow the whole spectrum to be taken at a single exposure. In the instrument shown in

Fig. 1-50b the entrance and exit slits are fixed while the grating slides along the Rowland circle.

The directions of incoming and outgoing beams can be changed by a rotating mirror-slit

combination. There are also several other variations of the Rowland mountings, with different arrangement of mirrors, gratings and slits.

(a)

PG

PG

(b) FM

Fig. 1-49. Two types of plane grating monochromators.

(a)

FM ..

FM G

(b)

Fig. 1-50. Rowland type monochromators. G is a concave grating.

Page 80: Analytical Spectroscopy Library_VOL 7

71

X.ray monochromators

Crystal diffraction can be used to monochromatize synchrotron radiation (SR). If d is the

distance between atomic planes, Ama x = 2d is the maximum usable wavelength. Table 1.9 lists

values of d for several useful materials for this purpose. The inorganic crystals are generally

quite resistive to the primary synchrotron radiation (SR) beam. High resolution can be

achieved easily if the angular divergence of the incoming radiation is small.

Table 1.9

The values of lattice constants in X.U. (~ 10 -3/~). The geometrical distance between

atomic planes, d, is given.

Crystal d [X.U.] Crystal d [X.U.]

silicon (220) 1920 germanium (111) 3262 w

germanium (220) 1997 quartz (1011) 3336 m

quartz (1120) 2451 quartz (1010) 4246 NaC1 (100) 2814 gypsum (010) 7585 calcite (100) 3029 lead stearate 50300 silicon (111) 3135 cerotic acid 72500

0.6

, m

>

' ~ o.r

m

r'r" 0.2

r o

o

O

�9 m �9 �9

#m mm []

m I I

* ~ S i �9 , P . G .

�9 , LiF

mm

mm

-20 -15 -10 - 5 0 5 " 10 1'5 20 Angle (min.)

Fig. 1-51. Rocking curves measured with double crystal (+,-) arrangement, for Si(111)

- Si(111), Si(111) - PG(0002) and LiF(200) - LiF(200). PG, a mosaic crystal of pyrolytic graphite.

A perfect crystal of Si (111) is the typical crystal, showing high resolution and high

reflectivity, as shown in Fig. 1-51 [34]. In some cases the very high resolution of a perfect

Page 81: Analytical Spectroscopy Library_VOL 7

72

crystal is not necessary because, in general, it costs a considerable intensity loss. In some cases, crystals with a mosaic structure can serve to pass a wider wavelength band. Crystals of pyrolytic graphite (PG) show a wide mosaic spread of about 10 mrad, and low reflectivity, while the integrated intensity of reflected X-rays is usually large, which makes the mosaic crystals useful (see Fig. 1-51).

For long wavelengths the so-called soap crystals can be used, although they have not yet

found widespread application with SR. Reflectivities are of the order of 1-5 % for typically 100 layers in the 2 0 - 130/~ region. The evaporated multilayer is also another candidate for long wavelength X-ray diffraction.

Double crystal monochromators (Fig. 1-52) are most widely used for continuous scanning of SR spectra with high resolution. The monochromators in the parallel (+,-) mode keep the direction of SR fixed while generating only a parallel displacement of the beam. In the (+,+) arrangement, because the angular acceptance in the dispersive direction is of the order of the width of the single crystal reflection curve, extremely high dispersion can be achieved without losing the X-ray intensity. The SR, with its high brightness, can make this arrangement useful,

with very high resolution.

(a)

(c)

Crystal

X Rays

Crystal (b)

Crystal I

X Rays

Crystal

X Ray.~..s_s

Crystal Crystal

Fig. 1-52. Double crystal monochromators (a) in the parallel (+,-) mode, (b) in the highly dispersive antiparallel (+,+) mode, and (c) in the combined mode of

(+,-) and (+,+).

Page 82: Analytical Spectroscopy Library_VOL 7

73

The instrument combined with the (+,+) and (+,-) double crystal monochromator, shown in

Fig. 1-52c, combines the highest resolution with simple scanning and independence of

fluctuations in the position of tb.e source. Such multiple reflections serve to suppress the tails in

the single crystal reflection curves, and the resolution function can be improved. Several other

combinations of double crystal monochromators are also used.

If a crystal is bent in one direction, it can focus radiation emerging from a source point on the

Rowland circle back to an image lying again on the Rowland circle. The crystal is cut with the

reflecting lattice planes parallel to the surface. Typical bent crystal monochromators, the

Johann type and the Johansson type, are shown in Figs. 1-53a and 1-53b.

_ 0 B ~ _ 0 B 2 2 .~.--:. ..- ....

, , / ) s a

(a) (b) (c) Fig. 1-53. Three types of bent crystal monochromators. (a) Johann type, (b) Johansson

type (symmetric reflection), and (c) non-symmetric Johansson type.

In the Johann type, a plane crystal is bent so as to be a cylinder with curvature of 2R and is

set up contacting the Rowland circle with radius R. In the Johansson type, a crystal is cut so

that the reflecting surface forms the curved surface of the column with radius 2R and is then

bent with the radius R. For both types of bent crystals, let I be the distance between a source

point and the center of crystal: the following relationship is given as

1 = 2R cos ( z r / 2 - 013 ) = 2R / d (1-81)

where 013 is the Bragg angle.

A focusing monochromator with asymmetric distances from the crystal to the source ll and to

the focus 12 is shown in Fig. 1-53c. The crystal surface is cut at an angle ct with respect to the

lattice planes. The source and the image lie on the Rowland circle, and the distances l 1 and l 2

are given by

l 1 = 2R sin (013- a) and l 2 = 2R sin (0 B + a) (1-82)

Page 83: Analytical Spectroscopy Library_VOL 7

74

For example, for ~ = 1.5 A and 013 = 13 ~ with quartz (10]-1) reflecting planes, when a = 7 ~ is

selected, then this would give a focus at the position of l 1 = 11.3 m with 12 = 37 m and a

bending radius R = 54 m. This one-dimensionally bent crystals can focus the X-rays emerging

from a point source on to a line which is perpendicular to the scattering plane. In order to

obtain a point focus a combination with one more bent crystal or reflection mirror is useful. A

double bend crystal, which is bent at two directions perpendicular to each other, is also

employed.

1.9. PHOTON DETECTORS

In this section we survey several different types of photon detectors which are currently in use

in the VUV and X-ray regions. Photographic film scintillation counters, proportional counters,

channeltrons, microchannel plates, solid-state detectors, ionization chambers and position-

sensitive detectors will be described.

1.9.1. VUV and Soft X-Ray Detectors

Photographic detection for VUV is performed using nuclear emulsions such as Eastman

Kodak 101 and the slower, but finer-grain emulsion 104. Photon counters and ionization

chambers can be utilized for absolute intensity measurements of VUV radiations. For

wavelengths shorter than about 100 A proportional counters are usually used as standard

detectors, provided corrections are made to take account of absorption in the window materials

of the moderately pressurized counting chambers. Although, in principle, proportional counters

can be used to wavelengths about 1000 A, there are problems in finding a suitable radiation

transmitting window material to withstand the differential pressure in the spectral region of

10(~ A, to 200 A. In addition, the energy resolution and sensitivity are reduced.

For wavelengths above 250 A to 1000 A rare-gas ionization chambers are commonly used.

This method is based on the fact that one photon absorbed in a rare gas produces just one

electron-ion pair which can be measured by means of a collector electrode and a high sensitivity

electrometer amplifier. At wavelengths shorter than 250 A, since 250 A (49.6 eV) corresponds

to twice the ionization potential of He (2 x 24.56 eV), it is necessary to consider the effect of

secondary ionization by emitted photo-electrons and of multiple photoionization.

For photons below 50 eV the ionization chamber is used in the so-called two-chamber mode

and above 50 eV the two chambers are connected for the measurement at low gas pressure.

Behind the ionization chamber photocathodes are mounted and the total photoelectric current

leaving the cathodes is measured. A variety of photoelectron multiplier systems is in use. The first of these were built with

mechanically formed dynodes (mostly CuBe) mounted separately. Recently strip dynodes,

which consist of semiconducting thin films on glass plates, are mostly used. An electric field is

Page 84: Analytical Spectroscopy Library_VOL 7

75

generated across the continuous strip dynodes by an applied potential, causing an electron

avalanche along the dynodes.

The channeltrons are also of this type of detectors, with continuous dynodes. They consist of

a semiconducting glass channel having an internal diameter of a few mm and a ratio of length to

diameter of the order of 50 : 1. The microchannel plates (MCP), composed of many

microchannels with diameters as small as 10 l.tm and lengths about 1 mm are manufactured in

such a way as to form an area up to 10 cm in diameter. This device can detect photons and

electrons with an extremely fast time-response (of the order of 50 ps). By using a resistant

anode encoder readout behind the MCP one can use it as a position sensitive detector.

1.9.2. X-Ray Detectors

The most interesting and frequently used detectors for X-ray measurement are the lithium

drifted silicon and germanium semiconductor detectors [Si(Li) and Ge(Li)]. They have the

highest energy resolution because only 3 - 4 eV is required to produce one electron - hole pair.

The detectors can be used at count rates up to about 50,000 cps with no deterioration of the

energy resolution. At too a high count rate the energy resolution decreases as a result of

incomplete charge collection.

Scintillation counters usually have very poor energy resolution. This is because about 400 eV

is required for NaI(TI) and 2,000 eV for plastic scintillators to produce one photoelectron at the

multiplier cathode. However, the decay times are very short (1 ns or less) which is an

important property for experiments with very high count rates.

Proportional counters are useful detectors in the soft X-ray region. Using very thin windows

a high overall detection efficiency can be achieved and the energy resolution is just sufficient to

suppress higher harmonics. For experiments utilizing a very high intensity primary beam, such

as absorption measurements, digital electronics can not be used. One can use inert-gas or air- filled ionization chambers. The signal current is collected and amplified by a d.c. amplifier

which usually has a sensitivity limit of 10 -14 A. The efficiency of all the detector systems

depends on matching the size of the sensitive part of the detector to the mean free path of the

detected photons. With higher X-ray energies the mean free path becomes large and the size or

the pressure of the detector has to be increased.

Position-sensitive detectors have been developed for the registration of diffraction patterns

and for experiments such as topography. Photographic film (with a nuclear emulsion), a linear

semiconductor detector, linear proportional counter, multiwire proportional counter or X-ray

TV camera can be used. Photographic films are useful for experiments which need high spatial

resolution, down to 0.3 ~tm. With photographic recording real time experimentation can not be carded out.

Linear solid state detectors and proportional counters are used in such a way that they allow

for the localization of individual events. Multiwire proportional counters are used for two

dimensional detection, being equipped with crossed wires, and making use of the positive

Page 85: Analytical Spectroscopy Library_VOL 7

76

signal from the ion current. The separation of the wires can be as low as 1 mm, and a

positional accuracy of 0.15 mm can be achieved. Readout of individual wires into the computer

allows very high count rates. A TV camera using a fluorescent screen and an image intensifier

can be used with high and low intensity signals. Extensive use of these systems is expected in the future since they make use of highly developed TV techniques.

REFERENCES

1. F. R. Elder, A. M. Gurewitsch, R. V. Langmuir and H. C. Pollock, Phys. Rev., 71, 829

(1947); J. Appl. Phys., 18, 810 (1947); F. R. Elder, R. V. Langmuir and H. C. Pollock, Phys. Rev., 74, 52 (1948).

2. A. Lienard, L'Eclairage Elect.,16, 5 (1898).

3. G. A. Schott, Ann. Phys. (Leipzig), 24, 635 (1907); G. A. Schott, "Electromagnetic Radiation", Cambridge Univ. Press, Cambridge, 1912, Ch. 7, 8.

4. W. W. Jassinsky, J. Exp. Theor. Phys. (USSR), 5 983 (1935); Arch. Elektrotech. (Berlin), 30 590 (1936).

5. D. Kerst, Phys. Rev., 60 47 (1941).

6. D. Ivanenko and I. Pomeranchuk, Dokl. Akad. Nauk SSSR, 44 315 (1944); Phys. Rev., 65 343 (1944).

7. L. Arzimovitch and I. Pomeranchuk, J. Phys. (Moskow), 9 267(1945); J. Exp. Theor. Phys. (USSR) 16 379 (1946).

8. J. P. Blewett, Phys. Rev., 69 87 (1946); Nucl. Instrum. Methods, A266 1 (1988).

9. D. Ivanenko and A. A. Sokolov, Dokl. Akad. Nauk SSSR, 59 1551 (1948); A. A. Sokolov and I. M. Ternov, Dokl. Akad. Nauk SSSR, 89 665 (1953); A. A. Sokolov and I. M. Temov, Sov. Phys. JETP (Engl. Transl.), 1 227 (1955); Sov. Phys. JETP (Engl. Transl.), 4 396 (1957); Sov. Phys. Dokl (Engl. Transl.), 8 1203 (1964).

10. J. Schwinger, Phys. Rev., 70 798 (1946); Phys. Rev., 75 1912 (1949).

11. I. M. Ado and P. A. Korolev, V. S. Markov, E. M. Akimov and O. F. Kulikov, Sov. Phys. Dokl. (Engl. Transl.), 1 568 (1956); F. A. Korokov and O. F. Kulikov, Sov. Phys. Dokl.(Engl. Transl.), 5 1011 (1961); F. A. Korokov, O. F. Kulikov and A. S. Yarov,

Sov. Phys. JETP (Engl. Transl.), 43 1653 (1962).

12. D. A. Corson, Phys. Rev., 86 1052 (1952); Phys. Rev., 90 748 (1953).

13. P. L. Hartman and D. H. Tomboulian, Phys. Rev., 87 233 (1952); D. H. Tomboulian, U.

S. A. E. C. NP-5803 (1955); D. H. Tomboulian and P. L. Hartman, Phys. Rev., 102

1423 (1956); D. E. Bedo and D. H. Tomboulian, J. Appl. Phys., 29 804 (1958); P.L.

Hartman, Nucl. lnstrum. Methods, 195 1 (1982).

14. K. Codling and R. P. Madden, Phys. Rev. Lett., 10 516 (1963); Phys. Rev. Lett. 12

106 (1964); J. Opt. Soc. Am., 54 268 (1964); J. Appl. Phys., 36 830 (1965).

15. G. Bathow, E. Freytag and R. Haensel, J. Appl. Phys., 37 3449 (1966).

16. K. R. Lea, Physics Reports, Section C of Physics Letters, 43 337 (1978).

Page 86: Analytical Spectroscopy Library_VOL 7

77

17. G. K. Green, Brookhaven Nat. Lab. Rep. BNL 50522, 90 (1977); Brookhaven Nat.

Lab. Rep. BNL 50595, Voi.ll (1977). 18. E. E. Koch, C. Kunz and E. W. Weiner, Optik, 45 395 (1976). 19. A. van Steenbergen, Nucl. Instrum. Methods, 172 25 (1980); Nucl. Instrum. Methods,

177 53 (1980). 20. N. F. Gmuer, Brookhaven Nat. Lab. Rep. BNL 45764, NSLS User's Manual: Guide to

The VUV and X-Ray Beam Lines, 4th Ed., February 1991.

21. K. Kohra and T. Sasaki, Nucl. Instrum. Methods, 208 23 (1983); S. Sato, Koide, Y. Morioka, T. Ishii, H. Sugawara and I. Nagakura, Nucl. Instrum. Methods, 208 31

(1983); A. Asami, H. Kobayashi and M. Ando, Houshakoh, J. Jpn. Soc.for Synchrotron

Radiation Research, 1 47 (1988). (in Japanese)

22. H. Kamitsubo, Nucl. Instrum. Methods, A303 421 (1991).

23. L. R. Elias, W. M. Fairbank, J. M. J. Madey, H. A. Schwettman and T. I. Smith, Phys. Rev. Lett., 36 717 (1976).

24. D. A. G. Deacon, L. R. Elias, J. M. J. Madey, G. J. Ramian, H. A. Schwettman and T. I.

Smith, Phys. Rev. Lett., 38 892 (1977).

25. W. B. Colson, Phys. Quantum Electron, 5 157 (1978).

26. C. Pellegrini, IEEE Trans. Nucl. Sci., NS-26 3791 (1979).

27. N. A. Vinokurov and A. N. Skrinsky, Institute of Nuclear Physics, Novosibirsk, USSR,

Preprint 77-59, (1977) 28. M. Billardon, P. Elleaume, J. M. Ortega, C. Bazin, M. Bergher, M. Velghe, Y. Petroff, D.

A. G. Deacon, K. E. Robinson and J. M. J. Madey, Phys. Rev. Lett., 51 1652 (1983). 29. G. N. Kulipanov, V. N. Litvinenko, I. V. Pinaev, V. M. Popik, A. N. Skrinsky, A. S.

Sokolov and N. A. Vinokurov, Nucl. Instrum. Methods, A296 1 (1990).

30. H. Maezawa, M. Ando, T. Ishikawa, M. Nomura, H. Kitamura, A. Mikuni and T. Sasaki,

Proc. SPIE - Int. Soc. Opt. Eng., Vol.733, Soft X-Ray Optics and Technology, 1986, p.96.

31. A. P. Lukirskii, E. P. Savinov, O. A. Ershov and Yu. F. Shepelev, Opt. Spectrosc. (Engl. Transl.), 16 168 (1964).

32. V. Rehn and W. J. Choyke, Nucl. Instrum. Methods, 177 173 (1980).

33. V. Rehn, V. O. Jones, J. M. Elson and J. M. Bennett, Nucl. Instrum. Methods, 172 307

(1980). 34. J. Harada, K. Ooshima and T. Sakabe, Nippon Kessho Gakkaishi, 24 256 (1982).

Page 87: Analytical Spectroscopy Library_VOL 7

78

Appendix: Table of Various Bessel Functions and Integrals

y KI/3 (y) K2/3 (y) K5/3 (y) GO (y) G3 (y)

1.000e-04 3.628e+01 4.989e+02 6.652e+06 9.960e+02 9.960e-10 1.000e-03 1.672e+01 1.075e+02 1.433e+05 2.131e+02 2.131e-07 2.000e-03 1.319e+01 6.769e+01 4.514e+04 1.336e+02 1.069e-06 4.000e-03 1.038e+01 4.262e+01 1.422e+04 8.349e+01 5.343e-06 6.000e-03 8.995e+00 3.251e+01 7.233e+03 6.329e+01 1.367e-05 8.000e-03 8.116e+00 2.682e+01 4.478e+03 5.193e+01 2.659e-05 1.000e-02 7.486e+00 2.310e+01 3.087e+03 4.450e+01 4.450e-05 2.000e-02 5.781e+00 1.450e+01 9.723e+02 2.736e+01 2.189e-04 3.000e-02 4.932e+00 1.102e+01 4.946e+02 2.045e+01 5.522e-04 4.000e-02 4.386e+00 9.052e+00 3.061e+02 1.657e+01 1.060e-03 5.000e-02 3.991e+00 7.762e+00 2.110e+02 1.403e+01 1.754e-03 6.000e-02 3.685e+00 6.837e+00 1.556e+02 1.222e+01 2.640e-03 7.000e-02 3.437e+00 6.136e+00 1.203e+02 1.085e+01 3.722e-03 8.000e-02 3.231e+00 5.581e+00 9.625e+01 9.777e+00 5.006e-03 9.000e-02 3.054e+00 5.130e+00 7.905e+01 8.905e§ 6.492e-03 1.000e-01 2.900e+00 4.753e+00 6.627e§ 8.182e+00 8.182e-03 1.500e-01 2.343e+00 3.513e+00 3.357e+01 5.832e+00 1.968e-02 2.000e-01 1.979e+00 2.802e+00 2.066e+01 4.517e+00 3.614e-02 2.500e-01 1.714e+00 2.329e+00 1.414e+01 3.663e+00 5.723e-02 3.000e-01 1.509e+00 1.987e+00 1.034e+01 3.059e+00 8.259e-02 3.500e-01 1.343e+00 1.725e+00 7.915e+00 2.607e+00 1.118e-01 4.000e-01 1.206e+00 1.517e+00 6.263e+00 2.254e+00 1.443e-01 4.500e-01 1.089e+00 1.347e+00 5.082e+00 1.973e+00 1.798e-01 5.000e-01 9.890e-01 1.206e+00 4.205e+00 1.742e+00 2.177e-01 5.500e-01 9.018e-01 1.086e+00 3.534e+00 1.549e+00 2.577e-01 6.000e-01 8.251e-01 9.828e-01 3.009e+00 1.386e+00 2.994e-01 6.500e-01 7.571e-01 8.933e-01 2.589e+00 1.246e+00 3.422e-01 7.000e-01 6.965e-01 8.148e-01 2.249e+00 1.126e+00 3.862e-01 7.500e-01 6.422e-01 7.455e-01 1.967e+00 1.020e+00 4.303e-01 8.000e-01 5.932e-01 6.839e-01 1.733e+00 9.280e-01 4.751e-01 8.500e-01 5.489e-01 6.288e-01 1.535e+00 8.464e-01 5.198e-01 9.000e-01 5.086e-01 5.794e-01 1.367e+00 7.740e-01 5.642e-01 1.000e+00 4.384e-01 4.945e-01 1.098e+00 6.514e-01 6.514e-01 1.250e+00 3.079e-01 3.406e-01 6.712e-01 4.359e-01 8.514e-01 1.500e+00 2.202e-01 2.402e-01 4.337e-01 3.004e-01 1.014e+00 1.750e+00 1.594e-01 1.722e-01 2.906e-01 2.113e-01 1.132e+00 2.000e+00 1.165e-01 1.248e-01 1.998e-01 1.508e-01 1.206e+00 2.250e+00 8.581e-02 9.132e-02 1.399e-01 1.089e-01 1.240e§ 2.500e+00 6.354e-02 6.726e-02 9.941e-02 7.926e-02 1.238e+00 2.750e+00 4.727e-02 4.981e-02 7.142e-02 5.811e-02 1.209e+00 3.000e+00 3.531e-02 3.706e-02 5.178e-02 4.286e-02 1.157e+00 3.250e+00 2.645e-02 2.767e-02 3.781e-02 3.175e-02 1.090e+00 3.500e+00 1.988e-02 2.073e-02 2.778e-02 2.362e-02 1.013e+00 3.750e+00 1.497e-02 1.558e-02 2.051e-02 1.764e-02 9.302e-01 4.000e+00 1.130e-02 1.173e-02 1.521e-02 1.321e-02 8.454e-01 4.250e+00 8.545e-03 8.853e-03 1.132e-02 9.915e-03 7.611e-01 4.500e+00 6.472e-03 6.693e-03 8.455e-03 7.461e-03 6.799e-01 4.750e+00 4.904e-03 5.069e-03 6.332e-03 5.626e-03 6.029e-01 5.000e+00 3.729e-03 3.844e-03 4.754e-03 4.250e-03 5.312e-01 5.500e+00 2.159e-03 2.220e-03 2.697e-03 2.436e-03 4.053e-01 6.000e+00 1.255e-03 1.287e-03 1.541e-03 1.404e-03 3.033e-01 6.500e+00 7.317e-04 7.495e-04 8.855e-04 8.131e-04 2.233e-01 7.000e+00 4.280e-04 4.376e-04 5.113e-04 4.725e-04 1.621e-01 7.500e+00 2.509e-04 2.562e-04 2.965e-04 2.755e-04 1.162e-01 8.000e+00 1.474e-04 1.504e-04 1.725e-04 1.611e-04 8.248e-02 8.500e+00 8.679e-05 8.842e-05 1.007e-04 9.439e-05 5.797e-02 9.000e+00 5.118e-05 5.209e-05 5.890e-05 5.543e-05 4.041e-02 9.500e+00 3.023e-05 3.073e-05 3.454e-05 3.262e-05 2.797e-02 1.000e+01 1.787e-05 1.816e-05 2.030e-05 1.922e-05 1.922e-02

Page 88: Analytical Spectroscopy Library_VOL 7

Applications of Synchrotron Radiation to Materials Analysis H. Saisho and Y. Gohshi (Editors) �9 1996 Elsevier Science B.V. All rights reserved. 79

CHAPTER 2

X-RAY FLUORESCENCE A N A L Y S I S

Hideo SAISHO and Hideki HASHIMOTO

Inorganic Analysis Laboratory, Toray Research Center, Inc. 1-1, Sonoyama 1-Chome, Otsu, Shiga 520, Japan

2.1. INTRODUCTION

Recent trace element analysis requires highly sensitive, simultaneous multi-element methods.

Such methods include activation analysis, atomic emission spectrometry, mass spectrometry,

and X-ray fluorescence analysis (XRF). XRF facilitates rapid, nondestructive analysis, and

has a wide range of applications, including production processes and quality control.

Although XRF is not necessarily a high-sensitivity technique (normally, it can only detect ~tg

levels), researchers have recently found that synchrotron radiation (SR) greatly improves the

sensitivity of XRF, enabling analysis over l.tg-pg ranges [1-3].

Synchrotron radiation is a continuum radiation with a wide wavelength range. Two to three

GeV class storage tings currently available supply radiation ranging from microwaves to hard X-rays (20-30 keV). Furthermore, these storage tings provide an X-ray intensity 100-10 000 times greater than conventional X-ray sources. If a wiggler is used, hard X-rays of up to 50

keV can be supplied. In addition, when large scale SR facilities under construction are completed, the available intensity will increase by a few more orders of magnitude. Other

advantages of SR include its almost perfect linear polarization and excellent collimation.

More sensitive XRF can be attained by increasing the intensity of the signal and reducing the

background. Greater signal intensity can be obtained by increasing the intensity of the

excitation X-rays. The background is reduced by two characteristics of SR: continuum

radiation and polarization. The excellent collimation of SR makes this method suitable for measurements using the total reflection method, which is useful for surface analysis, as well as

for microarea analysis using a microbeam. The major characteristics of SR - - high intensity,

continuum radiation, polarization, and co l l imat ion- greatly enhance the capabilities of XRF.

Table 2-1 lists the characteristics of synchrotron radiation and the advantages when it is applied

to XRF.

Page 89: Analytical Spectroscopy Library_VOL 7

80

Table 2-1

Outstanding characteristics of SR for XRF

SR characteristics Advantages

High intensity Linear polarization Continuous spectrum

High collimation

Signal enhancement Background reduction Selective excitation Total reflection

{ Micro-trace analysis

SR-Excited XRF (SRXRF) was first developed in 1972 by Horowitz and Howell [4] for use

in microbeam analysis. Working with the Cambridge Electron Accelerator, they used an

ellipsoidal condensing mirror and a pinhole to produce a 2 I.tm focused X-ray beam. XRF

using this beam attained a detection limit of 10 -6 to 10 -9 g cm -2 at a resolution of 2 lxm.

Sparks et al. [5, 6] conducted their well-known 1977 experiment at SPEAR of SSRL in order

to find primordial superheavy elements using a curved pyrolytic graphite crystal and a Si(Li)

detector. They demonstrated that it was possible to detect superheavy elements if at least 5 x

108 atoms were present in the sample. The announcement of this result, as well as the

establishment of SR facilities at many locations, led to an increasing number of investigations

of XRF analysis in the 1980s. Gilfrich et al.[7], at SSRL in 1983, systematically performed a

series of experiments concerning detection limits. Similar research was carded out by Hanson et al. [8] at CHESS of Cornell, Kn6chel et al. [9] at DORIS of HASYLAB, and Bos et al. [10]

at the SRS of Daresbury. Iida et al. [ 11 ] conducted a close investigation into the dependence

of the detection limit on the excitation mode at the Photon Factory (PF) of the National

Laboratory for High Energy Physics (KEK). Also, Gordon used beam intensity parameters to

calculate theoretical values for detection limits at the NSLS of Brookhaven [ 12].

X-Ray total reflection produces a shallow X-ray penetration depth and very little scattering (background), and therefore total reflection XRF (TXRF) is useful for surface analysis and

ultratrace analysis [13, 14]. While improvements have been made by Yoneda and Horiuchi

[ 15] in the original technique, which used a conventional X-ray tube, the use of SR further

enhances the effectiveness of TXRF because of SR's excellent collimation and strongly

monochromatic beam [ 16]. Researchers often apply this method to analyze depth profiles [ 17]

and layered structures [18]. In these analyses, the reflection curve and fluorescent X-ray

profile are measured as changes are made in the incident angle near the critical angle of total

reflection. In this chapter, we will discuss equipment used for bulk analysis and surface analysis using

SRXRF. These techniques do not include analysis using a microbeam or chemical state

analysis for obtaining information on chemical bonding by high energy-resolution

measurements. These will be described in the next chapter.

Page 90: Analytical Spectroscopy Library_VOL 7

81

2.2. EQUIPMENT

SRXRF detects X-ray fluorescence caused by a white (non-monochromatic) or

monochromatic incident SR beam. The radiation of hard and soft X-rays from the storage ring

requires quite different equipment. With hard X-rays, beryllium windows can be used to form

a barrier between the ultrahigh vacuum in the storage ring and the low vacuum or air in the

sample chamber. Soft X-ray SRXRF requires ultrahigh vacuum through to the sample

chamber. This means that completely different equipment is required for the analysis of light

elements (atomic number less than 12) and of elements with higher atomic numbers. Hereafter,

we will confine our discussion to analytical techniques using hard X-rays. Hard X-ray

equipment is built in much the same way as equipment using X-ray tubes or rotating anode X-

ray generators. The major difference is that in SR equipment, the distance from the light

source to the sample is longer (10-30 m). Despite this long distance, high collimation keeps the reduction of SR intensity to very low levels. Equipment known as beamlines introduces the

X-rays into the detection system. A beamline is composed of a few beryllium windows, a

vacuum system, shutters, and optical elements. Since SR obtained from a bending magnet is

linearly polarized in the orbital plane of the accelerated electron, the optical elements usually

have an axis of rotation horizontal to the electron's orbital plane. To protect the operator from

radiation, the detection system is placed in an iron (or lead) hutch and is remote-controlled.

Section 2.2.1. describes the optical elements used in SRXRF. Section 2.2.2. deals with the

detectors, and Section 2.2.3. discusses the beamline for X-ray fluorescence incorporating

these two components.

2.2.1. Optical elements

Total ref lect ion mi r ror

The X-ray mirror is extensively used in SR experiments as a low pass filter, a high pass filter, or an X-ray focusing device.

Since the refractive index for X-rays is very slightly less than unity (a difference of 10-5), an

X-ray with a glancing angle smaller than a certain value (critical angle: a few mrad) is totally reflected. The critical angle depends on the kind of substance and the wavelength of the

incident X-rays. The complex index of refraction n for an X-ray with a wavelength A is given

as follows:

n = l - 5 - i f l (2-1)

S = ( r J 2 ~ ) ( N o p / A ) ( Z + Af' )Z 2 (2-2)

fl = ~/.t/4r~ (2-3)

Page 91: Analytical Spectroscopy Library_VOL 7

82

(a)

1 . 0 -

0.8-

ov,,~ ~ 0 . 6 -

~ 0 . 4 -

0 . 2 -

(b) 1 . 0 -

ad ~: 1.5/~

0c " 10.5 mrad

Si

4

0 . 8 -

; > 0 . 6 - =!,~(

t,,.,)

r 0 . 4 -

0 . 2 -

~,c" 1.6/~ Si " 0 = 4mrad

Z,c" 1.7/t~

ad

0 . 0 - i i ' t ' o ' o - t ' - " t ' i t t t 0 8 12 1.2 1.4 1.6 1.8 2.0 2.2

Glancing angle / mrad Wavelength /

Fig. 2-1. The calculated reflectivities for silicon and platinum: (a) is expressed as a function of

glancing angles at a fixed wavelength (1.5 A) of the incident X-rays; (b) as a

function of wavelengths at a fixed glancing angle (4 mrad for Si, 12 mrad for Pt).

where re is the classical electron radius, No is Avogadro's number, p is the density, and A is

the atomic weight. Thus, (Nop/A) represents the number of atoms found in a unit volume.

The quantity (Z+Af) is the real part of the atomic scattering factor, where Z is the number of

electrons per atom (atomic number) and zlf' represents the dispersion term. Far away from the

absorption edge, Af' is very small, and therefore 6 is proportional to the electron density. The

quantity/.t is the linear absorption coefficient. An incidence of an X-ray at a glancing angle

less than the critical angle, 0c, which is a grazing angle, will result in total reflection. If we

ignore absorption, the critical angle can be given as follows, according to Snelrs law:

0c = ~ (2-4)

Calculated reflection curves for silicon and platinum are shown in Fig. 2-1. Figure 2-1a

shows the reflection curves as a function of the angle (glancing angle), and (b) shows them as

a function of the incident X-ray wavelength. The critical angle (0c) and critical wavelength

(20 can be seen. For a given substance and angle, X-rays of wavelengths less than a certain

value (greater energy than a certain value) are not reflected: thus, the mirror works as a low

pass filter. As can be seen in Fig. 2-1, for a given wavelength, the more electrons per unit

volume, the larger the critical angle. However, as the amount of X-rays absorbed increases,

the change in reflectivity near the critical angle is more gradual, which implies a lower

Page 92: Analytical Spectroscopy Library_VOL 7

83

efficiency as a low pass filter. Since the critical angle for X-ray wavelengths is a few mrad,

the use of an X-ray 2 mm high requires a mirror a few tens of centimeters long. Also, the

mirror must be sufficiently smooth if its calculated efficiency is to be attained. Calculated

reflection curves for mirrors of different roughnesses are shown in Fig. 2-2. Surface

roughness is described as a group of flat planes distributed in a Gaussian manner. Figure 2-2

shows that less than 10/~ roughness is necessary. Surface roughness reduces the reflectivity.

When using a mirror and employing a strong SR, it is necessary to ensure thermal stability.

Therefore, it is important to place the optical system in a high vacuum or to cool the system.

Another way is to position the mirror behind the monochromator, but then the monochromator

would have to be protected from the heat. The mirror material is another point for careful

consideration. A plane plate of thickness d with a difference in temperature, AT, between the

surfaces, bends at a radius of curvature, R, which can be described as follows:

R = d / ( a A T ) = ( k d 2 ) / ( o t A q ) (2-5)

where k is the thermal conductivity, ct the coefficient of thermal expansion of the material, and

Aq the amount of heat transferred through a plate of thickness d. Equation (2-5) indicates that

the mirror material should have a high thermal conductivity and a small coefficient of thermal

1.0

0.8

~ 0 6 ~ �9

r

~ 0 4 -

0.2

0.0

a = 2 0

t~=0

~," 1.24 .~

1 2 3 4 5 6 Glanc ing angle / mrad

Fig. 2-2. The calculated reflection curves for samples of silicon of different surface

roughnesses (t~ = 0, 10 ]~ and 20 ]~).

Page 93: Analytical Spectroscopy Library_VOL 7

84

expansion, i.e., a large k/a. In addition, the mirror material must be able to be ground and

polished to a sufficient degree. Fused quartz is widely used since large polishable mirrors can

be fabricated. However, despite its small coefficient of thermal expansion, the thermal

conductivity of this material is low and therefore it cannot be used where a substantial heat load

is expected. Recently, SiC has received attention. It has a high thermal conductivity and a k]o~

value more than 20 times that of quartz. Since it is now possible to make large SiC mirrors, it

will be used in most beamlines using an insertion device and in the next generation of large

scale rings. The mirror chamber must be kept under ultrahigh vacuum to prevent carbon from

adhering to the mirror surface, since this would greatly lower the mirror's efficiency.

Total reflection mirrors are generally used for eliminating harmonics. They are also used, in

combination with absorbers or transmission mirrors, to emit X-rays with a wide energy band

or to focus X-rays.

If the absorption characteristics of a very thin mirror are low, the unreflected X-ray comes

out of the back of the mirror. Such mirrors are known as transmission mirrors. If a mirror is

thin enough (less than 1 lxm thick) and is made of material with a low atomic number, it can be

used as a transmission mirror. The calculated transmissivities of thin organic films are shown

in Fig. 2-3. Transmission mirrors can be used as highly efficient high pass filters.

Soap film is a smooth, stable transmission mirror. It is 300-10 000/~ thick, and very

smooth, with a surface roughness less than a few/~. Lairson and Bilderback [19] used a

solution of glycerin (35%), Ivory Liquid (2%), and distilled water (63%) to make soap films.

They used a 20 Jam wire stretched inside a 10 cm x 30 cm frame to make 8 cm x 20 cm films.

The films kept a few days in wet helium. Figure 2-4 shows the transmitted spectra of the

1 . 0 "

~ 0 . 8 - �9 t , ,=q

o~ 0 . 6 - �9 t , , , ,q

~ 0 . 4 -

0 . 2 -

0.0-

f thickness: d = 0.5 i lm

~, �9 1.24 A

I I I I 0 2 4 6 8 10

G l a n c i n g ang le / m r a d

1 . 0 - -

; ~ 0 . 8 -

~ 0 . 6 - �9 v, , , , l

~ 0 4 -

0 . 2 -

0"0-1 ' ' I I I I

0 2 4 6 8 10

Glancing angle / mrad

r thickness: d = 0.1 I.tm

~,' 1.24 /~

Fig. 2-3. The calculated glancing angle dependence of transmissivities for polystyrene films

using incident X-rays with a wavelength of 1.24/~.

Page 94: Analytical Spectroscopy Library_VOL 7

85

10 .--" .._-_

- j J _

. ; �9 ~ - ~ -

" ~ - I _

I t i I i t I I I

0 0 12.5 25

Energy / keV

Fig. 2-4. Transmitted spectra of soap films at a thickness of > 10 000 ]k (broken line) and of

3 200 A (solid line). Both films are set to the same mirror angle (2.4 mrad). From

Ref.[19], reprinted by permission of Elsevier Science Publishers B.V.,

Amsterdam.

films. It indicates the dependence of transmissivity on film thickness. Iida et al. [20] used 0.5

~tm Mylar film as a transmission mirror. Compared with soap films, the Mylar film is more

stable and durable, yet it is less smooth and more difficult to make flat.

Mirrors with an ellipsoidal, cylindrical, or hyperboloidal cross section also can be used to

condense X-rays. In microprobe analysis, a combination of these mirrors is used to create a

micro-sized beam (microbeam). Reflection and transmission mirrors can be combined to select

X-rays with appropriate energy bands. This will be discussed later in this section.

Crystal monochromator

In order to use SR as a monochromatic X-ray excitation beam it must be monochromatized

using a monochromator. Crystals are used for this purpose.

The diffraction of an X-ray by a crystal is described by Bragg's law

2d sin0 B= nA (2-6)

where n is the diffraction order, d is the lattice spacing in the crystal lattice, ~, is the X-ray

wavelength and 0]3 (the Bragg angle) is the angle which the incident X-ray makes to the

Page 95: Analytical Spectroscopy Library_VOL 7

86

reflecting plane. Since sin0 is less than unity, X-rays with wavelengths longer than 2d cannot

be reflected. Bragg angles of less than a few degrees or more than 70 degrees cannot be

achieved because of the structure of the monochromator. Therefore, the lattice spacing of the

crystal lattice plane must match the wavelength used. For example, for Si (111), where d is

3.136/~, the wavelengths that can be obtained range from 0.4 to 6 ]k. Equation (2-6) is differentiated to:

AA/A = AE/E = A0 cot0a (2-7)

From Eq. (2-7) it is evident that energy resolution is determined by the angular width A0 and

Bragg angle 0B. The angular width is determined by the angular spread of the incident beam

and the reflection width of the crystal monochromator. The angular spread of the incident

beam depends on the size and angular divergence of the light source and the geometry of the

experiment (distance, slit, etc.). The reflection width is greatly affected by the crystal'sstate

of perfection. For a perfect crystal, the reflection width to is given as follows, according to the

dynamical theory of diffraction [21 ]:

to 2 re ~ 2 = �9 .C. [/7111 .e -M (2-8) sin20B uV

where re is the classical electron radius, V the unit-cell volume, Fh the crystal structure factor, e -M the temperature factor, and C the polarization factor. The integral reflecting power, I, for

a weakly absorbing crystal is given approximately by

2 I = 1__. 8 .rex .C. [F~ .e -M (2-9)

~ 3sin20B ~V

where b is a quantity called the asymmetry factor. For a mosaic crystal, kinematical diffraction

theory can be applied to rewrite I as follows: \

I r2~3 = .C 2. ~t~2.e-2M 2/aVEsin2 0B

(2-10)

The reflection width, energy resolution, and integral reflecting power of perfect crystals which

are frequently used are shown in Table 2-2 [22].

The crystal used in a monochromator must not be seriously damaged by a strong SR.

Generally speaking, it is impossible to use organic crystals in monochromators. Usually,

silicon crystals are used, since large perfect crystals can be made easily and provide the lattice

Page 96: Analytical Spectroscopy Library_VOL 7

87

Table 2-2

Parameters of crystal monochromators

Crystal hkl

a b c

al s AE/E I

(second of arc) (• 5) (xl 0 6 )

Silicon 111 7.395 14.1 39.9 220 5.459 6.04 29.7 311 3.192 2.90 16.5 333 1.989 0.88 9.9

Germanium 111 16.338 32.64 85.9 220 12.449 14.46 67.4

a Bragg reflection width, b Energy resolution, c Integral reflecting power.

These parameters are used to determine experimental conditions such as incident X-ray

energy and resolution. From Ref. [22], reprinted by permission of Elsevier Science Publishers B. V., Amsterdam.

spacing required in the hard X-ray region. Since SR is polarized in the horizontal direction, a

non-horizontal monochromator rotational axis will jeopardize the efficiency. When the

monochromator with a horizontal rotational axis is used, the diffracted beam goes up or down:

therefore, changing the Bragg angle to change the wavelength varies the direction of the

diffracted beam. This means that all units positioned behind the monochromator (slit, sample,

detector, etc.) must be moved every time the Bragg angle is changed. A monochromator with

a parallel double-crystal (or a channel-cut crystal) always reflects the beam in the same

direction. In this case, the above units can simply be moved up and down, en bloc. It is also

possible to keep the height of the outgoing beam constant by attaching a mechanism to translate

the crystal while rotating the doub!e-crystal monochromator [23]. This makes the equipment

even easier to use.

Special care must be taken to eliminate harmonics when using a monochromator. It is clear from Bragg's law that for any X-ray, with a wavelength A, there will be an X-ray with a

wavelength 2/n which will be reflected at the same angle. The relative intensity of harmonics

depends on the spectn~m of the light source, the integral reflecting power of the crystal, etc. If

absorption is ignored, the integral reflecting power is proportional to (2/n)2lF~e -M, a quantity

that monotonically decreases with increasing order n. Considering the SR spectrum,

therefore, the second and third harmonics are the problems in the X-ray region. In some

cases, the second harmonics disappear due to the symmetry of the crystal. One such example

is Si(111). In this case, harmonics pose very little problems if the storage ring can supply a

relatively high incident energy (more than 15 keV for a 2 GeV class storage ring). Basically

there are two methods of eliminating harmonics. One uses a total reflection mirror. As

Page 97: Analytical Spectroscopy Library_VOL 7

88

discussed previously in this section, the mirror totally reflects X-rays of wavelengths longer

than a certain value (the critical wavelength) and does not reflect those with shorter

wavelengths. The other method employs a beamline without a mirror. Harmonics can be

eliminated by slightly detuning two crystals used in a double-crystal monochromator. As

shown in Table 2-2, the reflection width for Si(333) is much smaller than that for Si(111).

This makes it possible to reduce the intensity of harmonics by detuning.

Also used is an optical system that increases the intensity of the beam by focusing the

incident X-ray using a curved second crystal (sagittal focusing) [24-26]. SR has a high

degree of collimation in the vertical direction (angular spread: approx. 0.1 mrad), but it is also

spread in the horizontal direction. An ordinary beamline can take in a few mrad of a beam in

the horizontal direction, but given the long distance (10-30 m) from the light source to the

hutch, the beam will be spread more than a few cm on the sample. Therefore, if the incident

beam is not focused, a fiat-crystal monochromator can only supply less than 1 mrad of the

beam. A focusing optical system collects much of the beam and improves the detection limit

by producing more than 10 times the intensity. Another focusing optical system employs a

fiat-crystal monochromator and a curved mirror. When using this system, however, the

position of the mirror should be carefully considered. If the mirror is positioned in front of the

monochromator its adjustment can be made at the beginning, and no further adjustment is

needed when tuning the monochromator to change the energy. However, in this position SR

could damage the mirror surface. When the mirror is positioned behind the monochromator

damage is negligible, but then it requires more complicated adjustment. Protecting the

monochromator from the heat of SR must also be considered when using an insertion device

or a larger scale ring. Resolution may be sacrificed if higher intensity is desired. The properties of a mosaic crystal

monochromator are between the wide band-pass (see the following section) and perfect crystal

monochromators [ 11 ]. As shown in Eqs. (2-9) and (2-10) the mosaic crystal monochromator

provides greater reflection intensity. The pyrolytic graphite mosaic crystal produces greater

reflection intensity, but the band width is spread to about 170 eV, yielding an X-ray of 8 keV.

Silicon with a rough ground surface also displays mosaic crystal properties. It is important to

choose a monochromator that best matches the size and composition of the sample.

Wide band-pass monochromator

In some cases, greater intensity is required and the high resolution of a crystal

monochromator is not. A wide band-pass monochromator is defined as a monochromator

with an energy resolution, AE/E, of more than 0.1. There are two types of such

monochromators. One combines a total reflection mirror with an absorber or a transmission

mirror. The other type uses a synthetic multilayer as a monochromator element.

Iida et al. [20] studied monochromators that combined a total reflection mirror and an

aluminum absorber (or a transmission mirror such as a soap film or Mylar film). Their

calculations are shown in Figs. 2-5 and 2-6, and the results of their experiments in Figs. 2-7

Page 98: Analytical Spectroscopy Library_VOL 7

89

1.0

P~ ~

p,. ~

0.5

0.0

_ % . I

- / / / / 200_/ '- '11~\ - / _ / / / ~'k~

- / / / 409.. "'. '~k,.x~ e / / j " - ' , ~ ~ _

-.-'r"~-"l m m m n m m i - T - -

5 10 15 Energy / keV

Fig. 2-5. Calculated fused quartz reflection mirror responses in combination with A1 absorbers (broken lines) and without an absorber (solid line). The glancing angle of the reflection mirror is 2.5 mrad. The absorber thicknesses are shown in the figure in ~tm. The cutoff on the low energy side is not sharp. From Ref. [20], reprinted by

permission of Elsevier Science Publishers B. V., Amsterdam.

1.0 p~ p,.

~

~ ~ 0.5

m

- /

- /

_ I

_1 I

m n n m

0.0 5 15

I I . l l .I i a i i i a

3 / / / / , / 2") [ ~ / 2.3

/ /

i I / I I

I I I 2 I I t I

I I I I I i I I

10

Energy / keV

t

Fig. 2-6. Calculated fused quartz reflection mirror responses in combination with (broken lines) and without (solid line) a soap film transmission mirror. The glancing angles of the transmission mirror are shown in the figure in mrad. The soap film thickness

is 1 000 A. The cutoff on the low energy side is sharp compared with the cutoff of

the reflection mirror / absorber combination. The glancing angle of the reflection mirror is 2.5 mrad. From Ref. [20], reprinted by permission of Elsevier Science Publishers B. V., Amsterdam.

Page 99: Analytical Spectroscopy Library_VOL 7

1.0 ,=

(a)

o N

~0.5

0.0:

90

~ aW~tshO%ter -

70 m

140 m

1.0

0.5

0.0 I i i I . 1 i _ i i i i i

4 6 8 10 12 14 16 4

Energy / keV

- (b) .~4- - - . . without f ,I, IiN absorbeq

/ ~ ~ 70/.tm

i _ ! i i ! i i

6 8 10 i I I I ]

12 14 16

Energy / keV

Fig. 2-7. Measured responses of the Pt coated (a), and non-coated (b), fused quartz mirror in conjunction with the A1 absorbers. A wide energy band-pass greater than 20% was achieved. From Ref. [20], reprinted by permission of Elsevier Science Publishers B. V., Amsterdam.

1.0- 1.0~ '(1))' ' ' A ~ - ~ 'withou; ~ �9 [with p m '~,~ tr.ans. ]

i ttrans l

No.o , , , o.o

4 6 8 10 12 14 16 18 20 4 6 8 10 12 14 16 18

Energy / keV Energy / keV

Fig. 2-8. Measured responses of the fused quartz reflection mirror using soap film (a) and Mylar (b) transmission mirrors. For the use of the transmission mirror, each curve shows the response of a different glancing angle to the transmission mirror. A sharper cutoff at the low energy tail is achieved than with the reflection / absorber combination. From Ref. [20], reprinted by permission of Elsevier Science Publishers B. V., Amsterdam.

Page 100: Analytical Spectroscopy Library_VOL 7

91

and 2-8. They obtained a wide band pass of more than 0.2. That using a transmission mirror

has a sharper cutoff in the low energy region (see Fig.2-8a). Figure 2-9 shows the spectrum

of X-ray fluorescence measured by the energy dispersive method, using chelated metal-resin

beads as a sample. When using an absorber, the signal-to-background (S/B) ratio is large in

the low energy region, but the X-ray fluorescence of Zn overlaps the scattered X-ray. On the

other hand, the combination of a total reflection mirror and a transmission mirror provides an

excellent S/B ratio for the X-ray fluorescence emitted by Zn.

Synthetic multilayers have recently been receiving attention as excellent wide band-pass

monochromators. These synthetic lattices stack two substances, with different atomic

numbers (e.g. , silicon and tungsten), one on the other at intervals between a few and a few

tens of A. Early in their development there were problems resulting from the two substances

diffusing at the interface. Recently, however, it has been possible to produce excellent

multilayers in the desired combinations and intervals [27]. Because of their controllable lattice

spacing they are useful not only as wide band-pass monochromators but also as

monochromators for the soft X-ray region m a region that has lacked an appropriate

monochromator.

2.2.2. Detectors

It is often pointed out that a stable SR permits a correct calculation of its intensity,

wavelength distribution, and angular distribution. In fact, however, the incident X-ray has to

be monitored to ensure accurate measurements and experiments. This is because, even if the

electron or positron beam put out by the storage ring is very stable, it cannot prevent the SR

intensity from fluctuating because of the thermal instability of the optical elements.

Fluctuations in position and direction of the electron or positron beam also contribute to

fluctuations in the intensity of the X-rays. This is why the current in the storage ring beam cannot be used to monitor the incident X-ray. Monitoring part of the X-ray flux is not

desirable either, since the flux does not necessarily have a uniform wavelength and intensity

distribution. The ionization chamber is generally used as a detector for monitoring in the X-

ray region. When an X-ray irradiates a gas, the gas absorbs the radiation and is ionized. In

the ionization chamber method, the electric charge caused by this ionization is measured to

obtain the intensity of the incident X-ray. The height of the emitted pulse signals is too small

to be measured. Therefore, normally the direct current is measured instead. The current

produced in the ionization chamber is linearly related to the number of the incident photons:

I = n e E e / W (2-11)

where I is the output current of the chamber (A), n the number of the incident photons (s-l), e

the detector efficiency, E the energy of an incident photon (eV), e the electronic charge (1.6 x

10 -19 C) and W the energy to produce an electron-ion pair (eV). Despite the complicated

process of gas ionization, W is known to be characteristic of a gas molecule, regardless of the

Page 101: Analytical Spectroscopy Library_VOL 7

92

1.0

~ 0 5 o~ , , 4

<D

0.0

(a) | l ! l i i !

"2.5 GeV Zn 92.3 mA MAX. CTS.

3628.5

Mn

. Scattered

Ar Ca

I i i i i i i i a i I I i . I

2 4 6 8 l0 12 14 16 Energy / keV

(b)

.0 2.5 GeV Zn 75.9 mA MAX. CTS.

4764.8

Ar

'.5 Mn

.0

2 4 6 8 10 12 14 16

Energy / keV

Fig. 2-9. Fluorescence spectra from a Ca, Mn and Zn adsorbed chelate resin with 20 ppm

concentrations of each element, using the reflection mirror and A1 absorber

combination (a), and the reflection / transmission mirror combination (b). Counting

time, 100 s; MAX. CTS., maximum counts. From Ref. [20], reprinted by

permission of Elsevier Science Publishers B. V., Amsterdam.

kind of ionizing particle and the operating conditions of the ionization chamber. When n = 109

photons s -1, e = 0.2, E = 8 000 eV, and W = 30 eV, I will be 8.5 x 10 -9 A. There are many

kinds of ionization chambers. The structure of the one used at the Photon Factory is shown in

Fig. 2-10. The parallel-plate type is employed because (1)the electric field between the

H.V I '1 '

X-Rays

Amplifier

Electrode

Electrode

Fig. 2-10. Schematic diagram of a typical ionization chamber (parallel-plate type) used at the

Photon Factory.

Page 102: Analytical Spectroscopy Library_VOL 7

93

electrodes is uniform, (2) it is easy to set up, and (3) it is easy to use. A voltage is applied

across the electrodes to keep ions and electrons apart. The ionization chamber has a wide

dynamic range of more than 5 decades, high linearity, and is free of dead-time losses. The X-

ray absorption can be controlled by changing the pressure and kind of the gas contained in the

ionization chamber, or the electrode length therein. The X-ray absorption by nitrogen and

argon contained in a chamber with a 17 cm electrode is shown in Fig. 2-11. It is desirable to

use 5-20% of the incident X-ray for intensity measurements, transmitting the rest to the

sample. Another method of monitoring incident X-rays uses a scintillation counter to measure

the radiation scattered by a foil made of a low atomic weight element such as aluminum.

The method of detecting X-ray fluorescence is basically the same as that of laboratory X-ray

devices. When using SR, the energy dispersive method is often employed because it is

capable of rapid, simultaneous multi-element analysis. A solid state detector is saturated at a

few thousand counts s -1. When XRF is used for trace element analysis, scattered radiation

makes up the greatest percentage of X-rays reaching the detector. Fortunately, however, since

SR is linearly polarized, scattered radiation can be dramatically reduced by positioning the

detector perpendicular to the beam. The calculations for this are discussed in Section 2.3.2. A

high counting rate system is also considered. Furthermore, multi-element detectors have been

developed. They incorporate up to a few tens of detectors. Reduction of X-rays to individual

detectors eliminates dead-time losses due to saturation, and the large solid angle which can be

covered by the multiple detectors increases the overall detection efficiency. A large solid angle

is of great importance when measuring by the wavelength dispersive method.

2.2.3. Beaml ines

The first thing to do when fabricating a beamline for XRF is to determine the energy region

for measurement. Different beamlines are required for analysis or measurement of different

energy regions: i.e., the analysis of light elements in the soft X-ray region of less than 1-2

keV, the measurement of X-rays in the region of 2-30 keV, or of the K-series X-rays of heavy

elements. For measurement of heavy elements, the beamline must be fashioned in such a

manner that it can accommodate a large scale SR facility or a wiggler. Strict shielding of

radiation is also required. When using soft X-rays, the beamline must be made under high

vacuum, since beryllium windows cannot be used in this case. The absorption of X-rays by

beryllium is shown in Fig. 2-12. In a beamline for measuring the X-ray fluorescence in a 2-

30 keV region, 2 to 4 beryllium windows are normally used. The total thickness is 300 ~tm-

1 mm. The design of the optical system depends on whether a microbeam is used or not. It

must also be decided whether a crystal or a wide band-pass monochromator should be used.

If desired, the optical system can be designed to be compatible with both types of

monochromator. Different equipment in the same beamline should be substituted in the hutch

for the energy dispersive and the wavelength dispersive methods.

As an example, Beamline 4A installed at the Photon Factory is shown in Fig. 2-13. (In this

chapter we will not discuss the focusing optical mirror system which is inserted between the

Page 103: Analytical Spectroscopy Library_VOL 7

94

1 0 0 -

8 0 -

6 o w i t

' ~ 6 0 -

o

~ 4 o - o

< 20

N 2

0 ' I ' I ' I 0 1 0 2 0 3 0

Incident X-ray energy /keV

Fig. 2-11. Absorption curves of X-rays

passing through 17 cm lengths

of gases (N2 and air).

1 . 0 -

0 . 8 -

0 . 2 -

0 . 0 - , I ' I ' I '

0 4 8 1 2

Incident X-ray energy /keV

. - , 0 6 - �9 1,,,~

~ 0 . 4 -

Fig. 2-12. The calculated transmissivities

of X-rays through a 300 ~tm

thick beryllium window.

monochromator and the hutch for analysis using a microbeam.) It is about 9 m from the source of light to the outer wall of the ring. A double-crystal monochromator is positioned

about 1 m from the wall. Three beryllium windows are used, with a total thickness of 650

~tm. To maintain the outgoing beam at a constant height, regardless of its energy, this

monochromator is equipped with a mechanism to translate the first crystal parallel to the

incoming beam whilst allowing it to be rotated [28]. It also can put out a strong beam by

focusing rays in the horizontal direction using a curved second crystal. When Si(111) is used

Branch beam shutter

R i

I1

Slit

P, Crystal

Double-crystal monochromator Hutch

Fig. 2-13. Schematic drawing of Beamline 4A at the Photon Factory.

Page 104: Analytical Spectroscopy Library_VOL 7

95

as the monochromator crystal, the energy width for an 8 keV X-ray is 3.3 eV. The photon

flux in this energy band is of the order of 108 photons s -1 for a beam 1 mm square.

The equipment in the hutch must be remote-controlled, since it is impossible to enter during

use of the X-ray beam. The equipment used for the energy dispersive method and built into a

hutch includes a slit, a sample chamber, an incident X-ray monitor, and a solid state detector.

A small TV camera is very useful for monitoring the position of the sample. A laser beam is

sometimes used to help in positioning the equipment and the sample. The sample chamber

should be able to hold a vacuum and be equipped with a remote control device for inserting

several samples. The solid state detector must be positioned perpendicular to the beam. This

minimizes scattering, since the SR is linearly polarized in the orbital plane of the storage ring

[29]. Figure 2-14 shows the vertical divergence distribution of the SR (11 keV) from one

electron [ 11 ]. The abscissa shows the angle from the electron orbit, and the vertical distance is

measured at a position 14 m from the light source. The vertical polarization component

vanishes on the orbital plane of the electron beam. This means that most X-rays are

horizontally polarized when the beamline is horizontal to the orbital plane of the electron.

Therefore, if the sample and the detector are positioned within 1 mm of the beam center, the

1.0

0.5

0.0

el

% \ 0 .1 .2

Angle / mrad

Displacement / mm

Fig. 2-14. Calculated vertical divergence distribution of the SR from one electron at E = 11

keV. Parallel and perpendicular polarization components and their sums are shown

by the solid, broken and dotted lines, respectively. The abscissa indicates the angle

from the electron orbit and also the vertical displacement at 14 m from the source

point. From Ref. [11], reprinted by permission of Elsevier Science Publishers

B. V., Amsterdam.

Page 105: Analytical Spectroscopy Library_VOL 7

96

vertical polarization component is very small. Iida et al. [11] measured the intensity

distribution, in the vertical direction, of incident and scattered X-rays and X-ray fluorescence,

as well as the distribution of the ratio of the intensity, in this direction, of the X-ray

fluorescence and the scattered X-ray. The results are shown in Fig. 2-15. The

monochromator has a single Si crystal, lapped with #600 SiC. The solid state detector is

positioned perpendicular to the beam. While the intensity of X-ray fluorescence is

proportional to the intensity of the incident X-ray, that of the scattered radiation is at a

minimum at the beam center.

Non-monochromatic excitation has the best detection limit in absolute (weight) amount

because such excitation uses a very strong incident X-ray. However, when the scattering is strong or when the sample contains matrix elements with high atomic numbers, the emitted X-

ray fluorescence saturates the detector, resulting in a high detection limit in relative

concentration. Monochromatic excitation coupled with a crystal monochromator allows the

incident X-ray energy to be adjusted to the most efficient value for the element to be measured.

For this reason, this method provides a lower detection limit in relative concentration.

However, it yields a higher detection limit in absolute amount than excitation by a non-

monochromatic beam, because the total X-ray intensity for excitation is lower. The wide

I I [ I I I I I

.-.mr

30 I-- "~, \

20

1 0 - I '

0 1 2

Vertical d isplacement / m m

-1 .0

,d

-0.5~

e,

,.$

0

Fig. 2-15. The variation of the incident ( �9 ), and scattered ( i ) , Zn K(t fluorescence (A)

radiations, and the ratio of the Zn signal to the scattered radiation (o) as a function

of the vertical displacement. The sample is a 20 ppm Zn adsorbed chelate resin. The

monochromator used is silicon lapped with SiC. The excitation energy was 11 keV.

Null vertical displacement indicates the center of the beam. The vertical resolution

was 250gm. l~rom Ref. [11], reprinted by permission of Elsevier Science

Publishers B. V., Amsterdam.

Page 106: Analytical Spectroscopy Library_VOL 7

97

band-pass monochromator has features which lie somewhere between these two. The most

efficient method should be chosen according to the composition of the sample and the elements

to be measured. SR has a very small angular divergence in the vertical direction (approx. 0.1 mrad).

Therefore, the maximum size of the beam's vertical component arriving at the sample is limited

to a few millimeters. When a large beam is required, and it is necessary to enlarge it, the

asymmetric reflection (asymmetric Bragg magnifier) of a crystal can be used (see Chapter 8,

Section 8.3.5). Use of the asymmetric reflection easily permits the diffracted beam to have a

cross section about 10 times larger than that of the original beam. From Liouville's theorem, a

geometry which increases the cross section of a beam also improves its collimation. On the

other hand, the beam's cross section can be reduced by using this method in the opposite way.

Unlike the method using a slit, it maintains the intensity of the beam.

Other components of a beamline include a vacuum system (vacuum pumps, vacuum

indicators, valves), shutters, and an interlock system. In addition, a beam position monitor is

useful for experiments using a microbeam. The control system for X-ray fluorescence

detection is basically the same as the one used in the laboratory.

2.3. XRF USING MONOCHROMATIC EXCITATION

2.3.1. Characteristics

Despite its rapid, nondestructive analysis, XRF is not quite sensitive enough. To improve

detection limits, the incident intensity must be increased to increase the intensity of X-ray

fluorescence, and the background must be reduced. SR meets these requirements with its

wide continuous spectrum and high intensity. The intensity of SR is 100-10 000 times that of

conventional X-ray sources. It also is linearly polarized. This property can be Used to 'reduce

the background: a detector positioned perpendicular to the incident X-ray beam reduces

scattering. A monochromatic X-ray of a specified energy can also be separated from SR using

a monochromator. The characteristics of monochromatic excitation are as follows:

(1) The excitation energy can be designated to be slightly above the absorption edge of a

specified element. This increases the sensitivity of measurement for that element. The

absence of the unnecessary spectrum reduces the background and improves the S/B ratio.

(2) Overlapping peaks can be experimentally separated. Choosing an excitation energy to be

between the absorption edges of the elements involved can eliminate the effect of an

extraneous element.

(3) The strong signals emitted by predominant matrix elements quickly saturates the solid

state detector, affecting the detection of trace elements. Setting the excitation energy

below the absorption edge of the predominant matrix elements reduces the strong signals.

(4) The known spectral characteristics of the exciting X-ray facilitate fundamental calculations

and thus help improve the precision.

Page 107: Analytical Spectroscopy Library_VOL 7

98

The difference between continuum- and monochromatic excitation is indicated in Fig. 2-16

[ 11 ]. Twenty ppm of calcium, manganese, and zinc each adsorbed in a chelated resin are used

as the sample. Continuum SR, with and without an A1 absorber, and SR monochromatized by a crystal monochromator, are used as the excitation sources. The surface of the silicon crystal

used in the monochromator is lapped using SiC. The results clearly show that the use of SR greatly improves the S/B ratio. Of particular note is that much less scattering occurs in the case of monochromatic excitation compared with other methods. Figure 2-17 shows the changes in

the spectrum of X-ray fluorescence in relation to changes in the excitation energy using a NIST

SRM 612 Glass Wafer (major constituents: SiO2 (72%), CaO (12%), Na20 (14%), and A1203 (2%), plus about 50 lxg g-1 of many other elements) [30]. Figure 2-17a is for excitation by a

19.5 keV X-ray, and Fig.2-17b for a 10.5 keV X-ray. It shows that the latter improves the

":'. 1.0

.1,,,4

= 0.5

0.0

( a ) . . . . . . 2.5 GeV 105.0 mA MAX. CTS_ Ar 1437 ,,.,) C ~ I 'Mn ~ Z n

4 ' 6 ' 8;' 1'0"1~2' 14

Energy / keV

.0

).5 Ar

2 4 6 8 10 12 14

Energy / keV

1.0

0 5

0.0

- MAX. CTS. l ~ "~ "_ 2436.0 ZB fi il - i r il Nil ]

2 4 6 8 10 12 Energy / keV

Fig. 2-16. Comparison of fluorescence spectra from a 20 ppm metal adsorbed chelate resin excited using: (a) continuum SR; (b) continuum SR with a 280 ~tm thick A1

absorber; and (c) monochromatized SR. Counting time is 100 s for (a) and (b), and

200 s for (c). From Ref. [11], reprinted by permission of Elsevier Science

Publishers B. V., Amsterdam.

Page 108: Analytical Spectroscopy Library_VOL 7

99

d

0.5

0

(a) . . . . . . .

- Ca E~," 19.5 keV SRM 1.0 t t: 500s (Glass612fer)

I[ Max.CTS.: 6323

scat l ![ Sr Zr Nb Al[I

- l] Rare earth and ~ Y ~ ]l]ll Si [[ transition Rbl[ /1 I] l[ ! "11

0 5 10 15 20 E n e r g y / k e V

(b)

1.0

0.5

- Ca E~," 10.5 keV SRM 612 _ t" 500 s (Glass Wafer) _ Max.CTS.: 31251

m

- Scat. m

Rare earth and [" 11 transition /I " [-- . [Vi elements I!

o

0 5 10 15 20 E n e r g y / k e V

Fig. 2-17. The change in SRXRF spectra from a NIST Standard Reference Material 612 caused by the excitation energy [E?'is 19.5 keV for (a), 10.5 keV for (b)]: t =

counting time; Scat. = scattered radiation. From Ref. [30], reprinted by permission of Kodansha, Tokyo.

S/B ratio significantly for elements with absorption edges in the 5-10 keV range, such as rare earth and transition elements. This is because the excitation efficiencies of these elements are increased, and because unnecessary spectrum components which contribute to the background are eliminated.

Page 109: Analytical Spectroscopy Library_VOL 7

100

ooo (a)

8 0 0 E r " 16.00 keV t : 2 0 0 s

d 6 0 0

. v,.=l r ~

As + Pb

4 0 0 - t AI II / PbL~I

0 i i i i 0 5 10 15

Energy / keV

Scat.

3 0 0 0 -

2 5 0 0 -

2 0 0 0 -

1 5 0 0 -

1 0 0 0 -

5 0 0 -

O - I

2 0 0

(b) Ey" 12.50 keV

t �9 200 s AsKs Scat.

A1

. i t . . . _

"~ i i i 5 10 15 2 0 Energy / keV

Fig. 2-18. Advantage of selective excitation. SRXRF spectra of a sample containing Pb and

As caused by excitation energy above the Pb Lin and As K edges (a), and between

them (b). Max. counts: 1 296 (a) and 2 330 (b). From Ref. [31], reprinted by

permission of Elsevier Science Publishers B. V., Amsterdam.

Now we will discuss the effect of selective excitation. Figure 2-18 shows the spectra of an

A1203 sample containing a 0.1% mixture of As and Pb in a 1:1 molar ratio [31]. The excitation energy is 16.0 keV for Fig. 2-18a, and 12.5 keV for Fig. 2-18b. The K absorption

edge of As is at 11.862 keV and the LIII absorption edge of Pb is at 13.038 keV: therefore, if conditions (a) are used the peaks of As Ka (10.53 keV) and Pb La (10.55 keV) overlap. If

conditions (b) are used, the excitation energy is set between As K and Pb LIII: hence, no peak appears for Pb La, and the peak of As makes its quantitative analysis possible. The detection

limit and accurate quantitative analysis are the most important factors of XRF used for

elemental composition analysis (percent) and trace element analysis (ppm, ppb). We will consider these factors below.

2.3.2. Detection limit

Determinants of the detection limit

(a) Excitation efficiency and fluorescence yield. When an X-ray irradiates a substance, the

X-ray photons excite the atoms of the substance, emitting inner-shell electrons as

photoelectrons and creating orbital vacancies. This process of excitation is due to the

photoelectric effect. Therefore, the probability of photoelectric absorption (photoelectric

effect) is linearly related to the excitation efficiency. This depends on the element and the

energy of the incident X-ray. The contribution of photoelectric absorption to total absorption

for incident X-ray energies of 10, 30, and 100 keV is shown in Fig. 2-19, which is plotted

Page 110: Analytical Spectroscopy Library_VOL 7

101

100 ..- ...

8 0

J I / I ' :"" x : photoelectric absorption. ~ - 6 0 / I / / Oc:Comptonscatte ng.

/ I f ./" OT :Th~176 scatte~ng"

. . . . . . ~: : electron-pair creation.

20

0 ~ I I I I 20 40 60 80

Atomic number

Fig. 2-19. Ratio of total absorption (~t) to photoelectric absorption (x) [32].

using the tables reported by McMaster et al. [32]. This shows that, except for the 100 keV radiation, the total absorption coefficient can be regarded as the excitation efficiency, since most of the absorption coefficient is due to photoelectric absorption. The absorption coefficient's dependence on incident X-ray energy is shown in Fig. 2-20, based on Sasaki's table [33]. The absorption coefficient (excitation efficiency) is highest when the energy is slightly above the absorption edge.

The vacancies caused by this excitation are filled by electrons from the outer shells. As shown in Fig. 2-21, the process of filling the vacancies is accompanied by a release of energy, which occurs by one of the following two processes. In the first case, an electron in an outer shell drops to the energy level of a vacancy, emitting an X-ray photon with energy equal to the difference between the two energy levels involved. In the other process, the released energy is transferred to another electron to eject an Auger electron. The ratio of the number of emitted X-ray photons to the number of primary vacancies created is called the fluorescence yield, which depends on the element and the absorption edge. Figure 2-22, plotted using the values tabulated by Bambynek et al. [34], shows the fluorescence yield for the K-series X-ray fluorescence. Elements with small atomic numbers have a low probability of releasing X-ray fluorescence, most of them emitting Auger electrons. In the detection of X-ray fluorescence using the K absorption edge, Ka and K~ lines are emitted. As shown in Table 2-3, the intensity ratios of the Ka to KI~ lines are also element dependent.

Page 111: Analytical Spectroscopy Library_VOL 7

102

500 -

7 r

~400- O

C o 3 0 0 - �9 1=,,4

O

0 o200 0

~ l O 0 - r ~ d ~ <

I " absorption edge

0 - Fe K I I I I 0 5 10 25

ZrK

Pt LII I I _ ~ I I

15 20 Energy / keV

Fig. 2-20. Energy dependence of absorption coefficients for Fe, Pt and Zr, plotted as a function of incident X-ray energy [33].

X-Ray fluorescence emission

2P3/2

2Pl/2 ..... [ O-'---~

2S i

Ko~ 1 X-r

ls - - O

Auger electron emission (the Auger effect)

ctron

Fig. 2-21. Energy release mechanism after the X-ray absorption process.

Page 112: Analytical Spectroscopy Library_VOL 7

103

1 .0-

0 . 8 " "

�9

o 0 . 6 -

~ 0 . 4 -

0 2

0.0-

Table 2-3 Relative Ko~ line intensities in the K-series

Atomic number Relative intensity (Kct)

20 0.887 24 0.883 28 0.881 32 0.871 36 0.856 40 0.844 44 0.833 48 0.824 52 0.816

I ' I ' I ' 56 0.809 0 4 0 8 0

Atomic number

Fig. 2-22. Fluorescence yields for

K absorption edges [34].

The product of the excitation efficiency, the fluorescence yield, and the ratios of the Ka line represents the intensity of the Ka X-ray fluorescence detected. Calculated values for this

product (the fluorescence intensity) are indicated in Fig. 2-23. Since the most suitable

excitation energy for the desired measurement can be selected, SRXRF using monochromatic excitation improves the detection limit.

0 0 0

0 r ~

@ _=

lOO~ 6" 4:

.

2 -

1~ ........ I I I I I

1 5 2 0 2 5 3 0 3 5 4 0

Atomic number

Fig. 2-23. Variation in fluorescence intensity (mass absorption coefficient x fluorescence yield

x relative intensity of Kt~ line) with atomic number at 15 keV of the incident X-ray

energy. The 15 keV incident X-ray energy is smaller than the binding energies of

the electrons in the K shells for atomic numbers above 37.

Page 113: Analytical Spectroscopy Library_VOL 7

104

(b) Scattered X-ray and bremsstrahlung. The detection limit is affected to a great extent by

the background. The X-ray scattered by the sample contributes greatly to the background.

Environmental and biological samples, both the subjects of trace element analysis, are

composed mainly of light elements such as carbon and oxygen, and contain very small amount

of metals. Much of the radiation intensity from these samples, measured by the energy

dispersive method, is the result of scattering caused by light elements. Baryshev et al. [2] and

Hanson [35] made thorough studies of scattering by polarized X-rays. In the following we

will describe the theory explaining why polarized X-rays reduce the background.

There are two classifications of X-ray scattering: coherent scattering and incoherent

scattering. The differential cross section of coherent scattering (Thomson scattering) for a free

electron is as follows:

dtYT = rg.le. ol = (2-12) dO

where e 0 is the polarization vector (in the direction of the electric field) of the incident X-ray,

e* is the conjugate complex polarization vector of the scattered radiation, and r0 is the classical

electron radius. For linear polarization:

( d ~ ) = rZ.sin2O (2-13) pol

where ~ is the angle between the direction of polarization of the incident X-rays and the

direction of observation. Therefore, the differential cross section of Thomson scattering

becomes zero when the direction of observation coincides with the direction of polarization of the incident X-rays. Since the SR obtained using a bending magnet is polarized in the

horizontal direction, Thomson scattering can be minimized by positioning the detector

perpendicular to the SR beam.

On the other hand, for a fully unpolarized X-ray:

(d-~o) = 1 .r~.(l+cos20) (2-14) unpol 2

where 0 is the angle between the direction of propagation and the direction of observation.

Therefore, observation from the perpendicular direction minimizes Thomson scattering also.

However, in this case most of the scattering results from electrons bound to atoms rather than

from free electrons. This form of Thomson scattering is called Rayleigh scattering. The

differential cross section of this scattering in a plane horizontal to a detector is as follows:

Page 114: Analytical Spectroscopy Library_VOL 7

105

dO'R) = r~-{f(q, Z)}2.(1 - sin20) (2-15) -d-~/pol

wherefis the atomic scattering factor, q = sin (0/2)/~ is the momentum transfer, and Z is the

atomic number. Observation from the perpendicular direction minimizes the scattering.

Incoherent scattering is called Compton scattering. The differential cross section of Compton scattering for a polarized X-ray is expressed by Klein-Nishina's formula:

dO'c) = r 2 .(KK0)2 (__~+ K 4cos2~ 2) (2-16) u " -

where ~ is the angle between incident and scattered photons; K0 = 2rr/2o and K = 2n/~, are the

wave numbers of the incident and scattered X-rays, respectively. Using the Compton formula,

K/Ko = [1 + a . (1 - cos0 )]-1 ( 2 - 1 7 )

a = Eo/mc 2 (2-18)

where E0 is the incident photon energy. When 0 = ~ = 90 ~ the intensity of the scattered

radiation is minimized. For an unpolarized X-ray,

_

d--~/unpol - -~- ~-0 -- sin20 ) (2-19)

The dependence of the intensity of Compton scattering upon the polarization is indicated in Fig. 2-24 [ 10].

We have previously confirmed that the linear polarization of SR greatly reduces the

scattering. However, even though SR is perfectly linearly polarized on an electron's or

positron's orbital plane, it contains another polarization component away from the orbital plane. The beam and the window of the detector both have finite size : therefore, Compton scattering cannot be completely eliminated (see Fig. 2-15), although scattering can be minimized by positioning the detector perpendicular to the beam. Compton scattering can be

reduced by increasing the distance between the sample and the detector: however, this reduces

the solid angle and weakens the signals reaching the detector.

Another cause of a background is bremsstrahlung. In the energy region normally used for

XRF the sample absorbs most X-rays through the photoelectric effect. The photoelectrons

created in this process decay in the sample while emitting continuous X-rays, which also

contribute to the background. The energy of a photoelectron ejected from the K shell of an atom by the photoelectric effect is as follows:

Page 115: Analytical Spectroscopy Library_VOL 7

106

-3 1.0xl0

0.5• -3

J /

/ /

0 ~ ~ 8 9 " / / /

/ /

0 = ~ = 9 0 "

5 10 15 20

Energy / keV

Fig. 2-24. Ratio of theoretical difference cross sections for Compton scattering of polarized to

unpolarized radiation under scattering angles 0 = ~ = 90 ~ and 0 = ~ = 89 ~ From

Ref. [10], reprinted by permission of Elsevier Science Publishers B.V., Amsterdam.

Ex = E I - EK(Z) (2-20)

where EI is the energy of the incident X-ray and EK(Z) is the energy (work function) required

to excite an electron from the K shell up to the continuous energy level. For a sample with a

matrix of an element of atomic number Z, if Nx photons with energy between Ex and Ex +

dEx are emitted [36],

Nx = 2.5• 10-6.Z.Ni.cYip.t �9 ~ X "(Ez - Ex) (2-21)

where NI is the number of incident photons, t is the thickness of the sample (g cm-2), and crw

is the photoelectric absorption cross section of the incident X-ray. The distribution of the

bremsstrahlung for a 10 keV X-ray with a carbon matrix is shown in Fig. 2-25, which is

calculated from Eq. (2-21).

Page 116: Analytical Spectroscopy Library_VOL 7

107

1.0

0.8 .~..~

r,r

I= "

~

"~0.4 r ~

o.2

0.0

0 2 4 6 8 10 E n e r g y / k e V

Fig. 2-25. Calculated bremsstrahlung intensity versus its energy in a carbon matrix using a 10

keV incident X-ray energy [36].

Calculated values of the detection limit

It is important in SRXRF to estimate the detection limit correctly. The detection limit is

commonly defined as the minimum concentration or absolute amount, of an element in a

sample, which can be detected with a confidence level of above 90%. Gordon [12] calculated

this theoretically. His calculations are based on the parameters of the NSLS, a 2.5 GeV ring.

He considered two kinds of samples. One contained a carbon matrix, as an example of a bio-

organic substance, and the other a mineral sample containing nine kinds of elements. Both

samples were assumed to be attached to a carbon-matrix substrate of 1 mg cm -2 (e.g., a

Kapton film). Both the energy dispersive and wavelength dispersive methods were

considered. In the energy dispersive method a Si(Li) detector with a 30 mm 2 crystal area was

assumed to be used, and in the wavelength dispersive method a multi-channel crystal

spectrometer system. To calculate the detection limit, Gordon used the following formula:

CD(ppb) = N x 10 9 / (I (7 T G A) (2-22)

where:

N is the detectable signal, I is the integrated beam intensity, cr is the cross section in

cm 2 g-l, T is the sample thickness in g c m -2, G is the fraction of the solid angle subtended

by the detector, and A is the self-absorption correction.

Page 117: Analytical Spectroscopy Library_VOL 7

108

From the criteria of Currie [37], N is equal to 3.29(nNbg) a/2 (Nbg is the background

beneath the signal; 1 -< n --< 2). In this calculation, Gordon took the size of the detector and the distance from the sample into consideration. He also calculated the detection limit for the photon fluxes, further increased at higher energies by using a 6-pole wiggler. Figure 2-26

shows Gordon's calculations of the determination (quantitation) limits for the carbon matrix sample measured by the energy dispersive method. The determination limit (CQ) was obtained

from the detection limit (CD) using CQ/CD=I 0f/3.29, wherefis a correction coefficient for the amount of background. The distance from the sample to the detector is 10 cm. The value (CQ) is for a one-minute measurement. The detection limit (Co) is from a third to a fifth of this value.

3 10 i i i i l i

Ktx �9 �9 LO~

~- ld 30 keV

t \ 0 eV, ,

"~ 101 15 keV

v

.~ ! ~ ~ , ~ ~ 3 "~

~o 10 0

0keV

keV \ N \ 2 0 k e V

-11 10keY 15 keY 1 10 I I I I t t

10 20 30 40 50 60 70 80

Atomic number

Fig. 2-26. Determination limits for 2 mg cm -2 carbon matrix sample using a Si (Li) detector and a one-minute measurement. Sensitivity curves are shown for five excitation

energies ranging from 5 to 30 keV. The sensitivity expressed is a determination

limit (concentration measurements) with a 10% standard deviation attributed to counting statistical errors. The detection limits are a factor of 3 to 5 lower than the determination limits shown here. From Ref. [12], reprinted by permission of

Elsevier Science Publishers B. V., Amsterdam.

Page 118: Analytical Spectroscopy Library_VOL 7

109

Experimental values of the detection limit

Starting in the 1980s, XRF experiments were conducted at various SR facilities, and the

detection limit studied experimentally.

Gilfrich et al. [7] made their experiments at SPEAR of SSRL. The beamline they used was

not equipped with a mirror or a monochromator. It produced a non-monochromatic beam with

1 mrad divergence in the horizontal direction. The X-ray energy ranged from 2 to 60 keV.

The experiments were carried out using the energy dispersive method and the wavelength

dispersive method employing a fiat crystal. A vacuum deposit of metal on a Mylar film, and a

solution dropped on a Millipore filter were used as samples. The X-rays were obtained using

a 3 GeV ring with a storage ring beam current of 40-80 mA. The energy dispersive method

allowed a 100-s measurement using a 2.4 • 10-4cm 2 incident beam size. The wavelength

dispersive method employed a 0.4 cm 2 beam (100-s measurements). It used LiF and PET as

analyzer crystals and a proportional counter as the detector. All the samples measured were

very thin. The detection limit was assumed to be three times the standard deviation of the

background (Fig. 2-27). The energy dispersive method gave a detection limit of the order of 10 -12 g in absolute amount.

00 1 ::i.

-1 . . 10

o ,~ -2 o 10 o

m 10 .3

! | ! i i i l

(a) - - - - On filter Energy / On Mylar dispersion / ) /

K-lines L-lines

10 ~

_ 1 0 - 1

_ 10 -2

10 -3

(b) . . . . --~'-- O'n filter Wavelength/ On Mylar

- d i s p e r s i i ~ j ~ A 1

- ~ K lines ~ n e s I I I I I I I . i n n n i . ,

20 40 60 80 20 40 60 80

Atomic n u m b e r Atomic number

Fig. 2-27. Detection limits as a function of atomic number as measured by (a) energy

dispersion and (b) wavelength dispersion. From Ref. [7], reprinted by permission

of the American Chemical Society, Washington, D. C.

Page 119: Analytical Spectroscopy Library_VOL 7

110

Also at SPEAR, Giauque et al. [38] studied the dependence of the detection limit on the

excitation energy, taking advantage of the fact that monochromatic excitation can be set to any

level. They reported that, under optimum conditions, they obtained a detection limit of 20 ppb

for many elements.

Bos et al. [ 10] compared SRXRF detection limits with those of conventional XRF and an

analytical technique using proton excitation (proton induced X-ray emission spectrometry:

PIXE). The conventional X-ray source used a Mo anode and Zr, Mo, and Ti filters. This

source produced a 17.5 keV X-ray at 26 kV and 12 mA. For proton excitation, they used 3

MeV protons produced using a cyclotron. In the SR experiment, they used X-rays of 16.5

keV and 9.1 keV in beamline 7 at the SRS of Daresbury incorporating a pyrolytic graphite

crystal monochromator. Measurements were conducted using NIST Orchard Leaves (SRM

1571) and Human Hair (IAEA-HH1). The detection limits obtained for each sample are

shown in Fig. 2-28. The calculation was based on the criteria of Currie [37]. Measurements

were made for 1 000 s at 2 GeV with a beam current of 200 mA. Compared with conventional

XRF, SRXRF substantially improved the detection limits. It was found that SRXRF is nearly

equivalent to PIXE up to Z = 30, and has an advantage for heavier elements. Specifically, the

detection limit can be improved further because this method allows the user to set the excitation

energy to any desired value (see the results using 9.1 keV in Fig. 2-28). They also studied how the V K~ X-ray arising from the 9.1 keV X-ray changed, depending on the sample

thickness (Fig. 2-29). The results indicated that the detection limit is very sensitive to sample

thickness when the sample is thin.

Hanson et al. [8] performed their experiments at CHESS. This ring has an electron energy

of 5 GeV and generates strong SR in the hard X-ray region. They used a channel-cut silicon monochromator, and chose the same sample that Bos et al. [10] used (SRM 1571). X-Rays of

13.0, 16.25 and 24.9 keV were used as incident beams. The detection limits were calculated

using the criteria of Currie [37] (Fig. 2-30). The present authors performed a similar experiment at the Photon Factory. Using a 2.5 GeV

ring with a storage ring beam current of about 200 mA, we measured several types of NIST

standard reference materials. Powder samples were applied thinly to adhesive tape. The

measured spectra of Bituminous Coal (SRM 1632a), Oyster Tissue (SRM 1566), Orchard

Leaves (SRM 1571), Citrus Leaves (SRM 1572), and Aluminum-Silicon Alloy (SRM 87a) are

shown in Fig. 2-31. A Si (111) double-crystal monochromator was used, with a 15 keV

exciting X-ray. The X-ray fluorescence measuring device was developed by Iida et al., and

the measurement time was 500 s. The sample and the Si(Li) detector were 45 mm apart. The

size of the beam's cross section is shown in the figure. The cross section was changed so that

the detector would not be saturated under the same geometrical conditions. The measurement

was made under vacuum. The detection limits calculated based on the criteria of Currie [37]

are given in Table 2-4 and in Fig. 2-32. Organic and alloy samples were found to have quite

different detection limits. This is due to the different matrices of the samples. Even among

organic samples, different compositions give different detection limits. Measurements of

Citrus Leaves and of Aluminum-Silicon Alloy using an X-ray tube are shown in Fig. 2-33.

Page 120: Analytical Spectroscopy Library_VOL 7

111

7 e~o

o

o

3 10

102

1 10

0 10

-1 10

- (a)

10

l i SRXRF (E?= 9.1

I I [I ET = 16.5 keV) ,[

20 30 40

3 10

7 e~ 102

O

o ~

O

o 0 ~ 10

-1 10

- ( b )

- S R X R F (ET = 16.5

- PIXE -

SE,RXRF1 k ,V " ~ ~ ( T = 9.1 keV) ~ ., , -. _~

I I I ~ " ~ - !I i , 10 20 30 40

A t o m i c number

Fig. 2-28. Detection limits of several elements in, (a) NIST Orchard Leaves, and (b) IAEA

Human Hair, for different excitation modes. From Ref. [10], reprinted by

permission of Elsevier Science Publishers B. V., Amsterdam.

Page 121: Analytical Spectroscopy Library_VOL 7

112

A

3000 ~ / 2 GeV, 130 mA ~ / 1000 s

o 2000 X / E~,= 9.1 keV

1000 I - d ~ : I t : x _ _ _ _ _ . . . . . .

1 , 1 I - " ~

1,7 b) I

0 10 50

- 0.04 X Z

-0.03

- 0.02 k~

0.01

I i i

20 30 40

Thickness (mg c m -2)

Fig. 2-29. Number of V K~ counts of samples with well defined thickness. Curve b shows the

root of the number in the background beneath the peak normalized to the .peak content (proportional to the detection limit). From Ref. [10], reprinted by permission of Elsevier Science Publishers B. V., Amsterdam.

3 I0

~.~ 1 �9 ~ lO -

0

~ lo -~-

- 2 10

10

I I I

I t

§ §

s � 9

I t N

§247

I

+ 13.0 keV

x 16.25 k e V -

' 24.9 keV

e

m

NI l I �9 Ig Ig ++ x . . .b

I I I I

16 22 28 34 40

Atomic number

Fig. 2-30. Detection limits of several elements in NIST Orchard Leaves when fluoresced with 13.0, 16.25 and 24.9 keV X-rays [8]. (Reprinted with permission from A.L.

Hanson, H.W. Kraner, K.W. Jones, B.M. Gordon, R.E. Mills and J.R. Chen, "Trace Element Measurements with Synchrotron Radiation", IEEE Trans.

Nucl. Sci., NS-30, 1339 (1983). �9 IEEE.)

Page 122: Analytical Spectroscopy Library_VOL 7

113

5 1 0 t (a) SRM 1632a (Bituminous Coal)

04 Fe " Scat. 1 Ti+V ^

,,. K+Ca I /~Fe / ~ ~ l s I ~" o ~ ~.'s E L ~ /~h" Br ~ 1 1

o' (vkI .JVi A Y " [ Zn

1 . C T S . . 10 ,,,I,I B.S.: 2.2 x 3.0 mm

/ I o 10 I I I I

0 5 10 15 Energy / keV

r ~

0

r ~

5 10 -

4 10 -

03 1 -

0 2 1 -

1 10 -

o 10 -

0

5 10 -

4 10 -

0 z 1 -

0 2 1 -

1

10 -

o 10 - i

0

(b) SRM 1566 (Oyster Tissue)

Zn Scat. K As+Pb

CI p ,S~ ~Ca Fe ~ L Br

I MAX.CTS: 7337 ..I] B.S.: 2.2x 3.0 mm 2

I I I

5 10 15 Energy / keV

. d J . _ _ l l . . . . . . I

20

LLL_JtU," l l=l... I

20

(c) SRM 1571 (Orchard Leaves)

K A Ca Scat.

pS fV~Ca Fe Pb+As

~ M A Mn Fe Zn Br

X. I~ll B.S.: 1.5X2.9 mm 2 /l_d.I 1 ~

I I I I 5 10 15 20

Energy / keV

Fig. 2-31. SRXRF spectra from NIST Standard Reference Materials under vacuum. Excitation

energy, 15 keV; counting time, 500 s; MAX. CTS, maximum counts; B.S., beam

size; Scat., scattered radiation. Except for SRM 87a, thin samples were attached

to adhesive tape: SRM 87a was used as it was.

Page 123: Analytical Spectroscopy Library_VOL 7

114

:"4. r.~

�9 i...i r,r

5 1 0 -

4 1 0 -

0 3 1 -

2 1 0 -

1 10 -

0

1 0 -

0

(d) SRM 1572 (Citrus Leaves) MAX.CTS" 4108 2

Ca B.S.: 0.7 X 0.4 mm

p ~ I C a As+Pb t ~ Scat.

S Cu 13r Fe Zn

Mn Pb

. . . . . . . . . . t | I I

1 0 1 5

E n e r g y / k e V 5

10 "] (e) SRM 87a (A1-Si Alloy)

1 0 4 1 Zn 3 Fe Ni Cu Zn Ga/1 Scat.

1 0 " ] A1,Si Mn,~e ~ \ ~ ~ 7 7 A P b Pb ~

02 �9

101

o I 10 I" I I I . . . . .

0 5 1 0 1 5

E n e r g y / k e V

I

20

~

I

20

Fig. 2-31. SRXRF spectra from NIST Standard Reference Materials under vacuum.

continued

Table 2-4

Detection limits in ppm (l.tg g - l ) obtained by the measurements of NIST SRMs at the Photon

Factory on Beamline 4A

Element SRM 1632a SRM 1566 SRM 1571 SRM 1572 SRM 87a (Bituminous Coal) (Oyster Tissue) (Orchard Leaves) (Citrus Leaves) (Al-Si Alloy)

Ti 60 m m m 800 Cr m - - 4 ~ 350 Mn ~ 10 5 7 260 Fe 30 5 3 6 140 Co . . . . . Ni 9 ~ 2 3 70 Cu 5 4 1 3 60 Zn 4 3 1 2 60

Measuring conditions are described in Fig. 2-31. Detection limits are calculated on the basis of

the Currie criteria [37].

Page 124: Analytical Spectroscopy Library_VOL 7

115

1000 _

o

~:~ 1 0 0 -

..r

@ 1 0 -

0.1 I

20

[] �9 Bituminous Coal zx �9 Oyster Tissue

~ . . . . . . , ~ �9 "Orchard Leaves O "Citrus Leaves

~ ~ x �9 AI-Si Alloy

I I ! I I I 22 24 26 28 30 32

Atomic number

Fig. 2-32. Detection limits for NIST SRMs, derived from the spectra shown in Fig. 2-31 on

the basis of Currie's criteria [37].

The measurements were made under vacuum, using a Mo anode of 40 kV and 20 mA, and a

Mo secondary target. Measurement times were 1 000 s for Citrus Leaves and 500 s for the

Alloy. Compared with measurements employing SRXRF, there is a clear difference in the

background level.

The detection limits of Orchard Leaves obtained from the experiments of Hanson et al. [8],

Bos et al. [10] and ourselves are listed in Table 2-5. Each used a different ring, optical

system, excitation energy, and sample thickness; yet the results all agree within 1 ppm.

Iida et al. [ 11, 20], at the Photon Factory, studied the variation in the detection limits with

the excitation mode. The samples used were 0-100 ppm of Zn, Mn, and Ca, adsorbed in a

chelate resin, attached to adhesive tape. X-Ray fluorescence was measured by the energy

dispersive method to allow calculation of the detection limits, using a white (non-

monochromatic) beam; an aluminum absorber only; a single-crystal monochromator using a

silicon crystal surface lapped with SiC; a wide band-pass monochromator using a total

reflection mirror and an aluminum absorber; and a wide band-pass monochromator using a

total reflection mirror and a transmission mirror. The results are shown in Table 2-6. The

strong intensity of white (non-monochromatic) excitation gives a low detection limit, in

absolute amount. Using an absorber improves the detection limit for Zn, in relative

Page 125: Analytical Spectroscopy Library_VOL 7

116

concentration. This is because scattering in the high energy region is reduced. The crystal monochromator gives the best detection limit in relative concentration since it reduces the background caused by scattering. The wide band-pass monochromator exhibits excellent performance in both relative concentration and absolute amount.

sRM1572 , t sRMZTa I 0 4 ' [ (Citrus Leaves) I 1 (Al-Si Alloy) U

~ , ] , Scat. I _ / , Scat. I 103~ - t~a A I 103~ - Ni /~ 'l

Ca b t b 10 102 l,Si TiCr~

TM '1 10

. . . I . . . . I . . . . I . . . . ii 1 5 10 15 20 1 5 10 15 20

Energy / keV Energy / keV

Fig. 2-33. Spectra of NIST SRMs by XRF using a conventional secondary target (Mo) energy dispersive system, measured with a Mo tube, 40 kV, 20 mA, 1 000 s. The samples are those used in Fig. 2-32.

Table 2-5

Comparison of detection limits (ppm) of four elements in NIST Orchard Leaves (SRM 1571) by three different workers

Element Hanson et al. [8] a Bos et al. [10] b Authors c

Mn 4 2 5 Fe 2 2 3 Cu 0.6 0.6 1 Zn 0.5 0.5 1

a CHESS: 5.144 GeV, 16.25 keV, 300 s. b SRS" 2 GeV, 16.5 keV, 1000 s. c PF: 2.5 GeV, 15 keV, 500 s.

Page 126: Analytical Spectroscopy Library_VOL 7

117

Table 2-6

Comparison of detection limitsa(DLs) for different excitation modes [11, 20]

Excitation mode DL in relative concentration Irradiation area/ mm 2

Zn(ppb) Mn(ppb) Ca(ppb)

DL in absolute

amount Zn/pg

Continuum 550 410 440 3.5 x 10 -3 0.13

Continuum 170 240 750 2.8 x 10 -2 0.34

with absorber b Crystal 60 70 200 1.1 4.7 monochromator

Mirror/absorber b 430 180 410 1.1 x 10 -2 0.33

Reflection/ 100 140 470 4.2 x 10 -3 0.03 transmission(soap)

a The definition of the DL was a signal at least three times the square root of the background

criterion. The counting time was 100 s.

b A1 of 280 mm in thickness was used.

2.3.3. Cal ibrat ion

Calibration is performed in basically the same way as when calibrating conventional XRF.

However, monochromatic excitation and collimation further facilitate calibration calculations.

The results of an experiment on thin samples of several elements, performed by Kntchel et al.

[39] using DORIS at HASYLAB are shown in Fig. 2-34. The results show excellent linearity.

When using monochromatic excitation, the quantity of an element can be determined from the

quantitative analysis value of another element using an X-ray fluorescence cross section.

Table 2-7

Calculated contents of several analyte elements in NIST Orchard Leaves (SRM 1571) using the

known content of Fe (300 ppm) from the data shown in Fig. 2-23

Element Calculated values Certified values

K 0.5% 1.47% Ca 0.9% 2.1% Cr 2.6 ppm 2.6 ppm Mn 46 ppm 91 ppm Ni 0.8 ppm 1.3 ppm Cu 12 ppm 12 ppm Zn 24 ppm 25 ppm

Page 127: Analytical Spectroscopy Library_VOL 7

G

An example of determining the concentration of elements, based on the quantitative analysis

value for iron, is shown in Table 2-7. SRXRF is also useful when using the fundamental

parameters method, since it produces monochromatic incident X-rays and high collimation.

lO 3

10 2 n

m 101

10 ~

118

,., ~ ..... I (~2 ~)3 10-1 10 ~ 10 ~ 1 1

Concentration (Bg g-1)

Fig. 2-34. Calibration plots : (A) chromium; (m) arsenic (• 1.50); (0) yttrium; ( , )

molybdenum (• 0.75); (O) cesium (x 0.50): Co is the ratio of the counting rate to

the standard. From Ref. [39], reprinted by permission of Elsevier Science

Publishers B. V., Amsterdam.

2.3.4. Advantages and drawbacks

We would add two more to the many advantages of SRXRF we have already described.

First, because of its high sensitivity, this method can be used in the analysis of lower

concentrations, using smaller samples, than conventional XRF. The X-ray fluorescence

spectrum of a strand of hair is shown in Fig. 2-35. Even a small amount of sample can

provide a spectrum with a satisfactory S/B ratio. This suggests that SRXRF is suitable for

microbeam analysis. Another advantage is that SRXRF causes far less radiation damage to

samples than methods such as PIXE which use charged particles as the excitation source. It is

reported that the beam does more than 102 of the damage to blood cells caused by photon

excitation [40].

We will now discuss the drawbacks of the present SRXRF technique. The SRXRF analysis

of two kinds of aluminum alloys was compared with chemical analysis and glow discharge

mass spectrometry of the same samples. We attempted to determine sample B, based on the

quantitative analysis value (chemical analysis value) of sample A. The results are shown in

Table 2-8 [31]. The detection limits for trace element analysis of metals show that SRXRF has

no advantage over the other methods. Even with SR excitation, it is difficult to reduce the

Page 128: Analytical Spectroscopy Library_VOL 7

119

spectral background below the lag g-1 level for many industrial materials containing elements

with high atomic numbers.

Attention should be paid to the effect of diffraction caused by the sample. Sutton et al.

[41] discussed the effect of diffraction in continuum radiation. We will describe this same

problem due to diffraction that we experienced when using monochromatic excitation [31].

We used the highly pure aluminum employed in VLSIs as a sample. The sample was cut from

a block of material, using a superhard steel cutter, while dripping alcohol, and degreased. It is

known that this sample contained about 80 ppb of U and Th. A preliminary XRF

1000

~o 100

N - lO i

.

1 -!

o

,=

,=

o o o - , =

.

. I = = 4

r ~ ~ 100-!..

N -

l O - . ,=

1 -

(a) A

MAX.CTS: 2379 Cu / ~

.s . .

Scat.

.1 ..... I__ I I I I

5 10 15 20 E n e r g y / k e V

(b) MAX.CTS: 1068 Scat.

s Br Zn

Ar Fe Br

Ca Cu Zn Pb

I I I I 0 5 10 15 20

E n e r g y / keV

Fig. 2-35. SRXRF spectra of a strand of human hair (male)" (a), white part; (b), black part.

Excitation energy, 16 keV; counting time, 1 000 s.

Page 129: Analytical Spectroscopy Library_VOL 7

120

Table 2-8

Analytical results for two aluminum alloys obtained by three different methods

Element Chemical analysis a (%) GDMS b (%)

Sample A Sample B Sample A Sample B

SRXRF (%) Sample B c

Cr 0.059 0.0005 0.062 <0.001 0.01 Cu 0.0073 0.0009 0.007 0.001 0.001 Fe 0.11 0.11 0.12 0.14 0.10 Mn 0.060 0.0030 0.068 0.003 0.002 Zn 0.018 0.0050 0.018 0.005 0.004

Th(ppm) 0.06 0.06 0.07 0.07 Not detected U(ppm) 0.38 0.18 0.33 0.15 Not detected

a U was analyzed by fluorophotometry, Th by colorimetry and other elements by inductively

coupled plasma atomic emission spectrometry.

b GDMS is glow discharge mass spectrometry.

c SRXRF analysis values of sample B are calculated on the basis of the chemical analysis

values of sample A and the SRXRF measurement values of both samples.

From Ref. [31], reprinted by permission of Elsevier Science Publishers B. V., Amsterdam.

measurement gave the amounts of U and Th shown in Fig. 2-36a. However, neither element

was detected in the final measurement (Fig. 2-36b). Since we thought that the peaks that

appeared in the preliminary test were caused by X-rays diffracted by the sample, we changed

the incident angle slightly. This changed the spectrum in the 12-15 keV region, confirming

that the results obtained in the preliminary test were incorrect. When we measured silicon

containing a small amount of U, a diffraction peak appeared near the U Lo~ peak, as shown in

Fig. 2-36c. Transition metals were also detected in this sample. These could have

contaminated the sample when it was being prepared. After washing the sample with acid,

only a small amount of iron was detected, as shown in Fig. 2-36d. Special attention must be

paid to these problems, since the peaks from diffraction and contaminants on the sample

surface might overlap the data used for analysis.

Another problem with SRXRF is the increase in background due to resonant Raman

scattering, as pointed out by Jaklevic et al. [42]. We have repeatedly maintained that when

monochromatic excitation is employed, the energy of the incident X-ray can be set to any

appropriate value to maximize efficiency. In addition, for an element with a large atomic

number, the background can be reduced by setting the energy of incident radiation just below

the absorption edge of that element. However, Jaklevic et al. [42] suggested that this was not

always true. They suggested that setting the excitation energy just below the absorption edge

of a matrix material caused resonant Raman scattering, and increased the background. Raman

Page 130: Analytical Spectroscopy Library_VOL 7

121

scattering is a continuous spectrum with a cutoff in the high energy region. At SSRL, they studied Cu in GaAs. The X-ray fluorescence was measured with incidences of 9.2, 9.8, 10.0 keV. The absorption edge of Ga is at 10.37 keV. The intensity of resonant Raman scattering, which changes with the sum of Rayleigh and Compton scattering, was found to increase as the

1.0, , I ' I ,

"~ ~" (a) Th Ltx ET. 20.50 keV ,~d [ (9) U L o ~ t:2000s

L "1 (?)

i , , OI , I , I ,

11 13 15 17 Energy / keV

(b) . . . . ET: 19.60 keV Th Ltx t : 2000s I J

Fe I U Lo~.f"-

~k TiCr~Fe ~ ! f , ~ # %... ^ / ] , Ni ~

�9 | �9 �9

, E~ 22.70keV ,, ]~,,.[

/J t: 200 s 1~,!

It .,./v [ /

Ey. 22.70 keV 'i~| t:2,00s , , , "1

0 5 10 15 20 25 Energy / keV

?"~ 1.(l ~ ~ (d = E7:. 19.60 keY ~

Fe Th La t: 1000 s ,~

I k T Cr/! Fe I U L a t'1 ~ 0 Fe , "~

Ey. 19.60 keV

t '2000s 0 2 4 6 8 10 12 14 16 18 20

3 5 7 9 11 13 15 Energy / keV

Energy / keV

Fig. 2-36. SRXRF spectra of high-purity aluminum (a, b and d) and silicon (c). (a) Preliminary; (b) at two different tilt angles using the same sample as in (a); (c) at two different tilt angles of silicon containing a trace amount of U; and (d) after surface cleaning of the sample, following the measurement of (b). From Ref. [31 ], reprinted by permission of Elsevier Science Publishers B. V., Amsterdam.

Page 131: Analytical Spectroscopy Library_VOL 7

122

incident energy gets closer to the absorption edge. The ratio of the peak areas of resonant

Raman scattering and Rayleigh-Compton scattering was found to be 2.3 at an incidence of 10

keV, and 0.64 at an incidence of 9.2 keV. The detection limit for Cu was 1 ppm at an

incidence of 10 keV, and 0.6 ppm at an incidence of 9.2 keV. The same workers compared

this GaAs sample with a cellulose matrix sample and found that the background for Cu was

12.9 times larger than for cellulose at 10 keV, and 4 times larger at 9.2 keV.

2.4. ELEMENTAL ANALYSIS BY TOTAL REFLECTION XRF

2.4.1. Total reflection method

The detection limit in XRF is improved by a greater signal intensity and lower background.

To reduce the background in the energy dispersive method, it is necessary to reduce the

scattering caused by the sample and the sample holder, and to keep down bremsstrahlung. We

saw in Section 2.3.2. that polarized SR greatly reduces the background. In ordinary XRF, the

sample supports should be as thin as possible. Various micrometer-thick materials, such as

Mylar films and Kapton films, are used depending on the purpose of the analysis. To further

reduce the background, XRF can use the total reflection of X-rays. As will be described in

Section 2.4.2. if an X-ray is totally reflected by a surface, it hardly penetrates the substance.

Therefore, attaching the sample to an optically fiat surface (reflector) keeps the scattering

caused by the sample holder to a minimum, thereby improving the detection limit.

Yoneda and Horiuchi [ 15] were the first to demonstrate the effectiveness of this method,

using an X-ray tube (W target, 35 kV, 15 mA) and the energy dispersive method. A glancing

angle was adjusted to be much lower than the critical angle, to achieve nearly 100%

reflectivity. Detection limits of the order of ng were achieved for Cr, Fe, Ni and Zn. They also reported that this method eliminates the matrix effect and facilitates calibration.

Experiments employing the total reflection method were made later using an X-ray tube or a rotating anode, and have become very popular, particularly in recent years [ 13, 14]. Analysis

in the pg range is now performed routinely. Today, total reflection XRF spectrometers for

silicon wafers take advantage of the nondestructive, highly sensitive, simultaneous multi-

element analysis method. These spectrometers, equipped with an automatic measurement

device, are used to measure trace quantities of metal contaminants on the surface of silicon

wafers, and make it possible to map them with a detection limit of 108-1010 atoms cm -a. An

advantage of these units is that they can be installed "in-line" at semiconductor plants. In the

laboratory, total reflection X-ray fluorescence (TXRF) spectrometry is mainly used for highly

sensitive detection of impurities in solution, which may be dropped on a reflector and dried, or

for the analysis of contaminants on silicon surfaces. However, most problems concerning

calibration have yet to be solved.

Iida et al. [16] thoroughly investigated the SR method at the Photon Factory. The

advantages of using SR for TXRF are as follows:

(1) Monochromatic excitation can be used to improve the S/B ratio.

Page 132: Analytical Spectroscopy Library_VOL 7

123

(2) The excellent collimation of SR is suitable for total reflection experiments using grazing

incident beams applied at small glancing angles.

(3) The linearly-polarized beam further reduces the background.

(4) Selective excitation improves the detection limit.

Thus, SR is the most suitable excitation source for TXRF.

2.4.2. The principles of the total reflection method

As discussed in Section 2.2.1., the refractive index of X-rays is very slightly smaller than

unity. Therefore, a highly collimated X-ray beam applied to a fiat surface at an angle smaller

than the critical angle is totally reflected. Such a beam penetrates the sample only slightly, and

the reflectivity of the X-ray is independent of its polarization. Under these grazing incidence

conditions, the reflectivity R can be expressed as follows, using Fresnel's formula [43]:

Ar ]2= R =lAi

01- 02 '12 I 0 1 + 0 2

(2-23)

where Ai and Ar are the electric field amplitudes of the incident and reflected X-rays,

respectively, and 01 and 02 are the respective glancing angles, as shown in Fig. 2-37.

Generally, 02 is a complex number, described as follows using the complex index of

refraction.

02 = ( 0 7 - 2 ~ - i 2fl2) 1/2 = P2 + i q2

p2 = 1 {[(01 - 262) 2 + 4/~] 1/2 + (0 2 _ 262)}

q22 = 1 {[(01 -- 2~) 2 + 4]322] 1/2 - (0 2 - 2~)}

(2-24)

(2-25)

(2-26)

The values $2 and t2 are those indicated in Eqs.(2-2) and (2-3) for the reflector. The

amplitude of the transmitted (refracted) X-ray is attenuated in the z direction. The depth at which the X-ray intensity attenuates to 1/e is given by

Zp(O1) = 1 = ~, 2k l.q2 2 " ~

.[{ (0 2 _ 262)2+ 4132 } 1/2 _ (0 2 _ 262)1- 1/2 (2-27)

where ~ is the wavelength of the incident X-ray, and kl=2n/A. The results of the calculation

of the reflectivity and penetration depth (Zp) for silicon near the critical angle are given in Fig.

2-38. The wavelength of the X-ray is 1.24 A. For glancing angles smaller than the critical

angle, the penetration depth of the X-ray is very small (a few tens of A). There is a standing

wave on the surface of the sample due to the interference of the incident and reflected X-rays. The intensity of the X-ray on the surface of the sample is given by

Page 133: Analytical Spectroscopy Library_VOL 7

124

Medium 1 (n l )

Medium 2 (n 2 )

Z

Fig. 2-37. Schematic drawing of X-rays when incident X-rays from air or vacuum (n1-1)

irradiate the surface of a material having refractive index n2.

1 . 0 -

0 . 8 -

"~-06- .~ �9

~ 0 . 4 -

0 . 2 -

0.0 I I I I 0 2 4 6 8

Glancing angle / mrad

5 .:-10

- 1 0 4

3 - 1 0

=

2 - l O

= ,

1 lO

10

l , i o

O

>o

Fig. 2-38. The calculated glancing angle dependence of reflectivity and penetration depth for a

silicon wafer using an incident X-ray with a 1.24/~ wavelength.

Page 134: Analytical Spectroscopy Library_VOL 7

125

M(O1) = 4 O ? / { ( O1 +p2)2 + q2} (2-28)

Calculation of this value for silicon gives the results shown in Fig. 2-39�9 The product of the

intensity on the surface and the depth of penetration of the X-ray gives the intensity

distribution of the X-ray fluorescence emitted by the substrate shown in Fig. 2-40. At a

glancing angle smaller than the critical angle the intensity of X-ray fluorescence is very close to

zero. The scattered X-rays are caused by X-rays that go into the substrate without being

reflected. Therefore, the closer the reflectivity is to unity, the less is the scattering�9

The condition of the surface of the substrate affects its reflectivity. A rough surface reduces

the reflectivity, and thus increases the intensity of the emitted scattering and X-ray

fluorescence. Surface roughness can be described using a group of fiat planes distributed in a

Gaussian manner. Taking the standard deviation of the Gaussian distribution as tr, the

reflectivity is given by

R = Ro-exp[ - (4 11;010"/~)2] (2-29)

where Ro is the reflectivity for a surface with no roughness. The reflection curve for a (r = 10

/~ is shown in Fig. 2-41 a. The corresponding X-ray fluorescence intensity is shown in Fig. 2- 4lb.

The angular dependence of the intensity of X-ray fluorescence when a sample is spread very

thinly on a substrate was calculated by Iida et al. [16] and is shown in Fig. 2-42a (tr is

hereafter assumed to be zero, unless otherwise noted). The intensity is about twice as large

above the critical angle as below it. The intensity of the X-ray fluorescence emitted from the

4 m

~ 2 - r~

0 -

0 I I I I

2 4 6 8 Glanc ing angle / mrad

1 . 0 - - "

= 0 . 8 -

" ~ 0 . 6 - �9 ~,.,.,,I

r~ 0 .4 - =

~_~ 0 . 2 -

I 0 . 0 - I I I I I 10 0 2 4 6 8 10

Glanc ing angle / mrad

Fig. 2-39. The calculated X-ray intensities

on the silicon surface (perfect

surface; tr= 0) as a function of

glancing angles, using a 10 keV incident X-ray.

Fig. 2-40. The calculated X-ray fluorescence

intensities from a silicon substrate

( a = 0) as a function of glancing

angles, using a 10 keV incident X-ray.

Page 135: Analytical Spectroscopy Library_VOL 7

1 2 6

0 . 8 -

" - 0 6 -

O

0 0 . 4 -

0 . 2 -

0 . 0 - ~ ~ - I I I I I I

0 2 4 6 8 10 Glancing angle / mrad

"-:'.1.0-

, - , 0 8 - .1,.=1 .

t~

�9 - 0 . 6 - 0 0

0 L) ~ 0 . 4 -

O

r 0 . 2 - c~

~ 0 . 0 !

0

(b)

J I I I I I

2 4 6 8 10 Glancing angle / mrad

Fig. 2-41. The glancing angle dependence of reflection from a silicon surface (a); and the X-ray fluorescence intensities from a silicon substrate (b). Surface roughness, 10/~; incident X-ray energy, 10 keV.

.1,.-I

�9 i,..,.I

O

o

O

(a) f

/ - f Sample /

. / f J

/ - /

/

. ,

/ - !

!

- I Reflector - I )

- I . . . . ~'I I I

0 1 2

Normalized glancing angle (0 /0c)

(b)

B I

I s ~ I = I = I ,

1 2 3 4 5

Glancing angle / mrad

Fig. 2-42. (a) Calculated intensities of the signals from the sample (solid line) and from the reflector (broken line) as a function of glancing angles. (b) Angular dependence of the Zn ( �9 ) and Si (o) fluorescence signals, which are from the sample and the reflector, respectively. From Ref. [16], reprinted by permission of the American Chemical Society, Washington, D. C.

Page 136: Analytical Spectroscopy Library_VOL 7

127

1.0

0.5

0.0

(a)

-2"5MGeA~ lgr :lA50 I Zn

si II

I I I I I I I I I I I

2 4 6 8 10 12

Energy / keV

1.0

0.5

i 0.0

(b) 2.5 GeV 133.9 mA | MAX. CTS. :651 ~Zn

!i Sca'"

2 4 6 8 10 12

Energy / keV

Fig. 2-43. Spectra (a) and (b) obtained at different glancing angles, corresponding to A and B in Fig. 2-42, respectively. From Ref. [16], reprinted by permission of the

American Chemical Society, Washington, D. C.

substrate shows an S/B ratio which greatly improves below the critical angle. The results of

the experiment by Iida et al. [16] are shown in Fig. 2-42b. A sample of 2 lal of a Zn solution

was used, dried on an optically flat reflector. The intensity of X-ray fluorescence for Zn and

Si is indicated in Fig. 2-42b. The measured values agree well with the calculated values.

When the spectrum was measured near the critical angle shown in Fig. 2-43 [ 16], there was

very little scattering below the critical angle. The beam width was a few tens of ILtm.

2.4.3. Liquid sample analysis

Figure 2-44a [31 ] shows the spectrum of a solution containing 1 ~tg m1-1 each of V, Fe, Ni,

Zn, and Pb dried on a fused quartz reflector, measured by the total reflection method at the Photon Factory. The XRF spectrum of the same solution dried on filter paper is shown in

Fig. 2-44b [31 ]. The experiment was conducted using Beamline 4A and equipment developed

by Iida et al. The horizontal axis of rotation of the sample holder makes this device suitable for

SR experiments. Measurements are made in the air using a 14 keV monochromatic X-ray

obtained from a Si(l l 1) double-crystal monochromator. It is evident that using the total

reflection method produces very little scattering and improves the S/B ratio. Similar

experiments on Ti, Mn, Cu, and Ge were carded out. The detection limits obtained are

indicated in Table 2-9 [30].

In the total reflection method, any absorption and secondary excitation in the sample is

negligible because the sample is very thin. We applied TXRF to a synthetic sample from 100

~tl of a solution containing 50 ng g-1 of V, Cr, Mn, Fe, Ni, Cu and Zn, dried on a silicon

Page 137: Analytical Spectroscopy Library_VOL 7

128

wafer (Fig. 2-45). The intensity corrected for air absorption, excitation efficiency, relative Ko~

line intensity and fluorescence yield is shown in Fig. 2-46. This shows that a fixed amount of sample gives a constant X-ray fluorescence intensity, within the experimental error. Therefore, we can ignore the matrix effect and secondary excitation.

1.0 _a) Total Reflection Zn (b) Analysis

~ , ~ / ' ~ ~=s" ,, ,." tET': "20014.0s keVFe lilLl it I Scat, .~~ tE"T'5~'0 keY S c a t !

~U.3" k ,!1, il I

, i ! t ,i o I i,~!t i~t! i , / N i

0 " ~'-" ' " " " : ' 0 . * ~ ~ . ~ " ~ " ' . - " ' ~ . '

0 2 4 6 8 10 12 14 1 3 5 7 9 11 13 15

Energy / keV Energy / keV

Fig. 2-44. Comparison of SRXRF spectra: (a) 100 ng of each element on the fused quartz, by total reflection; and (b) 100 ng of each element on the filter paper, by ordinary bulk analysis. From Ref. [31], reprinted by permission of Elsevier Science Publishers B. V., Amsterdam.

Table 2-9 Comparison of the detection limits a between two different methods by SR excitation

Element Total reflection (ng) Bulk analysis (ng)

V 0.03 0.07 Fe 0.02 0.07 Ni 0.01 0.05 Zn 0.01 0.04 Pb 0.02 0.04 Ti 0.04 0.07 Mn 0.02 0.06 Cu 0.01 0.06 Ge 0.005 0.03

a The detection limit is defined as the quantity which gives a signal equal to three times the square root of the background. From Ref. [30], reprinted by permission of Kodansha, Tokyo.

Page 138: Analytical Spectroscopy Library_VOL 7

129

1 4 0 0 - Zn

1 2 0 0 - Cu E~" 12 keV "-:" Ni t �9 1000 s =. I O 0 0 -

MAX.CTS �9 1361 ;~ 8 0 0 -

�9 ~ Fe

~o 6 0 0 - Mn Cr Scat.

4 0 0 -

2 0 0 -

0 I I i I

0 5 10 15 E n e r g y / k e V

I

20

Fig. 2-45. SR-Excited TXRF spectrum from the sample prepared by drying 100 lxl of a

solution containing 50 ng of each element (V, Cr, Mn, Fe, Ni, Cu, and Zn) on a

silicon wafer.

10- ,,-:,. : : : :18-

6 -

4 -

~ 2 -

v . . v v . . . . - - ^ X X

0 i I I I I I I

2 2 2 4 2 6 2 8 3 0 3 2

A t o m i c n u m b e r

Fig. 2-46. The X-ray fluorescence intensity values of each element, corrected for excitation

efficiencies, fluorescence yields, relative Ktx line intensities, and air absorption

between the detector and the sample shown in Fig. 2-45.

This method, however, has many problems when it comes to quantitative analysis. One of

these involves sample preparation. It is virtually impossible to make a quantitative estimate

because of questions concerning where the sample solution is dropped on the reflector, how

large an area it covers, and whether it is spread uniformly. It is also difficult to determine

where on the sample the X-ray falls. One solution to this problem is to use an internal

Page 139: Analytical Spectroscopy Library_VOL 7

130

standard. Pella and Dobbyn [44] used this method to measure the ppb concentration level of

Se in human blood serum, using germanium as an internal standard. For trace analysis in the

total reflection geometry, using the internal standard, monochromatic excitation with SR

allows us to quantify elements reliably and easily, and to improve detection limits compared to X-ray tube excitation.

As an example, we will describe an experiment on a NIST reference material (Trace

Elements in Water, SRM 1643b). The spectrum of the total reflection X-ray fluorescence for

this sample is shown in Fig. 2-47a. A 15 keV X-ray obtained using a Si(111) double-crystal

monochromator was used for excitiation. Next, Ge, which was absent from the original

sample, was added to bring the concentration up to 70 ng g-1. Then, 100 l.tl of this solution

was dried on the reflector. Its spectrum is shown in Fig. 2-47b. The values for the other

elements, determined from the amount of Ge, after corrections for excitation efficiency,

fluorescence yield, relative Ko~ line intensity and air absorption between the sample and the

detector, are indicated in Table 2-10. The detector efficiency is assumed to be constant for the

given energy region and the values are in good agreement with the NIST certified values.

However, this method has limited applications, since an element not originally present in the

sample has to be added. The following procedure can deal with any detectable element as an

additional element and is expected to be applied to trace element analysis in liquid samples

[45]. For measurements employing the energy dispersive method using monochromatic

excitation, the following relationship holds between the concentration of element i contained in

the sample and the intensity of X-ray fluorescence [46]:

Tabel 2-10

Quantitative determination of several elements in NIST SRM 1643b (Trace Elements in Water) by SR-excited TXRF using Ge a as an internal standard

Element Determined (ppb) Certified (ppb)

V 49 45.2+0.4

Cr 23 18.6+0.4

Mn 27 28 +2

Fe 120 99 +8

Co 42 26 +1

Ni 49 49 +3

Cu 30 21.9+0.4

Zn 71 66 +2

a Ge was added to SRM 1643b so as to contain 70 ng g-1 in the aqueous solution for

measurement.

Page 140: Analytical Spectroscopy Library_VOL 7

C i _ li4xR 2(]2s, o +/Zs,isin ~/sin ~)[Ps (2-30)

PoOi[(lIK/P)oOJKfK]i(1 - exp{-[(/Zs,o +/2s,isin tF/sin ~)/ps]psT/sin tF} )

131

where:

C i is the concentration of analyte element i.

li is the fluorescence intensity for the analyte line of element i.

Po is the intensity of the exciting X-ray beam.

Di is the detector efficiency.

R is the distance from the sample to the detector.

l, ts,o is the linear absorption coefficient of the sample for the exciting X-ray beam energy.

l.ts,i is the linear absorption coefficient of the sample for the fluorescence energy of element i.

is the incident angle of the exciting X-ray beam.

is the angle between the sample surface and the detector, the takeoff angle.

Ps is the density of the sample.

T is the thickness of the sample.

(,UK/P)o is the mass absorption coefficient of analyte element i for the exciting X-ray beam.

tOK is the fluorescence yield of the K-series line.

fK is the intensity ratio of Ks to the total K-series lines.

When the sample is very thin, this can be approximated by

Ci l i 4x 'R2 = (2-31) PoDi[(l.tK/P)oCOKfK]iPsT / sin tp

The term [(l.tK/P)otOKfK]i is a quantity peculiar to an element, that is the constant of its element

parameters; the remaining terms, excluding li, 4r~R2/(PoDiPsT/sin tF), are a constant parameter

determined by experiment (assuming the detector's efficiency to be independent of X-ray energy). If the term [(PK/P)oOJKfK]i denotes ei and the remaining terms, excluding li, are represented by K, the above equation will be reduced to

Ci = li (2-32) K �9 e i

which is validated by the data shown in Fig. 2-46. However, when a solution with a high salt

concentration is used, the salt will remain on the reflector after drying, and affect the

measurement by absorbing some X-rays. Using a first approximation, to correct this

absorption by the matrix we add the correcting term exp(tz~i3). This is based on the

assumption that the absorption coefficient of an X-ray is approximately proportional to the cube of its wavelength: 2~" is the wavelength of the fluorescent X-ray of the analyte element i,

and a is a quantity which depends on the absorption, and will be determined experimentally.

Page 141: Analytical Spectroscopy Library_VOL 7

132

0

5 1 0 -

4 1 0 -

1 0 3 -

1 0 2 -

1 1 0 -

1 0 ~ -

0

/ \

(a) Ca Fe Ni C a 4" "]

MnCO Cu Cu tCr+lCo! +As ~ +Fe JIN~//I/Z l ~ S e Scat.

i r M n ~ I n ]As

MAX.CTS �9 18468

B.S. �9 0.11 x 2.8 mm 2

i ! i

5

E r" 15keV t �9 500 s

1 0

Energy / keV

i 1 5 2 0

5 10 -

4 10 -

" 10 - .1-,~

1 o ~ -

1 10 -

0 10 I

0 20

(b) Ca

~ C a

i v C

I

5

Co F_ 7 �9 15 keV Cu t �9 200 s +

Mn + Ni ,7 As + , - - [ ~n ~ Scat.

Fe Fe l N i l ~ Ge / ~

B . S . :0 .15 x 3.0 mm ~[ I I

10 15

Energy / keV

Fig. 2-47. SR-Excited TXRF spectra from the samples obtained by drying 100 ~tl of NIST

SRM 1643b, (a); and the solution prepared so as to contain 70 ng g-1 of Ge in

SRM1643b, (b).

Let us consider the case of three elements in unknown amounts contained in a sample. The

intensity of the X-ray from each element is related to its concentration as follows:

ll .exp(aZ13) C1 - (2-33)

K.el

Page 142: Analytical Spectroscopy Library_VOL 7

133

12.exp(aA 3) C2 = (2-34)

K.e2

13.exp(aA 3) C3 = (2-35)

K.e3

If two of these elements are added at specific concentrations (Ci', i = 2, 3), then

ll'.exp(aA13) C1 = (2-36)

K ' . e l

12'.exp(a~,23) C2+ C2' = (2-37)

K' .e2

13'.exp(o~A33) C3+ C3' = (2-38)

K' .e3

In these six equations, (2-33) to (2-38), li and li' are measured values and ,~,i and ei are

peculiar to these elements - -va lues that can be determined using constants. Thus, there

remain six unknown quantities, K, K', Ci (i = 1, 2, 3), and a, which can be determined by

solving simultaneous equations. Quantitative analysis will be possible for elements other than

these three, using the values of K and a determined using the equation

Ci = li . exp(aA/3) / K.ei ( i > 4 )

We made measurements on two kinds of samples. One was the synthetic standard used in

the experiment shown in Fig. 2-46, and the other the NIST standard reference material used for the experiment shown in Fig. 2-47. For the calculation of quantitative values, the synthetic

sample and NIST SRM were each divided into subsamples, A and B. Vanadium and nickel

were added to subsamples A until the concentration of each element reached 50 ng g-1.

Likewise, manganese and zinc were added to subsamples B until the same concentrations of

each element were reached. Then, 100 lxl of each sample was dropped onto and dried on a

silicon wafer in the same manner as the experiments shown in Figs. 2-45 and 2-47. These

preparations were performed in a Class 1 000 clean booth. A 12 keV monochromatic X-ray

created using a Si (111) double-crystal monochromator, was applied to each sample at a

glancing angle of about 2 mrad. The counting time was 1 000 s. The results of the

quantitative analyses listed in Tables 2-11 and 2-12 suggest that this is a very satisfactory

method for trace element analysis. It requires no consideration of the spot size or the area

irradiated, and provides rapid, simultaneous multi-element analysis of ppb concentration levels

using a simple sample treatment. It has a wide range of applications since unknown amounts

of the elements to be added can be selected. However, the expedient correction used above for

absorption by the matrix may be further improved by a more precise approximation.

Page 143: Analytical Spectroscopy Library_VOL 7

134

Table 2-11

Results for the synthetic sample

Found, ng g-1

Element Added a, ng g-1 Addition of V and Ni

for calculation b Addition of Mn and Zn

for calculation c

V 50 42 42 Cr 50 48 47 Mn 50 49 47 Fe 50 49 47 Ni 50 55 51 Cu 50 49 46 Zn 50 56 52

a Added values are given for comparison.

b For the calculation of K and ct, the fluorescence intensities of V, Ni and Cr were used.

c For the calculation of K and o~, the fluorescence intensities of Mn, Zn and Ni were used.

From Ref. [45], reprinted by permission of the Japan Society for Analytical Chemistry,

Tokyo.

Table 2-12

Results for NIST SRM 1643b

Found, ng g-1

Element Certified a, ng g-1 Addition of V and Ni Addition of Mn and Zn

for calculation b for calculation c

V 45.2+0.4 38 43

Cr 18.6+0.4 14 15

Mn 28 +2 22 21

Fe 99 +8 120 114

Co 26 +1 28 24

Ni 49 +3 53 47

Cu 21.9+0.4 23 20

Zn 66 +2 99 86

a Certified values are given for comparison.

b For the calculation of K and ct, the fluorescence intensities of V, Ni and Mn were used.

c For the calculation of K and ct, the fluorescence intensities of Mn, Zn and Ni were used.

From Ref. [45], reprinted by permission of the Japan Society for Analytical Chemistry,

Tokyo.

Page 144: Analytical Spectroscopy Library_VOL 7

135

2.4.4. Near surface analysis

When the incident X-ray is totally reflected it penetrates only a few tens of A into the sample.

This property of the TXRF method makes it possible to carry out the elemental analysis of the

area near the sample surface. Conventional XRF only performs bulk analysis, and cannot be

used to analyze the sample surface. A significant feature of TXRF is that while it maintains the

rapid, nondestructive, and simultaneous multi-element analysis of conventional XRF, it can

also be applied to surface analysis. This method has been extensively used in the laboratory

for surface analysis of silicon wafers. However, there have not been many cases where SR

has been used for surface analysis where the samples must be handled carefully. It is very

difficult not to contaminate samples from the time they are prepared in the laboratory, through

transportation, until they are measured at a SR facility.

In this section, we will discuss precautions for using SR-excited TXRF for surface analysis.

Any element on the surface will cause X-ray fluorescence. However, the intensity of the

fluorescence varies, depending on whether the elements are on the sample surface or slightly

below it. This difference is illustrated in Fig. 2-48, which shows the calculated dependence of the X-ray fluorescence intensity on the glancing angle, for the same quantity (1012 atoms

cm -2) of iron distributed inside silicon in the following ways: (1) close to the surface, (2)

homogeneously from the surface to a depth of 10 A, (3) homogeneously from the surface to a

depth of 100 A, and (4) homogeneously from the surface to a depth of 1 000 A. It should be

noted for quantitative analysis that the X-ray fluorescence intensity caused by the same amount

,--:,.4-

~ 3 -

�9 ~ 2 - o

o r,o 1 -

0 -

A : top surface ..... : surface to 10 A - - -: surface to 100 A

s, s " . . . . . . . . ...-

I I I I I 2 4 6 8 10

Glancing angle / m r a d

Fig. 2-48. The calculated glancing angle dependence of Fe Ko~ intensities on the following

distributions of Fe (1012 atoms cm -2) in the silicon substrate: (1) only on the top

surface; (2) on the homogeneous distribution from the surface to 10 A in depth; (3)

on the homogeneous distribution from the surface to 100 A in depth; (4) on the

homogeneous distribution from the surface to 1 000 A in depth.

Page 145: Analytical Spectroscopy Library_VOL 7

136

of element varies greatly depending on the distribution and the glancing angle.

At the Photon Factory, Iida et al. [47] measured the dependence of X-ray fluorescence on

the glancing angle, using a 3.5-l.tm-thick Gal_xAlxAs thin film (x - 0.298) epitaxially grown

on GaAs. In comparison with GaAs, there were fewer As atoms near the surface of this thin

film. This is mostly due to sublimation that occurs during sample preparation. To estimate the

depth of the reduced As concentration they calculated the exhausted length (the distance from

the surface to where the concentration is 1/2 of the bulk concentration value) to be about 100

/~, on the assumption that the As concentration increases from the surface value of zero to the

bulk value in the manner of a complementary error function. Changes in the chemical

composition of compound semiconductors can also be measured by destructive methods, such

as ion channeling and SIMS; however, the present method does not destroy the sample.

Bloch et al. [48] performed an experiment at SSRL on the interface between a polymer

solution and the air. The method they employed allows measurements in any atmosphere, and

therefore is suitable for analyzing the surface of liquids. They positioned an optically flat

reflector in front of the sample, to control the glancing angle of the incident X-ray. The sample

was a slightly sulfonated polystyrene dissolved in dimethyl sulfoxide. The polymer had a

molecular weight of 115 000, with a chain containing about 10 mole% manganese sulfonate. By measuring the dependence of the S Ka from the solvent and the Mn Ka from the

polystyrene on the glancing angle, they found that the polymer concentrations increased on the

interface, since the Mn intensity was higher at smaller angles. With uniformly soluble MnC12,

the intensity ratio was found to be constant. They also compared this method with the optical

method. The minimum penetration depth is a few tens of A for X-rays and hundreds of A for

the optical method. Also, in the optical method, polymer solutions are generally transparent to a depth of a few thousand/~, allowing penetration to infinite depths at angles above the critical

angle. This means that the X-ray method provides a far more sensitive surface analysis for

this kind of sample.

2.4.5. Depth profile analysis

As shown in Fig. 2-38, the penetration depth increases from a few tens of/~ to a few l.tm as

the glancing angle of the incident X-ray increases beyond the critical angle. This means that

the depth profile of the element being studied can be analyzed by changing the glancing angle

in small increments. Iida et al. [17] used a silicon wafer ion-implanted with As to measure the dependence of the

intensity of As K a X-ray fluorescence on the glancing angle (1-5 mrad). They also made the

same measurements on a sample heat-treated at 1 000~ for 20 min. As shown in Fig. 2-49,

the increase in As concentration on the sample surface brought about by the heat treatment

gives a greater intensity of X-ray fluorescence below the critical angle. The decrease in the

intensity at glancing angles above the critical angle corresponds to a reduction of the total

amount of As. The demonstrated intensity of X-ray fluorescence has been found to agree well

with the value calculated using the profile analyzed by the SIMS method.

Page 146: Analytical Spectroscopy Library_VOL 7

137

o~==l

tD o1-,~

_ 1 ' I / . ~ ' I ' I _

/ \ / \

- / ' A - / /

- / / B " "

- /

\ - \

I i I i -! 1 2 3 4

Glancing angle / mrad

Fig. 2-49. Reflected X-ray intensity (broken line) and As K intensifies (solid lines) for Si wafers, before (A), and after (B), annealing, as a function of glancing angles. From Ref. [17], reprinted by permission of Elsevier Science Publishers B. V., Amsterdam.

Figure 2-50 (dotted line) shows a depth profile analysis of a silicon sample ion-implanted with iron (40 kV, 1 x 1015 atoms cm -2) [31]. Iron ion-implanted in this manner shows a

Gaussian distribution, with a 123 A standard deviation around the peak ion concentration at a

depth of 302 ,~. The dependence of the X-ray fluorescence on the glancing angle, calculated

from this profile, is shown by the solid line in the figure. The slight difference from the measured values is probably due to the spread in energy and angle of the beam.

We made the following calculations to ascertain how sensitive the curve of the X-ray fluorescence plotted against the glancing angle is to the depth profile. Using Fresnel's formula [43], the amplitude, At, of the transmitted X-ray is given by

At_ 201 Ai 01+02

(2-39)

where Ai, 01 and 02 have the values indicated in Eq. (2-23). The intensity of the transmitted

X-ray just beneath the surface is given by

~_~ 2 4 012 = (2-40)

(01 +p2) 2 + q22

Page 147: Analytical Spectroscopy Library_VOL 7

138

[In the actual calculation, the values of 01, P2 and q2 are used�9 See Eqs. (2-24)-(2-26).] The

transmitted X-ray, expressed by Eq. (2-40), is transmitted in the medium while being

absorbed. The X-ray fluorescence intensity for an element distributed at a given depth in the

medium is calculated from the transmitted X-ray intensity and the concentration of the element

at that depth. Figure 2-51 shows the calculations for the ion-implanted iron described in Fig. 2-50, with different standard deviations for their Gaussian functions�9 The calculated Fe Ka

intensity vs. the glancing angles, at different depths of peak concentration, are shown in Fig.

2-52. The X-ray fluorescence profile is found to be quite sensitive to these parameters.

Application of this characteristic to thin film samples will be discussed in detail in the

following section.

Measuring the depth profile of impurities at the surface during the analysis solves the

problems mentioned in the preceding section, i .e . , the difficulty in making a quantitative

determination of an element caused by the dependence of the X-ray fluorescence intensity on

the elemental concentration profile. Various applications of the above method are expected because of the nondestructive depth profile analysis in air that it provides.

O

O

1E22

d

"IE16

___ Calc.

Exp. " 302.~

0 Depth (/~) 1000

1 2 3 I I

0 4 5 6

Glancing angle / mrad

Fig. 2-50. Depth profile analysis of implanted Fe in a silicon wafer. From Ref. [31 ], reprinted

by permission of Elsevier Science Publishers B. V., Amsterdam.

Page 148: Analytical Spectroscopy Library_VOL 7

139

2 . 5 - . ,~ : 3 0 0 A i : c = 1 0 0

. . . . . . . : o = 5 0 k ~ 2 . 0 - ~ .~ o

~ 1 5 - ~ ~

�9 v.,,l

~ l . O -

r ~

os- 0 "

0 . 0 . . . . I I I I I 0 2 4 6 8 10

Glancing angle / mrad

Fig. 2-51. The glancing angle variation in Fe Kcz intensifies with different Fe concentration

distributions in a silicon wafer, changing standard deviations (cr) at a fixed peak depth (Zp) of 300 ,~ below the surface in a Gaussian distribution. (o" is the half-

width at half of the maximum concentration)

3 . 0 - -

,.~,,~ 2 . 5 -

~ 2 0 - t= " o

"-" 1 . 5 - o

o 1 0 - . r~

o 0 . 5 -

0 . 0 -

c~" 100 .,~ : �9 zp = 3oo A ' i ....... : Zp = 200 .A ~~,,, Zp 400 A

i = . _ . . . . . . . . . . . = _ .

s e #

0 2 4 6 8 1 0

Glancing angle / mrad

Fig. 2-52. The glancing angle variation in Fe Ko~ intensifies with different Fe concentration

distributions in a silicon wafer, changing peak concentration depth (Zp) below the surface at a fixed standard deviation (o') of 100 A in a Gaussian distribution.

Page 149: Analytical Spectroscopy Library_VOL 7

1.0

2 .4 .6 . A p p l i c a t i o n to thin f i lm s a m p l e s

TXRF is effective not only for the elemental analysis of a sample surface, but is also useful

for the analysis of thin films. As explained above, the depth of penetration of the incident X-

ray can be controlled by changing its glancing angle to the sample. This makes it possible to

match the measurement conditions to the sample thickness.

We will discuss an experiment using a 1.2-gm-thick photoresist polymer coated on a silicon

wafer [ 18]. Small amounts of impurities in photoresist polymers are normally measured by

chemical analysis. In this case, TXRF was chosen because the impurities were in a thin film

spread on a wafer. The experiment was conducted using Beamline 4A at the Photon Factory.

A 9.6 keV monochromatic X-ray with a Si(111) double-crystal monochromator was utilized.

The intensities of the incident and reflected X-rays were measured using an ionization

chamber, and the intensity of the X-ray fluorescence measured using a Si(Li) detector. The

sample and the detector were 5 mm apart.

The measured reflection curve is shown in Fig. 2-53. The curve shows two critical angles.

That in the low glancing angle region is the critical angle for the resist polymer, and the other, in the high glancing angle region, the critical angle for the silicon wafer. This means that, if

the incident angle is gradually increased from a low value, the behavior of the incident X-ray

will be changed in the following manner. First, it is totally reflected on the resist surface.

Then, as the glancing angle becomes greater than the critical angle of the resist (2.15 mrad),

I I I I 2 3

0.8

~. 0.6 0 0 0.4 0

0.2

140

i--r------- 4

Glancing angle / m r a d

Fig. 2-53. The observed angular dependence of reflectivities from a silicon wafer covered with

a resist polymer. The critical angle of the resist is around 2 mrad, and that of silicon

around 3 mrad [ 18].

Page 150: Analytical Spectroscopy Library_VOL 7

141

the X-ray penetrates the polymer, and is totally reflected on the silicon-resist interface until the

glancing angle reaches the critical angle of the silicon wafer (3.20 mrad). The reflection curve

rises until the glancing angle reaches the critical angle, because of the change in the effective

cross section of the incident X-ray. We measured the X-ray fluorescence using glancing

angles of 2 and 3 mrad. The measurements were made in air and lasted for 2 000 s. At 2

mrad, the maximum penetration of the X-ray into the resist is only 100 J., and most X-ray

fluorescence is emitted from the surface. At 3 mrad, the measured X-ray fluorescence comes from all parts of the resist film. The spectra of the X-ray fluorescence for these two cases are shown in Fig. 2-54. Both show X-ray fluorescence from the silicon substrate, argon in the

0=2 mrad

0 =3 mrad ~ ~ , es'st t ~ ~

Silicon

(a)" Schematic drawing of total reflection with changing glancing angles (2 mrad and 3 mrad).

10 0= 2 mrad

~ ~ 1 0 [

Ar Scat. 10 3 Si

8 10 2

0 5 10

Energy / keV Energy / keV

105 / L 0= 3 mrad /

4 | Scat.

l~ ] ,o31 - tt /

0 5 10

(b): SR-Excited TRXF spectra obtained. On the left side (2 mrad) total reflection occurs on the resist surface; on the right side (3 mrad) on the interface between the resist and silicon wafer. Counting time is 2000 s.

Fig. 2-54. Impurity (Fe) analysis in a thin resist film on a silicon wafer [18].

Page 151: Analytical Spectroscopy Library_VOL 7

142

air, and iron which is regarded as an impurity in the sample. The problem with measuring the

quantity or distribution of the profile of iron is the dependence of the X-ray fluorescence

intensity on the depth profile, as described in the previous discussion on surface analysis.

Assuming the total quantity of iron to be constant, we calculated the intensity using the two

glancing angles (2 mrad, 3 mrad) for the following four kinds of distributions: (1)

homogeneous from the surface to 10 A, (2) homogeneous from the surface to 100 A, (3)

homogeneous from the surface to the interface, (4) decreasing linearly from the surface to the

interface. The calculated values for 2 mrad are: (1) 0.74, (2) 0.49, (3) 0.007, and (4) 0.014;

and for 3 mrad: (1) 0.31, (2) 0.28, (3) 0.24, and (4) 0.25. Note that the unit for these values

is arbitrary. The peak area of the X-ray fluorescence of iron measured in this experiment has

been found to be four times as large at 3 mrad as at 2 mrad. We attempted a quantitative

analysis, based on the assumption that the iron concentration was homogeneously distributed

on the thin resist film and that it also contaminated the surface of the film. Comparing the

measured and calculated values of the X-ray fluorescence intensity using 2 and 3 mrad we

found that 92% of the iron detected was homogeneously distributed in the film, with 8%

contaminating the surface. Our estimate of the amount of iron showed that 1.7 x 1012 a toms

cm -2 were contained inside the film with 1.5 x 1011 atoms cm -2 attached on the surface. The

amount of iron contained inside is converted to approx. 1.3 ppm in relative weight

concentrat ion- a value in good agreement with that obtained by chemical analysis (1.0 ppm).

However, the depth concentration profile must be measured if one needs a more precise

quantitative determination.

2.5. CHARACTERIZATION OF LAYERED STRUCTURES BY GRAZING

INCIDENCE

2.5.1. X-Ray spectroscopy using grazing incidence

As discussed in the preceding section, the penetration depth changes as the incident angle of

X-rays changes around the critical angle of total reflection. Also, under these conditions the

incident X-rays interfere with reflected X-rays. Interference occurs inside the film in a sample

with a layered structure, which affects the reflection curve and the X-ray fluorescence intensity

profile for the constituent elements. The interference effects depend on factors which include

the number and thickness of layers, the concentration profile, the roughness of the surface or

interfaces, and the existence of transition layers on interfaces. This makes it possible to

determine important parameters of the film structure, by analyzing the reflection curve and the

X-ray fluorescence intensity profile measured as functions of the glancing angles. For

multilayered materials, the following parameters can be determined by this method:

(1) The thickness and density of individual layers.

(2) The concentration profile of constituent elements.

(3) The roughness of the surface or interfaces. (4) The existence of transition layers between the surface and the thin film, and between a

Page 152: Analytical Spectroscopy Library_VOL 7

143

thin layer and the substrate, as well as the thickness, density and composition of the

transition layers. (5) The depth profile of impurities.

Interference shows up as oscillations on the reflection curve. Back in the 1930s, Kiessig

[49] analyzed oscillations in the curve exhibited by reflection from a monolayer thin film, and

described a method of determining film thickness. He regarded the oscillations as fringes of

equal inclination, and determined the film thickness from a relationship between it and the optical path difference. Parratt [50] formulated a rigorous method for calculating the reflection

curve for multilayered materials, and attempted to analyze these materials from the changes in

the reflection curve, especially around the critical angle. He made systematic calculations on oxidized layers of copper, and compared them with experimental results. N6vot and Croce

[51] gave a more rigorous definition for the conventional method of incorporating interface

roughness as a Debye-Waller factor [a scalar treatment, see Eq. (2-29)] and obtained an equation that enabled a vectorial analysis. They used this equation in a detailed analysis of

surface layers of polished glass. They measured the reflectivity at glancing angles varying

from the critical angle to much larger values. This is important in determining very sensitive

roughness values, since roughness has a great effect on the reflection curve, particularly when

the glancing angle is large. Generally speaking, reflectivity is very small at large glancing

angles. Therefore, careful experimentation is required to determine oscillations in reflectivity

with high precision. Vidal and Vincent [52] developed a matrix calculation method to

systematically determine reflectivity for multilayered materials using a computer. The

roughness term is also incorporated in the matrix elements. They used this method to evaluate layered synthetic materials. Kr61 et al. [53] established a method of calculating the angular

dependence of X-ray fluorescence intensity. Using the matrix treatment of Vidal and Vincent,

this method enabled a rigorous determination of X-ray fluorescence emitted from individual layers. The experiments were carded out on the thin layers of semiconductor wafers.

In the above experiments, only Kr61 has used SR. This is not necessary for measuring

reflection curves; careful measurement using specially designed equipment produces satisfactory results. In fact, as well as N6vot and Croce, Huang and Parrish [54] performed

precise experiments using equipment they had developed incorporating a channel-cut monochromator. However, monochromatized X-rays obtained from SR are useful for the measurement and analysis of X-ray fluorescence intensity profiles. The high intensity,

tunability, and high collimation of SR are indispensable for measurements of minute

compositions and applications to very thin films and transition layers. Sakurai and Iida [55] have proposed a method for determining each layer thickness of mutilayered thin films by a

Fourier transformation of oscillations known as the Kiessig structure [49].

Other research using the grazing incidence method includes a laboratory study, in

combination with ellipsometry [56], of a thin film on a compound semiconductor, and an

effort to examine heterojunction roughness using soft X-rays (SR) [57, 58]. Heald et al. [59]

used the grazing incidence method to measure both reflection curves and EXAFS, in order to

analyze metallic multilayers.

Page 153: Analytical Spectroscopy Library_VOL 7

144

2.5.2. Determination of the thickness of monolayer thin films (Kiessig's method [49])

Kiessig established a simple method for determining the thickness of monolayer thin films.

He assumed the oscillations that appear in the reflection curve to be fringes of equal

inclination. When the X-rays are incident at an angle slightly larger than the critical angle of

the sample, part of the X-ray beam goes into the thin film. As shown in Fig. 2-55, X-rays reflected by the surface and by the interface interfere with one other. The reflectivity from the

interface is so small that X-rays emitted after repeated reflection within the film can be

neglected. The X-rays can be assumed to be parallel beams (coming from a light source

infinitely far away), and the two beams (AB and A'B') which interfere are parallel and come

from the same incident X-rays. We write N for the foot of a perpendicular line, A'N, dropped

from A' to AB. Since there is no optical path difference between the two beams beyond A'N,

the difference in the optical paths is expressed by

A = n2.(AC + CA' ) - nl.AN (2-41)

where nl is the refractive index of air or a vacuum (=1), and n2 is the refractive index of the film, which takes a complex number if there is any absorption. Let the film thickness be dE,

then, since 01, 02<<1, the optical path difference is expressed by

Air (vacuum): n = n 1 = 1 B ~ / B

N

d2 ~ ~ m o n o l a y e r : n = n

Substrate: n = n 3

Fig. 2-55. Schematic representation of fringes of equal inclination.

Page 154: Analytical Spectroscopy Library_VOL 7

145

= 02 ]1/2 A 2d2 02 = 2d2( 0 7 - lc/ (2-42)

See Eqs. (2-4) and (2-23) for the meanings of 01, 02 and 01c. The intensity of reflected X-

rays is a maximum or minimum value when the optical path difference is an integer (m) or a (m

+ 1/2) multiple of the wavelength. Therefore, changes in the intensity of reflected X-rays

depend on 01. Let the wavelength of the incident (reflected) X-rays be ~; then the intensity

becomes a maximum value when:

and

mA = 2 d2(O 2 - 021e!]1/2

(m + 1/2) A, = 2 d2(07 - 02) 1,2

f o r & < & ,

for & > & (2-43)

The term (m + 1/2) is required because a phase shift occurs during reflection when d;2 > 63,

i.e., the electron density is higher in the film than the substrate. See Eq. (2-2) for definitions

of 62 and t~3. From Eq. (2-43), the values of 01 corresponding to the m-th maximum is

related to m as follows:

and

021(m) = 02 + $2m2 for $2 < 63, 4d~

O2(m) = 02c + A 2(m + 1/2) 2 for ~ > ~ (2-44)

44

Therefore, 012(m) plotted against m 2 or (m + 1/2) 2 forms a straight line, and d2 can be

determined from the slope. Therefore, highly accurate determinations of the film thickness can be obtained without contact with or destruction of the sample. Further, since 01c [= (262) 1/2]

can be determined from the intercept of the line, the density of the thin film can also be

obtained. We carded out an experiment on a Ni thin film deposited on a silicon wafer using a

sputtering method. Measurements were made using 1.2 A monochromatized X-rays at

Beamline 4A of the Photon Factory. The reflection curve measured is shown in Fig. 2-56. Oscillations can be seen in the curve. Since nickel has a larger t~ than silicon (62 > 53), 012(m)

corresponding to the maximum oscillation was plotted against (m + 1/2)2 (Fig. 2-57). The

result is a straight line. From the slope of the line, the thickness of the Ni thin film was

determined to be 454 + 3/~. The critical angle (01c) was found to be 5.6 + 0.2 mrad.

As described above, it is easy to determine the film thickness and the critical angle, i.e., the sample density and composition of a monolayer thin film. However, this method cannot be

applied to samples having more than one layer or having transition layers.

Page 155: Analytical Spectroscopy Library_VOL 7

146

o 10 -

1 ;~' 10- - ;;>

2 l o - -

~ 1 -

- 4 10 -m

0.0 I I I I I I

0.2 0.4 0.6 0.8 1.0 1.2 Glancing angle / degree

Fig. 2-56. The reflection curve of a Ni thin film deposited by sputtering. The incident X-ray

wavelength is 1.2 A.

1.0

0.8

~~ 0.6

~ 0.4

0.2

0.0 I I I I I I I I

o 20 4o 60 a0 l oo 12o 14o ( m + l / 2 ) 2

Fig. 2-57. A plot of maximum oscillation values for the Ni thin film on a silicon substrate

shown in Fig. 2-56. The straight line was obtained by least-squares.

2 .5 .3 . C a l c u l a t i o n o f r e f l e c t i o n c u r v e s - 1 ( P a r r a t t ' s m e t h o d [50] )

Kiessig's method uses only the period of the oscillations that appear in the reflection curve.

More information would be available if it were possible to analyze the entire reflection curve,

including the amplitude of the oscillations.

It is also important to have a method for analyzing multilayered thin films. One way to

analyze the reflection curve is to determine the parameters such as the film thickness and

composition, and to construct a theoretical curve; the parameters are then adjusted to make an

experimental curve fit the theoretical curve. It is therefore necessary to have a theoretical

method for calculating the reflection curve. Parratt formulated a method for determining the

Page 156: Analytical Spectroscopy Library_VOL 7

147

reflectivity of grazing incident X-rays for multilayered samples, using the electromagnetic

theory (continuity of the tangential components of electric and magnetic fields on interfaces)

and Fresners optics formulae.

When monochromatized X-rays irradiate a sample, (without multilayers), the electric field

vectors of the incident [El(Zl)], reflected [E~(zl)], and refracted [E2(z2)] X-rays are expressed

as follows:

El(z1) - El(0)exp{i[(.ot -(kl,xX1 + kl,zZl)]) E~(z1) = E[(0)exp{i[~ot -(kl,xXl - kl,zZl)]} E2(z2) = E2(0)exp{i[~ot -(k2.~x2 + k2.zZ2)]}

(2-45)

(2-46)

(2-47)

where z denotes the perpendicular distance from the surface (which has a positive value in the

sample), and k i (= 2~/Ai, i=1, 2) is the propagation vector of X-rays. Suffix 1 represents the

outside of the surface, and suffix 2 the inside. The plane of incidence is an xz plane. The

continuity of the tangential component of the electric field vector on the interface requires that,

if there is a grazing incidence, the following holds true: k2.x = kl, x = kl , and k2.z = k102 =

kl (012- 2 6 2 - 2ifl2) 1/2. From Fresners formulae, the reflectivity can be expressed as a

function of the glancing angle by

01 + 02 (01 + p2)2+ q2 (2-48)

where P2, q2, 01, and 02 are defined in the same way as in Section 2.4.2.: see Eqs. (2-24)-(2-

26).

Now consider a sample having N layers (air, 1; layers, 2 to N- l ; substrate, N). Assume also that the interfaces are perfectly smooth. Denote the thicknesses of individual layers as dn.

The thickness of the air, dl (vacuum), will not be considered. From the boundary condition of

the continuity of the electric vectors on the interface, there is the following relationship

between layers n-1 and n (n = 2, 3, . . . , N):

an-lEn-1 + an-l_l Er_l = a-nllEn_ + an E~

(an- lE,-1-an- l_l E r _ l ) f , - l k l = ( a~lxE.-a. Er)Lkl fn = Pn - iqn

an = exp( - iktfndn / 2 )

(2-49)

(2-50)

(2-51)

(2-52)

[En is the value on the n-th interface of the electric field that propagates downward (to the

substrate) through the interface; En r is the value on the n-th interface of the electric field

reflected upward from the interface (to the surface)]. From these equations, the reflection

Page 157: Analytical Spectroscopy Library_VOL 7

148

coefficients of the electric fields' amplitudes are expressed by the following recursion

formulae:

a4_l( rn,n+l + Fn-l,n) rn-l,n = (2-53)

rn,n+lFn-l,n + 1

rn,n+ 1 = a2n (E r / En) (2-54)

fn-1 - f n Fn-l,n =fn-1 + fn (2-55)

The calculation starts with n = N, and proceeds until the reflectivity R = I rl,212 is determined.

Note that rN,N+I = 0, since there is no upward electric field, EN r, in the substrate. The

parameters required for these calculations are dn (film thickness), Sn (composition and

density), and fin (composition and density). A comparison of the calculated results with the

experimental values makes it possible to establish an optimum model of the multilayered

structure.

Parratt measured the reflection curve of a copper film (thickness approx. 2 000 A) deposited

on glass, and compared the results with the values calculated by the above method. First he

used a two-layered structure of copper and glass. The reflection curves did not agree very

well, and the value of ~, which is proportional to density, was found to be about 10 percent

smaller than the value for bulk copper. Then he considered a three-layered model with an

additional oxide (Cu20) layer, and searched for an optimum model by changing the thickness

of each layer. He went as far as a five-layered structure: Cu20 (90% density of the bulk value)

+ Cu20 + Cu (90% density of the bulk value) + Cu + glass. Although the calculated results

did not coincide perfectly with the experimental values, they provided quite a good

approximation. These results suggest that, in order to examine the structure of thin films, even

monolayer materials must be regarded as multilayered. This means a satisfactory analysis

cannot be based only on the period of the oscillations; the entire reflection curve must be

considered. This is why it is very important for thin film analysis to have a method, such as

the one shown in this section, for calculating the reflectivity of multilayered structures.

Unfortunately, the calculations are tedious when the sample has many layers.

2.5.4. Incorporation of roughness and transition layers

Real samples have rough surfaces and interfaces. They can also contain transition layers.

Omitting these factors from the reflectivity calculation prevents precise comparisons with

experimental results. A rough interface and transition layers reduce reflectivity, which can be

observed in the reflection curve. We will describe the method for incorporating these factors

which was established by N6vot and Croce [51 ].

Page 158: Analytical Spectroscopy Library_VOL 7

149

Consider an interface where homogeneous substances meet. The refractive indices can be

represented by n l (upper layer) and n2 (lower layer). The roughness of the interface, as shown in Fig. 2-58, is expressed as the root-mean-square of deviations of the depth coordinate

ZD.

0.2 =(z 2 ) (2-56)

If the roughness value is not very large, it will be smaller than kln -1, k2n -1 (kin is the normal

component of wave vectors for each layer, i). A real rough interface can be considered as

many smooth planes distributed in a Gaussian manner. The peak of the Gaussian distribution

is the average plane (P0) of the deviations of the rough interface. Therefore, using this

assumption, if the reflection coefficient of a perfect interface is represented by ri, that for a

rough interface, re, can be described by

rR = rlexp( - 81r,2klnk2n0. 2) (2-57)

The reflectivity is given by the square of the absolute value of the refection coefficient (R =

I rR 12). The above equation also gives the reflectivity of a transition layer whose refractive

index changes in the manner of an error function. If we assume that

n(z) = nl + (n2- nl).F(z) (2-58)

F(z)=l~fZ___ooex[~ - v 2 x 0 - 2 20.2 ,u2]du (2-59)

�9 m ,

+ + + + + + P 0

/ I + + + I

Fig. 2-58. Schematic representation of a rough interface: Po is the average plane surface

(perfect interface); P is the actual interface.

Page 159: Analytical Spectroscopy Library_VOL 7

150

when nl is unity (the refractive index of air or a vacuum), we obtain the same reflectivity in a

similar manner to the method for the rough interface above. Namely, consideration is made by

substituting a transition layer for a rough interface, and the refractive index for the parameter

representing the roughness. Conversely, a transition layer as shown in Eqs. (2-58) and (2-59)

can be used to analyze interface roughness. Now consider a multilayered material, as shown

in Fig. 2-59. The amplitudes of the electric fields are represented by a, b, a, and ft. Since

only transmitted X-rays exist in the substrate, if aj_ 1 is known, Eq. (2-57) can be used to

determine bj-1 o n the Oj-1 interface. The following relations hold on the Dj_ 2 interface.

OtJ-1 + rR'j-2~J-I (2-60) aj-2 - 1 + rR, j_ 2

bj_2 = otj_l + f l j -1 - aj-2 (2-61)

where rR, j-2 is the refection coefficient on the D j_2 interface, defined by taking into

consideration its roughness and transition layer. Consecutive calculations to the first layer,

D1, determine the reflectivity of the multilayered material, I bl[al I 2.

N6vot and Croce [51 ] used the above method to analyze a thin layer formed on a surface by

polishing, oxidation, or contamination. We will describe their analysis in the following. The

a bl M

1

M D1

M i-2 ~ ~ b1_2

M j-1

u . i aj

Substrate

DF2

DF1 r Z

Fig. 2-59. Sketch of electric fields for a multilayered material.

Page 160: Analytical Spectroscopy Library_VOL 7

151

surface layer in question is assumed to be sufficiently thin (less than a few tens of A). Its refractive index and thickness are also assumed to be sufficiently uniform. If the refractive

index and the average thickness of the surface layer are denoted by no and 1:o, respectively,

the refractive index for a given depth (z) between the surface layer and the substrate (refractive

index = n2) is expressed by

n2(z) = n 2 + (n 2 - n2)F(z- 'ro, or) (2-62)

fz 0u F(z -vo , o') = V2xcr2 J-oo

(2-63)

And, when the layer composition and density continuously change from the surface to depth

z2, the refractive index is expressed by

n2(z) = n~ + (n~ - n~)[ 1 - exp( - z/z2)] (2-64)

Using Eqs. (2-58) and (2-59), the surface roughness can also be included in n(z).

Ntvot and Croce measured the reflectivity of grazing incident X-rays to examine how

various methods of polishing change the surfaces of various kinds of glass. An X-ray tube

was used in their experiments. Reflection curves were observed using glancing angles

between 0 and 3 ~ For pure silica glass, polished with pine resin mixed with cerium oxide, the

refractive index had a maximum value at 51 A, below the surface. This value is obtained by

adding Eqs. (2-58), (2-62), and (2-64) and by comparing the reflectivity determined from the

experimental results with that from the calculated ones. This means a high-density layer was

formed at that depth. It was also found that it could be eliminated by heat treatment. The

value for z2 obtained in this case is 225 A, and the refractive index decreases continuously

according to Eq. (2-64). It was also found that the surface was not dense, having a roughness of 7.75 A. They also discovered that when aluminosilicate glass (density, 2.63; SiO2, 60%; A1203, 20%; CaO, 20%) was polished using pine resin mixed with iron oxide, a very thin low-density layer (density, 2.04; Zo, 21 A) was formed, with a high-density layer below

(maximum density, 2.71 at 48 A; z2, 200 A). The surface roughness was found to be 9 A.

2.5.5. Calculation of reflection curves-2 (Matrix treatment)

The methods for calculating reflectivity indicated in Sections 2.5.3 and 2.5.4 require

complicated data handling when there are many layers. Vidal and Vincent [52] reported a very

convenient method for calculating the reflectivity of multilayered samples incorporating

roughnesses. In this method, one matrix corresponds to each layer. TO handle a multilayered

film, the matrices representing the layers can simply be multiplied.

Page 161: Analytical Spectroscopy Library_VOL 7

152

First, we will discuss the case where roughness is omitted, as shown in Fig. 2-60. The

electric fields above and below the interface (y > Yo, Y < Yo) can be expressed by

e(x,y) = [E2exp( - i(2y) + e~exp(+i(2y)] exp(itrx) (for y > yo ) (2-65a)

E(x,y) = [El'exp( - i(ly) + El'rexp(+i(ly)] exp(iax) (for y < yo )

ko=2~/~,

o[ = kocos01

(i = {(koni) 2 - a2} 1/2 (i=1, 2)

(2-65b)

(2-66)

(2-67)

(2-68)

where ko is the wave number of the incident X-rays, 01 their glancing angle and ni (i = 1, 2)

the refractive index. In the case of S polarization (the electric field vector is perpendicular to

the incident plane), the electric fields can be expressed as follows, using the boundary

condition of the continuity of electric field on the interface.

/p11 , 69, E~ P21 P22 E1 'r

Pll -- a lext~- i ( (1 - (2)Y] (2-70)

P12 = a2ex~+ i ( ( l + (2~] (2-71)

P21 = a2ext~-i((1 -!- (2)Y] (2-72)

P22 = a l e x ' + i ( ( 1 - ~2~] (2-73)

where al = 1+~1/~'2, a2 = 1-~1/(2. The reflectivity, R, is given by

yo

Medium 2 ( = n 2 )

E2

! E1 r E 1'

Medium 1 ( = n 1 )

r x

Fig. 2-60. Sketch of electric fields of a perfect interface between two media of refractive

indices n l and n2.

Page 162: Analytical Spectroscopy Library_VOL 7

153

R = [P21/Pl l I 2 (2-74)

The case of P polarization (where the electric field vector is parallel to the incident plane) can

also be handled if the above (1/~2 is replaced by

(~l/ff2} X (E2/E1) (2-75)

where ei = ni 2 is the dielectric constant. In the case of a multilayered material, the product of

the matrix corresponding to each interface can be simply calculated. This method is very

useful because it permits the use of the same procedure to calculate the reflectivity for samples

having any number of layers. If cr is the roughness, then for S polarization the matrix will

become

(E2) = (p 11 exp[4 ~"1- ~'2)2 0"2/2] E:~ p2 lexp[4 r + ~'2}2 0-'2/2] P22ex~4 ~1_~2)2o-2/2] E1 'r

(2-76)

The roughness of each interface can be determined by comparing the experimental results with

the calculations.

Vidal and Vincent [52] used the reflection curves for grazing incident X-rays to evaluate a

multilayered X-ray mirror. We will employ this method to compare the effects of the surface

roughness and interface roughness of a sample with a monolayer. Figure 2-61 shows the

reflection curve of a nickel thin film (300 A) on a silicon substrate. It indicates that surface

roughness mainly reduces the reflectivity, and interface roughness decreases the contrast of

oscillations.

2.5.6. Calculation of X-ray fluorescence intensity

The discussions above deal with the angular dependence of reflectivity, which is used for

analyzing the structure of thin films. This structure can also be elucidated using the

dependence on the glancing angle of the X-ray fuorescence emitted from constituent elements.

Since this can be observed for each constituent element, it provides more information than the

reflection curve alone. However, X-ray fluorescence from thin films is so weak at grazing

incident angles that it was rarely used experimentally until SR became available. In this

section, we will describe a method of calculating the intensity of X-ray fluorescence. The

structure of a film can then be analyzed by comparing the experimental profile with the calculated results.

Kr61 et al . [53] developed a method for calculating the intensity of X-ray fluorescence from

multilayered samples, using Vidal and Vincent's treatment of matrices for calculating the

reflectivity. Consider a multilayered material shown in Fig. 2-62. Layer j is located above the

Page 163: Analytical Spectroscopy Library_VOL 7

154

�9 v,,,4 ;>.

. v - , I

0 1 0 . . . . . .

-1 1 0 -

- 2 1 0 -

10 -3 _

- 4 1 0 -

- 5 1 0 -

~ , . o" = 20/~ Ni surface o n a

"'": ( ~ = 0 on an interface between Ni and Si )

�9 ; , . \ : ' ' , , . . , , " _ ' ~

I I I I 0 5 10 15 2 0

G l a n c i n g ang le / m r a d

;>

r O

O

0 1 0 -

-1 1 0 -

- 2 1 0 -

10 -3 _

- 4 1 0 -

- 5 1 0

. . . . . . _ . . . . . . _ _ _ _

~ = 20]k on an interface between Ni and Si

" "J ~i

m ,

I i I I 0 5 1 0 1 5 2 0

Glancing angle / mrad

Fig. 2-61. The calculated reflection curves of a Ni thin film (thickness = 300 A) on a silicon

substrate. Dotted lines indicate the case of neither interface nor surface roughness.

Solid lines indicate the case of either surface or interface roughness: the upper

figure shows values for a Ni surface where (r = 20 ~, and the lower figure shows

values for an interface between Ni and Si where o" = 20/~.

j-th interface. If S polarization is assumed, then transmitted X-rays Ej § and reflected X-rays

Ej- are expressed by

Ef (x,z) = Aj exp(ipjz) exp(ikoxx)

E](x,z) = Bj exp(-ipjz)exp(ikoxx)

(2-77)

(2-78)

Page 164: Analytical Spectroscopy Library_VOL 7

155

kjx = kj cosOj = kj+lCOSOj+ 1 = kj+l, x = kox pj = kj sinOj + iaj = (kZn 2 - gn2cos20) l /2

(2-79)

(2-80)

where Aj, Bj, and pj are complex quantities, and kj and aj are the magnitudes of the real and imaginary parts, respectively, of the complex wave vector. Refer to Fig. 2-62 for Oj. The

complex wave vector for layer j is expressed by k02n~, using the complex refractive index,

where k0 is the wave number (2~/~) of the incident X-rays and 0 their glancing angle. If the

matrix connecting the electric fields above and below the j-th interface is lj, then

l e;(zj) ei( j)

l(1 ~j rj l

Ej++l(ZJ) t t Ej++l(Zj)=lj Ei+l(Zj) E;+l(Zj)

(2-81)

where rj and tj are the Fresnel coefficients of reflection and refraction, respectively.

E-~ (Zo ) E+ (Zo )

�9 Air or vacuum

" nj o. o. j-th interface

nj+l Ej+I(Zj ) + - Ej+I(Z j )

E + (ZN) E N (ZN)

z

nN

ns Substrate

Fig. 2-62�9 Schematic representation of electric fields of a multilayered material.

Page 165: Analytical Spectroscopy Library_VOL 7

156

The matrix, Tj+I (Z -Z j ) , that connects the z coordinate, zj, at the j-th interface with a point z inside the layer, (/+1) (zj< z< Zj+l), is determined as follows:

I Ej++I(ZJ)~ exp[-ipj+,(z-zj)] 0

Ej+1(zj) Tj+,(z-zj)

exp[ipj+ l(Z-Zj)] E j+ 1 (Z) E;+I(Z ) I (2-82)

E;+l(Z)

Matrix Sj corresponds to the roughness of the j-th interface:

e;-r}e; rj (e;-e;) ) SJ = l-~r~ rj(ef-ef ) ef-r~ef e+=exp[-(Pj+l +pj)24[2 ] ef =ext~-(Pj+l -pj)24]2 ]

(2-83)

(2-84)

(2-85)

where crj denotes the roughness parameter of the j-th interface.

From Eqs. (2-81)-(2-83), the following relation is obtained:

( ) = Ei(zj~ Ei+,(z)

(2-86)

If the matrix that connects the electric field at the substrate with the electric field at the interface between the surface and the air or vacuum is PON, then

PoN=( pl0N pl~ p201N ON P22

(2-87)

If this matrix is calculated, we can obtain

E~(zo)) = PON

Eo(zo) E+(ZN)

0 (2-88)

where Es+(ZN) is the value of the electric field inside the substrate. The reflectivity

l eo(Zo)/e~(zo ~ I ~ can be obtained by calculating [ p2~ ' / pl~

Page 166: Analytical Spectroscopy Library_VOL 7

157

The electric field at z, (Zj_ 1 < Z < Zj), Can be determined using matrix PiN, defined as shown

below. If

PjN = IjSj T j + I ( Z j + I - Z j ) - " �9 INSN (2-89)

then

ET(z)

E;(z) =Tj(zTz) Pju(e+s(ZU)o) (2-90)

Es+(ZN) can be expressed as follows using the electric field of the incident X-rays, Ei.

E+(zN) = E~(zo____.._~) = E__i_i (2-91) p l ON p l ON

Equations (2-89)-(2-91) make it possible to determine the electric fields in individual layers

and in the substrate. Also, using Maxwell's equations, and taking the permeability/lj - 1, the magnetic field can

be expressed by

- - / k o

Hjy(Z) = 0

- +

(2-92)

(2-93)

(2-94)

In order to calculate the X-ray fluorescence intensity, the time average of the density of the energy flow, i.e., the Poynting vector P(z), must be determined.

P(z) = C(Re(ExH*) ) (2-95)

where Re is the real part; (), the time average; H*, the complex conjugate of H; and C, the multiplicative constant. Substituting the electric and magnetic fields for the corresponding variables provides the components of the Poynting vector. We now describe the calculation of

the intensity of X-ray fluorescence from a given layer. The excitation efficiency, fluorescence

yield, and absorption of X-ray fluorescence are ignored. With this simplification, all we have

to know is the intensity of the incident X-rays required to excite X-ray fluorescence in layer j.

It is necessary also to subtract the X-rays that penetrate the sample without being reflected by

the surface, those absorbed by layers up to j - l , as well as those going into layer j+ 1. The X- ray fluorescence intensity, for z from zero to zj_l, is given by

Page 167: Analytical Spectroscopy Library_VOL 7

158

[ Yj=C 1 - R - I = I k sin [~z/c)]Pi0(z) J

tan ~j = Pjz/Pjx

(2-96)

(2-97)

where Pi0 represents the incident X-ray flux, R the reflectivity, ~j the direction of Poynting

vector Pj(z), and Pjx and Pjz the x and z coordinate components, respectively, of Pj(z). The

quantity ~)j is different from Oj representing the direction of propagation of the electric field

[see Eq. (2-80) and Fig. 2-62]. Then, the X-ray fluorescence intensity from layer j can be expressed by

Yj+I- Yj (2-98)

In the next section, we will discuss examples of thin film analysis using both the angular

dependence of reflectivity and of X-ray fluorescence intensity. The analysis was performed by

comparing the results of a SR experiment with the reflection curve and X-ray fluorescence

profile obtained by the method of Kr61 et al [53].

2.5.7. Characterization of titanium and

wafers

carbon-titanium thin films on silicon

The angular dependence of reflectivity and X-ray fluorescence intensity, measured and

analyzed using the grazing incidence method, is described in the following [60, 61 ].

The two samples used were a titanium thin film deposited on a silicon wafer by a sputtering method, and a carbon-titanium thin film also sputtered on a silicon wafer. Parts of these

samples were cut off and heated in argon. The experiment was conducted using Beamline 4A at the Photon Factory. A Si (111) double-crystal monochromator was used to

monochromatize 10 keV X-rays, which were shaped into a beam of less than 0.1 mm in height

and 2 mm in width by passing them through a slit. The intensity of the incident and reflected

X-rays was measured with an ionization chamber, and the intensity of X-ray fluorescence with

a Si(Li) detector.

Figure 2-63 shows the reflection curve measured for the titanium thin film. It reveals that the

period of the oscillations is reduced after heat treatment. This suggests that high temperatures

thicken titanium layers. However, since the amount of titanium remains the same, this effect is

believed to be caused by titanium silicide formation during heat treatment. The observed X-ray

fluorescence profiles are shown in Fig. 2-64.

An attempt was made to create an optimum model by comparing the results with the

calculations done by Kr61 et al. [53]. Curves calculated for a metallic titanium thin film, which

was not heat-treated, shown in Fig. 2-65, did not agree with the experimental results.

Therefore, the model was modified to fit the reflection curve and X-ray fluorescence profile,

with the assumption that additional layers were formed on the surface and interface. Figure 2

Page 168: Analytical Spectroscopy Library_VOL 7

159

"r.

8

Heat treatment temperature

/ ' / \ 50~

" 1 - x V " ' "

Without heat treatment

f f f

4 5 6

Glancing angle / mrad

Fig. 2-63. Experimental reflection curves for Ti on Si wafer samples (with and without

heat treatment). Heat treatment temperatures �9 250~ 500~ and 750~ From

Ref. [60], reprinted by permission of Plenum Publishing Corp., New York.

I (d)

~i (c)

*w~

8

3 4 5 6 7 Glancing angle / mrad

Fig. 2-64. Ti Ktx fluorescence intensity profiles for Ti on Si wafers. Without heat treatment

(a); and with heat treatment at 250~ (b), at 500~ (c), and at 750~ (d). From

Ref. [60], reprinted by permission of Plenum Publishing Corp., New York.

Page 169: Analytical Spectroscopy Library_VOL 7

160

�9 ~,,,I

o v , , ~

e~

3 7

i

i

4 5 6

Glanc ing angle / mrad

�9 I,,,,,I

�9 1,,,,,I

j ~ 1 7 6 o . . , .

f ~ " t

"" I I 4 5 6 7

Glancing angle / mrad

Fig. 2-65. Comparison of the calculated curves (broken lines), based on the model, with the

experimental reflection curve and Ti Ktx fluorescence profile.

�9 ~,,,I

. . . . . . - . . . . . . Calc.

2 4 5 6

Glanc ing angle / mrad

.=.

7 7

. . . j Exp.

I I I 3 4 5 6

Glanc ing angle / mrad

Fig. 2-66. Comparison between the experimental results for the sample without heat treatment and the calculations based on the model for a Ti0.42Oo.58 (11 nm)/Ti (43 nm)/ TiSi2 (6 nm)/ silicon substrate. For the oxide layer tS= 9.16x10 -6, fl = 3.55x10-7;

for the titanium t~ = 8.56x10 -6, fl = 4.84x10-7;

for the silicide t~ = 8.08x10 -6, fl = 2.67x10-7; and

for the silicon substrate d; - 4.75xl 0 -6, fl = 7.42xl 0 -8.

From Ref. [60], reprinted by permission of Plenum Publishing Corp., New York.

Page 170: Analytical Spectroscopy Library_VOL 7

161

-66 shows that the calculated curves based on this modified model are in good agreement with

the experimental ones. The thickness, concentration, and density of each layer were

determined. From these results, the total amount of titanium was calculated to be 24 l.tg cm -2,

a value that agrees well with that determined by chemical analysis. Analysis of heat-treated

samples revealed that transition layers on the surface and interface had been eliminated; a thick,

homogeneous silicide layer had been formed instead.

The experimental results for the thin film sputtered with carbon-titanium, before heat

treatment, are shown in Fig. 2-67. The reflection curve shows two critical angles. The small

one is that of carbon and the large one that of titanium. The X-ray fluorescence profile detected the Ka line of iron. Although iron is an impurity, analysis must take its existence into

consideration. Assuming a carbon-titanium two layered structure, it was found that the sample

had a surface roughness of 50/~, a carbon layer density of 1.7 g cm -3, and a titanium silicide

(65% Ti and 35% Si) layer with a density of 4.4 g cm-3. The density of the carbon layer was

considerably smaller than that of graphite (2.26 g cm-3). However, as shown in Fig. 2-68,

there is a significant difference between the experimental and calculated reflection curves in the

vicinity of the critical angles. Therefore, it was necessary to once again incorporate transition

layers into the model. The curve from the experimental results and the curve which resulted

when the transition layers were incorporated in the model are shown in Fig. 2-69. This

modification suggests that there are two high-density transition layers (carbon, p = 2.0;

carbon, p = 1.7) near the surface. The total concentration of iron contained in each of the three

;>

O

I I 2 3 4 5 6

Glancing angle / mrad

!

I

I I

7

~ , TiKtx FeK~ = . m~ = (t.24

I I I I I 2 3 4 5 6 7

Glancing angle / mrad

Fig. 2-67. Experimental results for the carbon and titanium sputtered sample without heat

treatment. From Ref. [60], reprinted by permission of Plenum Publishing Corp.,

New York.

Page 171: Analytical Spectroscopy Library_VOL 7

162

1.0

.~n-I

0.5

1 2 3 4 5 6

Glancing angle / mrad

Fig. 2-68. Comparison of the experimental reflection curve (bold line) with the calculated

curve; the sample is assumed to be carbon (280nm) / Ti0.65Si0.35/ silicon substrate [61 ]. The carbon layer contains iron as an impurity. The values of t~ and fl

of the carbon layer are affected by iron. For the carbon layer t5 = 3.45x10 -6, fl =

2.57x10 -8 and for the silicide layer t~= 8.46x10 -6, t = 3.57x10-7.

carbon layers was 2%, which is in good agreement with the value determined from the X-ray

fluorescence intensity. The results of the 250~ heat treatment sample, shown in Fig. 2-70, indicate much steeper curves near the critical angles, in the reflection curve and in the Fe Ks

fluorescence profile. This suggests that the two high-density transition layers previously

mentioned have been eliminated during heat treatment. In the 750~ heat treatment sample

shown in Fig. 2-71, the titanium fluorescence profile is similar in pattern to the iron

fluorescence profile. These similar patterns point to the formation of a homogeneous

monolayer on the silicon substrate surface.

We have shown that measurements of the reflection curve and X-ray fluorescence profile at

grazing incident angles provide an excellent method for analyzing thin films. The benefits of

this method are that it is nondestructive, and that sample composition, thickness, density and

elemental concentration can be determined. Although still used in very few studies of this

kind, SR is expected to be widely employed in the near future.

Page 172: Analytical Spectroscopy Library_VOL 7

163

20nm

20 nm

Carbon

S=4.14 x 10 ~ f l = 4 . 1 0 x 10 -8 , , p - 2 . 0 Carbon

S = 3 . 4 7 x 1 0 -4, f l = 3 . 4 4 x l O 4, 0 = 1 . 7

260 nm

23 nm

Carbon

S 3.13 x 10-6 = , f l = 2 . 5 7 x 10 4 , p = 1.5

Titanium silicide

t5 = 8.46 x 10 -6, fl = 3.57 x 10-7,/9 - 4.35

Silicon substrate

1.0

o~,~

0.5

1 2 3 4 5 6

G l a n c i n g angle / m r a d

Fig. 2-69. Comparison of the experimental reflection curve (bold line) with the calculated

curve [61].

Page 173: Analytical Spectroscopy Library_VOL 7

164

Reflection curve

"7.

I I 2 3 4 5

Glancing angle /mrad

~ v...~

Ti Ko~ fluorescence profile ]

I I I

Fe Ko~ fluorescence profile

m

2 3 4 6 7

Glancing angle / mrad

Fig. 2-70. Experimental results for the samples without heat treatment (bold line) and with heat treatment at 250~ From Ref. [60], reprinted by permission of Plenum Publishing Corp., New York.

~ TiKo~

. ~ , , I

e~

r ~

O

I I I I i i I 3 4 5 6

Glancing angle / mrad

Fig. 2-71. Comparison of the Ti Kcx fluorescence profile with the Fe Ko~ fluorescence profile

using the 750~ heat-treated C / Ti / Si substrate sample. From Ref. [60], reprinted by permission of Plenum Publishing Corp., New York.

Page 174: Analytical Spectroscopy Library_VOL 7

165

2.6. PROSPECTS FOR FUTURE DEVELOPMENT

With the advent of a third generation high-brilliance synchrotron source, and further

extensive use of insertion devices, we can expect further advances in X-ray fluorescence

analysis. We will discuss two such prospects: bulk analysis and surface analysis. The former

mainly uses monochromatic excitation XRF, and the latter is based on the total reflection of X-

rays.

2.6.1. Bulk analysis

Heavy element analysis

Since conventional X-ray methods using ordinary tube excitation cannot provide sufficiently

high excitation energy, researchers have been forced to use L- or M-series X-rays to analyze

lanthanoids and actinoids. Compared with K-series X-rays, these characteristic X-rays have

an intensity at least one order of magnitude lower and suffer from considerable interference

because of closely arranged spectral lines, which result because the X-rays have small energy

level differences. Furthermore, the energy region where these spectral lines are observed

includes the characteristic X-rays of common, smaller atomic number elements (the third and

fourth period elements). This results in a complex spectrum and makes accurate analysis even

more difficult.

Generally speaking, higher energy analyte lines reduce interference because their excellent

penetrating powers decrease absorption by a matrix. Also, since no naturally occurring

elements emit L-series lines of more than 20 keV, use of K-series lines has great advantages

for the analysis of elements heavier than rhodium, both in precision and in sensitivity.

Uranium is a good example. The K absorption edge of this element is approximately 115.6 keV. Therefore, if it were possible to excite uranium using an X-ray source with a higher

energy level than 115.6 keV, analysis of uranium with very little interference would be

possible. Consider another example. The K absorption edge of neodymium, used in materials

such as laser glass, is at about 43.6 keV. If it were possible to excite it with X-rays of more

than 50 keV, sufficient excitation efficiency would be achieved to conduct analysis of its trace quantities. In fact, an analysis of rare earth elements with K-lines, using VEPP-4 at

Novosibirsk, equipped with a high-energy ring (5 GeV), detected amounts lower than ppm

[62].

XRF using soft X-ray excitation

X-ray fluorescence of second period elements (superlight elements) causes the release of a

very small number of photons, compared with the number of photoelectrons and Auger

Page 175: Analytical Spectroscopy Library_VOL 7

166

electrons observed. Also, the energy required for them to fluoresce is very low. These

characteristics pose difficult problems for fluorescence measurement which uses an ordinary

X-ray optical system. However, if the optical system is improved, and radiation from a large

scale ring and an undulator combination is used as an excitation source, it will make the system

sensitive enough for bulk analysis of these elements. This was tried at the Photon Factory,

where an experiment has been reported using the undulator as the excitation source and a

synthetic multilayer as the optical element [63].

Absolute (standardless) method

The energy tunability and excellent collimation of SR are indispensable for accurate

elucidation of the excitation and emission mechanisms of X-ray fluorescence, and for

clarifying the interactions between analyte lines and any spectral lines emitted by elements

other than analytes. Development of these analysis techniques will open up the possibility of

an absolute method: i.e., a quantitative technique that requires no reference standard. When it

is freed from reference standards, XRF will not be affected by the precision and accuracy of

reference samples which have to be standardized by other methods such as chemical analysis.

This will permit not only highly reliable ultratrace analysis, but also highly accurate measurements of the stoichiometric relationships of unknown substances.

An example of analysis without standard references, based on the characteristics of SR, is a

study by Bowen et al. [64]. They determined the concentration of As contained in a silicon

sample ion-implanted with As, simply by measuring As and Si X-ray fluorescence intensities

of the sample. They assumed a Gaussian distribution for the As concentration, and based the

quantitative analysis on fluorescence yields and absorption coefficients available in the

literature.

2.6.2. Surface analysis

Excitation sources with higher brilliance, and improved measuring equipment and optical

systems, will certainly combine to yield determination limits in the order of ppt (10-12 g g-l)

and femtogram quantities (10 --15 g) using TXRF. As the use of SR increases, the structural

analysis of thin films as described in Section 2.5 will also be employed to evaluate the surfaces

and interfaces of various advanced materials. Recently, the X-ray standing wave method has received considerable attention as a total

reflection surface analysis technique. It has been found to be useful for determining the

structures of ultrathin organic films [65] and diffuse layers on liquid-solid interfaces [66].

This method is based on the phenomenon of diffraction and the accompanying oscillations in

X-ray fluorescence intensity. In experiments, the angular dependence of the fluorescence

intensity is measured and analyzed. Thus, depth profile analysis using X-ray standing waves

has provided an experimental means of researching interfaces, an area that was previously only

investigated theoretically.

Page 176: Analytical Spectroscopy Library_VOL 7

167

As discussed above, the use of SR as an excitation source is creating a new range of possibilities. XRF, even itself, has made analysis more sensitive and has helped in the development of structural analysis techniques. In the future, SRXRF will provide more useful

information for the characterization of a wide range of advanced materials.

REFERENCES

1. C. J. Sparks, Jr., "Synchrotron Radiation Research", ed. H. Winick and S. Doniach,

Chap. 14, p. 459, Plenum Press, New York, 1980.

2. V. Baryshev, G. Kulipanov and A. Skrinsky, "Handbook on Synchrotron Radiation ",

ed. G. S. Brown and D.E. Moncton, Vol. 3, Chap. 16, p. 639, North-Holland,

Amsterdam, 1991. 3. A. Iida and Y. Gohshi, "Handbook on Synchrotron Radiation ", ed. S. Ebashi, M. Koch

and E. Rubenstein, Vol. 4, Chap. 9, p. 307, North-Holland, Amsterdam, 1991.

4. P. Horowitz and J. A. Howell, Science (Washington, D.C.), 178, 608 (1972).

5. C. J. Sparks, Jr., S. Raman, H. L. Yakel, R. V. Gentry and M. O. Krause, Phys. Rev.

Lett., 38, 205 (1977).

6. C. J. Sparks, Jr., S. Raman, E. Ricci, R. V. Gentry and M. O. Krause, Phys. Rev. Lett., 40, 507 (1978).

7. J. V. Gilfrich, E. F. Skelton, S. B. Qadri, J. P. Kirkland and D. J. Nagel, Anal. Chem.,

55, 187 (1983). 8. A. L. Hanson, H. W. Kraner, K. W. Jones, B. M. Gordon, R. E. Mills and J. R. Chen,

IEEE Trans. Nucl. Sci., NS-30, 1339 (1983).

9. A. Kn6chel, W. Petersen and G. Tolkiehn, Nucl. Instrum. Methods Phys. Res., 208,

659 (1983). 10. A. J. J. Bos, R. D. Vis, H. Verheul, M. Prins, S. T. Davies, D. K. Bowen, J. Makjani6

and V. Valkovi6, Nucl. Instrum. Methods Phys. Res., Sect. B, B3, 232 (1984).

11. A. Iida, K. Sakurai, T. Matsushita and Y. Gohshi, Nucl. Instrum. Methods Phys. Res.,

228, 556 (1985).

12. B. M. Gordon, Nucl. Instrum. Methods Phys. Res., 204, 223 (1982).

13. P. W. J. M. Boumans, P. Wobrauschek and H. Aiginger, (ed.), Proceedings of the

Third Workshop on TXRF, Vienna, May 1990, Spectrochim. Acta, Part B, 46B,

1313-1436 (1991).

14. P. W. J. M. Boumans and A. Prange, (ed.), Proceedings of the Fourth Workshop on

TXRF, Geesthacht, May 1992, Spectrochim. Acta, Part B, 48B, 107 - 299 (1993).

15. Y. Yoneda and T. Horiuchi, Rev. Sci. Instrum., 42, 1069 (1971).

16. A. Iida, A. Yoshinaga, K. Sakurai and Y. Gohshi, Anal. Chem., 58, 394 (1986).

17. A. Iida, K. Sakurai, A. Yoshinaga and Y. Gohshi, Nucl. Instrum. Methods Phys. Res.,

Sect. A, A246, 736 (1986).

Page 177: Analytical Spectroscopy Library_VOL 7

168

18. H. Hashimoto, H. Nishioji, H. Saisho and A. Iida, Adv. X-Ray Chem. Anal. Jpn., 20, 143 (1989).

19. B. M. Lairson and D. H Bilderback, Nucl. Instrum. Methods Phys. Res., 195, 79

(1982).

20. A. Iida, T. Matsushita and Y. Gohshi, Nucl. Instrum. Methods Phys. Res., Sect. A, A235, 597 (1985).

21. B. W. Batterman and H. Cole, Rev. Mod. Phys., 36, 681 (1964).

22. T. Matsushita and H. Hashizume, "Handbook on Synchrotron Radiation ", ed.

E.-E. Koch, Vol. la, Chap. 4, p. 273, North-Holland, Amsterdam, 1983.

23. H. Oyanagi, "Photon Factory Activity Report 1989", KEK, Tsukuba, 1990, p. I-4.

24. C. J. Sparks, Jr., B. S. Bode and J. B. Hastings, Nucl. Instrum. Methods, 172, 237

(1980). 25. C. J. Sparks, Jr., G. E. Ice, J. Wong and B. W. Batterman, Nucl. Instrum. Methods

Phys. Res., 194, 73 (1982).

26. B. W. Batterman and L. Berman, Nucl. Instrum. Methods Phys. Res., 208, 327 (1983).

27. See, for example, H. Takenaka, Y. Muramatsu, H. Takaoka, Y. Ishii and H. Hashizume,

Rev. Sci. Instrum., 60, 2018 (1989). 28. T. Matsushita, T. Ishikawa and H. Oyanagi, Nucl. Instrum. Methods Phys. Res., Sect.

A, A246, 377 (1986). 29. H. Winick, "Synchrotron Radiation Research", ed. H. Winick and S. Doniach, Chap. 2,

p. 11, Plenum Press, New York, 1980. 30. H. Saisho and H. Hashimoto, "Trace Analysis (in Japanese) ", ed. K. Kurosaki and F.

Konishi, Chap. 9, p. 245, Kodansha, Tokyo, 1988. 31. H. Saisho, Trends Anal. Chem., 8, 209 (1989). 32. W. H. McMaster, N. Kerr Del Grande, J. H. Mallett and J. H. Hubbell, "Compilation of

X-Ray Cross Sections", UCRL-50174 Sec. II, Rev. 1, University of California,

Livermore, CA, 1969.

33. S. Sasaki, "X-Ray Absorption Coefficients of the Elements (Li to Bi, U)", KEK Report

90-16, November 1990, M/D, KEK, Tsukuba, 1990. 34. W. Bambynek, B. Crasemann, R. W. Fink, H.-U. Freund, H. Mark, C. D. Swift, R. E.

Price and P. V. Rao, Rev. Mod. Phys., 44, 716 (1972).

35. A. L. Hanson, Nucl. Instrum. Methods Phys. Res., Sect. A, A243, 583 (1986).

36. F. S. Goulding and J. M. Jaklevic, Nucl. Instrum. Methods, 142, 323 (1977).

37. L. A. Cunie, Anal. Chem., 40, 586 (1968). 38. R. D. Giauque, J. M. Jaklevic and A. C. Thompson, Anal. Chem., 58, 940 (1986).

39. A. Kn6chel, W. Petersen, G. Tolkiehen, Anal. Chim. Acta, 173, 105 (1985).

40. K. W. Jones, B. M. Gordon, A.L. Hanson, J.B. Hastings, M.R. Howells, H.W.

Kraner and J. R. Chen, Nucl. Instrum. Methods Phys. Res., Sect. B, B3, 225 (1984).

41. S.R. Sutton, M. L. Rivers and J. V. Smith, Anal. Chem., 58, 2167 (1986).

42. J. M. Jaklevic, R. D. Giauque and A. C. Thompson, Anal. Chem., 60, 482 (1988).

43. M. Born and E. Wolf, "Principles of Optics", Pergamon Press, New York, 1980.

Page 178: Analytical Spectroscopy Library_VOL 7

169

44. P. A. Pella and R. C. Dobbyn, Anal. Chem., 60, 684 (1988).

45. H. Hashimoto, Y. Iida, H. Saisho and H. Nishioji, Anal. Sci. [Supplement], 7, 577 (1991).

46. C. J. Sparks, Jr., Adv. X-Ray Anal., 19, 19 (1976).

47. A. Iida, K. Sakurai and Y. Gohshi, Adv. X-Ray Anal., 31, 487 (1988).

48. J. M. Bloch, M. Sansone, F.Rondelez, D. G. Peiffer, P. Pincus, M. W. Kim and P.M.

Eisenberger, Phys. Rev. Lett., 54, 1039 (1985).

49. H. Kiessig, Ann. Phys. (N.Y.), 10, 715 (1931).

50. L. G. Parratt, Phys. Rev., 95, 359 (1954).

51. L. N6vot and P. Croce, Rev. Phys. Appl., 15, 761 (1980).

52. B. Vidal and P. Vincent, Appl. Opt., 23, 1794 (1984).

53. A. Kr61, C. J. Sher and Y. H. Kao, Phys. Rev. B, 38: Condens. Matter, 8579 (1988).

54. T. C. Huang and W. Parrish, Adv. X-Ray Anal., 35, 137 (1992).

55. K. Sakurai and A. Iida, Jpn. J. Appl. Phys., 31, L113 (1992).

56. M. Gentry, J. Durand, M. Erman, J. B. Theeten, L. N6vot and B. Pardo, Appl. Surf. Sci., 44, 309 (1990).

57. A. Kr61, C. J. Sher, D. R. Storch, S. C. Woronick, Y. H. Kao, L. L. Chang and H.

Munekata, Surf. Sci., 228, 108 (1990).

58. A. Kr61, H. Resat, C.J. Sher, S. C. Woronick, W. Ng, Y. H. Kao, T. L. Cole, A. K.

Green, C. K. Lowe-Ma, T.-W. Nee and V. Rehn, J. Appl. Phys., 69, 949 (1991).

59. S. M. Heald, H. Chen and J. M. Tranquada, Phys. Rev. B, 38: Condens. Matter, 1016

(1988).

60. H. Hashimoto, H. Nishioji and H. Saisho, Adv. X-Ray Anal., 35, 807(1992).

61. H. Hashimoto, H. Nishioji and H. Saisho, "Proceedings of the International Conference on Materials and Process Characterization for VLSI, 1991(ICMPC "91)", ed. X.F. Zong, Y. Y. Wang and X. Y. Gu, p. 592, National Microanalysis Center for Microelectronic Materials & Devices, Shanghai, October 1991.

62. V. B. Baryshev, A.E. Gilbert, O.A. Kozmenko, G.N. Kulipanov and K.V.

Zolotarev, Nucl. Instrum. Methods Phys. Res., Sect. A, A261, 272 (1987). 63. A. Iida, Y. Gohshi and H. Maezawa, Adv. X-Ray Anal., 29, 427 (1986).

64. D. K. Bowen, S. T. Davies and T. Ambridge, J. Appl. Phys., 58, 260 (1985).

65. M. J. Bedzyk, G. M. Bommarito and J.S. Schildkraut, Phys. Rev. Lett., 62, 1376 (1989).

66. M.J. Bedzyk, G. M. Bommarito, M. Caffrey and T. L. Penner, Science (Washington,

D.C.), 248, 52 (1990).

Page 179: Analytical Spectroscopy Library_VOL 7

This Page Intentionally Left Blank

Page 180: Analytical Spectroscopy Library_VOL 7

Applications of Synchrotron Radiation to Materials Analysis H. Saisho and Y. Gohshi (Editors) �9 1996 Elsevier Science B.V. All rights reserved. 171

CHAPTER 3

MICROBEAM AND STATE ANALYSIS

CHEMICAL

Shinjiro HAYAKAWA and Yohichi GOHSHI

Depar tmen t of Appl ied Chemistry , Faculty of Engineering, Univers i ty of

Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo 113, Japan

3.1. INTRODUCTION

Since the discovery of X-rays, X-ray microscopy has received great attentions because of

its potential in realizing the highest spatial resolution of all the types of light microscopes. A

number of types of X-ray microscopes have been designed since the 1950s [1,2]. However,

there have been few attempts to make them, and the performance of these microprobes has been

poor because the requirements for the optical elements were far beyond the technologies

available at the time. Most of the X-ray microscopes which use a conventional X-ray source

have been of the imaging type ( the projection type ) because the acceptance, or aperture, of

the grazing-incidence optics is too small to realize the small intense X-ray beam which is

needed as a probe beam for a scanning X-ray microscope or an X-ray microprobe.

The advent of synchrotron radiation (SR) as a light source for use in materials science has

changed the situation. Horowitz and Howell were the first to fabricate a scanning type SR X-

ray microscope with analytical capabilities [3,4]. Figure 3-1 shows a schematic layout of their

microscope. Because of the small divergence of the SR, X-ray focusing optics could be used

effectively to achieve the photon flux density. Fabrication of an ellipsoidal or a toroidal figure

was difficult, so a bent cylindrical mirror was used instead [5]. The size of the resultant beam

spot was 1 mm x 2mm in the vertical and horizontal directions. To realize sub-mm spatial

resolution, a small pinhole of 2 ~tm diameter was placed in front of the sample. The advantage

of the scanning X-ray microscope is its ability to detect various types of signals from a sample,

and X-ray images were demonstrated with transmitted X-rays and fluorescence X-rays.

Although the idea of the analytical X-ray microprobe was excellent, its analytical capability

was limited to elemental analysis because the microprobe used "white" SR. Furthermore,

there were difficulties in improving its spatial resolution of the X-ray microprobe. There

have been great improvements in the spatial resolutions of electron and ion microscopes as a

Page 181: Analytical Spectroscopy Library_VOL 7

172

result of progress in the focusing of charged particles. Because electrons and ions can be used

as primary beams for X-ray emission analysis, an electron probe microanalyzer with an X-ray

detection system can be regarded as an X-ray microanalyzer.

The importance of the SR X-ray microprobe has been recognized widely since Sparks

demonstrated the feasibility of using monochromatized SR X-rays for X-ray fluorescence

analysis, as described in the preceding Chapter. Sparks has calculated the expected

performance of the SR X-ray microprobe in terms of the trace sensitivity. The heat load on a

sample was also compared for SR X-ray-, electron-, and proton microprobes [6]. Recently,

several types of SR X-ray microprobes have been realized. They are used in materials science,

and the advantages of SR X-ray microscopy are well recognized. These advantages are not

limited to their trace-sensitivity but also apply in chemical state analysis. Moreover, the

importance of the X-ray microprobe is widely understood as being a fundamental excitation

technique for various X-ray analyses. In this Chapter, the design considerations and reported

performance of the analytical SR X-ray microprobes are reviewed. In addition to the analytical

X-ray microprobe, which mainly employs hard X-rays, there is great progress with soft-X-

ray microscopes for the observation of biological sections. For information on the soft-X-ray

microscope the reader is referred to recent conference proceedings[7-9].

ctron synchrotron X,Y,Z mechanical stage l,,,,,,Sample holder

Gas-filled \ ~ ~ Vacuum Air " " / ~ l / . ~ " ~ proportional counter

Synchrotron ~ . ~ ~ ~ radiation ~ 4 ~ ] ~ ~ . _ _

X-ray condensing mirror 10 #m | beryllium | window "

Pinhole in lOOmm gold

X,Y transducer

Beam stop

Pulse amplifier Energy discriminator

0 Oscilloscope display

Fig. 3-1. A prototype of a scanning X-ray microscope by Horowitz and Howell [3].

Page 182: Analytical Spectroscopy Library_VOL 7

173

3.2. X-RAY FOCUSING OPTICS

In this Section, the background for the design of SR X-ray focusing optics will be

described. Since the 1950s, there have been several important papers about X-ray image-

forming optics. Their most important characteristic is the beam size which is obtainable.

However, in the analytical sense, the obtainable photon flux or the gain in photon flux density

also have great importance.

3.2.1. X-ray optical elements

The X-ray optical elements and their applicable energy ranges are shown in Table 3-1. For

the hard X-ray region, the optical elements are limited to crystals, multilayers and total-

reflection mirrors. Crystals and multilayers are used with glancing angles which satisfy the

Bragg condition. Total-reflection mirrors are used with glancing angles less than 1 degree for

hard X-rays. Although the difference in the glancing angles required for the total-reflection

mirror and the crystals and multilayers is large, the optical systems composed of these optical

elements use the grazing incidence geometry.

Table 3-1

X-ray optical elements and applicable energy ranges which are commonly used.

Optical element Function Applicable energy range

Total-reflection mirror Reflective ~ 20 keV

Multilayer Diffractive ~ 20 keV

Crystals Diffractive ~ 60 keV

Diffraction grating Diffractive ~ 1 keV

Zone plate Diffractive ~ 1 keV a

a Recently, several attempts have been made to fabricate hard-X-ray zone plates: fairly good

performance has been reported [ 10,11 ].

Page 183: Analytical Spectroscopy Library_VOL 7

174

3.2.2. Grazing incidence optics.

The parameters for grazing incidence optics are shown in Fig. 3-2. The optical axis lies

between the source S and the image I. The typical reflecting point is represented as P. The

plane including S, P and I is a meridional plane and the plane normal to this is a sagittal plane.

The radius of curvature of the reflector should be different for the meridional plane and the

sagittal plane when focusing the divergence from a point source with grazing-incidence optics.

With the distance between SP and PI, the famous mirror formula describes the radii of

curvatures in the meridional and the sagittal planes.

1/FI + I/F2= I/f (3-1)

f=Rmsin O/2=R s/(2sin 0) (3-2)

The magnification of the optics is defined as

M=F2/Fl =sina/sina' =a/a' (3-3)

By considering the nature of an ellipsoid, one can see that rays from one of the foci are

reflected and converged into another Iocus. It is evident that the ellipsoidal figure satisfies the

mirror formula at all the points on the surface. Moreover, the sum of distances from the foci is

constant at all the points on the ellipsoidal surface. Therefore the ellipsoidal mirror is ideal for a

point source, for both geometrical and wave optics.

When one is designing practical X-ray-focusing optics, one should consider a real source

having finite dimensions. One of the practical ways to evaluate the performance of the optics is

to use the ray-tracing method. The focused beam spot is expressed in terms of the sum of

intersections between rays and the screen at the image plane. Another way is to use the

theoretical descriptions which are classical but are suited to comparisons of optical systems. In

this method it is helpful to consider the point-spreading functions for point sources at on-axis

and off-axis positions. In the next Section, the performance of the optics is discussed, along

with the theoretical descriptions.

Page 184: Analytical Spectroscopy Library_VOL 7

175

e

$ -1

FI

$ 2

F 1 ~..~1 I

I p

m L s

Fig. 3-2. Parameters for a grazing incidence optical system: S(xs,Ys), I(xi, Yi) refer to

coordinates in the source plane and image plane, respectively; Lm, Ls are mirror

lengths in the meridional plane and sagittal plane; Rm, Rs are the radii of curvature

in the meridional plane and sagittal plane; 0 is the glancing angle; FI=S 1/cosa,

F2=S2/cosa'

3.2.3. Image formation of a point source

An ellipsoidal surface is ideal for use with a point source. However, the aspherical figure is

difficult to fabricate. Therefore a substitutional configuration is often employed. One methtxt

uses a toroidally shaped mirror which satisfies the mirror formula in its central part. Another

uses a Kirkpatrick-Baez mirror [12] which consists of two concave (or elliptical ) mirrors lk~r

Page 185: Analytical Spectroscopy Library_VOL 7

176

vertical and horizontal divergence, respectively (Fig. 3-3). With the concave mirror the beam

size is determined by the spherical aberration [ 12].

Figure 3-4 shows a cross section of a concave mirror in the meridional plane. Points S and I

are on the so-called Rowland circle. A ray SOI shows a principal ray. As other rays from a

point source S are not converging into point I, blurring of the image occurs in the image plane.

The size of the image in the meridional plane, Sm, is represented by the following

expressions.

Fig. 3-3. Kirkpatrick and Baez mirror [12]

j O

i i

s / !

I

P

jt i i

/

i J

J~ H I

i I" J

._-.-.--- "--- i . - - r e "," L,- ""

O

, I ' , s s �9

J s �9 s s �9

�9 1 jS s S ,,." F ~ / /

Fig. 3-4. (Left) Reflection of X-rays from a spherical mirror at small glancing angles. R is

the radius of a circular reflector. (Right) Details of ray intersections at the image

of a point source formed by a spherical mirror illuminated at a small glancing

angle [12].

Page 186: Analytical Spectroscopy Library_VOL 7

177

Sm=-3/2Ry2g(M) (3-4)

where

g(M)={( l+2a)M 2-1 }/(M+ 1)

a=~,/0

M=F2/F1

(3-5)

In focusing optics whose magnification is far less than unity, Sm can be regarded as

Sm=_3/2R.~2 (3-6)

If we consider a point source and a concave mirror of magnification M=I/10 with a

glancing angle of 8.4 mrad placed at a distance of 10 m from the source, the radius of the

curvature R must be 216 m. When the dimension of the mirror is 24 cm in the meridional

plane the focused beam has a finite size of 0.4 mm in the meridional plane even with the point

source. To reduce the spherical aberration while maintaining the acceptance, the glancing angle

must be larger to reduce the effective mirror size in the meridional plane.

3.2.4. I m a g e f o r m a t i o n of a real source

In considering the performance of the optical system with a real source of finite dimensions,

it is most convenient to think about the image of a point source placed at an off-axis position.

When the effects of an off-axis point can be neglected, the optical system should obey Abbe's

famous criterion, which is

sin a=sin a'= con st (3-7)

For grazing incidence optics, Abbe's criterion should be satisfied independently, both in the

meridional and sagittal planes. Figure 3-5 demonstrates that the Abbe's criterion cannot be

satisfied with single reflector and that it is easier to realize the criterion when double reflectors

are employed. Abbe's criterion suggests that the ellipsoidal mirror has limitations in covering a

large field of the view. The Wolter mirror was proposed in 1952 to overcome this limitation

[13,141.

Page 187: Analytical Spectroscopy Library_VOL 7

178

S I $ I

Fig. 3-5. Abbe's sine theorem. A comparison between single (Left) and double (Right)

reflectors.

3.2.5. Ellipsoidal and Wol te r m i r r o r s

The schematics of ellipsoidal and Wolter (type I) mirrors are shown in Fig. 3-6. For an

optical system having axial symmetry rays from a point source are equivalent wherever the

source is on the optical axis. To compare the performance of the two types of mirrors, traces

are shown for two rays from the displaced point source in the meridional plane. The meridional

ray crosses the image plane at the point Im and the sagittal ray crosses at the point Is.

For the ellipsoidal mirror, Im and Is come on opposite sides of the optical axis. With the

first order approximation about 0, the distance between two points can be expressed by

Imls=2Md (3-8)

where M is the magnification of the ellipsoidal mirror and d is the displacement of the point

source S 'from the optical axis. For the Wolter mirror, Im and Is fall in the same position. The

resultant images of the point source with rays of various directions are summarized in Fi g. 3-7.

When the point source is located on the optical axis the resultant image also becomes a point

shape for both cases. However, when the point source is displaced the resultant images are

quite different for the ellipsoidal and the Wolter mirrors. With the ellipsoidal mirror the

resultant image becomes an arc of radius Aid. The length of the arc is determined by the

portion of the annular aperture as indicated in Fig. 3-2. Using a Wolter mirror of ideal shape

the resultant image is a point shape.

Considering the real source of finite dimensions, the image obtained with the ellipsoidal

mirror becomes circular when more than half of the annular aperture is used. The radius of the

image is determined by the maximum displacement of the source from the optical axis. The

Page 188: Analytical Spectroscopy Library_VOL 7

179

Wolter mirror provides a uniform transformation, neglecting the higher order aberrations. The

results show that the Wolter mirror is not as sensitive to misalignment of the optical axis as is

the ellipsoidal mirror.

80 v ~ ~v

RCE z-~ SOU ~ ~ I M A G E r . . . . . ELLIPSOIDAL

Is

80

S ~ I ~ a'

j I ~ ~ z SOURCE

ELLIPSOIDAL MAGE

HYPERBOLOIDAL

Fig. 3-6. A schematic representation of, (a) ellipsoidal and, (b) Wolter mirrors. To show

the characteristics of these mirrors, meridional ( in plane) and sagittal (out of

plane) rays from a point source at the focus (S) and those from a displaced source

(S') are shown in the Figures.

Page 189: Analytical Spectroscopy Library_VOL 7

180

SOURCE IMAGE Ellipsoidal Wolter

x

y

k

Fig. 3-7.

Y Y

' ' " I l l " =

x • x

Comparisons of images between ellipsoidal and Wolter mirrors. From top to

bottom, a point source on the axis, a point source off the axis, and a real source

of finite dimensions. ~b represents the portion of the annular aperture as indicated

in Fig. 3-2.

3.2.6. Expected photon flux with an X-ray focusing system

For an analytical X-ray microprobe, both the spatial resolution and the sensitivity are

important. In order to estimate the photon flux expected with an X-ray focusing system the

brilliance of the source, B, the acceptance of the optics, and the reflectivity (or efficiency) of

Page 190: Analytical Spectroscopy Library_VOL 7

181

the optics should be considered. The acceptance can be defined as the divergence from the

source which can be received with the optics.

If we consider the grazing-incidence mirror shown in Figure 3-2, the vertical acceptance qJv

can be expressed in terms of the mirror length in the meridional plane (Lm) and 0, as

~Pv=Lmsin O/F1 (3-9)

For the ellipsoidal mirror, the horizontal acceptance ~Ph at the center of the mirror can be

expressed in terms of Rs and the half-width of the annular aperture, AR, as

~Ph=2V'((Rs+AR)2-Rs2)/F1 (3-10)

where

AR=Lmsin O/2 (3-11)

By considering the monochromatic X-rays of energy E from a synchrotron radiation source

of brilliance B, the expected incident photon flux to the optical system in a small divergence

from a source of unit dimensions can be expressed as

AP(E) =B a ~v k Wh (3-12)

The photon flux after the optical system can be given in terms of the reflectivity at the

mirror, R(E, 0), and the absorption through the optical path, A(E). Therefore, the photon flux

at the focus can be expressed as

P(E)=A(E) ~ ~ ~ S BR(E,O) d~Pvd~Phdxdy (3-~3)

If we neglect the angular distribution of the brilliance, the photon flux can be shown to be

P( E) =A ( E) B ~ crx cry R ( E, O) ~Pv ~P h (3-14)

where Ox and cry are the source size in the x and y directions. With a distance L between the

source and the focus, the approximate beam size without the focusing system is ~pvL and ~PhL

in the vertical and horizontal directions, respectively. Therefore, the intensity gain with the

optical system will be defined by

Page 191: Analytical Spectroscopy Library_VOL 7

182

G(E)=L2R(E, O)~Pv ~h/(S x' Sy ') (3-15)

where Sx' and Sy' represent the beam size at the focus. In general, the intensity gain is largely

affected by the acceptance of the optical system. Therefore, a larger glancing angle is

advantageous not only for the spherical aberration but also for the photon flux.

3.3. E X A M P L E S OF X - R A Y F O C U S I N G S Y S T E M S

3.3 .1 . I n t r o d u c t i o n

Characteristics of most of the X-ray focusing systems currently employed for X-ray

fluorescence microprobes are shown in Table 3-2. For the soft X-ray region there are several

types of optical systems which are successfully used for photoelectron microprobes. These

are mentioned in the following Sections. Most of optical systems are classified into two

categories; reflective optics and diffractive optics. A combination of reflective focusing optics

and a monochromator can produce an energy tunable X-ray microbeam while maintaining the

beam position. However, diffractive focusing optics can usually provide a higher photon flux

than can be obtained with the reflective optics because they can perform both as

monochromators and focusing devices of larger acceptance.

3.3.2. Ref lect ive optics

Figure 3-8 shows examples of reflective optics. By using a Wolter mirror a micron-sized

hard X-ray beam was first realized. However, effects of the surface roughness were also

indicated by the difference in beam size in the sagittal plane and meridional plane. In the

Kirkpatrick-Baez (K-B) mirror systems, crossed elliptical mirrors are used instead of the

concave mirrors, to eliminate spherical aberration. Although a spatial resolution of several

microns has been obtained with the Wolter and K-B mirrors, the fabrication of large

aspherical mirrors is still limited by technical difficulties. Therefore, the photon flux with

these optical systems is not sufficient for various types of analytical applications. In order to

optimize both the spatial resolution and the trace sensitivity a combination of the focusing

optics with the pinhole is employed, as was first demonstrated by Horowitz and Howell [3].

Figure 3-8(c) shows a microprobe system with an ellipsoidal mirror. In this case, the surface-

Page 192: Analytical Spectroscopy Library_VOL 7

183

finishing of the mirror was carried out by skilled technicians to achieve sufficient reflectivity

but at the sacrifice of the accurate contour.

Table 3-2 X-ray focusing systems for X-ray fluorescence microprobes in the hard X-ray

region. DCM, double crystal monochromator; CCM, channel cut monochromator; SMM,

synthetic multilayer monochromator

Source Optics Beam size Photon energy Refs.

PF

Wolter mirror 1.6 ~tm x 34 ~tm 8keV 15, 16 tunable(DCM)

K-B mirror 3.8 ~tm x 1.7 ~tm 5.4 keV 17, 18 tunable(CCM)

K-B mirror 3.0 gm x 4.2 ~tm 10.5 keV 19 tunable(DCM)

5.5 gm x 6.1 gm 12.6keV tunable(SMM)

Ellipsoidal mirror 10-200 ~tm 4-20 keV 20,21 with a pinhole tunable(DCM)

Zone plate 6.5 ~tm x 7.7 ~tm 8keV 10

NSLS Ellipsoidal mirror

Multilayer coated K-B mirror

22

5 ~tm x 5 ~tm 10keV 23,24

SRS

Curved Si crystal 10 ~tm x 20 ~xm 15keV 25

VEPP-3 Pyrolytic graphite 20 keV 26

LURE Bragg-Fresnel 27

(K-B or Elliptical) 20 gm 8.3keV 28

3.3.3. Diffractive optics

Typical examples of diffractive optics are shown in Fig. 3-9. Following the invention of the

sagittal focusing monochromator [29] most proposed microprobe optics have included bent

crystals of variable radius. However, it is difficult in practice to realize a spatial resolution of

less than several tens of microns with these optics, and the bent crystal of fixed radius is

Page 193: Analytical Spectroscopy Library_VOL 7

a

employed instead. Owing to the fixed radius, the incident X-ray energy is not tunable.

However, a 15 keV microprobe shown in Fig 3-9(a) is successfully used for XRF trace

element analysis.

SR

b

SLtT . I "(i

11.2m/~' g

MONOCHROMATOR

M=1/13

M=1/20 2.45m F2

CONDENSER ~:: FOCUSING M I R R O ~ ~ ~ MIRROR

PINHOLE Ta 60~m~

F M~ Mz

184

C Sample

I

Pinhole +Beam monitor ~ ~ J ~ Ionization chamber

Ellipsoidal mirror Si(Li)

Monochromator

SR

Fig. 3-8. X-ray focusing systems wit h reflective optics with: (a), tandem Wolter

mirrors[ 16]" (b) Kirkpatrick-Baez mirrors [18]" (c) an ellipsoidal mirror [20].

Page 194: Analytical Spectroscopy Library_VOL 7

185

a

b

Synchrotron source (white radiation)

Storage Source slit ring

M1 Multilayer coated mirrors

M2 Sampl

Solid state Si(Li)detector

~ ~ ~ Fluorescent Focal spot ~ ,., x-rays

Scanning stage

Ion chamber Si(Li)

Anti-scat. i Object detector slit ~1 ~[ slit [ ~ image

~ ~ ~ , J ~ ] ~ ~ plate

t Toroid Si(111 )

C S.C

lit F " ~ " " ~ S" [~rPinhole

, ~ ' ~ Zone plate

"~ ' *~~ !~ '~~ Monochromator

Slit X-ray

d 7 10

Fig. 3-9.

1. Input slit 2. BFMFE 1 3. BFMFE 1 stage 4. Axis of rotation 5. Goniometer 6.7. Slits 8. BFMFE 2 9. BFMFE2stage 10. Recording plate

X-ray focusing systems with diffractive optics with: (a) multilayer coated K-B

mirrors[23]" (b) a bent Si(111) crystal[25]" (c) a zone plate[10]" (d) Bragg-Fresnel

lens (K-B) [27]

Page 195: Analytical Spectroscopy Library_VOL 7

186

Figure 3-9(a) shows a multilayer coated K-B mirror system. The coating of multilayers on

the mirror surface limits the applicable energy range. However, it can make the glancing angle

much higher than achieved with the total-reflection mirror when X-rays of the same energy are

focused. As mentioned previously, the larger glancing angle is advantageous both for the

spherical aberration and the acceptance of the optics.

Figure 3-9(c) shows an optical system with a zone plate. Despite the successful fabrication

of zone plates for the soft-X-ray region, using lithographic techniques, it is difficult to

fabricate zone plates for hard X-rays because of the rays' large penetration. In order to obtain a

zone plate of sufficient stopping power, a high aspect ratio is required. Therefore a novel

technique was invented to replace the conventional lithographic techniques. Saitoh et al. first

fabricated a hard X-ray zone plate using the sputtering method [10]. Layers of C and WSi2

were alternately sputtered around a fine Au wire of 18 ~tm diameter. The performance of the

zone plate was evaluated with 8 keV X-rays, and a focused beam spot of 6.5 ~tna by 7.7 ~tm

in the vertical and horizontal directions was realized. Recently, another hard-X-ray zone plate

(phase zone plate) has been reported, which can produce a focused beam spot of 3 ~tm by 8

~tm in the vertical and horizontal directions, respectively [ 11].

A recent advance in X-ray optics is the Bragg-Fresnel lens (BFL) which uses a combination

of the Bragg reflection and Fresnel zone. Since the first report of a linear Bragg-Fresnel lens

[30], two types of focusing system have been proposed. One is the K-B configuration with a

crossed linear BFL, and another uses an elliptical BFL. An X-ray fluorescence microprobe

with the elliptical BFL is now in operation at LURE [28].

3.4. CHEMICAL SPECIATION USING SR

3.4.1 . I n t r o d u c t i o n

Several kinds of X-ray analyses can provide chemical state information; X-ray photoelectron

spectroscopy (XPS), Auger electron spectroscopy (AES), X-ray fluorescence

spectroscopy(XFS) and X-ray absorption spectroscopy(XAS). Of these, XPS, AES and XFS

are the popular analytical methods with conventional X-ray sources. Therefore, it is not

necessary to describe their principles in this Section. The use of XAS has become popular since

the advent of SR as an X-ray source having a continuum energy distribution. Spectral

structures which appear around the absorption edge energy in X-ray absorption spectra are

called X-ray absorption fine structure (XAFS), and both chemical state information and local

structural information can be obtained from XAFS.

Page 196: Analytical Spectroscopy Library_VOL 7

187

Various combinations of SR X-ray microprobe and spectrochemical techniques have the

promise of becoming powerful methods for the characterization of advanced materials whose

function is strongly related to the chemical state of a local area in a material. Recently, several

reports have appeared of X-ray spectrochemical analysis with spatial resolution. In this

Section, X-ray spectroscopies for chemical state analyses are briefly reviewed. The

advantages of energy tunability will also be discussed in order to point out the potential of X-

ray spectrochemical analysis with an energy-tunable X-ray microprobe.

3.4.2. Chemical speciation utilizing X-ray absorption fine structure

The chemical states of X-ray absorbing atoms are reflected in the fine structures of the X-

ray absorption spectra. A detailed analysis of X-ray absorption near-edge structure (XANES)

reveals the electronic structures of an element of interest, and the extended X-ray absorption

fine structure (EXAFS) is used to obtain local structural information on the element of interest

-i.e., the nearest-neighbor distance and coordination numbers. XAFS spectra can be used for

detailed analysis for revealing the chemical state of unknown materials and as finger prints

for the identification of chemical species.

In order to obtain XAFS spectra one may use several signals from a sample: transmitted X-

rays, fluorescent X-rays, and Auger or secondary electrons. The XRF detection becomes

advantageous in the following two cases. The first case is when the element of interest is a

minor component or when the sample is too thin for measurement of XAFS spectra of

sufficient S/N by the transmission method. The second case is when an XAFS spectrum is

measured from a small region of interest in a heterogeneous sample and the absorption of the

sample is not always in the appropriate range for transmission measurements.

Figure 3-10 shows XANES spectra of various oxides [30]. Incident SR X-rays were

monochromatized with a Si(111) double crystal monochromator, and fluorescence detection

was employed using a Si(Li) detector. The first inflection point of the spectrum from the pure

metal is set to be relative zero. Figure 3-11 shows the relationship between the absorption edge

energies measured using the transmission method and the XRF detection method. A fairly good

correlation was obtained.

Page 197: Analytical Spectroscopy Library_VOL 7

188

23

;s

03

I !

i x

-20

CuK,-'/ /! ~.','~ Cu2C

Ni ," "',,

0 20 40 X-ray Energy / eV

FeO~;~ Fe304

M nO--~,!].-~- M n203 -./Mn02

-20 0 2 0 4 0 X-rag Energy ! eV

Fig. 3-10 XANES spectra of various oxides with the XRF detection method [31 ].

Fig. 3-11.

. . . . . o f

l- Fe203j~U' L ~- Fe304D" K4Fe(CN)6

0I FeO /'O'FeCI3 I ~ 1 F o , / I FeSO4 P" I

f F eFsS,,., O,'O F eCI2 I ,.-Y I ul

U 0" i

L I I i i I i I i I i I i ! i [ i i ! i i i i i l i i i i i i i l ! l i i ! l i I !

0 5 10 15 Edge Energy(F)/eV

Comparisons of the absorption edges of various iron compounds: (F) and (T)

refer to the fluorescence and transmission methods, respectively.

Page 198: Analytical Spectroscopy Library_VOL 7

189

Although XRF detection becomes advantageous with the X-ray microprobe, spectral

distortions caused by self-absorption effects should be considered when the element of interest

is a major component in a sample. Figure 3-12 shows Fe K-edge XANES spectra from a 400

nm evaporated thin film on Mylar and from an infinitely thick iron section with different takeoff

angles [32]. The incident beam size was restricted to 19 ~tm and 12 l~m in the horizontal and

vertical directions, respectively. The XANES spectrum from the iron section with a takeoff

angle of 40 ~ clearly shows spectral distortion resulting from the self-absorption which is

described by the theoretical predictions (dotted lines). The results show that the effects of self-

absorption can be overcome with a detection-geometry having a small takeoff angle. The

small-takeoff-angle technique is also effective with self-absorption effects in EXAFS spectra

[33].

Z21

v 2=- I-- 03 Z I,.1.1 I - Z

i i i (.3 Z i i i r.D 03 i i i r'v" O Z l .,,.J Lt_

7.10

/ i ] , I , ! I I

7.15 X-RAY ENERGY/keV

Fig. 3-12. Micro XANES spectra of Fe obtained using the fluorescence detection method:

(a), from a 400 nm evaporated thin film on Mylar and from an infinitely thick

iron section with takeoff angle of, (b) 5 ~ and (c) 40 ~ Solid lines show the

data obtained and the broken lines show the calculated XANES spectra [32].

Page 199: Analytical Spectroscopy Library_VOL 7

190

3.4.3. Chemical speciation with XRF spectroscopy

Chemical speciation using X-ray fluorescence spectroscopy has had a long history since the

1920s. The XRF, caused by electronic transitions between the inner shells of an atom, shows

chemical shifts which depend on the environment of an X-ray emitting atom. Band spectra

caused by the electronic transition from the outer shell to the inner shell reflect the partial

density of states of the valence band. The K-L(Ka) spectra of second row elements and K-

M(K[3) spectra of the third row elements are typical examples of valence band spectra. Figure

3-13 shows B K-V XRF spectra and boron K edge XANES spectra of B, BN and B203 [34].

As is widely known, the fluorescence cross section is small for light elements. Therefore these

measurements were difficult without the brilliant X-rays from an undulator.

Fig. 3-13.

2?

r

!

x

o ~

B .! emission ption

/ I

o

h-B. _ _

f '-J"

o

150 160 170

B203 �9 .,.. ":" t : o .

: ! - P--

180 190 200 210 Photon energy / eV

X-ray fluorescence spectra and boron K-edge XANES spectra of B, BN and

B203. To obtain the XRF spectra, monochromated first harmonics undulator

radiation (212 eV) was employed.

Page 200: Analytical Spectroscopy Library_VOL 7

191

For the observation of chemical effects in the XRF spectra from heavier elements,

conventional XRF spectrometers have insufficient energy resolution. To overcome the

limitations, a double crystal spectrometer which achieves adequate energy resolution for a

wide angular range is preferable [35]. Although the spectrometer has been used successfully

with the conventional X-ray sources, there has been no report of its use with the SR, owing to

its low efficiency.

Recently, another type of optical geometry has been reported which can realize high energy

resolution utilizing SR. Figure 3-14 shows the experimental scheme [36]. A dispersed XRF

spectrum is detected with a position-sensitive proportional counter(PSPC) and the energy

resolution of the spectrometer can be adjusted via the beam-irradiated area and the sample-

detector distance. In order to realize an energy resolution sufficient for chemical state analysis

the beam size was restricted by narrow slits to 20 ~tm in the horizontal plane and the sample-

detector distance was set to be 1010 mm. Figure 3-15 shows an XRF spectrum of Cu metal

obtained with the (444) reflection of a mirror polished Si crystal. The FWHM of the Cu K-

L3(Kal) peak was 2.6 eV, which is almost identical to the natural width of the spectrum.

Therefore the energy resolution, dE/E, of the spectrometer is supposed to be less than 3 x

10-5.

Fig. 3-14.

I.C. Sample

Di l - U I

1st 2nd slit slit

( Analyzer C crystal

A wavelength-dispersive (WD) spectrometer with a position sensitive

proportional counter (PSPC) [36]: IC is a He-filled ionization chamber.

Page 201: Analytical Spectroscopy Library_VOL 7

192

Fig. 3-15.

| m

c m

. . . . . . . Cu K-L3 A . . . . !

Cu N-L2

l LL Wavelength Energy---~-

XRF spectra of Cu metal from a high-energy resolution WD spectrometer

equipped with a Si(444) crystal [36].

3.4.4. Advantages of energy tunability

As shown in this Chapter, the tunability of the energy of SR can be used for the selective

excitation of an element of interest. In the XRF elemental analysis the selective excitation is

applicable to trace element analysis in a matrix of heavier elements. When the incident X-ray

energy is tuned to be just above the absorption edge energy of an element of interest,

interferences of the XRF lines from matrix elements which are heavier than the analyte can be

avoided. The sensitivity is also optimized for the element of interest. Moreover, when the

incident energy is selected carefully, selective excitation of the element in a specific chemical

state can be realized.

Selective excitation also has importance in X-ray spectroscopies because it provides a well

defined excitation condition. In conventional XRF spectroscopy, primary X-ray photons

usually have sufficient energy to excite a core electron to the continuum level (or out of the

atom). This means that the polarization is not conserved between the primary X-ray and the

fluorescent X-ray and that there are chances of multiple ionization in an atom. When selective

excitation is employed and the incident X-ray energy is tuned around the absorption edge of

the element of interest, a core electron can be selectively excited to an unoccupied level in an

atom, and the transition should satisfy the selection rule. Spectroscopic techniques which use

Page 202: Analytical Spectroscopy Library_VOL 7

193

this selective excitation around the absorption edge are sometimes called threshold

spectroscopies and can provide a variety of chemical information.

One typical example of threshold spectroscopy is the elimination of multiple ionization

satellites in XRF spectra. In X-ray fluorescence spectra there often appear satellite lines whose

origin is not tabulated as diagram lines. Some of these satellites are attributed to multiple

ionization of the X-ray-absorbing atom. Beside the well separated satellite there exists a line-

width satellite (or parasite) which is observed as a slight profile change or asymmetric smearing

of the spectrum line. Kawai et al. have investigated the profile changes in chlorine K-

L2,3(K~l,2) XRF spectra, and the spectral changes have been explained in terms of the

chemical state of the C1 atom [37]. The assignments of these lines were derived from

theoretical calculations. However, the threshold technique provides spectral profiles without the

multiple ionization satellite. The difference between with and without multiple ionization data

will be useful for chemical state analysis.

Figure 3-16 shows argon K-M(K[3) spectra obtained with several incident X-ray energies

around the K absorption edge of Ar [38]. Fig 3-16(a) shows a typical spectrum obtained at

high excitation energies. Satellite peaks are observed to the higher energy side of the main line.

With incident X-rays of smaller excitation energy the satellite lines become smaller and finally

there only appears the main line. Satellite peaks are therefore attributed to multiple ionization.

By using the threshold techniques, gas molecules of similar orientation can be selectively

excited and the anisotropy of X-ray fluorescence has been demonstrated [39]. The threshold

technique is also important for studies of X-ray Raman scattering where resonant effects play

an important role [40]. As threshold techniques require a narrow energy bandwidth, both for

incident X-rays and fluorescent or scattered X-rays, most of the experimental results have been

obtained with the high brightness X-rays from the undulator. In the present SR facilities the

undulator source is limited to the soft X-ray region. However, with the next generation of SR

facilities, threshold spectroscopy in the hard X-ray region will become a promising field of X-

ray spectroscopies.

Page 203: Analytical Spectroscopy Library_VOL 7

194

Fig. 3-16.

~ a

23

x:i L. o3

v

F- 03 Z w

Z

3175

. i - - '

"-" b ,:,,.

o3 v

l-- l

. 03 .& Z - ~

�9 " : - U.! - . $ , �9 " I - - - -

; " z J X.__ .~ ~ . . . . . . . . , . - - 3190 3205 3175 3190

ENERGY/eV ENERGY/eV

�9 �9

' i _

3205

,-. c

L.

v

03 Z

I-- Z

3175

. ~ . a j

" - d r

:z5

k.. o3

, . , ._ . .

:=-- -1 F- �9 0 3 B

�9 " Z "

UJ :" �9 A ".'- - �9 " I- i

,3 ]90 32-05 3-i--7 S 3190 3205 ENERGY/eV ENERGY/eV

Argon K-M(KB) XRF spectra obtained with incident photon energy at: (a),

3281.4 eV" (b), 3245.9 eV" (c), 3213.1 eV" and (d), 3199.2 eV[37].

3.5. A N A L Y T I C A L X-RAY M I C R O P R O B E S

3.5.1. In troduct ion

A scanning X-ray microprobe can provide most X-ray analyses with spatial resolution�9

Since the paper by Horowitz and Howell [3], various types of analytical microprobes and their

applications have been reported. In this Section, the analytical feasibility of the SR X-ray

microscope (microprobe) is shown�9

3.5.2. Trace e lement analysis with micro XRF

One of the strong advantages of the SR X-ray microprobe is its small heat load to a sample�9

Figure 3-17 shows a photograph and XRF images of a tree ring from an 80 year old Japanese

Page 204: Analytical Spectroscopy Library_VOL 7

195

cedar. The trace element localized in the tree ring gives information about the environmental

changes that have occurred over the last few decades. Owing to the low heat conductivity of

the tree sections it is usually difficult to avoid severe heat damage. However, by utilizing the

X-ray microprobe system shown in Fig 3-8(c) trace element localization in the sample was

visualized without damage being observed.

Fig. 3-17. (a) a photograph of a tree ring after irradiation by 10 keV monochromatic SR

for XRF imaging and (b) Ca, (c)Cu XRF images of a tree ring. A region of

3mm • 3mm was analyzed with a data acquisition time of 10 s for each pixel.

Spatially averaged concentrations of Fe, Cu and Zn were less than lppm.

Figure 3-18 shows a SR XRF spectrum obtained from a chelate resin bead, which was

prepared to contain 100 ppm of Ca, Mn and Zn. The experimental system shown in Fig. 3-8

was employed, with a spatial resolution of 2001am. For a data acquisition time of 100s the

minimum detection limit (MDL) of Zn is less than 1 ppm.

Page 205: Analytical Spectroscopy Library_VOL 7

196

Fig. 3-18.

4000

3000 0') I-, Z 2OO0

O 0 1000

C _ _ / L 2 3 4

L 5 6

A 7 8 9 10 11 12

X-RAY ENERGY/keV A SR-XRF spectrum from a chelate resin bead, prepared so as to contain 100

ppm of Ca, Mn and Zn, excited with 10 keV monochromatic X-rays.

3.5.3. Micro X A F S measurement and chemical state imaging

The advantage of the energy-tunable X-ray microprobe appears in micro XAFS

measurements. By employing an experimental system as shown in Fig. 3-8 the Cu K-edge

XAFS of an evaporated Cu film 15 nm thick was measured with a spatial resolution of 100

gm (Fig. 3-19)[21]. A Si(Li) detector was used for detecting Cu K-L fluorescence with a

sample-detector distance of 15 mm. The obtained XAFS spectrum corresponds to that obtained

from a Cu foil of appropriate thickness with transmission measurement. Consideration of the

beam size shows that the absolute amount of measured Cu was less than 1 ng with a data

acquisition time of approximately 2h.

Fig. 3-19.

_J UJ m >-

klJ O tu

8.8 9.0 9.2 9.4 9.6 9.8 �9 ~ X-RAY ENERGY/keV LL

Copper K-edge XAFS spectrum obtained from a Cu-deposited thin film of 15

nm thickness.

Page 206: Analytical Spectroscopy Library_VOL 7

197

As described previously, XANES spectra can be used to provide "finger prints" of

materials. However, when the sample is in a mixture of several chemical states it is usually

difficult to obtain the chemical state information because the measured XAFS spectra are

affected by the overlap. Sakurai et al. have employed a novel technique to separate the

chemical state in a binary system [41]. Figure 3-20 shows evaporated test patterns with Cr.

The character "PF" is patterned with Cr203 and the rest of the area is patterned with Cr metal.

The surface density of Cr is uniform within the sample. It is usually difficult to distinguish

differences in chemical states using the XRF imaging technique. However, when the excitation

energy is tuned to that in the absorption-edge region the difference in an excitation cross

section can be emphasized. To separate the XANES spectra of Cr and Cr203, two excitation

energies were chosen. One is the excitation energy that gives equal XRF signals for the same

Cr surface density of the different compounds. The other is an energy that gives a large contrast

between the two compounds. After the XRF imaging with two energies the XRF images are

numerically processed to obtain separate images of each component. Figure 3-20(b) shows the

extracted Cr image that clearly shows the characters. In this experiment the images were

obtained using the image reconstruction technique, the principle is applicable to all kinds of

XRF imaging techniques.

Fig. 3-20. (a) Optical micrograph of the sample. The region measured is shown in the

circle. The letters "PF" were Cr, and Cr203 was deposited around them (b) Cr

image processed by the image reconstruction technique; the Cr203 image

obtained was a reversal of the Cr image [41].

Page 207: Analytical Spectroscopy Library_VOL 7

198

In the soft X-ray region, micro XANES measurements have been applied to polymer blends

of polypropylene and a 50:50 weight percent random styrene-acrylonitrile copolymer [42].

Figure 3-21 shows carbon K-shell XANES spectra of polymers, obtained using transmission

measurements. The incident X-rays were focused using a zone plate and a spatial resolution of

55 nm was realized. As the focus of the zone plate depends on the incident X-ray energy,

focusing adjustments were carried out at each incident X-ray energy while the XANES spectra

were measured. By choosing the incident X-ray energy for the resonance peaks of each

polymer, X-ray images with chemical contrasts were obtained (Fig. 3-22). As a peak at 285.5

eV corresponds to an antibonding ~-orbital resonance of styrene an X-ray image from

transmitted X-rays gives a high contrast to the styrene-acrylonitrile copolymer in the polymer

blends. Micro-XANES measurements in the soft X-ray region are receiving great attention,

especially in the field of biology. A trial to visualize the DNA distribution in a chromosome has

also been reported, utilizing a technique similar to that of Sakurai et al. [41 ].

4

c

e3 <

o u

2 i In

o u

1

0 . . . . i . . . . i . . . . i . . . . i . . . .

2 8 0 2 8 5 2 9 0 2 9 5 3 0 0 3 0 5

photon energy ( e V )

, , i . . . . I . . . . i . . . . i . . . .

A ,L B

2

r

0 , , , , i . . . . , . . . . i . . . . , , i , ,

2 8 0 2 8 5 2 9 0 2 9 5 3 0 f l

p h o l o n e n e r g y ( e V )

~ . . . . . - . . ~ . . . _ L

4

c

~2 ._ u | i

e

o

2 8 0 2 8 5

Fig. 3-21.

i

2 9 0 2 9 5 3 0 0 3 0 5

photon energy ( e V )

Carbon K-shell XANES spectra of: (A), polyacrylonitrile; (B), polystyrene"

and (C), polypropylene (dashed line) and a 50:50 percent by weight random

copolymer of polystyrene and acrylonitrile (solid line) [42]

Page 208: Analytical Spectroscopy Library_VOL 7

199

Fig. 3-22. Images of a 0.5 ~tm-thick section of a blend consisting of polypropylene and a

50:50 percent by weight random styrene-acrylonitrile copolymer at the

following photon energies: (A), 285.5 eV; (B), 286.2 eV; (C), 286.8 eV; and

(D), 287.9 eV. The contrast arises from differences in the near edge absorption

cross section of the different domains as shown in Fig. 3-21(C) [42].

3.5.4. Trace element characterization with micro XRF and micro XAFS

A combination of micro XRF and micro XAFS measurements becomes a powerful tool for

the characterization of trace elements in a sample. Large synthetic diamond crystals are grown

under high pressure and temperature with some metallic solvents. For the industrial use of the

diamonds the characterization of impurities originating from the metallic solvent receives great

attention. However, very few elements have been characterized because of their low

concentration. Figure 3-23 shows X-ray images of a diamond crystal grown with Ni-Fe

solvents, measured using the experimental system shown in Fig. 3-8(c) with a spatial

resolution of 200 ~tm [43]. To maintain the spatial resolution the diamond crystal was polished

into a plate 277 ~m thick, parallel to the { 110} plane. The sample was fixed onto a plastic

sheet to reduce inelastic scattering which overlaps with the XRF signal. The Ni XRF image

clearly shows that Ni exists selectively in the { 111 } growth sector. Figure 3-24 shows the SR

XRF spectra obtained from { 111 } and { 100} sectors in the sample. Iron was not detected in

either of these, twithin the sensitivity available. The X-ray images and XRF spectra confirmed

selective dissolution of Ni into the { 111 } growth sector.

Page 209: Analytical Spectroscopy Library_VOL 7

200

Fig. 3-23. X-ray images of a sliced single crystal of synthetic diamond under high

pressure and high temperature. (Upper left) Ni image, (Upper right) Fe image,

and (Lower left) transmitted X-ray image.

Fig. 3-24.

1.2

,,--., 1.0

0.8 0 ,, 0.6

0.4 m

03 Z 0.2 LLi I- o.o Z

-0.2

-0.4

Scattered x-rays

Ni K~

{111}

{100}

5 6 7 8 9 10

X-RAY ENERGY/keV

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

SR-XRF spectra of the synthetic diamond crystal taken at two different

positions on the sample.

Page 210: Analytical Spectroscopy Library_VOL 7

1.0

To evaluate the Ni concentration in the { 111} growth sector an absorption correction method

was employed which measures the transmittance at each small area of interest and corrects for

the self absorption effects inside the sample [44]. The resultant concentration value ik~r Ni was

supposed to be 30 ppm for the { 111} growth sector and less than 0.3 ppm for the { 100}

sector.

Micro XAFS measurements have also been applied to the trace Ni in the diamond [45].

Figure 3-25 shows the Ni K-edge XANES measured at a { 111 } growth sector in a diamond.

Its profile is quite different from that of metallic Ni. Therefore, it is confirmed that the Ni

atoms inside the diamond crystal are not part of the small inclusions but are dissolved in the

diamond lattice. From empirical knowledge about the pre-edge peak in the XANES profile it is

suggested that the Ni is in a tetrahedral site.

Fig. 3-25.

0.8

0.6

0.4

0.2 z l

0.0 1 I | I

201

8300 8320 8340 8360 8380 8400

X-RAY ENERGY/eV Nickel K-edge XANES of Ni dissolved into { 111 } growth sector of the

synthetic diamond crystal.

3.5.5. Other analyt ical methods with the microbeam

With the use of an X-ray microprobe various kinds of X-ray analyses can be perIormed

with spatial resolution. In the field of micro X-ray diffraction (XRD) there have been several

reports [46--49] following the initial preliminary report [49]. The local structure of the zig-zag

defect boundaries in surface stabilized ferroelectric liquid crystal cells has been investigated

using an X-ray microprobe equipped with Kirkpatrick-Baez mirrors. Rocking curves

measured as a function of the sample position have determined the local layer structure [48].

Another use of the X-ray microbeam is in high angular resolution measurements of signals

from a local position on the sample. One successful application is in grazing-exit detection for

Page 211: Analytical Spectroscopy Library_VOL 7

202

surface sensitive measurements. As has been theoretically and experimentally demonstrated by

several groups using conventional X-ray sources [50], the reciprocity of incident and exiting

X-rays suggests the existence of a critical takeoff angle which is similar to the critical angle of

total reflection. By detecting XRF with takeoff angles around the critical angle, layers near to

the surface down to several tens of angstroms, can be selectively investigated. After the

surface-sensitive XAFS application [51], a combination of the X-ray microprobe and the

grazing-exit detection has been reported [52].

For chemical-state analysis one of the promising spectrochemical microscopes is the photo-

electron microscope. Experiments can be carried out using a zone plate [53], ellipsoidal min-or

[54], multilayer coated Schwarzschild optics [55] or Wolter mirror [56]. As well as the

scanning photoelectron microscopes, many electron-imaging microscopes have been

reported[56]. Incident SR X-rays are used to illuminate the sample in the field of view. The

spatial resolution of the microscopes is determined by the electron-image-forming optics and,

particularly when one considers the difficulties in realizing a focused microbeam in the hard X-

ray region, this method is of promise in realizing a spectroscopic microscope.

3 . 6 . F U T U R E E X P E C T A T I O N S W I T H T H E T H I R D G E N E R A T I O N SR

S O U R C E

In the preceding Sections, several types of microprobes and their applications Ior chemical

state analysis are described. Although the potential of an energy tunable X-ray microprobe has

been recognized with the second generation SR sources the practical applications in the hard X-

ray region are still limited owing to the difficulties in realizing an intense X-ray microbeam. As

is successfully demonstrated in the soft-X-ray region the characteristics of the undulator

radiation, such as small emittance and high brilliance, are suited to an X-ray microprobe, and

the X-ray microprobe with the hard-X-ray undulator has received great attention. The recent

innovation of an in-vacuum undulator has made it possible to produce hard-X-ray undulator

radiation. The in-vacuum undulator was installed in the 6.5 GeV TRISTAN Accumulation

Ring (AR) at the Photon Factory. By changing the magnet gap from 1 to 5 cm, the photon

energy of the first harmonics can be tuned from 5 to 25 keV. Brilliant 14.4 keV X-rays were

used successfully for M0ssbauer experiments [58].

It is clear that the high brilliance of undulator radiation is suited for a variety of

spectroscopic techniques. Fig. 3-26 shows an example of an experimental arrangement for

high-energy-resolution X-ray fluorescence spectroscopy [59]. To realize chemical state

analysis using the threshold technique, an energy resolution (AE/E) of better than 10 . 4 is

Page 212: Analytical Spectroscopy Library_VOL 7

203

required for both the incident X-ray monochromator and XRF spectrometer. Owing to the

poor efficiency of the XRF spectrometer, the threshold spectroscopy is difficult to achieve with

SR from the bending magnets. However, threshold spectroscopy in the hard X-ray region is

one of the promising applications to use the third generation SR sources. The high brilliance

source helps not only high-energy-resolution spectroscopies but also measurements with high

angular resolutions and with high spatial resolutions. The combination of high resolution

spectroscopies has promise in characterizing heterogeneous systems. An X-ray microprobe

equipped with the grazing exit XRF detection system can provide information on three

dimensional trace-element-distilbution.

In addition to the expansion in spectroscopic applications the low emittance source will

widen the choice of optical elements. A smaller source directly implies a reduction in the

focused beam size. Moreover, the small divergence makes the practical use of focusing optics

of small acceptance. The limitation of the total-reflection mirror owing to the small sagittal

acceptance becomes less important and a focusing mirror which covers more than 20 keV can

be used. The small divergence is also suited to capillary tubes [60, 61] whose acceptance is

extremely small. By using the third generation SR source, an adequate photon flux may be

obtained with the capillary tubes.

S R _

Excitatior hv

XRF/ U

Detector

Sample

Fig. 3-26. Precise c.hemical state analysis[59]

Page 213: Analytical Spectroscopy Library_VOL 7

204

R E F E R E N C E S

1. V.E. Cosslett and W.C. Nixon (Editors), X-ray Microscopy, Cambridge University

Press, Cambridge, 1960.

2. A. Engstrom, V. E. Cosslett and H. H. Pattee (Editors), X-Ray Microscopy and X-Ray

Micro-analysis, Elsevier, Amsterdam, 1960.

P. Horowitz and J. A. Howell, Science (Washington, DC), 178 (1972) 608.

P. Horowitz, Ann. NY Acad. Sci., 306 (1978) 203.

J. A. Howell and P. Horowitz, Nucl. Instrum. Methods Phys. Res., 125 (1975) 225.

C. J. Sparks Jr., in H. Winick and S. Doniach (Editors), Synchrotron Radiation

Research, Plenum, New York, 1980, Ch. 14.

7. G. Schmahl and D. Rudolph (Editors), X-Ray Microscopy, Springer, Berlin, 1984.

8. P.C. Chen and G. J. Jan (Editors), X-Ray Microscopy H, Springer, Berlin, 1987.

9. A.G. Michette, G. R. Morrison, C. J. Buckley (Editors), X-Ray Microscopy III,

Springer, Berlin, 1992.

10. K. Saitoh, R. Inagawa, K. Kohra, C. Hayashi, A. Iida and N. Kato, Jpn. J. Appl.

Phys., 27 (1988) L2131.; K. Saitoh, K. Inagawa, K. Kohra, C. Hayashi, A. Iida and

N. Kato, Rev. Sci. Instrum., 60 (1989) 1519.

11. B. Lai, W. B. Yun, D. Legnini, Y. Xiao, J. Chrzas, P. J. Viccaro, V. White, S. Bajikar,

D. Denton, F. Cerrina, E. Di Fabrizio, M. Gentili, L. Grella and M. Baciocchi, Appl.

Phys. Lett., 61 (1992) 1877.

12. P. Kirkpatrick and A. V. Baez, J. Opt. Soc. Am., 9 (1948) 766.

13. V.H. Wolter, Ann. Phys., 6 (1952) 286.

14. V.H. Wolter, Ann. Phys., 6 (1952) 94.

15. Y. Gohshi, S. Aoki, A. Iida, S. Hayakawa, H. Yamaji and K. Sakurai, Jpn. J. Appl.

Phys., 26 (1987) 1260.

16. S. Hayakawa, A. Iida, S. Aoki and Y. Gohshi, Rev. Sci. Instrum., 60 (1989) 2452.

17. Y. Suzuki, F. Uchida and Y. Hirai, Jpn. J. Appl. Phys., 28 (1989) L1660.

18. Y. Suzuki and F. Uchida, Jpn. J. Appl. Phys., 30 (1991) 1127.

19. A. Iida and T. Noma, Nucl. Instrum. Methods Phys. Res., B82 (1993) 128.

20. S. Hayakawa, Y. Gohshi, A. Iida, S. Aoki and M. Ishikawa, Nucl. Instrum. Methods

Phys. Res., B49 (1990) 555.

21. S. Hayakawa and Y. Gohshi, in A. G. Michette, G. R. Morrison, C. J. Buckley

(Editors), X-Ray Microscopy III, Springer, Berlin, 1992, p.364.

22. K.W. Jones, P. A. Takacs, J. B. Hastings, J. M. Casstevens and C. D. Pionke, Proc.

SPIE- Int. Soc. Opt. Eng., 749 (1987) 37.

,

4.

5.

6.

Page 214: Analytical Spectroscopy Library_VOL 7

205

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

0,

41.

2.

A. C. Thompson, Y. Wu, J. H. Underwood and T. W. Barbee, Nucl. Instrum.

Methods Phys. Res., A255 (1987) 603.

J. H. Underwood, A. C. Thompson, Y. Wu and R. D. Giauque, Nucl. Instrum.

Methods Phys. Res., A266 (1988) 296.

F.v. Langevelde, G. H. J. Tros, D. K. Bowen and R. D. Vis, Nucl. Instrum. Methods'

Phys. Res., B49 (1990) 544.

V. Baryshev, G. Kulipanov and A. Skrinsky, in G. Brown and D. E. Moncton

(Editors), Handbook on Synchrotron Radiation Vol.3, Elsevier, 1991, Ch. 16.

P. Dhez, A. Erko, E. Khzmalian, B. Vidal and V. Zinenko, Appl. Opt., 31 (1992)

6662.

F. Legrand, A. Erko, P.Dhez, P. Chevallier and C. Engrand, in V. V. Aristov, A. I.

Erko (Editors), X-Ray Microscopy IV, Institute of Microelectronics Technology

Chernogolovka, Russia, 1994, p. 136.

C. J. Sparks, G. E. Ice, J. Wong and B. W. Batterman, Nucl. Instrum. Methods" Phys.

Res., 194 (1982) 73.

V. V. Aristov, Yu. A. Basov, S. V. Red'kin, A. A. Snigrev and V. A. Yunkin, Nucl. I

nstrum. Methods Phys. Res., A261 (1987) 72.

K. Sakurai, A. Iida and Y. Gohshi, Anal. Sci., 4 (1988) 37.

S. Hayakawa, Y. Gohshi, A. iida, S. Aoki and K. Sato, Rev. Sci. Instrum, 62 (1991)

2545.

D. M. Pease, D. L. Brewe, Z. Tan, J. I. Budnick and C. C. Law, Phys. Lett., A 138

(1989) 230.

Yasuji Muramatsu, Ph.D. thesis, Tohoku University (1992).

Y. Gohshi, Y. Hukao and K. Hori, Spectrochim. Acta., 27B (1972) 135.

K. Ohashi, M. Takahashi, Y. Gohshi, A. Iida and S. Kishimoto, Adv. X-ray Anal. 35

(1992) 1027.

J. Kawai, C. Satoko, K. Fujisawa and Y. Gohshi, Phys. Rev. Lett., 57 (1986) 988.

R. D. Deslattes, R. E. LaVilla, P. L. Cowan and A. Henins, Phys. Rev., A27 (1983)

923.

S. H. Southworth, D. W. Lindle, R. Mayer, P. L. Cowan, Phys. Rev. Lett., 67

( 1991) 1098.

Y. Udagawa and K. Tohji, Chem. Phys. Lett., 148 (1988) 101.

K. Sakurai, A. Iida, M. Takahashi and Y. Gohshi, Jpn. J. Appl. Phys., 27 (1988)

L1768.

H. Ade, X. Zhang, S. Cameron, C. Costello, J. Kirz and S. Williams, Science

(Washington, DC ), 258 (1992) 972.

Page 215: Analytical Spectroscopy Library_VOL 7

206

3,

4,

45.

46.

47.

8,

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

M. Wakatsuki, S. Hayakawa, S. Aoki, Y. Gohshi and A. Iida, New Diamond Sci.

Technol., Proc. Int. Conf., (1991) 143.

S. Hayakawa, A. Iida and Y. Gohshi, Anal. Sci., Suppl. 7(1991)509.

S. Hayakawa, F. Nakamura, Y. Gohshi, M. Wakatsuki and H. Kagi, Trans. Mater.

Res. Soc. Jpn., 14B (1994) 1559.

T. Hirano, F. Higashi and K. Usami Rev. Sci. Instrum., 63 (1992) 5602.

F. Nakamura, S. Hayakawa, M. Wakatsuki, H. Kagi and Y. Gohshi, Photon Factory

Activity Report #10 (1992) 54.

A. Iida, T. Noma and K. Hirano, Ferroelectrics, 149 (1993) 117.

G.E. Ice, Nucl. Instrum. Methods Phys. Res., B24/25 (1987) 397.

R. S. Becker, J. A. Golovchenko and J. R. Patel, Phys. Rev. Lett., 50 (1983) 153.

Y. Suzuki, Phys. Rev., B39 (1989) 3393.

T. Noma and A. Iida, Rev. Sci. Instrum., 65 (1004) 837.

H. Ade, J. Kirz, S. L. Hulbert, E. D. Johnson, E. Anderson and D. Kern, Appl. Phys.

Lett., 56 (1990) 1841.

.J. Voss, H. Dadras, C. Kunz, A. Moewes, G. Roy, H. Sievers, I. Storjohann and H.

Wongel, J. X-ray Sci. Technol ., 3 (1992) 85.

G. Margaritondo, F. Cerrina, Nucl. Instrum. Methods Phys. Res., A291 (1990) 26.

K. Ninomiya, M. Hasegawa, S. Aoki and K. Suzuki, Jpn. J. Appl. Phys., 30

( 1991) 2889.

B. P. Tonner and G. R. Harp, J. Vac. Technol., A7 (1989) 1.

S. Yamamoto, X. Zhang, H. Kitamura, T. Shioya, T. Mochizuki, Y. Yoda, S. Kikuta

and H. Takei, J. Appl. Phys., 74 (1993) 500.

Y, Gohshi, Nucl. Instrum. Methods Phys. Res., A303 (1991) 544.

H. Nakazawa, J. Appl. Cryst., 16 (1983) 239.

D. H. Bilderback, S. A. Hoffman and D. J. Thiel, Science (Washington, DC), 263

(1994) 201.

Page 216: Analytical Spectroscopy Library_VOL 7

Applications of Synchrotron Radiation to Materials Analysis H. Saisho and Y. Gohshi (Editors)

1996 Elsevier Science B.V. 207

CHAPTER 4

X-RAY ABSORPTION FINE STRUCTURE

Hiroyuki OYANAGI

Elect ro technica l Labora to ry

1-1-4 Umezono , Tsukuba, Ibaraki 305, Japan

4.1. INTRODUCTION

4.1.1. Interactions of photons with atoms and molecules

By varying the energy and polarization of incident photons, one can study the

microscopic structure and electronic states through the various interactions of the photons with

a variety of materials ranging from clusters to macromolecules as schematically illustrated in

Fig. 4-1. Reflected and transmitted photons conventionally provide information on the

electronic states of a system. Elastically and inelastically scattered photons are used to study the

microscopic structure. One can obtain information on the electronic states of occupied states by analyzing the energy of photoelectrons. On the other hand, X-ray absorption spectroscopy

(XAS) provides a means of studying the unoccupied states and the local structure around an

excited species of atom [1]. The advantage of XAS is its selectivity for atomic species and

sensitivity to the atomic arrangements [2,3]. The relation between the fine structures and crystal

structures has been recognized from an early stage. Historical developments which established

the fundamental aspects of the fine structures based on a short-range order theory are reviewed

in detail in the literature [4]. Even if the system has many elements, a particular species of atom

can easily be selected by tuning the photon energy to one of the inner shell absorption edge

energies. Moreover, since the interaction is strongly polarized, the information on the

geometrical arrangements of atoms, or the radial distribution in a particular direction, can be

obtained. These characteristics make synchrotron radiation an ideal light source, in that it

provides an intense polarized light over a wide range in energy. XAS has advanced rapidly

since the application of synchrotron radiation in the early 1970s [5]. The advances in

experimental techniques have been inspired by a simple interpretation of fine structures, based

on a single scattering theory [6] and a Fourier transform analysis [7]. Reviews on modem XAS

Page 217: Analytical Spectroscopy Library_VOL 7

208

Incident photons

Surface r Interface [

Bulk

Scattered photons Fluorescence

,/Photoelectron / / Aucjer electron

/ /

Fig. 4-1. Schematic representations of the various interactions of photons with atoms and

molecules.

are available [8,9] and the theories and analytical methods are described in detail. In this

Chapter, the recent experimental advances in XAS as a structural probe in a hard X-ray region

(> 4 keV) are reviewed. The capabilities of high-brilliance photon sources, i.e., insertion

devices, for the studies of dilute systems are demonstrated, and the future prospects of a

tunable X-ray undulator for the third-generation storage rings [ 10] are discussed.

4.1.2. X-ray absorption fine structure (XAFS)

X-ray absorption fine structure (XAFS) is a general terminology for extended X-ray

absorption fine structure (EXAFS) and X-ray absorption near edge structure (XANES)

techniques. In general, EXAFS refers to the sinusoidal oscillations observed over a wide

energy range extending ~1000 eV above the edge, while XANES refers to fine structures

around an absorption edge extending typically -50 eV. In Fig. 4-2, the Ge K-edge absorption spectra are shown as a function of photon energy for glassy and crystalline GeO2 [ 11 ]. In the

trigonal crystal structure, each Ge atom is coordinated by four oxygen atoms forming a

tetrahedral unit. These tetrahedra are linked by two-fold coordinated oxygen atoms which

occupy the corner positions of each tetrahedron [ 12]. Clearly, the absence of long-range order

has little effect on the XANES and EXAFS regions; the spectral features in a glass are

broadened but the essential features are preserved. This fact naively suggests that the glass has

a short-range order as the fine structures arise from interference between the outgoing and

scattered photoelectrons. The fine structure in X-ray absorption spectra and its relationship to

Page 218: Analytical Spectroscopy Library_VOL 7

209

z D

I-- I I l

A . m

0 0 , ~

C

I ' I

I !

I

I ' I ' I ' I ' I " ' I

GeO 2 80K Ge K- edge

~...,..,_..,,~, trigona I f'\,_. . . . . . . glass

I , I , I , I , I , I , I , I

10.8 11.0 11.2 1t.4 11.6 11.8 12.0 12.2

ENERGY (keY)

Fig. 4-2. Ge K-edge absorption spectra for glassy and trigonal GeO2" taken from ref. 11.

Above the K-shell excitation energy (11.11 keV), near-edge and extended fine

structures are observed.

the crystal structure have been recognized from an early stage. Until recently, however, the

quantitative understanding of XAS has been hindered because of poor quality. The

experimental techniques of XAS have been improved dramatically by the use of synchrotron radiation. Synchrotron radiation has outstanding advantages as a light source for XAS. These are, (1) a wide spectral range covering the VUV and soft X-ray regions, where the light elements such as C and O have absorption edges (250 eV-4 keV), to a hard X-ray region (4-30 keV) where elements heavier than Ca (Z = 20) have absorption edges: (2) an intense quasi- parallel beam which allows us to measure XAFS with a high energy resolution [13] or energy

dispersive geometry [14]: and, (3) a variety of polarization characteristics with high purity and

controllability. In general, a linear polarization from a bending magnet is used for polarization

dependent experiments, while one can obtain linear [ 15], circular [ 16], and elliptical [ 17]

polarization using special insertion devices.

The improved quality of XAS obtained with synchrotron radiation made possible the

quantitative analysis of experimental data. Partly driven by a motivation to utilize the technique

as a unique local structural probe, the theoretical understanding has been accelerated [ 18-20].

In the 1970s, various new experimental techniques were evolved, such as an electron detection

technique [21 ] as a means of surface-sensitive measurement, a fluorescence detection technique

Page 219: Analytical Spectroscopy Library_VOL 7

210

[22] to enhance sensitivity for dilute systems, and an energy-dispersive technique [ 14] for time-

resolved experiments. These new techniques have spread the capabilities of XAFS to cover a

wide area from physics to biology. Dedicated synchrotron light sources, often referred to as the

"second-generation" storage ring, are characterized by a low emittance and high stability. Such

facilities made possible a high-energy-resolution near-edge spectroscopy called XANES [23] or

NEXAFS [24] (near-edge X-ray absorption fine structure) which can probe elaborate changes

in coordination geometry. It should be noted that the capability of XAFS is strongly dependent

on the characteristics of the light source. In this sense, the XAFS technique is indeed still

developing with the evolution of the light source.

4.1.3. Uniqueness as a structural probe

In contrast to diffraction techniques, which give the atomic coordinates as a

macroscopic average, XAFS provides the information on a local structure, i.e., the radial

distribution and electronic states around a particular species of atom. The uniqueness of XAFS

is attributed to its physical origin, the interference of outgoing and scattered photoelectron

waves from the central atom, which modulates the matrix element of a dipole transition. Such

an interference does not require a long-range order and reflects a "partial" radial distribution

around an excited atom, extending to several A because of the rather short mean free path of

ejected photoelectrons. Schaich [20] has shown that the short-range [1] and long-range order

[25] theories are equivalent if the inelastic energy loss of photoelectrons is taken into account. A

great advantage is the tunability for atomic species; the energies of various inner shells are

distributed over a wide range in energy and one can tune to a particular species of atom and

inner shell by choosing the energy of incident photons. The superior capabilities of XAFS as a

local structural probe are fully exhibited in studies of dilute, multi-element systems, in

particular, those without long-range order. XAFS is complementary to crystallography or

scattering techniques, which provide the average or macroscopic structure with a long-range

order. On decreasing the quantity of the atom species of interest, or increasing the number of

constituent atoms, the uniqueness of XAFS as a local structure probe becomes particularly

evident. For a structurally disordered system, the correlation between atoms is described by a

radial distribution function for elements. For a disordered system consisting of more than two

elements, it is necessary to separate partial radial distribution functions from either an isomer

effect in neutron diffraction or an anomalous scattering effect in X-ray diffraction. This problem

is difficult for disordered systems consisting of more than two elements and it is practically

impossible to handle three-component systems. A general problem of crystallography is the

lack of accuracy in the local structure. Biological systems usually contain only a few atoms in a

macromolecule consisting of several tens of thousands of atoms, and the analysis of local

structure is not reliable even if single crystals are prepared [26]. For biological systems, the

local structure is strongly related with biophysical functions and it is important to study the

coordination in enzymes and heme proteins in vivo [27].

Page 220: Analytical Spectroscopy Library_VOL 7

211

4.1.4. Evolution of XAFS

The recent advances in the experimental techniques of XAFS are demonstrated in Fig. 4-3 where the Ge K-edge absorption spectra for trigonal GeO2 powder taken on various

spectrometers and synchrotron radiation facilities are compared [11 ]. The top spectrum, (a),

was obtained using an in-house EXAFS apparatus using Bremsstrahlung, by Lytle et al. [28]

while the middle spectrum, (b), indicates the data obtained by using the first-generation storage

ring. Although it appears that the spectral quality is much the same between (a) and (b), the

statistics and data collection time are improved in (b) by more than two orders of magnitude

[29]. Since a typical magnitude of modulation is of the order of 10 -2 and the statistical error

must be less than 10 -3 , one needs to collect at least 106 photons for the incident and

transmitted beam intensities. Since the photon flux is usually reduced by several powers of ten

after the absorption, the XAFS experiments require a high photon flux. Synchrotron radiation

has not only reduced the data collection time by several orders but has also improved the

accuracy as a structural probe. In Fig. 4-3, new near-edge features are resolved in (c), taken on

. m t . -

<:1:

~=~

l

11.0

GeOz (13)

in-laboratory system Lytle (1965)

(b)

DCI storage ring of LURE (Orsay, FRANCE) Lapeyre et al. (1983)

(c) Photon Factory (present work)

I I

11.5 12.0 Energy (keV)

Fig. 4-3. Comparison of Ge K-edge absorption spectra for trigonal GeO2 taken on various

spectrometers �9 from ref. 11.

Page 221: Analytical Spectroscopy Library_VOL 7

212

a spectrometer at the second generation storage ring. A high-energy resolution is achieved by a

low emittance and a narrow width of monochromator-crystal rocking-curve. As a result, the

near-edge features have been revealed and the theoretical understanding of XANES has been

advanced. The evolution of the XAFS technique is evidenced by the surface-sensitivity in a

hard X-ray region, which improved by several orders of magnitude in the late 1980s, as will be

discussed. It is interesting to note that the recent progress in XAFS is certainly due to the

correlated developments in experimental techniques and theories which strongly inspired and

accelerated each other's progress.

4.2. PRINCIPLES

4.2.1. Extended X-ray absorption fine structure (EXAFS)

EXAFS is an interference phenomenon of photoelectrons, which occurs between the

outgoing waves and the scattered waves and modifies the matrix element of core-excitation or

X-ray absorption. Since the dominant interference involves the path lengths between the

absorbing (central) atom and a scattering atom 2r, the 2kr oscillations are observed in k-space,

in contrast to kr oscillations in a well-known formula for electron scattering. The propagation of

photoelectrons is described in terms of the exact spherical waves [30] or curved waves [31 ].

Since the interference of photoelectrons is detected on an excited atom, the information is

intrinsically local. Within a single scattering formalism [6], the interference among the three

components, i.e., the outgoing wave, the single-scattering path, and the double-scattering path

of the lowest order, is dominant. The photoelectrons emitted from an excited atom as spherical waves rapidly damp because of inelastic effects. This fact limits the probed spacial range but it

also ensures that contributions of multiple-scattering beyond double-scattering are neglected. The fact that multiple-scattering effects can be ignored for the nearest-neighbor scattering allows

us to analyze the data by a simple Fourier transform [7]. In Fig. 4-4, a scheme of the

photoemission process is shown. In X-ray absorption, the bound electrons are ejected when the

incident X-ray with an energy hv exceeds the binding energy E0. Accordingly, the absorption

coefficient increases sharply at the threshold energy E0, above which fine structures are

observed over 1 keV or more. Figure 4-2 shows a steep rise of absorption coefficient at ~11.11

keV, the onset of the Ge K-edge or the s-state absorption. The fluorescence X-rays [22] and

Auger electrons [21], and, in some cases, the luminescence yields [32] are proportional to the

absorption coefficient, and these quantifies provide alternative means to monitor the absorption coefficient. Photoelectrons propagate as a spherical wave having a kinetic energy Ekin, which

is given as follows.

Ekin -- h v - EO (4-1)

Page 222: Analytical Spectroscopy Library_VOL 7

213

Photoemission Process

Valence bond

Ekin = hv - F'o

T Auger electron

~ 2pz/2 2p~/z

i = ~--~---- ls

Core ~ 2 L_,,- Fluorescent Levels

v

X-roy X-roy Absorption Emission

Fig. 4-4. Schematic representation for the photoemission process. Photoelectrons are emitted

when the incident photon energy exceeds the binding energy. Radiative and

nonradiative decays of excited states are associated with the characteristic X-rays or

Auger electrons.

where h v is the incident X-ray energy and E0 is the binding energy. The photoelectron wave

vector k is then defined as

k = 2n h -1 [2m (hv -E0)] 1/2 (4-2)

The excited states return to the ground states either radiatively or nonradiatively. In the former

case, characteristic X-rays are emitted as a fluorescence with an energy difference between the

excited shell and outer shell. In the latter case, Auger electrons with the same amount of kinetic

energy are ejected.

In Fig. 4-5, a scheme for the interference of photoelectrons with the wave vector k is

shown, where 0 denotes the angle between k and radial vector r. Dashed arrows indicate the

outgoing photoelectron and solid lines indicate the scattered photoelectrons. The EXAFS

modulations in an absorption coefficient result from the interference between the direct wave

going from an excited atom (0) and waves scattered by surrounding atoms (1, 2). Among

various pathways for photoelectrons, the interferences between the direct wave and singly

scattered paths (0-1, 0-2) and the lowest order doubly scattered paths (0-1-0, 0-2-0) are

important. The probability of emitting a photoelectron in the direction k is given by

Page 223: Analytical Spectroscopy Library_VOL 7

214

EXAFS XANES

o

o - z - ~ I @

o_,_o',x,, 0 / / ~ o-2-o ' , \ / / o-l-2 \ \ \ o-2-6 \~-/,r o-I-z-o \ , , " -

o0- , . o�9 -@2 Central Atom ,oz Scatterer r~

Atom

Fig. 4-5. Principle of EXAFS. Photoelectrons ejected from an excited atom (0) are scattered

through the potentials of near-neighbor atoms (1, 2). Outgoing spherical waves

interfere with scattered waves causing a modulated transition probability. 0 denotes

the angle between k and radial vector r.

P(k) = D[e.k + f(O)/r exp(ikr(1-cos 0)) e.r] 2 (4-3)

where e is the electrical field vector, D is a constant and f(/9) is the scattering amplitude. Implicit

assumptions in a single-scattering formalism are the following; a plane wave approximation is

assumed, a single-scattering pathway is considered as the dominant interference; a muffin-tin

type of potential is assumed for excited and scatterer atoms; and a sudden approximation for the

core hole potential. The first term in Eqn. (4-3) expresses the outgoing wave and the second

term is the scattered wave, where r(1-cos0) denotes the interference path length. The total

absorption coefficient/1 is obtained by spherical integration of Eqn. (4-3) and if the normalized

modulation of the absorption coefficient is defined as A/1//1, EXAFS Z as a function of k is

obtained from the cross-term of the fight hand side in Eqn. (4-3), since other terms are smooth

functions of photon energy or vanish, canceling with a part of the cross-term. The interference

term is given by

~dk/4n e.k f(O)/r exp(ikr(1-cosO)) e.r (4-4)

Using a spherical wave expansion and integration angle over 0, Eqn. (4-4) is given by

Page 224: Analytical Spectroscopy Library_VOL 7

215

z(k) = -3 [(e.k) 2 / kr2]f(k,n) exp(2ikr)

= -3 [(ok) 2 [ kr 2] If(k,n)l exp(2ikr+~k)) (4-5)

The forward scattering term in Eqn. (4-4) cancels with the second term of the square in Eqn.

(4-3). For single-scattering paths (0-1, 0-2), the central atom phase shift is canceled and only

the back-scattering phase shift ~k) is left in the equation. If we take only the double scattering

paths with the shortest path lengths (0-1-0, 0-2-0) into account, and generalizing the formula

for Ni scatterer atoms at ri, with a mean-square relative displacement (MSRD) oi, then z(k) is

given by

z(k) = -3E [Nj (e.ki) 2 / krj 2] I~(k,n)l sin(2ikr+~k))

x exp(-2oj2k 2) exp(-2rj/~,j)

= -3E [Nj cos20j/krj 21 I~(k,n)l sin(2ikr+gt(k))

• exp(-2oj2k 2) exp(-2rj/~,j) (4-6)

where Aj is a mean free path of photoelectron and ~k) is a total phase shift function which is a

sum of the central atom phase shift 2~0(k) and scatterer atom phase shift 0(k).

~k) = 2~0(k) + ~(k) (4-7)

Since the total phase shift is approximately a linear function of k, the magnitude of the complex Fourier transform gives a peak maximum shifted to smaller r. Empirical data analysis procedures are based on the fact that this phase shift is transferable, i.e., once the total phase

shift is established for a given pair of absorbing atom and scatterer atom, it is independent of

the nature of the chemical bond, allowing one to extract structural parameters from one

compound and apply them to other systems. On the other hand, Teo and Lee published

tabulated values of theoretical amplitude and phase shift functions using a plane wave

approximation for outgoing photoelectrons[33]. Such theoretical calculations are quite useful,

in particular when an appropriate model compound with a known structure is not available.

Later, McKale et al. have calculated the scattering amplitude and phase shift on the basis of a

Page 225: Analytical Spectroscopy Library_VOL 7

1.2

curved wave approximation [34], which improved tile calculated phase shifts in the low k-

region for high-Z elements. Figure 4-6 shows the back-scattering amplitude and phase shifts

calculated for In (Z=49), Ge (Z = 32), Si (Z = 14) and O (Z=8) [34]. For a low-Z atom such as

Si or O, the back-scattering amplitude has a large value in a small k-region which sharply

reduces intensity with an increase in k. For higher-Z elements, the amplitude extends to a high

k-region: the back-scattering amplitude has a maximum at k -- 6 A-1 for Ge while two maxima

at k ~ 3.5 A -1 and 10 A-1. A characteristic k-dependence of a back-scattering amplitude is often

used to distinguish atom types. Equation (4-6) shows that the modulation has a fundamental frequency 2rj while the envelope reflects the k-dependence of the back-scattering amplitude

I~(k,~)l. Thus the analysis of EXAFS is essentially a process to obtain structural parameters,

Nj, rj and crj from EXAFS oscillations using known I~(k,~)l and qt(k) as a function of k.

Conventionally, the experimental phase shift is determined by fitting Eqn. (4-6) to the data of

an appropriate model compound with a known structure.

1.0 i

In

0.8

~ 0 . 6

0.4

0.2

216

10 .-. In

e - o 8

"-" 6 Ge

4

" 2 0 Si

! I !

0 10 20 k (~'~)

20

... I0'

Eo o

- I0 0

In

Ge

10 20 k (~-i)

Fig. 4-6. Calculated back-scattering amplitude I~(k,~z)l as a function of k (A -1) and phase-shift

functions for various scatterer atoms �9 taken from ref. 34.

Page 226: Analytical Spectroscopy Library_VOL 7

217

The details of data analysis are described in Section 4.4. Here, some important aspects

of Eqn. (4-6) are summarized. First, the effect of multiple scattering is large in the low-k region

where photoelectrons are strongly scattered. Figure 4-7 illustrates the scattering pathways for

the three atom system which originates from the excited atom (0), scattered by the nearest-

neighbor atom (1) and the second-nearest neighbor atom (2). fl denotes the angle between the

pathways (0-1) and (1-2). The strong forward scattering by a low-Z nearest-neighbor atom affects the magnitude of scattering by the second-nearest neighbor atom when the central atom,

nearest neighbor and second-nearest neighbor atoms form a triangle. In general, for high

energy electrons (kr >> 1), the magnitude of back-scattering is much smaller than that of

forward scattering. This is the reason why the multiple scattering is not important in EXAFS at

least for the nearest-neighbor, in contrast to low energy electron diffraction (LEED) where

multiple scattering must be taken into account. In LEED, the electrons are irradiated outside the

surface and the interference between forward-scattering photoelectrons is monitored by a

detector placed away from the scatterer, while in EXAFS, the absorbing atom emits the

photoelectrons and simultaneously detects the interference of back-scattered waves coming back

to the origin. Secondly, in EXAFS, the interference pathlength of multiple scattering is long

and the high frequency sin(2kr) oscillations due to multiple scattering cancel out. Actually,

possible combinations of multiple-scattering pathways increase rapidly on going to higher

shells beyond the nearest-neighbor atoms, and such long pathways would reduce the

photoelectrons because of intrinsic and extrinsic inelastic scattering. These facts make the simple single-scattering EXAFS formalism valid for the nearest-neighbor atoms where the

multiple-scattering pathways are separated in r. For multiple-scattering calculations, the

spherical wave expansion [35] or small-atom approximation [36] can be used. However, there are several special cases where multiple scattering cannot be neglected

[37,38]. In the low-k region, particularly for low-Z elements, the photoelectrons are strongly

scattered and the multiple scattering becomes important. Thus, if a light-element atom is placed between the direct scattering pathways, its large scattering amplitude in the low-k region would

enhance the multiple-scattering effect. As shown in Fig. 4-7, the strong forward scattering of

,2 92 ' (a) --"" ,,/

I 0 - 2 - 0

o o

(b)

0-I-2-0

2 . . . . . - " (c)

1 0 - t - 2 - 1 - 0

o

Fig. 4-7. Schematic representations for scattering pathways (dashed line) for the three atom

system which originates from the excited atom (0), scattered by the nearest-neighbor atom (1) and the second-nearest neighbor atom (2). fl denotes the angle between the

pathways (0-1) and (1-2).

Page 227: Analytical Spectroscopy Library_VOL 7

218

the intermediate atom (1) gives rise to a substantial multiple-scattering contribution along a

triangle pathway (0-1-2). The effect of the multiple scattering is clearly seen in the Fourier

transform of the Ga K-EXAFS oscillations measured for GaP, GaAs and GaSh (See Fig. 4-8).

All three compounds have a zinc blende-type structure where each cation (Ga) atom is

tetrahedrally coordinated by anion (P, As, Sb) atoms. In Fig. 4-8, although the second-nearest

neighbors are twelve Ga atoms for all cases, the second-nearest peak observed around 4 ,/k is

strongly dependent on the species of the first-nearest atom located at the apex of a triangle. A

large second-nearest neighbor peak observed for GaP is due to the strong forward scattering

power of the P atom. Thus it is clear that the analysis of the higher shells must take the

multiple-scattering effect into account. With the decrease of t , the scattering by the second-

nearest neighbor atom sharply increases due to the multiple scattering involving the nearest-

neighbor atom. Thus, when three atoms separated by an equal distance are linearly aligned, the

second-nearest neighbor peak is observed with a magnified intensity, which is known as a

focusing effect. The effect of multiple scattering can be corrected by a theoretical formula taking

three pathways shown in Fig.4-7 into account.

0.08 0.04

0 -0.04 -0.08

0.04 0.02

0 -0.02

"" -0.04

>~ -0.06

0.08 0.04

0

-0.04

-0.08

2

i i i i i i

Go K- edge

I 1

V

fluorescence -t transmission z~ ~ ~ 10 1'2 14 16 18

k (~-1) Fig. 4-8. Ga K-edge EXAFS oscillations as a function of photoelectron wave number k for

GaP, GaAs and GaSb.

Page 228: Analytical Spectroscopy Library_VOL 7

219

Atoms are vibrating around equilibrium positions which are usually displaced from ideal

ones. The effect of dynamic and static disorder is described by the Debye-Waller-like term

exp(-2o' j2k 2) for a harmonic oscillator with a Gaussian distribution. The displacement

measured in EXAFS is the mean-square relative displacement between a central atom and a

scatterer atom, in contrast to the Debye-Waller factor in the diffraction formalism, which

measures the mean-square displacement. Physically, the mean-square relative displacement oj 2

includes the correlation term which vanishes for independent motions [39].

aj 2 =<[rj.(uj - u0)]a> (4-8)

where uj and u0 denote the displacement vector for scattering and absorbing atoms originating

from the thermal equilibrium positions. Based on various lattice dynamical models, o] 2 can be

calculated [40,41 ]. If the phonon spectrum obtained by neutron diffraction measurements is

available, trj 2 can be obtained [39]. Simple approximations based on a Debye model [39] or

Einstein model [40] are often used for convenience.

In order to describe the disorder by the exp(-2o'j2k 2) term, it is assumed that atoms are

harmonic oscillators with a Gaussian distribution. However, for highly disordered systems the Gaussian distribution must be replaced with a pair-distribution function gij(r). It should be

noted that the effect of disorder gives rise to the additional term in the total phase [42]. Even a

symmetric gij(r) results in an additional term in phase. Since the integral over r, the pair-

distribution, cannot be obtained in a straightforward manner such as a simple Fourier

transform, a cumulant expansion of the pair-distribution function is used.

One of the most difficult problems in EXAFS theory is the inelastic effect, i.e., energy

loss. The many-body effects were discussed by Lu and Rehr [43]. In general, a simple

simulation based on Eqn. (4-6) has a smaller amplitude by a factor of 0.1-0.4. This reduction

of amplitude arises as a result of inelastic effects, (1) around the excited central atom via a

multielectron process, or (2) associated with the scatterer atom, and (3) the inelastic effects of

photoelectrons which are taken into account by an exponential decay term exp(-2rj/2,j) in Eqn.

(4-6) using 2.j, a mean free path of a photoelectron. Since the proper theoretical estimation of

(1) and (2) is difficult at present, in order to correct the amplitude reduction a simple constant is used in a conventional data analysis. Stern et al. introduced a damping factor S02 to account for

an overlap of the initial and final wave functions of passive electrons which decrease the one- electron matrix element [44]. The calculated S02 factors lie in the range 0.6-0.9 [45]. Since

this value is dependent on both k and chemical bonds, it is reasonable to treat it as an empirical

parameter. The contribution to the inelastic scattering within the back-scattering atom is

included in the scattering amplitude using an optical potential whereas the inelastic effects at the central atom are accounted for by the S0 2 factor. Thus, adding an S0 2 factor should be

associated with replacing the exp(-2rj/Zj) term with exp(-2(rj - A)/2,j) where A accounts for the

Page 229: Analytical Spectroscopy Library_VOL 7

220

energy loss already accounted for in the S02 term. It should be noted that the mean free path

between the first and second shells is not modified because the energy loss suffered by

photoelectrons between the first and second shells is described by the mean free path term.

Readers should refer to theories on intrinsic [46] and extrinsic [47] energy losses and optical

potential [48] for a detailed discussion on many-body effects.

4.2.2. X-ray absorption near edge structure (XANES)

The near edge structures (XANES) observed up to about 50 eV above the absorption

edge have oscillations with much higher frequencies than EXAFS. They are caused by

multiple-scattering resonances of photoelectrons within a cluster around an excited atom.

Because of the lifetime broadening and solid-state effect, the energy resolution of 1-2 eV is

sufficient for continuum features in most cases. Figure 4-9 shows typical XANES spectra on the Ge K-edge (11.11 keV) for crystalline and glassy GeO2, where a transition from the ls to

4p* states is observed as a sharp "white line" at the threshold. Several characteristic features are

observed for both the crystalline and glassy phases although they are broadened in the latter. In

general, the magnitude of XANES modulation is larger than that of EXAFS since the scattering

factor is larger in a low energy region. As will be shown in Section 4.5, the analysis of EXAFS data shows that the short-range order within a GeO4 tetrahedral unit is strictly maintained in the

glass although the long-range order is degraded. This indicates that the near-edge features are

dependent on atomic arrangements beyond the first-nearest neighbors. As "slow"

photoelectrons are strongly scattered, the multiple scattering is dominant in the near-edge

region. Since the multiple scattering is sensitive to the bond angle, this means that the

information on the bond angle as well as bond length is contained in the near-edge features.

" i ' i I ' I / . ~ ' \ I ' i I

Ge 02 ,.....

Ge K-edge -- f , , \ \ trigonol ( z = 4 ) o:>- I \ \ ...... glass

(z 61 r r -

e n

I l , . , I t I , I i I ' �9

-I0 0 10 20 30 40 ENERGY leVI

Fig. 4-9. High resolution Ge K-edge XANES spectra for trigonal and glassy GeO2, taken on

a spectrometer using a Si(311) channelcut crystal monochromator �9 from ref. 11.

Page 230: Analytical Spectroscopy Library_VOL 7

221

The scattering of low-energy electrons is sensitive to the shape of potential. This gives

rise to sensitivity to chemical bonds or valency. However, these make it difficult to analyze the

XANES by a simple method as in the case of EXAFS, although it has rich information on site

symmetry and electronic states. In order to calculate XANES, multiple-scattering pathways

must be taken into account. In fact, the state density of conduction bands for the 3d transition

metals reproduces the experimental absorption curves for both XANES and EXAFS regions.

The band calculations are equivalent to calculating all possible multiple-scattering pathways

based on the long-range order or Bloch theorem [49]. The method of calculating multiple-

scattering paths is essentially the same as that for dynamic LEED intensity calculations. The

number of possible pathways increases rapidly on taking outer shells into account and various approaches for full multiple-scattering calculations have been proposed [50]. For molecules,

excited photoelectrons sometimes form a strong "shape resonance" state, giving rise to sharp

transitions in the near-edge spectra [51], while insulators such as alkali halides show an

exciton-like bound state transition [52]. Calculations of XANES using a molecular orbital

approach have also been proposed [53].

Furthermore, features related to bound-state transitions are often observed below and

above the absorption edge. In Fig. 4-10, polarized XANES spectra are shown for single-crystal La2CuO4 (above) and for a powder sample (bottom) [54]. The strong, polarization-dependent

features observed for the single-crystal data arise from the anisotropic coordination geometry of square-planar Cu atoms in the CuO2 plane. In La2CuO4, the Cu atoms are four-fold

coordinated by oxygen atoms at ~1.9 A in the basal plane. They are coordinated by two other oxygen atoms at ~2.4 ,~, forming a CuO6 octahedron distorted along the c-axis. The in-plane

features are due to the bound-state transition from the ls to 4p*(cr) states while the out-of-plane

features are the Is to 4p*(zr) transitions. These features correspond to the fine structures in

XANES for powder La2CuO4, where anisotropic features are averaged out. The polarization

dependence thus provides not only the information along a particular direction but is also helpful for the assignment of the near-edge features. It was pointed out by Natoli that the

energy positions of these fine structures are related to the bond length [55]. As shown in this figure, the polarization-dependent out-of-plane features are sensitive to the ligand along the c-

axis. One can thus obtain the information on the apical-oxygen position from the out-of-plane polarized XANES. In high Tc superconductors, it is recognized that the apical-oxygen affects

the superconducting properties and their role in the pairing mechanism is important. The recent

development of the full multiple-scattering approach made it possible to analyze XANES and to

obtain information on subtle changes in coordination, bond length, effective charge, or valency.

Page 231: Analytical Spectroscopy Library_VOL 7

222

A rE') I--- z >.- cIc cIc

n..-

.._~

ix..

Cu K-edge Is- 41~{r ) O ? Is -41)'Io'I

k[--~ d Lo2Cu04 ~ Single crystal

e ~ k ' / O : 9 O ~ g k~

! I I I I 8980 8990 9000 9010 9020 9030 9040

ENERGY (eV) Fig.4-10. Polarized Cu K-edge XANES spectra of La2CuO4 taken for a single crystal (above �9

from ref. 54) and unpolarized data for a powder specimen (bottom).

4.3. EXPERIMENTAL TECHNIQUES

4.3.1. Transmission XAFS

Monochromator

Classical X-ray absorption spectroscopy uses the transmission experiment, where a

monochromatized X-ray is passed through a sample and from the incident and transmitted beam

intensities the absorption coefficient p(E) is obtained as a function of the photon energy, E. In

order to obtain the spectrum, the Bragg angle 013 of the monochromator is scanned. For Bragg

reflections with dhkl, the energy of the incident beam E is given as

Ehkl = 12.4/~,hkl = 6.2/[dhkl sin0B] (keV) (4-9)

Page 232: Analytical Spectroscopy Library_VOL 7

223

The energy resolution AE/E is a convolution of the Darwin width ~50w and geometrical

resolution of the incident beam ~50g which are determined by collimating optical components, a

source size and an angular divergence. Since the polarization for a bending magnet radiation is

horizontal, the vertical emittance is a dominat factor. AE/E is expressed by the following

equation.

AE/E = [(~50w) 2 + (~50g)2]1/2 cot 013 (4-10)

The vertical angular divergence of synchrotron radiation is an order of magnitude larger

than the width of the rocking curve. For Si(111), 80w is ~8 sec or 1 x 10 -5 rad for 8 keV X-

rays while the vertical divergence is ~ 3 x 10 -4 rad for the 2.5 GeV storage ring at the Photon

Factory. Since the angular divergence is larger than the Darwin width roughly by an order of

magnitude, it is necessary to collimate the beam either by a slit or a mirror. A typical energy

resolution for Si(111) is ~2 eV at 9 keV when a slit with an aperture of 1 mm is placed before

the monochromator located ~25 m from the source point. From Eqn. (4-10), the energy resolution increases with the increase of photon energy, and for high-photon-energy experiments, reflections with a smaller dhkl value such as Si(220) or Si(311) are used.

Figure 4-11 shows a schematic representation of a variable-beam-height double-crystal

reflected beam stepping

motor i Oa 72

Y-translation

stepping L \ ~ rotating table motor

Fig.4-11. Schematic diagram of a variable beam-height double crystal monochromator. The

first crystal is placed on a computer-controlled XY stage. When the XY stage is

controlled according to simple functions of the Bragg angle (see text), the output

beam height is kept constant on rotating the axis.

Page 233: Analytical Spectroscopy Library_VOL 7

224

monochromator. On rotating such a monochromator, the output-beam-height varies as a

function of the Bragg angle. Various schemes have been proposed for achieving a constant

output-beam-height [56]. The dominant source of experimental error in XAFS experiments is

the systematic error which is caused by the fluctuations of beam positions due to

monochromator scanning and the light source instability. In most cases, the mechanical stability

in the parallel setting of the two crystals is the most important factor. In Fig. 4-11, the incident

beam irradiates the center of the first crystal while the second crystal is placed on an XY stage.

In the original design, a mechanical linkage was used for controlling the XY stage [57]. By

replacing a mechanical linkage with computer control, the vertical position of an output beam

can be controlled easily [58]. It should be noted that the dominant source of error in the parallel

setup of the two crystals is the wiggles of X stage since the magnitude of the X-stage motion is

larger than that of the Y-stage motion by an order. Figure 4-12 shows the positions of an XY

stage as a function of the Bragg angle for Si(111) which achieve a constant output-beam height.

100

90

80

.-. 70- E E "-" 60-

'~ 50- > - X

o 40- r o = 30- o

20-

10-

E (keY)

Si(111) 151311109 8 7 6 5 4 3.5 3 t ~ , l l , l , ~ , l , l , l , ~ , ' ~ , J

Si (220) z~1816 14151211 10 9 ~} "~ 6 '1 5

/ Position of XY stage H=25mm

Y=H/2cos8

I I I I I I I 410 0 5 10 15 20 25 :30 35

8 (deg.) Fig.4-12. Positions of the XY stage as a function of the Bragg angle for Si(11 l) which achieve

a constant output-beam height.

Page 234: Analytical Spectroscopy Library_VOL 7

225

SOURCE UHV POINT

Be WINDOW SLIT

I li X"

SHUTTER

HUTCH

AIR MONOCHROMATOR

SAMPLE He MASK IF~I I,ON ION , ON l

CHAMBER II ll IICHAMBERII CHAMBER

i STAGE

ITO IV AMP IV AMP PZT 1

i

FEEDBACK I VFC VFC ELECTRONICS II~ COUNTER I COUNTER

I I

MONOCHROMATOR POSITION

COMPUTER STAGE POSITION

Fig.4-13. Experimental scheme for XAFS measurement in a transmission mode. Intensities of

the incident and transmitted beam are measured by the two ionization chambers as

the photon energy is scanned. In this system, the vertical positions of the two

ionization chambers and the sample are controlled by a lifting stage so that the beam

irradiates the same position.

Absorption spectra are obtained by dividing i0 by i and taking a logarithm according to Eqn. (4-

11). The second term in Eqn. (4-11), which varies smoothly with photon energy, derives from

the absorption of the two ionization chambers. Although this does not affect the normalization

of EXAFS, it can be estimated from a simple measurement for a blank sample, if necessary.

Higher harmonics and sample inhomogenity severely degrade absorption spectra [59]. Higher

harmonics arising from higher-order reflections can be minimized by either a mirror or detuning

the two monochromator crystals. For a typical X-ray mirror, varying the grazing angle can

select the cut-off energy, above which the reflectivity rapidly decreases. Detuning the two crystals is a simple method for elimination of higher harmonics but it also loses beam intensity,

and the random error increases.

4.3.2. Special techniques

Fluorescence XAFS

Fluorescence detection [22] is a technique for increasing sensitivity for dilute samples.

In a transmission experiment for a dilute sample, the thickness of sample is adjusted so that the

edge jump is, but the transmitted beam intensity is exponentially attenuated while the ratio for

the element of interest to the total absorption increases linearly. Thus the signal-to-noise ratio

Page 235: Analytical Spectroscopy Library_VOL 7

226

rapidly decreases on increasing the total absorption since the signal (absorption) is proportional

to the number of absorbed photon, which is a linear function of thickness, while the transmitted

beam intensity decreases exponentially. As fluorescence and Auger yields are proportional to

the absorption coefficient, these quantities provide alternative means to monitor absorption

spectra. The distinction between these two methods arises from a difference in escape-depth. The fact that Auger yield is surface-sensitive is utilized in surface XAFS, while the escape- depth for the fluorescence X-rays is of the same order as the penetration depth of the incident

beam. Above the absorption edge energy, the fluorescence X-rays are ejected and the

fluorescence intensity I(E) accepted by a detector with a solid angle 12/4n is expressed by the

following formula as a function of photon energy E,

I(E) = #(E) e ~ [I0 exp(-#T(E)t)) exp (-~tT(Ef) (sin0/sinr t ] dt dl2/4rc

= I0 bt(E) e cosec0 j" [ 1- exp (- (,uT(E) cosec0 +/~T(Ef) cosec~) a)] dl2/4n;

/ [ktT(E) cosec0 + btT(Ef) cosecr ] (4-12)

where I0 is the incident beam intensity, e is the fluorescence yield, p(E) and pT(E) are the

absorption coefficient for an excited species and the total absorption coefficient, respectively; tx

is the sample thickness, Ef is the energy for the fluorescence X-ray, 0 is the angle between the

sample surface and incident beam, and r is the angle between the detector and sample surface.

For bulk dilute systems where (pT(E) cosec0 + pT(Ef) cosec~) t~ << 1 (dilute limit),

Eqn. (4-12) reduces to the following equation [60] :

I(E) .... S I0 #(E) e cosec0 dl-2/4n:

/ [pT(E) cosec0 + pT(Ef) cosec~ ] (4-13)

Thus the fluorescence yield is proportional to the absorption coefficient and Eqn. (4-13) shows

that the intensity is maximized as sin0/sin~ is minimized and 12 is maximized. However, the

signal-to-scattering ratio degrades if s is simply increased.

On the other hand, for a ~ 0 (thin-film limit), Eqn. (4-12) is approximately given by

Page 236: Analytical Spectroscopy Library_VOL 7

I (E) ... ~ I 0 t.t(E) e cosec0 dl-2/4~ (4-14)

227

It should be noted that Eqn. (4-14) shows that the intensity is proportional to 1/sin0 but is not

dependent on r suggesting that the intensity is gained by a grazing incidence angle. In both the

dilute and thin-film limit, the incidence angle should be minimized. This is one of the reasons

why a high brilliance X-ray beam is important in fluorescence detection.

Figure 4-14 shows a typical energy spectra for fluorescence X-ray excitation. In

general, the elastic scattering peak shifts to higher energy when the monochromator is scanned,

and the characteristic X-ray lines with a fixed energy appear as the primary beam energy

exceeds the absorption edge. In a fluorescence detection, the dilute limit is determined by the

energy resolution of a detector and, conventionally defined as the signal-to-background ratio, is

nearly unity. Other characteristic lines in a system, and the elastic and inelastic scattering, are

sources of background. One can reduce the intensity of scattering by an order of magnitude by

inserting an X-ray filter which has the absorption edge between the characteristic line and the

elastic peak. Conventionally, a thin metal foil or a homogeneous powder containing the (Z-l)

element is used as a filter [61 ]. An ionization chamber [62] or a scintillation counter array [63]

are used in combination with a filter. Figure 4-14 shows the effect of an X-ray filter in reducing

the elastic scattering background. This method, however, cannot remove the other characteristic

lines because of an insufficient energy resolution. A solid-state detector (SSD) can remove the

A

0 0 0 . . . - .

x . . . . . . .

>.1 t - -

c -

GoKa

ELASTIC Go Si

without Zn filter

ZnK..AKe/.,~wi,h Zn filler

Channel number 2047

Fig.4-14. Fluorescence X-ray spectrum for Ga impurities in Si. The elastically and

inelastically scattered photons and characteristic X-rays from other elements which

have lower absorption edges are the source of background. Using an X-ray filter,

the intensity of scattered photons can be reduced.

Page 237: Analytical Spectroscopy Library_VOL 7

228

background although the count rate is limited by detector electronics. A multi-element SSD can

enhance the count rate by an order of magnitude [64]. Although defined by signal-to-

background ratio, the dilute limit is practically determined by a detector count-rate and incident- beam-intensity. Figure 4-15 shows the Zn Kt~ fluorescence yield for thermolysin + L-valyl-L-

leucine measured using a scintillation counter array. It should be noted that a high signal-to-

background ratio is achieved. In some case, the self absorption cannot be neglected, and several

procedures for correction have been proposed [65,66].

A I f )

t - - : 3

. .c: i t _

__.o L L .

Thermolysin + L-volyI-L-leucine Zn K-edge

9.7 9.8 I I I I

9.9 10.0 10.1 10.2 Photon Energy (keY)

10.3

Fig.4-15. Zn K-edge fluorescence yield spectrum for +L-valyl-L-leucine measured with a NaI

scintillation counter array.

Dispersive XAFS

In an energy-dispersive mode [ 14,67-70], X-ray absorption spectra are measured as a

spatial distribution of dispersed X-ray beam intensity. A bent crystal monochromator is used to

disperse the X-ray beam and a position-sensitive detector is used to record the incident or

transmitted beam simultaneously. The arrangement of an energy-dispersive spectrometer [14] is

schematically illustrated in Fig. 4-16. A linear photodiode array with 1024 sensor elements

separated by 25 ~tm is used as a position-sensitive detector. Various phosphor materials, such

as YVO4:Eu and Gd202:Tb are used to convert hard X-rays into visible photons [68,71]. The

most sensitive method is to irradiate the sensor with X-rays peeling off the optical window,

although the direct exposure causes some radiation damage to the sensor element [69]. Figure

4-17 shows the Fe K absorption spectrum for iron foil measured by a linear photodiode array

(RETICON RL1024SF) in an energy-dispersive geometry. The extracted EXAFS oscillations

are shown in Fig. 4-18 for various exposure times. In this Figure, the results of a conventional

step-by-step scan are also shown for comparison. Except for slight differences in magnitude

Page 238: Analytical Spectroscopy Library_VOL 7

229

CURVED CRYSTAL SLITS ,

/ ~ FROM SYNCHROTRON RADIATION SOURCE

~j;.......~J~'~̂ /Y~ " SAMPLE / ~ MIRROR

i I / \ / \

/ X-RAY FILM OR _ \ / POSITION SENSITIVE ROWLAND CIRCLE~f\ /

DETECTOR

Fig.4-16. Schematic diagram for energy-dispersive X-ray absorption spectroscopy (ref. 14).

Incident and transmitted photons with various energies are focused at a sample

position and simultaneously detected by a position detector.

due to a nonlinearity of the photodiode array, the results for the two modes agree well. It is

noted that the one shot experiment with a 35 msec exposure gives essentially the same EXAFS

features with those of a conventional method, indicating a small systematic error, which is the

advantage of this method. As noted already, mechanical instability is the dominant source of

systematic error. In an energy-dispersive mode, the primary source of error is a statistical one.

=< I - -

z

Fe EXAFS 55msec x 100

I I I I I I I I 7200 7500 7400 7500 7600 7700 7800 7900

ENERGY (eV) Fig.4-17. Fe K-edge absorption spectrum for iron foil taken in an energy-dispersive geometry.

A self-scanning photodiode array is used as a linear detector with 50 lxm spatial

resolution.

Page 239: Analytical Spectroscopy Library_VOL 7

230

0.1

0.05

0

-0.05

-0.1 0.1 z

. . . . . .

0.05

0

-0.05

l

0.05

0

-0.05

-0.1

l J i , i i " '

Fe K-edge

I I I ! I I

4.0 6.0 8.0 I0.0 12.0 14.0 16.0

Fig.4-18. Fe K-EXAFS oscillations measured by an energy-dispersive method for iron foil,

with various exposure times.

The spatial resolution of a linear detector is mainly influenced by the cross-talks and

broadening in a phosphor (--50 l.tm). The total energy resolution is a convolution of the source

size, divergence and spatial resolution of the detector. Although the geometrical energy

resolution is 1.73 eV for a Si(111) crystal with R = 2460 mm, the total energy resolution is

--5.6 eV at 7.1 keV. A better energy resolution (2 eV at 9 keV) is achieved by either a direct

exposure of the photodiode or a Si(311) bent crystal. The energy-dispersive geometry is

particularly important for small samples, such as a diamond anvil apparatus for high pressure.

Recently, it was shown that a small focus size (~100 ~tm) is obtained using an elliptically-bent

crystal. In a time-resolved experiment, the time-resolution is dependent on photon statistics,

and is of the order of a second for phosphor-coated photodiodes, while it can be decreased by

an order of magnitude for direct exposure. Further, for an experiment which can be repeated,

the time-resolution is reduced by several orders of magnitude. A fast chemical reaction in

solution was recently studied by a stopped-flow experiment with a 25 milli-second time

Page 240: Analytical Spectroscopy Library_VOL 7

231

resolution. Figure 4-19 shows the time-dependent change of Fe K-XANES associated with a

chemical reaction in solution with a time scale of 10 msec [72]. The time-resolution limited by

photon statistics will be improved by more brilliant photon sources, such as a multipole-wiggler

or an undulator if the response of a position detector is sufficient enough.

i ! , , | | i i i i I i

Fe K EXAFS O.SM Fe(N03)3 +

oo O.SM C6H4(OH)2 e d e

% /// b: 100 msec /// C: 250 msec

J// d: 550 msec . ~ / e:1150 msec

I I I I I 1

71oo 71 o 71:4o 71' o 71 o 72'00 7220 PHOTON ENERGY (eV)

Fig.4-19. Time-resolved Fe K-edge XANES spectra after mixing 0.3 M ferric nitrate and 0.3 M hydroquinone. Curves a, b, c, d and e are the spectra taken by integrating the

signal during the periods of 0-25, 75-100, 225-250, 525-550 and 1125-1150 ms

following the mixing: from ref. 72.

Surface-sensitive XAFS

In a hard X-ray region ( > 4 keV), because of the large penetration depth (of the order

of a micron) absorption experiments are not surface-sensitive. In order to apply the XAFS

technique to surfaces and buffed interfaces, a surface-sensitive detection scheme is required. As

discussed already, fluorescence detection [22] is a highly-sensitive technique but it is not

surface-sensitive in a hard X-ray region because the fluorescence escape-depth and the

penetration depth of incident photons are of the order of one micron. However, surface- selective excitation is made possible by a grazing-incidence geometry [73] illustrated in Fig. 4-

20. Below a critical angle for the total reflection (0 < ~) , X-rays are totally reflected as they

cross the interface between the two media, reducing the extinction length by several orders of

Page 241: Analytical Spectroscopy Library_VOL 7

232

8>>8c

Fluorescence Photons Reflected

X-rays ~ \ photons P~otoelectrons

- . , . ,

\ () \ x.., " ,.~ l ~Electron I ~ escape depth \ ( V/ /~-2 I

X-ray " ~, (~_===~' . . . . Ix- raY penetration depth L) ~ z lescape depth

8<~c Fluorescence ~ ~ X-rays

_ ~ . ~ ~ ; ~ . ~ " ~ - " ~ ~__. ~ eE IsecCa~re~ p, h

X-roy " I IY .... penetration I~ "~do ,~.,,,, depth i ~,--w - ~ v , -

L

Fig.4-20. Schematic representations of the normal (above) and surface-selective (bottom)

excitations. The grazing-incidence geometry can reduce the probing depth by orders

of magnitude, achieving a surface-selective excitation.

magnitude, which enhances the surface sensitivity by the same amount [74]. Although the

capability of surface-sensitive XAFS using a fluorescence detection and a grazing-incidence

geometry has been demonstrated, a conventional method using a large-area fluorescence

detector such as an ionization chamber has limited the application to non-crystalline or

polycrystalline specimens because of a diffraction problem. Recently, it was shown that a

combination of grazing-incidence geometry with an energy analysis using a solid state detector

(SSD) which can discriminate a fluorescence signal from a background scattering can

dramatically improve the surface-sensitivity, allowing us to apply this technique to studies of

epitaxial layers on single crystal substrates [75].

Figure 4-21 shows a schematic geometry of surface-sensitive XAFS experiments [76].

Because of polarization dependence, the two orientations of specimen, i.e., a vertical mount

and a horizontal mount, provide the information on the radial distribution around an excited

atom, parallel and perpendicular to the surface normal, respectively. Since a typical critical

angle for the total reflection of Si at 12.3 keV is --3.5 mrad, a high resolution goniometer with

translational adjustment capability is used to control the incidence angle. The vertical divergence

of incident photons is limited by the slits (--50 ~tm) placed in front of a beam monitor so that

Page 242: Analytical Spectroscopy Library_VOL 7

233

only a central region of a specimen (15 mm x 15 mm) is irradiated. In Fig. 4-22, the incident-

angle-dependence of a fluorescence spectrum is shown schematically. On decreasing the angle of incidence, 0, the fluorescence signal increases. Below the critical angle 0c, the inelastic

scattering peak drops sharply in intensity. A single-element Si(Li) SSD subtends a solid angle

z Reflected beam _ ,--.~/ monitor

�9 ~ S p e c i m e n

beam

Z X ~. . . .~ Y

z

tO

~X

Vertical mount Horizontal mount

Fig.4-21. Experimental arrangement for surface-sensitive XAFS by fluorescence detection.

The grazing-incidence angle is monitored by the intensities of the fluorescence signal, elastic peak, and reflected beam" from ref. 76.

Or)

Z ~.2.0 1313 13:::

> -

~1.5' (,/")

U,J I---

,,,1.0 U J

"'0.5 0

__1 U_

Si/Get/Si (001) . - ' ~ ~ X 12.50 keV

I : I i r ~ - - ~ - ~ - -" ~-i--- ; ~ . :e

-1 0 1 2 ANGLE (mred)

Fig.4-22. Variation of fluorescence signal and reflected beam intensities for Si23/Gel/Si(001)

as a function of angle between the incident beam and the surface �9 taken from ref. 75.

Page 243: Analytical Spectroscopy Library_VOL 7

234

of 1% while a multi-element SSD can improve the acceptance of detector by an order of

magnitude. In this setup, the white X-ray beam is monochromatized by a fixed-exit double-

crystal monochromator [57] which horizontally focuses the output beam by sagittal bending of

the second crystal. A typical photon flux N1011/photons/sec/mm2 with an energy resolution

AE/E --2 x 10 -4 at 9 keV is obtained at a normal-bending-magnet beamline at the Photon

Factory.

4.3.3. Insertion devices in XAFS research

Beyond the limitations

Synchrotron radiation from dedicated low-emittance storage rings are characterized with

high quality of beam characteristics, i.e., long lifetime, stability and capability to provide high

brilliance photons using various insertion devices. The sensitivity and time-resolution in

fluorescence detection are determined by the incident photon flux and efficiency of the detector.

One of the advantages of high-brilliance photon sources is the sensitive and rapid XAFS, i.e., data can be collected for more dilute samples using a smaller quantity with a better time-

resolution. Insertion devices such as wigglers and undulators can increase the brilliance; a

multipole wiggler inserted in a low-emittance storage ring provides more brilliant X-rays than

bending-magnet radiation, by more than an order of magnitude over a wide energy range. The

vertical angular divergence of a wiggler is, however, still larger than the monochromator

acceptance by an order of magnitude. The mismatch becomes more serious in a glancing angle

geometry for surface-sensitive experiments. Either a collimating X-ray optics or an ultra-low emittance storage ring would improve the mismatch. The advantage of an ultra-low emittance

storage ring is obvious and its potential in acceptance matching will be discussed in Section

4.6. Here we focus our attention to the application of a multipole wiggler to XAFS researches

at a low-emittance storage ring.

Multipole wiggler

A multipole wiggler consists of an array of magnetic poles which locally bend

electron/positron beam and highly directional radiation from each pole is added. Figure 4-23

compares the brilliance of bending-magnet radiation with that of 27-pole wiggler magnet

inserted at the Photon Factory. This device can be used either as an undulator with a weak magnetic field (B0) or as a multipole wiggler with strong magnetic field. The magnetic field can

be varied by changing a gap of magnet array. In a wiggler mode, the maximum B0 is 1.5 T

[77], for which the total power is 5.44 kW. From the figure, an increase of brilliance by more

than an order of magnitude is expected in a hard X-ray region (4-30 keV). Such a high power

causes heat load problems for optical components which are irradiated with white X-rays. The

thermal distortion of the monochromator crystal due to heat load deteriorates its throughput and

Page 244: Analytical Spectroscopy Library_VOL 7

235

10,6

1# 5

o ~

.~ 1014 C3

E

E

.e 10~3 e , -

O

o r

~" 1012

Z

_J _J

N 1011

undulator mode 1st BL13 MPW

wiggler mode 1.5T

bending magnet

1 0 1 ~ 10 10 z 10 3 10 4 10 5

PHOTON ENERGY (eV) Fig.4-23. Calculated brilliance of a 27-pole wiggler (1.5 T) installed at BL 13 of the Photon

Factory. For comparison, the calculated spectra for undulator radiation and normal-

bending-magnet radiation are also shown. The smooth function indicates the

envelope of the fundamental peak as the undulator gap is varied.

angular divergence or energy resolution. Figure 4-24 shows a schematic representation of the

plan view of the optics at 27-pole wiggler beamline at the Photon Factory. White X-rays pass

through the water-cooled graphite absorbers and Be windows, absorbing 1/3~1/2 of the heat

load, before irradiating a double crystal monochromator. The horizontal acceptance of the first crystal (3:1 focusing) is 4 mrad, which is sagittally focused to a 4 mm x 1 mm spot at ~36 m

from the source point. For vertical focusing and rejection of higher harmonics, a bent Pt-coated

fused quartz mirror is placed behind the monochromator.

The total Fe Ket signal intensity from 500 t.tM myoglobin is 5 x 104 cps for B0 = 0.75

T, Is = 337 mA without focusing where Is denotes the stored current. The total count rate

increased further by about 2.2 times with B0 = 1.5 T. By use of horizontal focusing, the flux

would further increase by an order of magnitude, suggesting that maximum 106 counts per

second is obtained for 500 l.tM biological samples. It is expected that the fluorescence detection

Page 245: Analytical Spectroscopy Library_VOL 7

236

BL-13 branch beam line shutters

branch beam line / water-cooled monochromator / be windows ~ ~ A 2oo~mx? \ \ ~ r

_ _ . . . . . . . . . Ir 2 7- p o l e - - - - - . . -7" / - / - - . . . . . . . . _ ~ 1 J I

eom

width of magnetic pole : 12cm monochromotor deflection parameter K : 0.M,,,25 branch beam line shutters magnetic field �9 0.02,-,1.5T and slit assemblies total power : 5.44kW (I.5T) _ power density: 2.3 kW/mrad z

(~ I I I I I I I 5 10 15 20 25 30 35

Distance from the source point (m)

I 40 4=5

Fig.4-24. Optics of a 27-pole wiggler beamline. A sagittaUy-bent second crystal focuses the

central beam horizontally while a bent fiat mirror focuses the beam vertically.

can be increased by about three orders of magnitude by combining a multi-element solid state

detector, a multipole wiggler, and focusing optics [78]. With this count rate, the main source of

error is the systematic noise caused by various sources of instability. A continuous scanning

monochromator [79] or energy-dispersive geometry [14] can provide a stable incident beam-

intensity, removing the mechanical instability of step-wise motion of the monochromator. It is

also important to reduce higher harmonic contributions using mirrors which are enhanced for

high magnetic fields.

Thermal distortion of the first crystal which deteriorates the throughput by broadening

the rocking curve is critically dependent on power and power density. The temperature gradient causes bending and local bump of diffracting plane as well as gradient in lattice spacing along the surface normal. More importantly for XANES, the deformed crystal results in the beam-

power dependence of energy resolution. The effect of heat load on the first crystal has been

studied for various types of grooved Si crystals [80,81]. The recent studies indicate that the

cooling efficiency of grooved silicon crystals can be improved by replacing a conventional

semicircular cooling channel [80] with a fiat one with optimized dimensions [81 ]. The distance

between the surface and the fiat water channel is 1 mm and the width of water channels and

cooling fins is 0.6 mm. Using such an optimized grooved crystal, the energy resolution

required for XAFS experiments (AE/E--2 x 10 -4) was obtained within a limited power range

(B0 < 1.25 T). In order to dynamically correct the deformation of a grooved crystal caused by

Page 246: Analytical Spectroscopy Library_VOL 7

237

heat load and internal water pressure, several "adaptive" approaches are proposed for silicon

crystal monochromators. The curvature of the diffracting plane for the first crystal is controlled

by pushing the lower block parallel to the grooves, using a piezoelectric translator or air

dumper, so that the rocking curve profile is independent of the beam power.

Sagittal bending [82] is widely used to focus the multipole wiggler radiation, which

extends over 4 mrad. The conventional sagittal bending used for horizontal focusing has a

serious problem; the horizontal focus size depends on the radius of the bent crystal. In XAFS

experiments, a constant focus size over a wide energy range (~1 keV) is required. In order to

meet this purpose, some approaches to achieve an energy-independent focus-size have been

reported [83]. Dynamic sagittal bending is a technique which keeps the focus size constant.

There are several proposals, such as a translational movement of a monochromator [83] or a

crystal bender using an inchworm motor [81 ].

Surface sensitivity

Surface-sensitive XAFS experiments using a grazing-incidence geometry and a

fluorescence detection requires high-brilliance beam. A combination of multipole wiggler and a

multi-element SSD achieved sub-monolayer surface sensitivity [78]. Surface-sensitive XAFS

with submonolayer sensitivity has allowed us to probe the atomic rearrangements on the surface

upon layer-by-layer growth such as organometallic vapor phase epitaxy (OMVPE) or molecular

beam epitaxy (MBE). In OMVPE, one of the epitaxial growth techniques for III-V materials,

the exchange reaction on the first layer has been an important issue. For example, the surface

exchange reaction of a group V element (As, P) during the epitaxial growth of InAs or InAsP

alloys on InP substrates has been a serious problem from viewpoints of the atomic layer epitaxy

(ALE) since such an exchange would degrade interface sharpness in chemical composition. In order to clarify whether the substrate P atoms exchange with As atoms when exposed to ASH3,

surface-sensitive XAFS on the As K-edge was measured for an InP(100) substrate exposed to AsH3 for a very short period (0.5 sec). This experiment can be a critical test for surface

sensitivity as the coverage of As is expected to be well below 1 monolayer (ML). In Fig. 4-25, the As Ktx fluorescence-yield spectrum for AsH3-exposed InP(100) is shown. The As

coverage determined by comparing the fluorescence intensity with those for strained InAs

layers grown epitaxially on InP(100) was ~0.1 ML. The k-dependence of EXAFS oscillations

indicates that the As atoms are bonded with In atoms, which evidences that ~1/10 of surface P

atoms are replaced by As atoms within a short interval of 0.5 sec [84].

Page 247: Analytical Spectroscopy Library_VOL 7

238

0.10

0.08

._o 0.06

U _

0.04

As K- edge As/InP(lO0) (,,,1014/cm2) 0.1 ML 300K

I I I I I I I I I I I

0'11.6 11.8 12 .0 12.2 12.4 12.6 PHOTON ENERGY (keY)

I I I I

12.8 13.0

Fig.4-25. As K-edge fluorescence yield spectrum measured in a surface-sensitive geometry

using a 27-pole wiggler and a multi-solid-state detector (SSD) for 0.1 monolayer

(ML) of As on InP(100). The As atoms substitute P atoms when the InP surface is exposed to AsH3 gas flow : from ref. 78.

4.4. DATA ANALYSIS

4.4.1. Initial data treatment

In this section, the fundamental data analysis procedures to obtain structural

information, i.e., extraction of the EXAFS oscillations, Fourier transform and curve fit are

described. Figure 4-26 illustrates the schematic absorption spectrum and extracted EXAFS

oscillations. The pre-edge region of absorption spectra contains the absorption due to: (1),

ionization chambers as beam intensity monitors; (2), higher shells and; (3), other elements in a

system. For fluorescence yield spectra, the pre-edge region is a featureless background due to

the scattered photons and fluorescence lines from higher shells or other elements which

smoothly varies as the excitation energy is scanned. The signal-to-background ratio reflects the

energy-resolution of a fluorescence detector. The pre-edge region for spectra measured with an

SSD is usually negligibly small. The first step in data analysis is the elimination of the smooth

background functions which can be extrapolated from the pre-edge region. The mass

absorption coefficients vary as a function of photon energy given by

p/p = Z (Ci/13 + Di/1,4) (4-15)

Page 248: Analytical Spectroscopy Library_VOL 7

239

0,

.... /~ ~ / V V ~ _

k #o

re-o~ "M ~ absorption

E

Fig.4-26. Schematic representations of an X-ray absorption spectrum measured by a

transmission mode. EXAFS is defined as modulations of absorption normalized

with a free-atom absorption for a particular inner shell.

where ~, is the X-ray wavelength, p is the density and Ci, Di are coefficients of Victoreen's

function given as a function of photon energy for a particular element i [85]. Conventionally,

the background absorption is approximated by a simpler function such as aEfl where a and fl

are empirical parameters determined to fit the pre-edge. Using tabulated values of coefficients

Ci and Di and normalization of Eqn. (4-15) using the edge jump, p/p above the absorption edge

can be generated and subtracted which varies according to Eqn. (4-15). This evaluation of

background absorption is useful since it is valid for both transmission and fluorescence modes,

which allows us to compare the fluorescence data with transmission data. If the composition is

known, the only parameter is a thickness which is determined by normalizing Eqn. (4-15) with

the net absorption defined as a difference between the pre-edge absorption and a smooth flee-

atom absorption of interest.

A free-atom absorption P0 can be evaluated by fitting a smooth function, such as a

cubic spline, to the EXAFS oscillations. The normalized EXAFS oscillations are then obtained by normalizing the modulations of absorption coefficient which is obtained by subtraction of a

flee-atom absorption.

z(k) = AI~ I laO (4-16)

Page 249: Analytical Spectroscopy Library_VOL 7

240

where A# and/-tO are the magnitudes of modulation in # and atomic absorption, respectively.

Figure 4-27 shows the normalized Ge K-EXAFS oscillations as a function of wave number of photon energy k for crystalline (solid line) and glassy (dashed line) GeO2 measured

at 80 K (a), and 300 K (b). On reducing the temperature, the magnitude of oscillation increases

as a result of temperature-dependent term in Eqn. (4-6) which describes thermal disorder. It is concluded that the glassy and crystalline GeO2 have a similar short-range order, since the

fundamental EXAFS oscillations arising from the interference between the nearest neighbors

are essentially the same for the two forms.

0.04

0.03

0.02

0.01

0.00

-0.01

-0.02

-0.03

--- -0.04 ,,_...

X

0.03

0.02

0.01

0.00

-0.01

-0.O2

-0.03

-0.04 -

(a) 80K GeO2 I

Trigonol GeO2 Crystol

(b) 300 K GeO2 Gloss

I I I

0 2 4 6 I I I I I

8 10 12 14 16 18 R(~I

Fig.4-27. Normalized Ge K-EXAFS oscillations for crystalline (solid line) and glassy (dashed line) GeO2 measured at room temperature and at liquid nitrogen temperature" taken

from ref. 11.

Page 250: Analytical Spectroscopy Library_VOL 7

241

4.4.2. Fourier transform

For a quantitative analysis in real space, or to filter out the contribution of a particular

shell, the normalized EXAFS oscillations are Fourier-transformed according to the following

equations.

F(r) = (1/2n) ~ k z(k) w(k) exp(-2ikr) dk (4-17)

= (1/2n) ~ k z(k) w(k) cos(2kr) dk

- i (1/2n) ~ k z(k) w(k) sin(2kr) dk

= Re F(r) + i Im F(r) (4-18)

where w(k) is a window function in order to minimize the cut-off effects in the Fourier

transform.

Figure 4-28 shows the magnitude of Fourier transform IF(r)l of the Ge K-EXAFS oscillations for crystalline (trigonal) and glassy GeO2[11 ]. Several sharp peaks correspond to

positions of near neighbor atoms of an excited atom, although its position is shifted to small R

because the total phase shift g1(k) in Eqn. (4-6) is neglected. The first peak located around 1.7

A is due to the tetrahedrally coordinated nearest oxygen atoms while the second peak at ~ 3 ./k is due to the second-nearest Ge peak. In trigonal GeO2, Ge atom is located at the center of a

tetrahedron in which four oxygen atoms occupy each corner. The GeO4 tetrahedra are

connected each other sharing oxygen atoms. On going from a crystalline phase to a glassy one,

the first peak does not change while the magnitude of the second-nearest neighbor peak decreases. This indicates that the short-range order within the GeO4 units is strictly maintained

but connectivity is disordered in a glassy state. These results are consistent with the near-edge

structure data. Figure 4-9 shows that the near-edge structures observed for a crystalline phase

broaden in a glassy state but essential features remain unchanged indicating the conservation of

the short-range structure.

Following Eqns. (4-17) and (4-18), the region of interest in real space can be Fourier-

filterd into k-space. Contribution of each shell is separated and a non-linear curve fit analysis is

used to yield structural parameters. In order to determine the structural parameters such as

coordination number, bond length and mean-square relative displacement, the total phase-shift

function for each pair and the back-scattering amplitude functions must be known. There are

several approaches to fit the experimental data with Eqn. (4-6). A total phase shift and a back-

scattering amplitude can be extracted empirically from a model compound data with a known

crystal structure, on the basis of chemical transferability of these functions. If a model

compound is not available, a theoretically-calculated phase shift and amplitude are used with a

Page 251: Analytical Spectroscopy Library_VOL 7

(a) 80K

. . - . . .

..ci

0 1 4 5

242

(b) 30OK GeOz

0 1

Trigonol GeOz Crystol GeOz Gloss

4 5

Fig.4-28. Magnitude of Fourier transform of the Ge K-EXAFS oscillations for trigonal crystal and glassy GeO2 measured at room temperature and at liquid nitrogen temperature :

from ref. 11.

slight adjustment of the E0 value to match the zero of muffin-tin potential. An alternative

approach is the intermediate method which uses the experimental phase-shift function and

theoretical amplitude as will be described in the next subsection.

4.4.3. Curve fit analysis

The least-squares curve fit analysis is a procedure to fit the experimental data with Eqn.

(4-6) with structural parameters as variables. The step is to filter out the first-shell contribution

by a back-Fourier transform into k-space to yield the simple sinusoidal oscillations as a function

of k. The total phase shift and back-scattering amplitude I~(k,Tt)] calculated using a curved

wave method are plotted in Fig. 4-6. Clearly, ~j(k) and I~(k,,t)] depend on the atomic species

and show characteristic k-dependence. The total phase shift ~(k) is approximated by a

polynomial ~j(k). In order to extract the total phase shift from the reference data, it is

parametrized in a simple formula such as,

tDi(k) = a0 + al k + a2 k 2 + a3 k -3 (4-19)

Page 252: Analytical Spectroscopy Library_VOL 7

243

where coefficients a0, al , a2 and a3 are adjusted so that the calculated EXAFS oscillation

according to Eqn. (4-6) best fits the reference data using a least-squares method.

In a curve fit to the experimental data based on a single-scattering formalism using a

theoretical I~(k,n)l, two other parameters are introduced: the damping factor in order to account

for the inelastic energy loss of photoelectrons, which apparently reduces the amplitude, and the

disorder parameter which accounts for the relative displacement. Although the former parameter

S02 is k-dependent, it is often approximated as a constant. Unlike diffraction experiments, oi in

EXAFS is the mean-square displacement, which refers to a "relative" displacement between an

excited atom and a scatterer atom. For a single shell, there are six parameters to be determined

by a least-squares curve fit. If the reference material has a coordination geometry similar to that

of unknown material, it is reasonable to assume that the empirical phase shift is transferable

[86], although there is uncertainty in the amplitude, depending on the electronic states [87].

Figure 4-29 shows the Ga K-EXAFS oscillations for GaAs powder, plotted as a function of the

photoelectron wave number k, in ,~-1 (above). The Fourier-filtered first-shell contribution

(solid line) is compared with the results of a least-squares curve fit (dashed line) below.

/ Ge K-edge

I I I I I I

First shell t - -

A

0.06 0.04

..-. 0.02 "-" 0

-0.02 -0.04 -0.06

I

I I I I I I I 4 6 8 10 12 14 16

k (Al l

Fig.4-29. Ga K-EXAFS oscillations for GaAs powder plotted as a function of photoelectron

wave number, k, in/~-1 (above). The Fourier-filtered first shell contribution (solid

line) is compared with the results of a least-squares curve fit (dashed line) below.

Page 253: Analytical Spectroscopy Library_VOL 7

244

4.4.4. Disorder

A well-known single scattering expression of EXAFS, Eqn. (4-6) is justified for a case

where the disorder is small enough to be approximated as a harmonic oscillator. Then, the

distribution of atoms around an excited atom can be expressed by a Gaussian function. The

mean-square relative displacement (MSRD), oij in EXAFS is the ensemble average, and is

smaller than the sum of mean-square displacement (MSD), o52 + o] 2, by 2crio'j which

expresses the correlation between an excited atom and a scatterer atom where o-12 and crj 2 are

MSD's for the i-th (excited) atom and the j-th (scatterer) atom, as expressed by the following formulae.

oij 2 = < [ R j . (uj -u0) ] 2 >

= < (u0 . Rj)2> + <(uj . R j ) 2 > - 2 <(u0. Rj) (u j . Rj)> (4-20)

Here, Rj is the vector along the i-j bond and u0 and uj are displacement vectors for the excited

atom and the scatterer atom, respectively, originating from the equilibrium positions. One can calculate the MSRD from a proper lattice-dynamic force model which describes the phonon

distribution. A simple model such as the Debye model or the Einstein model, is used to evaluate

the effect of correlation or a temperature-dependent dynamic disorder.

In highly disordered systems, one must replace the Gaussian distribution with a pair correlation function gij(r) given by

z(k) = -1 /k ~ I~(k, rt)l [ gij(r)/r 2 ] sin(2kr + ~j(k)) exp (-2r/Aj) dr (4-21)

It should be noted that even if gij(r) is symmetric with respect to r, the integration over r introduces a higher order term in the total phase shift function. Moreover, in general, gij(r) is

asymmetric, reflecting the potential shape. Thus, neglect of the disorder-induced term in the

phase would result in a smaller bond length. This effect can be corrected by a cumulant

expansion [88]. Eqn. (4-21) can be rewritten as

z(k) = -1 /k I~(k,n)l Im [ exp i (2kr + ~ij(k)) exp {E ((2ik)n/n!) Cn}] (4-22)

In most cases, it is sufficient to introduce C2 and C3 in order to correct the higher-order terms

in amplitude and phase, respectively, where C2 and C3 are coefficients of cumulant expansion,

determined by fitting the amplitude and phase part of Eqn. (4-6) to the data. The physical

meaning of the second-order term is the thermal expansion. The relation between the thermal

expansion coefficient, a, and the cumulants of the vibrational amplitude, has been elucidated by

Frenkel and Rehr [89].

Page 254: Analytical Spectroscopy Library_VOL 7

245

4.4.5. Multiple scattering

The advantage of EXAFS is that the multiple scattering effect is negligibly small for the

nearest neighbor, in sharp contrast to LEED which must take into account the multiple

scattering. The difference arises from the fact that in EXAFS, the electrons are emitted as a

spherical wave and the interference is detected, at the origin between the outgoing wave and

back-scattered waves which are strongly damped because of inelastic energy loss. In contrast,

in LEED the electrons come in and are reflected as a plane wave in a forward-scattering

geometry. One of the reasons why the multiple scattering cannot be neglected in LEED is that

the forward-scattering amplitude is large in low energy region. Since the total path length

increases as a result of multiple scattering, the effect of multiple scattering is often observed in a

low-k region as higher frequency oscillations than those for the nearest-neighbor spacings, and

these oscillations rapidly damp, canceling out each other in EXAFS. In Fig. 4-7, the multiple-

scattering pathways are illustrated for the three atom (0-1-2) system. Photoelectron waves

originate and are terminated at the excited atom, 0, after being scattered at other atoms (1, 2). In

addition to the single scattering between 0 and 2 (a), a double-scattering path (0-1-2-0, b) and a triple-scattering path (0-1-2-1-0, c) are indicated. The multiple-scattering pathways would

modify the amplitude and phase of EXAFS oscillations as a strong function of the geometry,

and it is well known that the triple scattering is magnified for the case of a linear array (lens

effect) in Fig. 4-7.

It should be noted that the double-scattering is important for covalent materials with an

sp 3 configuration, where the second-nearest neighbor-peak contribution depends strongly on

the atomic species at the second-nearest sites. Figure 4-30 shows the Fourier transform of Ga

K-EXAFS oscillations for; (a), GaP; (b), GaAs and (c), GaSb. All these materials have a zinc

blende type of structure where each cation is coordinated by four anions as nearest-neighbor

atoms and by 12 cations as the second-nearest neighbor atoms. Although the species of atoms

at the second-nearest sites are the same for the three compounds, the peak profile at the second-

and third-nearest neighbor atoms is quite different. This demonstrates that in this geometry,

i.e., fl -- 71 o, the double-scattering pathways are strongly affected by the forward scattering at

the second-nearest neighbor atom, and in particular for atoms with large scattering amplitude in

the low-k region, such as P. In such a case, the multiple-scattering paths appear as shoulders with larger r, which makes the peak in the Fourier transform broader as shown in Fig. 4-30.

4.5. APPLICATIONS

4.5.1. Dopants in oriented polyacetylene

Polyacetylene, (CH)x, has been extensively studied because of its unique properties as

a conducting polymer when it is doped with electron donors or acceptors [90,91]. The electrical conductivity of pristine (CH)x increases by several orders of magnitude when it is doped with

electrons as in AsF5, Br2, or 12 [92-94]. Transport, optical, and magnetic properties of these

Page 255: Analytical Spectroscopy Library_VOL 7

246

A

e -

r ' r

LI_

K-edge

GaP

GaAs

GaSb

0 1 2 5 4 5 6 7 8 9 1 0 RC I

Fig.4-30. Magnitude of Fourier transform of the Ga K-EXAFS oscillations for GaP, OaAs

and GaSb. On going from a light element scatterer (P) to a heavy one (Sb), the peak

profile for the second-nearest neighbor (Ga) changes as a result of multiple scattering

pathways via the first-nearest neighbor group VI atoms.

systems were discussed in terms of solitons [95] or the spinless defect states resulting from the bond-alternation domain wall in a conjugated carbon chain. XAFS studies of doped (CH)x

have been aimed at investigation of the local structure of dopants, in order to understand the mechanism of doping and the role of charged solitons. The structure of pristine trans-(CH)x

was first determined by Baughman et al. [96] from the packing analysis of X-ray diffraction

data, which was later refined by Fincher et al. [97] to provide direct evidence of bond

alternation. For the case of iodine doping, a structural model similar to the first-and third-stage

graphite intercalation compound has been reported [96], in which dopant molecules are contained in the planes separated by one or three close-packed (CH)x chains forming a linear

column. This structure model accounts for a long X-ray diffraction spacing in heavily-doped trans-(CH)x and the existence of I3- or I5- polyiodine ions which are evidenced by Raman

[98] and M6ssbauer [99] experiments. EXAFS has recently been applied to doped polymers

Page 256: Analytical Spectroscopy Library_VOL 7

247

such as AsF5-doped (CH)x [100], FeC13-doped (CH)x [101], Br2-doped (CH)x [102], and

Br2-doped (SN)x [103]. In case of bromine doping, the room temperature conductivity

increases by many orders of magnitude on increase of bromine concentration, to the metallic

region (y ~ 0.1-0.2) [92,93], followed by a saturation and finally a gradual decrease. With

further doping (y > 0.6), a sharp drop of conductivity occurs and (CHBry)x becomes an

insulator [104]. Early EXAFS studies on unoriented (CHBry)x [102] showed that the rather

short Br-C spacing (1.96 ,~) dominates the radial distribution of bromine in the concentration

range 0.05 < y < 0.55, which suggests that either a substitution or addition reaction takes place

over a wide range of dopant concentration.

Because of the highly polarized nature of synchrotron radiation, one can study the

orientation of a linear molecule by analyzing the polarization dependence of X-ray absorption

spectra. The geometrical arrangement of bromine species within fibrils can be obtained by

measuring the absorption spectra as a function of an angle between the electrical field vector E and the fibril axis of oriented (CHBry)x. The polarization factor of EXAFS is given by the

following formula.

A(0j) = 3 cos20j (4-23)

where 0j denotes the angle between the electrical field vector and the radial vector for the i-th

scatterer atom. The integral of the right hand side of Eqn. (4-23) over 0 is unity, and for higher

symmetry than three-fold, or randomly oriented powder samples, z(k) becomes a normal

formula given by Eqn. (4-6). The polarization dependence provides a useful means to

investigate anisotropy in both structural and electronic states, for single crystals and surfaces.

The X-radiation of synchrotron radiation is more than 95 % polarized in the central part of the

horizontal plane which is further enhanced by the Lorentz polarization effect in the

monochromatization process. Polarized Br K-EXAFS oscillations for trans-(CHBry)x with y = 0.02 are shown in

Fig. 4-31, where (a) and (b) denote the spectra taken with E parallel (E//c), or with E

perpendicular (E_Lc) to the fibril axis, respectively [ 105]. The fibril axis is parallel to the c-axis

of the unit cell with P21/n symmetry in trans-(CH)x [96]. Also shown in this figure, denoted

as (c), are the data for Br2 gas. The EXAFS oscillations for (CHBry)x with E parallel to the c-

axis (E//c) extend to the high-k region, whereas those with E perpendicular to the c-axis (Elc) rapidly damp in magnitude. This shows that doped bromines exist as polybromine ions, highly

oriented along the c-axis for the following reasons; I~(k,n)l of bromine has a maximum at k ~

6-7/~-1 and extends to k ~ 15/~-1. In contrast, Ifj(k, r01 of low-Z elements such as carbon has

a peak at a small k ~ 2-3 ,~-1 and falls off sharply with increase of k. Therefore, we attribute

the oscillations extending more than ~1 keV above the edge to those caused by the scattering by

bromine atoms, while the rapidly damping oscillations observed only in the low-k region result

Page 257: Analytical Spectroscopy Library_VOL 7

248

I ..... I I I I l I I

Br K-edge (CHBrylx y -0.020

0.02 -

0.01 -

0 -

-0.01 -

- 0 . 0 2 ~

. - - o.oz-I- x" -0.01 ~-

Z

0.02 -

0.01 -

0 -

-0.01

-0 .02 L L i t ~ i I I ~ - �9

2 4 6 8 10 12 t4 16 ]8 k (/1 -~ )

Fig.4-31. Polarized Br K-EXAFS oscillations for trans-(CHBry)x with y =0.020, together

with those for Br2 powder : taken from ref. 105.

from scattering by carbon atoms. The Br-Br scattering dominates the E//c EXAFS oscillations

whereas the Br-C scattering dominates the E_Lc EXAFS oscillations. The fact that a small

amount of Br-C scattering is present in the E//c z(k) oscillation of (CHBry)x, in contrast to the

Br-Br scattering only observed in the E//c EXAFS suggests a high degree of orientation of

polybromine ions.

Figure 4-32 shows the results of Fourier transform of k times z(k) for the data shown

in Fig. 4-31 over the range of k from 2/~-1 to 16.8/~-1. Peaks in this figure are shifted

toward a smaller radial distance, as a result of the phase-shift effects. A striking difference

between the results for (CHBry)x with E//c and Elc data is the magnitude of the prominent

peak at 2.21 A corresponding to the first-nearest Br-Br distance. The peak at 4.78 /~ corresponds to the second-nearest Br-Br distance. The first-nearest Br-Br spacing in (CHBry)x

is 2.551 /~ +_ 0.10/~, which is longer than that of Br2 gas by 0.27 A. This bond-length

expansion is interpreted as a result of the charge transfer from carbon chains. Such a bond-

length expansion is expected to bring about the reduction of a bond strength, which is

Page 258: Analytical Spectroscopy Library_VOL 7

249

Or)

z

>-.

,,~ rlr" i - .

rlr"

!

o 1 2

| i ,

(CHBr~lx 80K

Y =0.015

E / / c ............ E l c

5 4 5 6 7 8 9 10 RADIAL DISTANCE (A)

Fig.4-32. Results of Fourier transform of the Br K-EXAFS oscillations for trans-(CHBry)x

with y = 0.015. Solid and dashed lines indicate the results for the electrical field

vector E parallel and perpendicular to the fibril axis" taken from ref. 105.

evidenced by the softening of Raman frequency of the stretching mode [106]. The second-

nearest Br-Br distance is 5.12,~ + 0.20 A, which is close to the sum of the first-nearest Br-Br

distances, indicating that a symmetrical structure is maintained with an average inter-atomic spacing of 2.55 A. These results rule out the possibilities of Br- and Br2 molecules. Therefore,

the dominant bromine species are either Br3- or a longer Br2n+ 1- chain such as Br5-. It is

difficult, however, to determine the average size of polybromine ions from the second-nearest

neighbor coordination number, which is expected to vary between 1.33 and 2 depending on the

size of a linear chain. The Br-Br spacing of 2.55/~ matches the unit dimension (2.46 A) of

(CH)x along the c-axis, making the periodicity of polybromine ions commensurate with that of

the polymer backbone in the columnar direction. The effective coordination number of bromine for (CHBry)x (y = 0.015) with E parallel

to the c-axis is 1.1 + 0.6 from the curve-fit analysis. The real coordination number of bromine is estimated to be 0.367 + 0.2. Since the oriented Br3- polyion would give the coordination

number of 1.33, and a longer linear chain has a larger value, this implies that less than-27 %

of bromine species are in the form of polybromine ions. This suggests that the unpolarized EXAFS of (CHBry)x would be dominated by the Br-C oscillation. Indeed, previous EXAFS

results [102] for unoriented (CHBry)x showed that most of bromine atoms are covalently

bonded to the polymer chain in the higher concentration range (y > 0.05), which is consistent with these results. The number of anion species in (CHBry)x is of the order of 1020 in the

concentration range studied (0.015 < y < 0.036). Since the coordination number of bromine is

hardly dependent on the dopant concentration in this concentration range, the fraction of

bromine in the state of polybromine ion is constant. This indicates that the number of anion

Page 259: Analytical Spectroscopy Library_VOL 7

250

species acting as acceptors is proportional to the dopant concentration in the lightly doped region.

By employing the Fourier transform using the low-k region (2 < k < 8.5 A -1) which

emphasizes the carbon scattering, a small peak at 1.29 A and two more distant peaks at 2.68 A and 3.08 A are assigned to the Br-C correlations for E//c (CHBry)x. The shortest Br-C spacing

(2.0 A) is close to the Br-C bond length between bromine and aromatic carbon, which is reported to vary from 1.82 A to 1.96 A [107]. If trans-(CH)x is perfectly oriented and

bromines are substituted for hydrogens of the polymer chain, there would be no contribution of

Br-C scattering in the E//c EXAFS oscillations. These results indicate that the bromine-

substitution reaction takes place at sites with imperfect orientation or induces disorder. More

distant Br-C spacings located at 3.4 A and 3.8 A are less dependent on the polarization

direction and are close to the sum of the van der Waals radii of bromine and carbon atoms.

Since these spacings are only observed in the specific concentration range where Br-Br

scattering is prominent for E//c, these indicate the correlation between polybromine ions and a

carbon chain. As these spacings are close to the half of the length of the b-axis in the unit cell for trans-(CH)x (7.32 A) [96] polybromine ions seem to take ordered sites intercalated in close-

packed(CH)x chains. Figure 4-33 shows the Br K-XANES for: (a), Br2 gas; (b), (CHBry)x for E//c ; (c),

(CHBry)x for E.Lc and, (d), bromobenzene. Characteristic features in XANES are denoted as

A, B and C. Although the features B and C are weak in the E//c XANES for (CHBry)x and

O3 F-- Z

E~

>- rr"

OE

l--- n-1 s <c

...-.. o--.,

o o--o v

I ' I ' l ' I ' I ' I

A

_S _J

J

�9 . 2 I i I ,

-40 -20

BC Br2 ,i.

I/,, (CHBry)x

I I

Egc

Elc CsH5Br

I ; I ; n , I

0 20 40 8o PHOTON ENERGY (eV)

80

Fig.4-33. Polarized Br K-XANES spectra for (a)Br2 gas, (b) (CHBry)x for E//c, (c)

(CHBry)x for E_Lc and (d) bromobenzene. A strong anisotropy indicates the highly

oriented polybromine ions" taken from ref. 105.

Page 260: Analytical Spectroscopy Library_VOL 7

251

Br2, feature C merges into a shoulder of B in the E_l_c XANES of (CHBry)x and

bromobenzene. A sharp peak is observed in all spectra 9-10 eV below the threshold, or the

continuum limit (13.474 keV). This resonance peak A is the transition from the 1 s core level to

unfilled bound p states. In the Br2 molecule, this state is the 4p*(cr) molecular orbital, since

4p(tr), 4p(n:) and 4p*(n:) orbitals are all occupied. For a linear molecule such as Br2, the

molecular orientation can be studied from the peak intensity which varies as cos20j [21 ]. If a

charge transfer occurs, an extra charge is expected to partially fill 4p*(n:) states, and therefore

the magnitude of this peak can be a measure of charge transfer. For a closed-shell configuration

of halogen atom, 4s24p 6, this peak would not be observed. Thus the results in Fig. 4-33

shows that bromines exist in the form of polybromine ions with partially filled 4p* states, which is consistent with the EXAFS results. Peak A shifts to higher energy in E//c (CHBry)x

compared to Br2, by .-2 eV, indicating the decrease of covalency in the Br-Br bonds, consistent

with the bond-length increase observed in the E//c EXAFS data. This sharp peak shifts slightly

further to higher energy, by --2 eV, with a decrease in intensity in the Ed_c orientation.

Remarkable similarity in XANES features observed between E.l_c (CHBry)x and

bromobenzene suggests that bromines are bonded to carbon atoms with the sp 2 configuration.

This implies that a substitution reaction takes place in the concentration range 0.015 < y <

0.036. In summary, it was shown that bromine atoms in (CHBry)x exist as linear polybromine

ions with an average inter-atomic spacing of 2.55 A, highly oriented along the fibrillar axis in

the concentration range 0.015 < y < 0.036. The observed coordination number of polybromine

ions suggests that only a small portion of bromine atoms form polybromine ions. The number of polybromine ions intercalated in close-packed (CH)x chains is, however, roughly

proportional to the dopant concentration. In the direction perpendicular to the fibril axis, the

radial distribution of bromine is dominated by the Br-C bond, indicating that polymer chains are

brominated by either substitution or addition. A substitution reaction is likely to be the case,

since the bromines are covalently bonded with carbon atoms with the sp 2 configuration, as suggested by the near-edge data. The structure model of trans-(CHBry)x emerging from these

results is characterized by the coexistence of highly oriented polybromine ions and (CH)x

chains brominated by a substitution reaction.

4.5.2. Oxide high Tc superconductors

After the discovery of high Tc superconductivity (HTSC), the mechanism of pairing

has been a subject of intensive studies from the theoretical and experimental viewpoints. One of

the striking features of HTSC materials is the fact that superconducting properties are highly

sensitive to the microscopic structures; in particular, the role of oxygen defects as interstitials

[108] and vacancies [109] has been recognized as one of the key factors for HTSC. In

Page 261: Analytical Spectroscopy Library_VOL 7

252

Nd2-xCexCuO4-t~ (NCCO), for instance, superconductivity is observed over a narrow Ce

concentration range (0.14 < x < 0.18), only after heat treatment under reducing conditions. The

role of reduction in superconductivity has been a puzzling problem since the additional carder

concentration originating from an observed small change of oxygen deficiency, t~, cannot

account for a large change of Hall coefficients [110]. Although one may expect that the excess

oxygen atoms provide additional holes, the effect of oxygen interstitials is sometimes not so simple. X-ray absorption near-edge structure studies for Nd2-xCexCuO4-t5 indicated that Ce-

doping may induce oxygen interstitials [ 111 ]. EXAFS studies confirmed that such interstitials

are formed at apical sites by reduction which suppresses electron doping [ 112].

It is well known that the ordering of the oxygen vacancy in the Cu 1-O 1 chain strongly affects the transport properties of YBa2Cu3Oy (YBCO), which varies from an insulator to a

superconductor depending on y. There are two classes of superconducting phases, i.e., low Tc

(50 ~ 60 K, 6.3 < y < 6.7) and high Tc (90 K, y > 6.7) phases, while the oxygen deficient

phase (y < 6.3) is a tetragonal insulator [113-115]. X-ray absorption near-edge structure

studies [116, 117] showed that ordering of oxygen vacancies in the Cul-O1 chain for y < 6.7

dopes extra carders into the conducting plane via a self-doping mechanism [ 118]. Although the

physical reason for vacancy ordering at specific y values is not established yet, we show that

the phase diagram of HTSC as a function of y for YBCO can be qualitatively explained. Vacancy ordering is consistent with the phase diagram for CaLaBaCu3Oy (CLBCO) where Tc

drops sharply at y -- 6.7 because of disordered oxygen vacancies.

Since the parent compounds are antiferromagnetic insulators, the exchange effect which

produces intermediate range spin correlations is expected to be important in the doped

superconductors also. Antiferromagnetic correlation exists in the superconducting regime. Theories on the basis of magnetic interactions have been proposed as a possible mechanism of

HTSC [119]. On the other hand, the importance of the lattice has been indicated

experimentally. Lattice anomalies have been observed by EXAFS [120], neutron scattering [121,122], and ion channeling [ 123,124], The observation of dynamic fluctuation between the

two structures has been related to polaron or bipolaron formation [120,121]. Although previous studies focused on the anomalous lattice distortions at Tc, recent experiments showed

that lattice anomaly is also present at much higher temperature than Tc [125,126]. In this

subsection, the temperature-dependent EXAFS anomalies at high temperatures in highly

oriented YBCO is discussed in relation to elastic properties and spin excitation. The detailed

knowledge on the lattice anomaly became available from polarization-dependent EXAFS

experiments using untwinned single crystals and a fluorescence detection technique [54]. This

technique can probe the local and dynamical nature of atomic displacements of particular

species from the temperature-dependence of EXAFS. The use of fluorescence detection has

made possible to observe the polarized XAFS for HTSC single crystals which are free from

spectral distortions due to the strong absorption. This technique can provide reliable data for as-

grown HTSC thin films prepared by reactive co-evaporation or with a typical thickness of 1000

A.

Page 262: Analytical Spectroscopy Library_VOL 7

253

Electronic states of high Tc superconductors

Since the discovery of HTSCs, XAFS has been used to characterize the local structure and electronic states, particularly, those of the CuO2 plane, a common structural feature in

these materials. L a 2 - x M x C u O 4 - y (M=Ba, Sr) is a class of materials having an octahedral

CuO6 unit and Tc .'. 30--40 K [127,128]. XANES studies on these materials have shown that

the fundamental Cu valence is 2+ or the d 9 configuration. Heald et al. measured the

polarization dependence of the near-edge structure on the oriented polycrystalline ceramic

samples and found a strong anisotropy in the near-edge structure[ 129]. Although transmission

XAFS experiments were difficult because of a strong absorption for HTSCs grown in small

flakes, Oyanagi et al. showed that polarized XAFS spectra can be obtained by a fluorescence detection technique [54]. Polarized Cu K-XANES for single crystal La2CuO4 demonstrate

capabilities of XAFS technique as a means to investigate the electronic states and symmetry of

unoccupied states. The polarized Cu K XANES spectra for single crystal La2CuO4 (5 x 5 x 1

mm) with 0 = 90 ~ and 0 = 10 ~ are shown in Fig. 4-10, which were grown by a top-seeded

solution growth (TSSG) method [130].

Figure 4-34 shows the crystal structure of La2CuO4 where lattice constants (a = 3.78

/~, b = 3.82 A, c = 13.13/~) and the position parameters (ULa = 0.3607, uO = 0.1824) are

taken from the neutron data by Jorgensen et al.[131]. Since the electrical field vector E is

(

Lo2Cu04

OLo OCu

768A

�9 Fig.4-34. Crystal structure of La2CuO4 in which the copper atom is octahedrally coordinated

by oxygen atoms :from ref. 54.

Page 263: Analytical Spectroscopy Library_VOL 7

254

parallel with the ab-plane for 0 = 90 ~ while E is nearly parallel to the c-axis for 0 = 10 ~ it is

clear that near-edge features a, b and e are polarized along the c-axis, while c and d are

polarized within the ab-plane. The polarization dependence of thes, e structures strongly

suggests that a and b are due to the ls-4p*(Tr) transition, while c and d are assigned to the ls-

4p*(tr) transition, though the origin of peak e is less clear. The split of the ls-4p* transition

commonly observed in the near-edge spectra of square-planar Cu 2+ compounds was

interpreted in terms of a ligand-to-metal charge transfer. Higher and lower energy peaks

observed at the threshold (a,b) have been explained in terms of the ls-lj_s3d94p * and the ls-

1...~.s3dl0L4p * transitions where the underline and L denote the hole state and a ligand, respectively [132,133]. Since the linear Cu + compounds or flattened Td Cu 2+ compounds

show only the single ls-4p* transition peak, polarized in the direction perpendicular to the Cu-

ligand bond [132,134], the presence of a split ls-4p* transition confirmed the 2+ valence of Cu atoms in undoped La2CuO4. Similar conclusions have been reached by chemical shifts of

absorption edge [135-138]. It should be noted that the polarization-dependence of Cu K-

XANES rules out a possible assignment of peak e to the contribution of Cu 3+ proposed by Alp

et al.[137]. It is also unlikely that the Cu(La) antisite disorder [138] contributes to in-plane-

polarized peak e since the Cu and La atoms form a bcc-like sublattice which does not have a

polarization dependence. Strong anisotropy is observed also in the EXAFS region in the polarized Cu K-edge

absorption spectra for La2CuO4 single crystal as shown in Fig. 4-35 (above). These EXAFS

features are directly related to anisotropic radial distribution between the c- and a(b)- axis

directions which are indicated in the magnitude of Fourier transform shown in Fig. 4-35

(bottom). The first peak at ca.l.4 ~ in IF(r)l is due to the fourfold Cu-O1 bonds (1.90 ,/k) within the CuO2 plane, while the second broad peak located at ca. 3.4/~ consists of the Cu-La

distance (3.25 A), the Cu-Cu distance (3.80/~) and the Cu-O1 distance (4.25 ,/k). Although the

adjacent peaks are not resolved due to the limited range of k-space used in the Fourier transform, the overall anisotropy in the Fourier transform is well reproduced by taking the

effective coordination number [ 139] into account. It should be noted that the second-nearest Cu-Cu distances, along the c-axis (5.38/~) and within the CuO2 plane (3.80/~), are observed

for 0 = 10 ~ and for 0 = 90 ~ respectively.

Doping-induced oxygen defects

Figure 4-36 shows the Cu K near-edge spectra for NCCO, annealed under reducing conditions with various pO2 (upper curves). For NCCO, samples synthesized from a mixture

of CeO2, Nd203 and CuO were annealed at 1050 ~ for 20 hours in an argon-oxygen gas

mixture with various oxygen partial pressures (pO2 = 1-10 -3 atm). On decreasing pO2, a

systematic change is observed in the absorption edge features; an increase at -8990 eV and

decrease a t -9008 eV which are correlated with one another. The shoulder-like ls-4p*(Tr)

Page 264: Analytical Spectroscopy Library_VOL 7

255

i f )

e -

..,.,..

O . m

u..

I I I I I I

Cu K-edge LezCu04-y single crystel

8-10"

l I

8.8

8=90 *

c h v @ ~

p

J I I I I I I

9.0 9.2 9.4 9.6 9.8 10.0 Energy (keY)

A

c-

D

25

I I ' I I I I I I

Cu K- edge La2Cu04-y / ~ single crystel

8 :90 ~ O= 10 0

i !

; " A / ' A

1 2 5 4 5 6 7 8 9 10 R (A)

Fig.4-35. Polarized Cu K-edge absorption spectra for single crystal La2CuO4 measured in a

fluorescence detection mode (above)and the magnitudes of Fourier transform of these data (bottom). X-Ray absorption spectra are measured in a fluorescence mode for various 0, the angle between the incident X-rays and the ab-plane (ref. 54).

Page 265: Analytical Spectroscopy Library_VOL 7

256

l - -

Z

> . - Q: : < Z Q: : I - - i,-,,4

O: : < Z ..._...

I i i I i I i

Cu K- edge I 2

J p02 (Oxygen pressure) 5 1 �9 1 arm

2" 0.1 aim 3 ' 0 . 0 0 1 arm

ls - 4p*((7) cl Id

Nd1.s5Ceo.15CuO4-y p02 = O'O01atm'~

l s - 4 p * ( T r ) / /

~ J "Nd~.4Ceo.2Sro.4CuO4-y _ _ ~ (T* phase)

I I I I I I I

8990 9000 9010 9020 ENERGY (eV)

Fig.4-36. Cu K near-edge structures for Ndl.85Ce0.15CuO4 and Ndl.4Ce0.2Sr0.4CuO4.

Oxygen-partial-pressure dependence for Ndl.85Ce0.15CuO4 is shown above, and

the data for the two structures with and without apical oxygens (T' and T*) are

compared below.

features, a and b, increase the intensity while the ls-4p*(G)features, c and d, decrease

in intensity as pO2 is lowered. This spectral change indicates the decreased number of apical

ligands since full multiple scattering calculation of XANES clarified the effect of ligands by a

comparison between the T*- and T'-type structures which have a five-fold pyramidal geometry and a square planar one, respectively [ 140]. In the lower column, the data for NCCO with pO2

= 10 -3 atm are compared with those for Ndl.4Ce0.2Sr0.4CuO4-6 (NCSCO, T*-type phase).

NCCO with the lowest pO2 was chosen in order to obtain the ideally square-planar copper with

no apical oxygen atoms. For a fair comparison between the two structures, with and without

apical oxygens, the Ce composition of NCSCO was matched to that of NCCO. The observed systematic spectral change for NCCO on decreasing the pO2, although small, is essentially the

Page 266: Analytical Spectroscopy Library_VOL 7

257

14

12

"~10

- 8

~ 6

. e . -

�9 ~ 4 ,

~ - 2

~ 0 ~t" .

, , , _ .

0

~ 6

~ 4

2

0

' . . . . . ' I . . . . . ' ' ' I ' " ' ' ' ' ' I " " ' ' ' ' I " " ' ' '

- x :0~1",5 Ndz-xCex CuO4-y - x=O.16 Cu K-edge

x=O.17

- 1050 ~ 20h

Metollic Serniconductive

Nd2CuO4-y Quenched

- o - - . . . ~ T c 0

x = O . 1 5 " ~

-T = 5K ~ " ~ _H = 10 Oe Field cooling Yokoyomo et el.

, , , , , , , h . . . . . I . . . . . . I . . . . ~ , , i l , , , , , , , ,

-5 -2 -1 0 log ( Poe/0tm )

�9 5O

0-03o, "-'-20

0.02"~

0.01"~" 10

0 0

Fig.4-37. Variation of the characteristic near-edge features in a difference spectrum between Ndl.85Ce0.15CUO4 and pure Nd2CuO4 as a function of oxygen-partial-pressure.

Without Ce, the oxygen pressure dependence is weak, in sharp contrast to Nd1.85Ce0.15CUO4.

same as the difference between the data for NCCO and NCSCO, i.e., pO2 dependence

indicates that apical oxygen interstitials are removed by heat treatment with under reducing

conditions. This is more clearly demonstrated by taking the difference spectra, and is confirmed by the EXAFS experiment discussed below.

In Fig. 4-37, the magnitude of the characteristic features of difference spectra is plotted

as a function ofpO2 together with the diamagnetic fraction Z measured at low temperature and

weak magnetic field. A strong correlation between the near-edge structure and Z is revealed

[111 ]. This indicates that the subtle change in the coordination of copper strongly affects the

HTSC fraction. The amazing fact that the oxygen deficiency d; in quenched NCCO (t~ < 0.01),

obtained from the thermogravimetric measurement, is smaller than the observed spectral

Page 267: Analytical Spectroscopy Library_VOL 7

258

change, by an order of magnitude suggests the existence of a special mechanism of electron doping or mobility change, suggested by Hall experiments [110]. Since the Ce L3-edge results

indicate that the Ce valence (4+) is not affected by reduction and Ce concentration, a simple

picture of electron doping originating from the oxgen deficiency cannot explain the magnitude

of spectral change. This can be explained if oxygen interstitials induced by doping at apical sites balance in number with oxygen vacancies in the Nd-O plane. In fact, quenched Nd2CuO4-t~

has an oxygen deficiency (S ~ 0.08) which roughly coincides with the Ce concentration in

superconductive NCCO.

An apparent oxygen stoichiometry can be achieved if the number of excess interstitial

oxygen atoms at apical sites matches that of vacancies. Weakly-bound excess oxygen

interstitials would be formed or removed with ease, depending on the annealing conditions. In

NCCO, excess oxygen would give rise to five-fold oxygen-coordinated Cu atoms and nine-fold

oxygen-coordinated Ce 4+ ions. Apical oxygen atoms are unfavorable for electron doping to the CuO 2 plane because of the repulsive Coulomb interaction, as shown by the Madelung energy

calculation by Kondo et al. [118]. Thus both the electron density and mobility in the CuO2

plane would be strongly affected by oxygen interstitials at apical sites. Figure 4-37 shows that quenched Nd2CuO4-t~ is insensitive to pO2, indicating that the oxygen defects in the non-

doped sample is not dependent on reducing conditions but on a cooling rate, suggesting that

these vacancies are in balance with an approximately equal number of interstitials in NCCO.

The existence of oxygen interstitials is further confirmed by the Cu K-EXAFS measurements for NCCO and Nd2CuO4. Figure 4-38 shows the Fourier transform of EXAFS

oscillations as a function of the photoelectron wave number, k. A sharp peak located at ~ 1.7/1,

is due to the oxygen atoms while the peaks at around 3.2 .~ are the contribution of Nd and Ce

atoms as the second-nearest neighbors. The increased intensity of the first peak in the Ce-doped

sample indicates that oxygen interstitials are indeed induced by doping. A schematic diagram of

the generalized oxygen interstitial model is shown in Fig. 4-39. In T*- and T-type compounds,

oxygen vacancies are formed at apical sites near Sr sites which are removed by heat-treatment

under high oxygen partial pressure [ 112]. However, doping induced defects might be locally

disordered. It would be difficult to detect them by structural techniques based on long-range order, such as a powder neutron diffraction technique which reported no evidence for oxygen

interstitials. The X-ray near edge study showed that the doped Sr atom is nine-fold coordinated

by oxygen atoms, including one interstitial oxygen atom [141] consistent with the present

results.

Oxygen defect ordering

In Fig. 4-40, the Cu K near-edge spectra are shown for YBCO with various oxygen

contents y. In this experiment, the oxygen content y was systematically varied by changing the

quench-temperature in the final heat treatment. A systematic spectral change is observed in the

Page 268: Analytical Spectroscopy Library_VOL 7

z

LL

i i I I I

Cu K-edge

0 |

A

L.. o

c:[

Nd2Cu04

259

Nd1.a5 Ceo.15Cu04

0 2 4 6 8 10 RADIAL DISTANCE {A)

Fig.4-38. Fourier transform of the Cu K-EXAFS oscillations for Ndl.85Ceo.15CuO4 (solid

line) and pure Nd2CuO4 (dotted line). The nearest-neighbor oxygen peak at around

1.8 A increases on doping Ce, indicating that oxygen interstitials are formed at apical sites.

ls-4p*(lr) (a, b) and the ls-4p*(cr)(c, d) regions, as a function of y. The essential

feature, i.e., the increase in a lower energy region (8982- 8989 eV) and the decrease in a higher energy region (8997 - 9004 eV), is the same as in Fig. 4-36. Figure 4-41 shows the Cu K difference XANES spectra for YBa2Cu3Oy obtained by normalization and subtraction of the

reference spectrum (YBa2Cu306.96). The results indicate that: (1), the "apical" oxygen atoms

at O1 sites in the Cul-O1 chain decrease in number with decrease in y, and (2), the two-fold

coordinated monovalent Cul is formed above a critical y value (y ~ 6.7). Figure 4-42 (top)

shows the magnitude of characteristic near-edge features in a difference spectrum and measured Tc values as a function of y. Clearly, a sharp increase in spectral change at y ~ 6.7, which

indicates the formation of two-fold coordinated copper, is strongly correlated with Tc, indicating that oxygen-vacancy ordering gives rise to a self-doping [118]. For y > 6.7, the monovalent copper sites increase in number almost linearly with a decrease in y, although Tc sharply drops at y = 6.3 where the crystal symmetry changes into a tetragonal one, as indicated

in the lattice constants shown in Fig. 4-42 (bottom).

A possible model for oxygen vacancy ordering is schematically illustrated in Fig. 4-43. In orthorhombic YBCO with y ~ 7, oxygens occupy O1 sites forming a square-planar CuO4

unit extending along the b-axis, sharing oxygens at O1 sites. With a decrease of y, oxygen

Page 269: Analytical Spectroscopy Library_VOL 7

260

T I

Ce doping

e OCe ~(MOD) 0 Ce.

Lowp02 , o ~ )e Anneol

Nd2Cu04 Slow cool

e o D~ (NMOD) Quenched B~o.o8

e Doped Cu02 plone

Quenched Ndt75 Ceoj5 Cu04

0 D3-

B 0.08

T*,T p 0 Sr 0 Sr\ i Di (MOD) ;P

S r , ~ HighP02 ~ d-oping Anneol

LozCu04 Slow cool

~o.o Quenched

o p Doped Cu02 plane D3* (NMOD)

Lot.eSro.zCu04

Fig.4-39. Schematic diagram of oxygen interstitials at apical sites in a square-planar (T'), a

pyramidal (T*) and octahedral (T) coordination induced by doping. For the T'-type

structure, interstitials suppress electron doping while in the T- and T*-type

structures, vacancies suppress hole-doping.

vacancies are formed but they are randomly distributed within the Cul-O1 chain. The

disordered vacancies keep most of the copper ions three-fold coordinated. A sharp increase of

the two-fold coordinated copper atoms at y -~ 6.7 indicates that a d i s o r d e r - o r d e r transition

occurs at a specific oxygen content, i .e . y ~ 6.7. As the experiment shows, the number of two-

fold-coordinated coppers increases almost linearly with y, indicating that ordered oxygen

Page 270: Analytical Spectroscopy Library_VOL 7

261

A O1

e - - = )

I . .=.

e - - - .m

8976

I ' ' i ' ' I ' ' I ' i I ' ' I '

1" Y= 6.22 Cu K- e d g e YB(]eCu30y 2 : Y = 6.52 is-4p ~ (o ' )

3" Y = 6.70 c, ,d 4" Y = 6.71 / ~ ~ 6 , 7 5: Y = 6 . 8 8 6: Y= 6.91 ~" ,,// 7: Y = 6.96 / ' ' 3 2

A B C / 1 i , I j i i

O l Is-4p*(r)~ D E

I J . - - - " ~ I i i I i I I , , I , , I , _

8982 8988 8 9 9 4 9000 9006 ENERGY (eV)

Fig.4-40. Oxygen-composition dependence of the Cu K near-edge structures for YBa2Cu3Oy.

The characteristic features change systematically on changing oxygen composition, indicating that two-fold coordinated copper sites are formed.

A u ' ) I - - - i - . - . , Z : Z )

I - -

,,=, ,,=, ,H-

8976

I ' ' I ' ' I ' i I ' ' I ' i I '

Cu K-edge YB(]zCu30y

A C 1" Y = 6.22 B ' 1-7 2" Y = 6.52

A 3y-6.70 3-7 4" Y =6.71

4-7 5" Y = 6.88 6" Y = 6.91 7"Y =6.96

ID I , , I , i I i i I , , I , , I ,

8982 8988 .8994 9 0 0 0 9006 ENERGY (eV)

Fig.4-41. Cu K-XANES spectra for YBa2Cu3Oy obtained by normalization and subtraction of

the reference spectrum (YBa2Cu306.96).

Page 271: Analytical Spectroscopy Library_VOL 7

262

50 ioo .YBo2Cu30y

40 - �9 ~ 80

o~ so 60 ~= ---

20 40 h'~

I0 20

0 ' 0 -- I I I

6.( 6.2 6.4 7.0 6.6 6.8 Oxygen Content y

oosr. Y 2 3 y Bo, C u . ~ ~ v ~ ~ J_3~ L

_o.o,f f t o~ o~

z0.0 t 10.,o <1

/ O~--L-~--~ ' ' , ' ' ~==P-JO 60 6.2 6.4 6.6 6.8 7.0

Oxygen Content y

Fig.4-42. Oxygen composition-dependence of the intensities of characteristic features in a difference XANES spectrum (closed circles and squares) and Tc values (closed

triangles) for YBa2Cu3Oy (above). Variations of lattice constants of YBa2Cu3Oy as

a function of oxygen content y (below) where b - a and Ac values are indicated by

open circles and squares, respectively. For Ac values, the minimum c value is taken

as a standard.

vacancies are formed for y > 6.7. Oxygen vacancies are then disordered at y --6.3, inducing the

symmetry change from orthorhombic to tetragonal in a macroscopic scale.

CLBCO is a HTSC material (Tc ~ 80 K, y > 6.87) which has a similar structure to that

of YBCO, although the crystal symmetry is tetragonal throughout the possible y range [142]. In CLBCO, Tc gradually decreases with the decrease in y, and a sample with y -- 6.69 is an

insulator. The distinct difference between CLBCO and YBCO in HTSC phase diagram has

been a puzzling problem. Here, we interpret the difference as arising from the disordered

oxygen vacancies in CLBCO. Kuwahara et al. showed that in CLBCO, at least for y > 6.7,

two-fold coordinated Cul sites are not formed [143]. This indicates that oxygen vacancies are

disordered, possibly because of a random distribution of cations. Kondo et. al. showed that

oxygen vacancies are spontaneously ordered, from Madelung-energy calculations [ 118]. When

vacancies take adjacent sites and the two-fold copper sites are formed, holes are provided

through a valency change from Cu 2+ to Cu + which is called a "self-doping". The charge

compensation via this mechanism is dependent on the vacancy ordering. For YBCO with y >

Page 272: Analytical Spectroscopy Library_VOL 7

263

6.7, since ~0.3 oxygen vacancies per unit cell can pair with ~0.3 additional vacancies, this

mechanism can compensate for a loss of carders, at least by 1/2 for y > 6.4. Interestingly, YBCO has a low Tc phase over a wide range for 6.3 < y < 6.7, while CLBCO only has a

HTSC phase for y > 6.7. These results indicate that a HTSC phase diagram is strongly

dependent on the charge compensation via a self doping mechanism.

order - . . ~ - ~ > ~ , 4 - c . ~ = ~ y = 7

disorder

disorder or~ler

order

order I disorder

order

01 defect

- 1 o r

o 01 defect

+2 +2 +2 ~ - ~ + 2 +2 - ~ �9 0- -0 .4

+2 +2 +2 +1 +2 +2 o - O - o - O - o �9 o O o

o .0-- ,L o

f o O o �9 o O o �9

- �9 o O o �9 �9 ~X O

o O o o O o o O o o

; - - �9 �9 �9 �9 O O +1 +1 +1 +1 +1+1

y=6.8

y=6.7

y =6.5

Ay =0.2

y=6.3

y :6 .0

Fig.4-43. Schematic model for oxygen ordering for YBa2Cu3Oy. At oxygen content y ~ 6.7

decreased, the oxygen vacancies are ordered so that monovalent copper species are

formed which partly compensate the loss of carders. At y --- 6.3, residual oxygens

are disordered, to give rise to a macroscopic structural change from orthorhombic to

tetragonal symmetry.

Lattice anomalies

The interplay of charge, lattice and magnetic fluctuations has been recognized as an

important issue in understanding the mechanism of HTSC. Recently, lattice anomalies have

been observed near Tc , using various local structural probes such as EXAFS [120,144],

pulsed neutron scattering [ 121,122] and ion channeling [ 123,124]. The anomalous temperature

dependence of the mean-square relative displacement in EXAFS data for YBCO has been

interpreted as an indication of dynamic fluctuations or tunneling between the two closely

separated oxygen positions [120]. Pulsed-neutron experiments also indicated the dynamic

oscillations between the two positions for T12Ba2CaCuO8 [ 121]. Most of the observed lattice

Page 273: Analytical Spectroscopy Library_VOL 7

264

anomalies are characterized by temperature-dependent anomalies at Tc involving displacement

of oxygen atoms along the c-axis. However, they are not consistent with a simple picture of

phonon softening indicating the importance of local distortion. Temperature dependence of phonon frequency is strongly dependent on phonon modes. For YBCO, the Ag Raman mode

shows a small hardening which is interpreted in terms of phonon self-energy change associated

with superconductivity [145] while infrared absorption in the 584 cm -1 mode shows a slight softening on decreasing the temperature across Tc [146,147]. The discrepancy between the

local structural probes and vibrational techniques is a subject of intense discussion [147,148]. Recently, in-plane lattice anomalies well above Tc were reported from polarized EXAFS

experiments for T12Ba2CuOy [149,150], Bi2Sr2CaCu208 [125] and YBCO [151] which

suggest an interplay between lattice and spin fluctuations. A highly oriented YBCO thin film (Tc = 87 K) has been synthesized by a reactive co-

evaporation technique [152]. Polarized Cu K-EXAFS data taken with the electrical vector

parallel (e//ab) and perpendicular (e//c) to the ab plane were analyzed in order to obtain the

temperature dependence of the mean-square relative displacement, or, and bond length R. In

Fig. 4-44, the local structure of YBCO is illustrated. The filtered Cu-O EXAFS oscillations

were fitted by a single oxygen position model in order to minimize errors arising from

correlations among parameters, although Mustre de Leon et al. claimed that the split-apical-

Cu2

Correl!tion

04

Cu2 YBa2Cu30T

Fig.4-44. Schematic local structure of YBa2Cu3Oy (y -- 7) observed by polarized EXAFS. At

Tc, the relative displacement between copper and oxygen for all Cu-O bonds

increases. The Cu2 atom shifts toward apical oxygen, associated with a charge

transfer between the two apical oxygens coupled to their motions along the c-axis.

Page 274: Analytical Spectroscopy Library_VOL 7

265

oxygen-position model fits better the experimental data [ 120,153,154], which became the basis

for a tunneling picture within a double well potential [ 11 ]. As the apical oxygen, 04, bridges

Cu2 atoms in YBCO, the contributions of Cu 1-O4 and Cu2-O4 pairs were determined from e//c

EXAFS data whereas the in-plane Cu-O pairs were averaged for el/ab data. Figure 4-45 shows

the variation of R as a function of the normalized temperature T/Tc. The Cu2-O4 bond length

(open circle) clearly decreases by 0.01 /~ while the Cul-O4 distance (closed circle) is unchanged below Tc, which indicates that the Cu2 atom slightly shifts toward apical oxygens below Tc.

Figure 4-46 shows the T-dependence of o'for the Cul-O4 bond (closed circle), and for

the Cu2-O4 bond (open circle). A sharp increase in trfor the Cul-O4 bond is observed at Tc,

which is essentially the same as previously reported anomalies [120,144,153,154]. Reflecting

the fact that the Cu2-O4 bond is weaker than the Cu 1-O4 bond, tr for the Cu2-O4 bond has a

larger temperature coefficient; tr decreases gradually on lowering T until it sharply increases at

Tc, which is followed by a gradual decrease below Tc [144,154]. In contrast, o'for the in-

plane Cu-O bond shows a deviation from a normal T-dependence at a much higher temperature than Tc, 120 K ~1.5 Tc. The observation of a sharp increase in relative displacement for the

out-of-plane Cu-O is striking considering the fact that both Raman and IR phonon softening is of the order of 1%. Thomsen et al. attributed the Raman frequency shift (softening) below Tc

to a resonant electron-phonon interaction associated with an HTSC state [145]. In

o , , ~ . . = . .

2.31

2.30 -

2.29

1.96

1.9

0.,5

' ' ' ' I ' ' '

o YBo2Cu307/MgO Cu2-04 �9 YBo2Cu3OT/MgO Cul -04

t

t t , , q n

1.0 T I TC

t |

.5

Fig.4-45. Normalized temperature dependence of the Cu2-O4 distance (above) and the Cul-O4 distance (below) for highly oriented YBa2Cu3Oy (y ~ 7).

Page 275: Analytical Spectroscopy Library_VOL 7

266

1 ,_..,

r o ' 0

x

0 ,...,.

0

_.N b n - 1

I - -

oa v b

0

-0 .5

t t

| ' ' ' ' I ' ' ' ' |

o YB0zCu3Or-a/MgO Cu 1 - 04

�9 YB0zCu3OT-a/MgO Cu - Oeq

I I

ttt t t , | , , I , , t i

1.0 TI Tc

|

O5 115

Fig.4-46. Normalized temperature dependence of the mean square relative displacement trin

YBa2Cu3Oy (y - 7) for the Cul-O4 and Cu2-Oeq bonds. The in-plane bond length

Cu-Oeq is obtained by averaging the values parallel with the a and b directions.

Bi2Sr2CaCu208, much greater phonon softening is observed at Tc for copper vibrational modes within the CuO2 plane although the copper-phonon-density is normal across Tc for the

c-axis [155], in sharp contrast to the softening oxygen-phonon-density of states for YBCO [ 156]. Although further efforts are necessary to relate observed lattice anomalies to particular

phonon modes, it seems that the out-of-plane anomaly arises from the dynamic fluctuation of apical oxygens. A sharp increase in the magnitude of anharmonic motion for apical oxygens at Tc, along the c-axis, may indicate a strong coupling between the two CuO2 planes via a charge

transfer between the two apical oxygens, assisted by oxygen motions, as illustrated in Fig. 4- 44. The fact that Cu2 shifts toward 04 indicates that some charge is indeed transferred into the

O4-Cu 1-O4 region. The coupling of oxygen atom and the charge transfer is quite similar to a

tunneling picture although the recent X-ray diffraction study on untwinned YBCO found no

evidence for the split apical oxygen positions [157]. The fact that tr values for the in-plane Cu-

O increase sharply at Tc indicates the development of local phonon modes. The most stable

Jahn-Teller-active vibrational mode for square-pyramidal CuO5 clusters, asymmetric

stretching, is one of candidates [158]. A recent neutron-scattering study supported a phonon softening for the asymmetric bending mode below Tc [155]. We note that these asymmetric

bending/stretching modes are important for commensurate charge modulation or coherent bipolaron conduction [159]. Bianconi et al. attributed the in-plane lattice anomaly at ~l.5Tc in

Bi2CaSr2Cu208 to the development of polarons [125].

Page 276: Analytical Spectroscopy Library_VOL 7

267

Lattice anomalies observed in EXAFS are strongly related to elastic anomalies and spin fluctuations. Ultrasound velocity shows an anomaly at Tc and well above Tc, Ts ~ 120-130 K

in YBCO [160], the characteristic temperature at which the magnetic susceptibility changes. Moreover,Ts is close to the onset temperature of the lattice constant anomaly in X-ray

diffraction profile ( ~125 K) initially interpreted as an indication of Gaussian fluctuation [ 161,162]. Below Tc, hardening of ultrasound velocity [ 160] was observed, which is related to

the shear-modulus anomaly, indicating a strong coupling between the HTSC order parameter

and shear-distortion [163]. A bipolaron formation [164] is one of the candidate mechanisms

compatible with a strong lattice distortion. The fact that the anomaly exists at, and well above, Tc, indicates an interplay between lattice effects and spin excitations. (T1 T) -1 in NMR at Cu2

sites [165], where T1 is the nuclear spin-lattice relaxation time, and neutron inelastic scattering

experiments [166] are interpreted as evidence for the spin excitation at much higher temperatures than Tc. More recently, from careful transport measurements of YBCO, Ito et al.

showed that deviation of resistivity from a T-linear behavior arises from the formation of a

"spin gap" [ 167]. The critical temperature TO, defined as an inflection point of dp/dT in ref.

167, corresponds to the elastic anomaly at Ts and the lattice anomaly in EXAFS well above Tc.

Within the framework of resonating valence bond (RVB) theory, the "spin gap" corresponds to

the formation of a spin singlet [119] and Tanamoto et al. recently explained the anomalies in (TIT) -1 by an extended t-J model [ 168].

In summary, the effects of oxygen defects (interstitials and vacancy) and their ordering,

are revealed. Oxygen interstitials are formed at apical sites associated with Ce doping. A simple

oxygen interstitial model can explain the effect of heat treatment under reducing conditions;

surplus oxygen interstitials which suppress electron doping are removed by heat treatment

under reducing conditions. The dependence on oxygen content of the Cu K-XAFS for ceramic

YBCO shows that the ordering of oxygen vacancies seriously affects HTSC via a self-doping

mechanism. A puzzling difference in the HTSC phase-diagram between YBCO and CLBCO is attributed to the order/disorder of oxygen vacancies. Lattice anomalies in YBCO, studied by

polarized EXAFS on a highly oriented YBCO thin film, are related to anomalies in elastic and

magnetic properties. Anomalies in the out-of-plane Cu-O bond along the c-axis are observed at Tc ~ 87 K while the magnitude of the in-plane oxygen motion reduces its magnitude well above

Tc ~ 120 K; the mean square relative displacement increases sharply at Tc, for in-plane and out-

of-plane Cu-O pairs, while in-plane anomaly is observed at 1.5Tc, which coincides with

anomalies in elastic properties and spin excitations. The lattice anomalies observed at Tc seem

to be related to low-energy excitations, such as polarons or spinons in a RVB picture. Lattice anomalies well above Tc seem to be related to spin-gap and elastic anomalies, suggesting a

connection between the lattice and spin fluctuation.

Page 277: Analytical Spectroscopy Library_VOL 7

268

4.5.3. Biological systems

Local structure of heme-irons

Fluorescence XAFS is used as a local structural probe of dilute metals in biological

systems, such as metalloproteins and enzymes. In this subsection, the capability of XANES to

detect subtle changes of coordination is demonstrated. Some ferric hemoproteins such as

hydroxide complexes of ferric hemoglobin, and myoglobin show values of spin susceptibilities

intermediate between those characteristic of 5- and 1-unpaired electrons. The spin-states of

these complexes have been interpreted in terms of thermal spin equilibrium between two magnetic isomers, one in a high-spin and the other in a low-spin state. These results have been

obtained from the analysis of the temperature dependence of the magnetic susceptibilities and

light-absorption spectra [169,170]. Spin states are strongly related to the coordination

geometry and species of ligand. While fluoride and cyanide complexes were found respectively

to be in purely-high, and purely-low spin states, hydroxide, azide, imidazole and cyanate

complexes exhibited intermediate magnetic susceptibilities and the optical spectra characteristic

of an intermediate spin state.

Although the thermal spin-equilibrium has been studied extensively for a variety of

hemoproteins and their model heme-compounds, from a thermodynamic view-point [169-

171], the relationship between the local structure of heme-iron and the spin states has not yet

been established. Heme-iron is expected to be out of the heme plane in high spin states, which

is favored from the view-point of metal-d- ligand-p interaction. The magnitude of the

displacement of heme-iron from the heme plane in deoxyhemoglobin (Hb(II)) has been of considerable interest in relation to the affinity of oxygen binding [ 172-174]. The movement of heme-iron into the heme plane in an oxygenated form has been proposed as the mechanism for transfer of the information on oxygen-binding from one subunit to the other, causing the

transition from the low-affinity T state to the high-affinity R state [172].

The local structure of heme-iron has been studied for a variety of hemoproteins by

means of extended X-ray absorption fine structure (EXAFS) [173-176], which determined the distance between heme-iron (Fe) and the nitrogen atoms of porphyrin (Np) and that between

heme-iron and the nitrogen atoms of proximal histidine (Ne), together with the distance

between heme-iron and the sixth ligand, such as oxygen, within 0.01 A accuracy [174,175].

However, the magnitude of displacement of heme-iron from the heme plane is difficult to

determine by EXAFS because it is sensitive to bond-distance but insensitive to the three-

dimensional arrangement of the atoms, i.e. the bond angle [174,177]. On the other hand,

XANES is suitable for probing the coordination geometry in hemoproteins because of its

sensitivity to the atomic arrangement, which affects the interference of photoelectron waves

through multiple scattering [178].

Page 278: Analytical Spectroscopy Library_VOL 7

269

Spin-state equilibrium in myoglobin

Figure 4-47 shows the temperature dependence of Fe K-XANES for dilute (2 mM)

Mb(III)OH- measured by a Si(Li) solid state detector [179]. At 80 K, where Mb(III)OH- is

purely in the low-spin state, several characteristic features are observed which were originally

discussed by Bianconi et al [177]. On going from the predominantly high-spin state (300 K) to

purely low-spin state (80 K), the spectrum changes systematically. Feature A indicates the

position of a shoulder structure, observed for low-spin Mb(III)OH- at 7125 eV, which appears

as an inflection point in the first derivative. This shoulder gradually disappears with increase of the high-spin content; at 300 K no shoulder structure is observed. A broad bump structure C2

observed at 7148 eV for low-spin MbOH- reduces in its intensity at higher temperature and is

not observed at 300 K. Peak P, observed at 7112 eV, is a quadrupole-allowed transition from

Fe l s to empty 3d states. This is observed as a weak but rather sharp peak at 80 K, which broadens at 300 K. It is found that there are three features, P, A and C2 within 40 eV from the

edge, which are spin-state sensitive. In particular, feature A is strongly correlated with a

decrease in broad peak intensity at C2 in the high-spin state.

If a spectrometer and beam are stable, a difference between a sample and a reference can

provide a sensitive means for detecting and analyzing quantitatively an elaborate change in

XANES. Difference spectra are obtained by subtracting 80 K data from spectra at higher

temperatures. The inset of Fig. 4-48 indicates the difference spectra around feature A, as a | ! ! | |

8OK(LOW SPIN) C~ D Fe K-edge .-. 300K (HIGH SPIN) I- -" MbOH

/ h" C2 I I 2D

I >... r r i , ~ ,

CD oc.

- # / /

" e # 'L ta_ ,., f i ,..I N

1 I I I I

7.10 .11 7.12 7.1.3 7.14 7.15 7.16 PHOTON ENERGY (keV)

Fig.4-47. Temperature-dependence of the Fe K-XANES spectra and their first derivatives for 2

mM Mb(III)OH- in low-spin (solid line) and high-spin (dashed line) states measured

by a fluorescence mode : taken from ref. 179.

Page 279: Analytical Spectroscopy Library_VOL 7

270

I - - =. , . . . ,

z

>...

n,.- I - - 13o n..."

w

z w rr- w L J_ L J_

Mb(EI)OH- ..~

a = - - - - - A H o AS* 1+exp - - - + - -

nS 0=-5 col/mol.deg / ~I /,//

/ 7110 7120 7130 I I I I I E,~ERGYU (eV)

0 50 100 150 200 250 300 Y/K

Fig.4-48. Intensity variation of the spin-state-dependent feature in XANES for 2mM

Mb(III)OH-(open circles). The inset shows the difference spectra obtained by

subtracting the reference measured at the lowest temperature from data taken at

higher temperatures. The high-spin content, ct, calculated according to the formula

in the figure, is also shown.

function of temperature. The intensity of this peak, which decreases with decrease in temperature, is plotted as a function of temperature and compared with the high-spin content

calculated from thermodynamic data [169,170]. The high spin content is normalized at 300 K

to the relative intensity of this difference peak. The overall behavior is well predicted by

thermodynamic data, which suggests that the difference is proportional to the high-spin content. The magnitudes of C2 and A in a difference spectrum were found to be inversely

correlated with one another. Bianconi et al. interpreted the change of structure "A" as a result of

increased multiple-scattering of photoelectrons within the heme plane [ 177], which is sensitive

to the motion of heme-iron out of the heme plane. Their calculations showed that near-edge

features 40-50 eV above the edge are sensitive to the heme-iron displacement from the heme plane. However, the spectral change for features A and C2 is not completely reproduced by

their calculation for the photoelectron scattering within the heme plane. Feature B observed by Bianconi et al. [177] halfway between features A and C1 for deoxy-Hb(Hb(III)), can be

observed for deoxy-Mb(Mb(II)) but feature B is absent for other Mb derivatives.

On the other hand, recent polarized XANES studies [ 180,181 ] on square-planar Cu complexes have shown that sharp features ascribed to a ls-4pz transition aopear 4-5 eV above

the Is-continuum transition. The former transition is polarized normal to the plane while the

Page 280: Analytical Spectroscopy Library_VOL 7

271

latter is polarized along the plane. The interaction between Fe 4pz and ligand 4p*~(]r) states are

sensitive to the distance between metal and axial ligand [ 181 ]. Bianconi et al. have reported that the features C 1 and C2 observed for single-crystalline Mb(II)CO are strongly polarized in the

direction normal to the heme plane [182]. The interaction between the 4pz and ligand n'* orbital

reflects the symmetry around a metal atom. In either case, the axial movement of heme-iron can

affect the absorption threshold regions. If the metal-ligand distance is not changed appreciably between the high- and low-spin states, the observed change in spin-state sensitive structures

arises from the change in the metal-ligand interaction which is caused by the displacement of

heme-iron out of the heme plane. The heme-iron of Mb(III)OH- is coordinated with four nitrogen atoms of pyrrole rings

and with another nitrogen atom of proximal histidine, as indicated in Fig. 4-49. The sixth

ligand of Mb(III)OH-, denoted by X, is a hydroxyl ion. In Mb(II), heme-iron has no sixth

ligand and is displaced from the heme plane by ~0.40 ,~ and from the nitrogen plane by -0.27

.~, according to the structural analysis by Takano [183]. Because of a doming of the pyrrole

ring, the iron-nitrogen distance is slightly shorter than the iron-heme plane distance. Such a

displacement of heme-iron from the mean heme plane has been reported for various high-spin porphyrin compounds [184]. On the other hand, heme-iron in low-spin myoglobin derivatives such as Mb(III)CN-, Mb(II)CO, and Mb(II)O2 is expected to be within the heme plane or only

slightly displaced from it. The displacement of heme-iron out of the heme plane is expected to weaken the octahedral ligand field (Oh) by lowering the symmetry. High-spin states are

stabilized by this distortion of the square-planar geometry because the weaker ligand field reduces the eg-t2g splitting energy, which is favorable for high-spin states. In hemoprotein,

HIGH SPIN LOW SPIN S =5/2 S=1/2

eg t, l

t , i i i t2g t t f l '

~.N..-~ (5th) N M

X (6Ih)

~.,~ .-~{5 th) V N 3M V

I \ - ' " F e - - . ~ , , _ _ L L ~ N ~ ..... ~N.--~'-,,,M

X (61h)

Fig.4-49. Schematic local structures of Mb(III)OH- associated with a temperature-dependent

distortion around a heme-ion in relation to spin states.

Page 281: Analytical Spectroscopy Library_VOL 7

272

the spin states of heme-iron are strongly affected by the chemical character of the sixth ligand.

Low-spin states are stable for strong ligands such as CN- while high-spin states are commonly found in hemoproteins with a weak ligand, such as H20. The heme plane-normal component

of the ligand field due to the axial distortion also allows p-d mixing and lowers the dz 2 orbital

energy, which contributes to the stabilization of high-spin states. The change in distance between heme-iron (Fe) and the center of the heme plane (Ct) on

going from a low-spin to high-spin state is not associated with an appreciable change in Fe-Np

proximal, Fe-Ne or Fe-O(OH2) bond lengths, since the difference in the nearest-neighbor

distance would appear as an energy shift. These results are consistent with recent EXAFS

studies [173,174] on oxy- and deoxy-hemoglobin which found that the Fe-Np distance is 2.05

A for both forms. If the movement of heme-iron is not associated with the change in Fe-Np

distance, the four nitrogen atoms (Np) are pulled toward the center of a square. The strain

energy caused by the Fe-Np bond-bending can be partly released if the porphyrin ring is further

deformed so that the doming is enhanced. The displacement of heme-iron may involve

deformation of the entire porphyrin ring which can stabilize the high-spin states. In this respect,

the XANES results are consistent with the recent interpretation of EXAFS data for oxy- and

deoxy-hemoglobin by Perutz et al. [ 174]. Bianconi et al. estimated that the Fe-Ct and Fe-Np distances in carp azide hemoglobin,

associated with the T-R transition are less than 0.1/~ and 0.01/~, respectively [185]. They also

observed that specific spectral regions change during the T-R transition, which is essentially the

same trend as for the spin-state-sensitive features discussed above. Their data show that features A and C2 change in such a way that T and R states correspond to low-spin and high-

spin states, respectively, indicating that the T-R transition involves the movement of heme-iron out of the heme plane. Chance et al. have shown that variations of the Fe-Np distance in carp

hemoglobin associated with the T-R transition are less than the detectable limit (0.01 A), directly from EXAFS experiments [ 186]. Further, they reported that the ratio of the two bump structures observed at 7171 eV and 7190 eV in the low-energy EXAFS region is also spin-

state-sensitive.

It has been demonstrated that there are particular spectral regions in the near-edge

spectra for Mb(III)OH-within 40 eV from the threshold which are spin-state-sensitive. The

spin-state-sensitive near-edge features are primarily due to the change of the heme-iron and

ligand-orbital interaction as a result of the axial movement of heme-iron and following

deformation of the porphyrin ring. It is also shown that these features are generally observed

for other myoglobin derivatives and therefore can be used as spin-state markers. It is expected that the variation in the Fe-Ne distance for Mb(III)OH- should not be large on going from a

low-spin to high-spin state, suggesting that the porphyrin ring should be deformed to enhance

the doming.

Page 282: Analytical Spectroscopy Library_VOL 7

273

4.5.4. Alloys and impurities

Isoelectric impurities in semiconductors

The local structure around impurities in semiconductors is important for understanding

the nature of doping-induced electronic states. For example, midgap states, known as DX centers are formed by n-type doping in ternary semiconductor alloys such as GaAsxPl-x [ 187] and AlxGal-xAs [188]. A large lattice relaxation, arising from strong electron-phonon

coupling, has been considered to lower the impurity-levels deep into the bandgap [188].

Impurities also influence crystal growth. Dislocations are reduced in GaAs by impurity doping

[189] or in InP by co-doping of Ga and As [190]. The effect has been ascribed to solution-

hardening or a simple elastic interaction between impurity (solute) and dislocations [191]. In

both cases, however, quantitative discussions require direct information on the local structure

around impurities. The radial distribution of atoms in alloys or around impurities can be

obtained by EXAFS [192]. Fong et al. theoretically, predicted the bimodal distribution of bond

lengths or a deviation from Vegard's law in pseudobinary alloys [193]. Mikkelsen et al. found that Ga-As and In-As distances in InxGal-xAs are similar to those in pure binary compounds,

i.e., GaAs and InAs, deviating from the average interatomic distance or virtual crystal

approximation (VCA) [192]. In this subsection, the local structures around Ga and As

impurities in liquid encapsulated Czochralski (LEC) grown InP are discussed. Impurities (1018-1019/cm3) can be studied by use of a fluorescence detection technique [22].

Ga/As-doped bulk InP crystals with a low dislocation density (102-103/cm2), prepared

by a magnetic field-applied LEC method with a small temperature gradient, were studied [ 194].

The concentration of Ga and As dopants was determined by inductively-coupled plasma (ICP)

emission spectrometry as 1.16 x 1019/cm 3 and 7.32 x 1019/cm 3, respectively. A lattice-

mismatch between the Ga/As-doped InP and pure InP is less than 1 x 10 -4. Dilute (In, Ga)

(As, P) alloys lattice-matched to InP grown by the liquid-phase epitaxy (LPE) technique at

650~ were also studied. For dilute alloys or impurities, the background is primarily caused

by elastic scattering and fluorescence lines of other components. These must be eliminated by an X-ray filter and high energy resolution detector or a focusing crystal monochromator. Thin Zn and GeO2 X-ray filters are used for Ga and As edges, respectively, while residual elastic

scattering is eliminated by a pulse height analysis of a Si(Li) detector output.

Normalized As K- and Ga K-edge EXAFS oscillations z(k) are plotted as a function of

photoelectron wave number k in Fig. 4-50. Near-neighbor species are identified from the k-

dependence of the EXAFS envelope, which reflects I~(k,Tt)l of the scatterer atom. Analysis of

the As K-EXAFS envelope indicates that doped As atoms are coordinated by In atoms, i.e., As

atoms substitute P atoms. This directly rules out a possible clustering or precipitation in Ga/As-

doped InP. In a similar manner, it is found that Ga atoms also substitute for the In atom. In

Fig. 4-51, the Fourier transform of kz(k) are indicated for the As K-edge data. The left and

fight curves indicate the results for Ga/As-doped InP and pure InAs, respectively. The Ga-P

Page 283: Analytical Spectroscopy Library_VOL 7

274

I I I I I I I I

GaAs :InP 0.04 As K-edge

. -0.04~

o.o2" f 0-

-0.02- II ~ ea(1.2xlO19/cm3): InP

V -0.04 -

I ~ I I I I I I 2 4 6 8 10 12 14 16 18

k (A-') Fig.4-50. As K- and Ga K-EXAFS oscillations for Ga/As doped InP measured by a

fluorescence detection technique: taken from ref. 194.

and In-As distances are determined by a curve fit analysis using the Ga-P and As-In phase shift

functions extracted from the pure GaP and InAs data and theoretical I~(k,r01 functions by Teo

and Lee [33]. The Ga-P distance (2.41/~) in InP is shorter than the interatomic distance of the

host lattice (2.541 ,/k) by 0.131 A and is rather close to that of pure GaP (2.360/~). This

implies that.tetrahedrally coordinated P atoms are displaced toward the Ga atom by AuGa-P =

0.131 /~. If we assume the isotropic local distortion, this gives rise to a compression of the GaP4 tetrahedron along the [ 111 ] direction. In Fig.4-52, the In-As bond length is close to that

in pure InAs (2.623/~), indicating the local expansion of the Asln4 tetrahedron. If the local

distortion is isotropic, the displacement along the [111] direction Auln-As is 0.06/~.

Information on the symmetry and extent of local distortion can be evaluated by analysis of the

second-nearest neighbors or XANES.

The results show that the host lattice is either expanded or compressed around

isoelectronic impurities depending on the covalent radii difference. The resulting rearrangement

of atomic positions is schematically shown in Fig. 4-52. The Coulomb interaction between the

adjacent sp 3 orbitals will influence the second-nearest neighbors in addition to a Jahn-Teller-

type distortion of tetrahedra sharing an impurity atom at an apex. Isoelectronic impurities thus

induce a structural disorder, as evidenced by an increased width of the X-ray diffraction peak

profile. The preservation of covalent radii predicted by Fong etal. [193], and confirmed by

Page 284: Analytical Spectroscopy Library_VOL 7

275

..--,..

t - -

..ci

L.I_

As K-edge

0 1 2

As ( 7.5 x IOm/cm s) "lnP

5 4 5 0 I 2

InAs

5 4 5 6

Fig.4-51. Magnitude of Fourier transform of the As K- EXAFS oscillations for Ga/As-doped

InP measured by a fluorescence detection technique �9 taken from ref. 194.

Fig.4-52. Local structures of Ga and As impurities in InP: taken from ref. 194.

Page 285: Analytical Spectroscopy Library_VOL 7

276

EXAFS [192] causes the local distortion around impurities. The "bond length mismatch" is

relaxed by: (1), the bond-stretching/shortening of the nearest neighbors and, (2), bond-bending

of the second-nearest neighbors. In the dilute limit, the displacement is isotropic and the

interaction is within the second-nearest neighbors. Isoelectronic impurities often induce a

structural disorder as evidenced by an increased width of the X-ray diffraction peak profile.

The impurity-induced structural disorder modifies both electronic states [195] and crystal

growth [ 190,191 ]. Dislocations are preferentially accommodated near internally-expanded or

-compressed regions, blocking the propagation in a manner similar to the dislocation pinning

mechanism well known as solution hardening [189,191]. The motion of the dislocation may be

prevented by the presence of structural disorder which increases the activation energy of

cooperative dislocation motion.

Semiconductor alloys

Let us compare the bond length relaxations in III-V alloys with the above dilute-limit

case. Figure 4-53 shows the Ga-P and In-As bond lengths as a function of the relative number

of bond pairs, normalized to pure binary compounds [196]. For Ga-P and In-As pairs in

Ga/As-doped LEC-grown InP, the bond length variations from binary-compound values,

AuGa-P and Auln-As, are ca. 1/4 (28 %) of the difference between the interatomic spacing of

the host lattice and the bond length in pure binary compounds, Auln-P. This ratio coincides

with those for LPE-grown (Ga, In) (As, P) quaternary alloys lattice-matched to InP. In this

system, the Ga-P and In-As distances are almost constant over a wide range of concentration for which the lattice spacing is kept constant [ 196]. For InxGal-xAs ternary alloys, Mikkelsen

et al. have reported that the bond length deviation in the dilute limit (2 mol %) amounts to

roughly 1/4 of the difference between the values in pure binary compounds [ 192]. Recently, Shih et al. have shown that this bond length relaxation in the dilute limit can be ascribed to the

2.70

, . - - , , ,

*~ 2.60 -I- l-- (.9 z ,,, 2.50 .._1

z o ,-,-, 2.40

2.30

In -As 0 0 0-r162

Go-P r o ---o--

Go-As

I I , , I t i , i ] t , I I ] I I '

0-4 10-3 10-2 10-s RELATIVE NUMBER OF PAIRS

--InAs

--InP

--GoAs

,-GoP |

Fig.4-53. Variation of Ga-P and In-As bond lengths in InGaAsP quaternary alloys and Ga/As

impurities in InP as a dilute limit: taken from ref. 197.

Page 286: Analytical Spectroscopy Library_VOL 7

277

bond-stretching term of Keating's potential [197]. On the other hand, bond lengths of III-V

alloys in the concentrated region deviate from the interatomic distance of virtual crystal by the

same amount [ 192]. These results imply that in the concentrated region, a host lattice for the

dilute-limit case can be replaced by a virtual crystal, and bond lengths in the concentrated region

are also dominated by bond-stretching interactions.

It is found that the bond lengths of isoelectronic impurities (Ga, As) doped in LEC-

grown InP relax from those in pure binary compounds (GAP, InAs) by ~28 % of the difference

between the interatomic spacing of the host lattice and bond lengths in pure binary compounds.

The displacement of second-nearest atoms along the [ 111 ] direction gives rise to structural

disorder, such as internal expansion or compression, localized at impurities. A reduction in

dislocations can be explained in terms of dislocation pinning where internal expansion

(compression) accommodates dislocations and preventing their spread.

4.5.5. Superlattices and interfaces

GaAs/Si(O01)

Despite growing interests in heteroepitaxy on Si substrates such as GaAs/Si, the role of

the heterointerface in subsequent epitaxial growth is not understood from the microscopic

viewpoint, although it is widely recognized that the initial growth conditions strongly influence

the subsequent epitaxial growth [ 198-200]. In heteroepitaxy of GaAs on Si substrates, there

are several intrinsic problems related to polar on nonpolar, such as an antiphase domain due to

the surface step, the effect of tetragonal strain arising from a lattice mismatch, and an

electrostatic field at the heterointerface. These problems have been dealt with, mostly on an

empirical basis such as growth on a vicinal surface [201] or two-step growth [200], and the

microscopic mechanism of epitaxial growth still remains to be solved. In particular, a large

electrical field produced at a heterointerface is expected to cause atomic rearrangements of the

interface [202, 203]. It is well known that the growth mode of GaAs on Si(001) depends

critically on the growth temperature of the As prelayer [200, 204]. A defect-free two- dimensional GaAs epitaxial growth is achieved when the As prelayer is grown at low

temperature (300~ while three-dimensional growth is observed for high temperature ( >

600~ growth of the As prelayer. It is also puzzling that the As-covered Si(001) surface at

high temperature gives a (1 x 2) reconstruction which is rotated by 90 ~ degrees from the (2 x 1)

super structure observed for clean Si(001) and As-covered Si(001) at low temperature [205].

Since the surface reconstruction of GaAs grown on As-covered Si(001) is determined by the

reconstruction of an As prelayer, the growth mode should be related to the microscopic

structure of the As-Si heterointerface.

The GaAs/Si(001) samples were prepared by molecular beam epitaxy (MBE) on a

slightly (2 ~ misoriented Si(001) surface toward [011], with various growth temperatures for

the As prelayer deposition [ 197]. Prior to the growth of the 1ML GaAs, the As prelayer was

Page 287: Analytical Spectroscopy Library_VOL 7

278

grown at high temperature (> 600 ~ HT), and low temperature (300 ~ LT). In addition to

As/Ga/As(HT)/Si and As/Ga/As(LT)/Si, a sample without the As prelayer, As/Ga/Si was

prepared. After depositing the As layer, a thin aluminum layer was grown for protection from

oxidation. Figure 4-54 shows the extracted Ga K-EXAFS oscillations z ( k ) f o r

As/Ga/As(HT)/Si, As/Ga/As(LT)/Si and As/Ga/Si [206]. The k-dependence of the EXAFS

profile indicates that the Ga atoms in As/Ga/As(HT)/Si are coordinated by As atoms, but in

As/Ga/As(LT)/Si and As/Ga/Si are coordinated by Si atoms. The results indicate that the As prelayer grown at low temperature does not form chemical bonding with the first Ga layer. Figure 4-55 shows the Fourier transform of the EXAFS data shown in Fig. 4-54. In case of

As/Ga/As(HT)/Si, the first-nearest neighbor appears as a sharp peak at -2.1 ]k, which is

assigned to As atoms from the k-dependence of the EXAFS profile. In the Fourier transform of

the data for As/Ga/As(LT)/Si and As/Ga/Si, the main peak shifts to larger R and reduces in

intensity. The Ga-As bond length determined in As/Ga/As(HT)/Si is 2.45/~, which coincides

0.02 0.0~)

-0.01 0.02

z

0.10 ._.. 0.05 :_o.o ~

-0.10 -0.15 -0.20 -

0.10~ 0"0~) I

-o.o51- o.lol- o. 5t- O.20P

I I I I I I I

Go K-edge As/Ga/AslHT)/Si(O01)

,~ As/Go/As(LT)/Si (001)

l

I I I I I I I

4 6 8 10 12 14 16 18 K (A -I }

Fig.4-54. Ga K-EXAFS oscillations for As/Ga/As(HT)/Si, As/Ga/As(LT)/Si and As/Ga/Si

where HT and LT denote the high (>600~ and low (300~ substrate

temperatures, respectively.

Page 288: Analytical Spectroscopy Library_VOL 7

279

or) l - - l,.-w Z

>-. 13::

l - - ,.-w r r l 13C ,,::I:

13C

i , ..,,..

I I I I I I I

Ga K- edge

~ As/Ga/As(HT)/Si (001) HT > 600 ~

As / Ga/As (LT)/Si (001) LT = SO0*C

_

2 4 6 8 o

RADIAL DISTANCE (A)

Fig.4-55. Magnitude of Fourier transform of the Ga K-EXAFS oscillations

As/Ga/As(HT)/Si, As/Ga/As(LT)/Si and As/Ga/Si.

for

with that in bulk GaAs powder. This clearly indicates that the bond length fully relaxes to the

bulk equilibrium value, even for the first layer, when the As prelayer is grown at high

temperature. This is evidence for a three-dimensional growth mode with misfit dislocations at

boundaries, because the bond-length relaxation should be observed in a two-dimensional

growth under the tetragonal strain. The position and magnitude of the main peak for

As/Ga/As(LT)/Si and As/Ga/Si agree well with each other, indicating that the local structure of

the Ga atoms is essentially the same in two samples, i.e., the Ga atoms are bonded with Si

atoms rather than As atoms. This suggests that the As prelayer grown at low temperature is not

involved in the heterointerface. On Si(001) at high temperature, symmetric As dimers are formed giving rise to the (2 x

1) reconstruction [207]. Subsequent GaAs growth on As-terminated Si(001) would be

dominated by the electrostatic effect and tetragonal strain. The fact that no Ga-As bonds were

observed in the Fourier transform for As/Ga/As(LT)/Si and As/Ga/Si indicates that the Ga atoms are not bonded with As layers--not only in the prelayer but also in the overlayers. The

determined Ga-Si bond length (2.54/~) is unusually long, which is similar to that observed for

Ga adsorbed on a Si(111) surface [208]. As observed in the bond length, if the interaction

between the first Ga layer and Si is weak or the charge transfer as a result of polar covalent

bonding is small, the electrostatic effect would be small enough for a two-dimensional growth.

Thus the absence of chemical bonding between the Ga overlayer and substrate Si qualitatively

explains the subsequent growth mode, although it is not consistent with the fact that the As

prelayer grown at low temperature gives axis rotation by 90 ~ However, this picture can explain

why good crystal-quality is obtained when the As prelayer is grown at low temperature and the substrate should not be exposed to As4 beam at high temperature [209].

Page 289: Analytical Spectroscopy Library_VOL 7

280

For low temperature As prelayer growth, the observed local structures around Ga atoms

in As/Ga/As(LT)/Si and As/Ga/Si suggest that the As prelayer is on top of Ga atoms rather than

the interstitials. Since the Ga overlayers on Si(001) deposited at low temperature form (2 x 1)

reconstruction [210], the mechanism of axis rotation might be due to the reconstruction of the

top As layer as adsorbates. This growth mechanism is consistent with the fact that the Auger

electron intensity increases when the As prelayer is grown at low temperature [211] although

As atoms would occupy Si sites, according to the electrostatically-driven intermixing model

[203]. Secondly, the absence of Ga-As bonds in As/Ga/As(LT)/Si and As/Ga/Si suggests that

large structural disorder exists in the As overlayers. The results demonstrate that the growth

temperature of the As prelayer dominates the chemical bonding of the heterointerface. When the

As prelayer is deposited at low temperature, or no As prelayer is grown, only the weak Ga-Si

interaction, and no Ga-As bonds are observed. When the As prelayer is grown at high

temperature, the Ga-As bond length is fully relaxed, even for 1 ML GaAs overlayer. These

experimental results suggest that the As atoms are located on top of the Ga overlayers, if

deposited at low temperature, and that this rotates the axis of reconstruction by 90 ~ . Such

disordered Ga overlayers may not cause the electrostatic instability, achieving a subsequent

two-dimensional growth mode.

GeSi Superlattices

The role of the heterointerface in strained-layer superlattices (SLSs) with a very short

period attracts much attention towards understanding their unique optical properties which are

not explained by a zone-folding scheme and a simple SLS structure with an ideal interface and strain confinement. For example, the strong optical transition (0.80 eV) observed for Ge4Si4

SLS [212] has been interpreted as an indirect transition, from previous band calculations [213-

215] based on an ordered SLS structure with a sharp interface and strain confinement in the Ge

layers. However, the calculated oscillator strengths were weaker than the observed intensity,

by several orders of magnitude. This can be interpreted from two different viewpoints: there

might exist some enhancement factor for an indirect transition, or the transition might be direct,

if a realistic model is used. Structural studies using XAFS on Si/Gen/Si(001) (n < 12) heterostructures did indeed

indicate direct evidence for interface mixing [75]. Such a chemical disorder in the interface

would greatly affect the transition matrix, possibly enhancing the oscillator strength due to a

relaxed k-conservation rule. On the other hand, it is known that the distribution of strain affects

the lowest energy in the A-direction, which essentially determines the direct/indirect nature of

the transition. The energy levels for Ge4Si4 SLS grown on Si, GeSi and Ge substrates are

indicated in Fig. 4-56 [215]. The minimum energy of the conduction band in the A-direction

falls on going from Ge to Si substrates, as a result of compressive strain in the Ge layers. This

shows that GeSi SLSs on Si substrates would lead to an indirect transition, as predicted by

band calculations. A possible superlattice structure with a relaxed bulk-like Ge-Ge distance

Page 290: Analytical Spectroscopy Library_VOL 7

281

e -

W

Ge4Si4 substrate

/Xz r2,3

F Wave vector k

Fig.4-56. Schematic representations of energy levels for Ge4Si4 strained supeflattice with an

ideal Ge/Si interface : taken from ref. 213.

predicted a direct transition [216], although its structural basis has been ruled out by the recent

XAFS study [217]. The SLS consisting of the strained Ge layers and unstrained Si layers

would result in an indirect transition, whereas the reversed strain-distribution is expected to

result in a direct transition [215]. Recently, strong photoluminescence has been observed at low temperature for Ge4Si6 [218] and Ge5Si5 [219] SLSs grown on the GeSi alloys. These

experiments renewed interest and attempts to realize a direct transition, based on the idea of

strain-control by reducing bond-length mismatch, although the details of the microscopic

mechanism for a strong light emission are still unclear. GenSi SLSs were prepared on a well-oriented Si(001) surface by molecular beam

epitaxy (MBE) [220]. The oscillatory intensities of reflection high energy electron diffraction

(RHEED), taken from the [010] azimuth during growth, were used to control the number of Ge

layers: one period of oscillation corresponds to the growth of one monolayer. After the

deposition of the Ge layers, 20-22 MLs of Si were grown as a cap layer. In Fig. 4-57, the Fourier-filtered first-shell contribution of the Ge K-EXAFS oscillations are shown for GenSi

SLSs (Tg = 400~ n = 4, 8) together with the data for Ge0.05Si0.95, Ge0.5Si0.5 on Si(001)

and pure Ge. The observed systematic change of EXAFS profile indicates that the relative ratio

of the Ge-Ge pair to the Ge-Si pair increases with the increase in n. The number of Ge-Ge and

Ge-Si pairs around the Ge atom was determined by a least-squares curve fit of these data. If the

Ge-Si interface is ideally sharp, the average local Ge composition, x, defined as the fraction of

Ge-Ge bonds around each Ge atom, would be 0.75 and 0.88 for n = 4 and n = 8, respectively.

The EXAFS profile for Ge4Si indicates, however, that the Ge-Si bonds dominate for n = 4,

and the observed x is only --0.5 for n = 8. This gives evidence for Ge/Si interface mixing,

which would relax the k-conservation rule and consequently enhance the oscillator strength, so

explaining the strong intensity for the observed transition at 0.80 eV. Moreover, such disorder

would modify the electronic states, thus leading to a direct transition.

Page 291: Analytical Spectroscopy Library_VOL 7

282

A

I - -

z 22)

r r

F -

r o

I I I I I I

f~ Ge K-edge Si/Gen/Si (001)

L q ~ ~ / n : 8,Tg :400~

�9 Sio.5

I I I I I I

4 6 8 10 12 14 k (~-1)

Fig.4-57. Ge K-EXAFS oscillations of GenSi(001) (Tg =400~ n =4, 8) and those for

Ge0.05Si0.95/Si(001), Ge0.5Si0.5/Si(001) and pure Ge plotted as afunctionof

photoelectron momentum k : taken from ref. 217. The change of oscillation profile is

due to the difference in backscattering amplitude between Si and Ge.

Figure 4-58 shows the Fourier transform of the Ge K-EXAFS oscillations for the Ge4Si and Ge8Si SLSs (Tg = 400~ together with data for the Ge0.05Si0.95 and

Ge0.5Si0.5 alloys. The prominent peak at --1.8/~ consists of the nearest neighbor Ge and Si

atoms which are not resolved as separate peaks because of the limited range in k. The results indicate that the EXAFS oscillations for Ge4Si and Ge8Si SLSs are remarkably similar to those

for Ge0.05Si0.95 and Ge0.5Si0.5, respectively. The presence of the second- and third-nearest

neighbor peaks for Ge4Si shows that the SLSs for n < 4 have long-range order within --6/~.

The determined Ge-Ge distance in Ge4Si4, (2.42/~) is shorter than that in bulk Ge, (2.45/~),

indicating that the Ge-Ge distance is relaxed as a result of tetragonal strain. This result clearly

rules out a possible structure model proposed by Wong et al. [216], in which the Ge-Ge distance in bulk Ge is retained in the Ge4Si4 SLS.

Page 292: Analytical Spectroscopy Library_VOL 7

283

I - - .

r r "

.,_..... Q : :

i ,

I I I I I I I

Ge K - e d g e Si/Ge./Si(O01)

A- :5oo ~ Geo.5Sio.5

/~ Geo.05 Si0.95

n=4

f,# ['~

,,1 ~ ~ ~, ~/~ ~.~_~r~,~

t. I I I " "

0 2 4 6 8 RADIAL DISTANCE (A)

Fig.4-58. Magnitude of Fourier transform of the Ge K-EXAFS oscillations for Ge4Si and

Ge8Si on Si(001) grown at Tg = 400~ together with those for Ge0.05Si0.95 and

Ge0.5Si0.5 alloys on Si(001) �9 taken from ref. 217.

The local Ge/Si ratio around Ge atoms in GeSi SLSs is determined as a function of n

from the curve fit analysis. For GeSi SLSs grown at 400~ the Ge-Si site exchange amounts

to c a . 1 ML. The total Ge-Si interchange is almost independent of n, but is strongly related to Tg. The Ge-Ge pairs are only formed for n > 4. Figure 4-59 indicates a model structure for

Ge4Si4 SLS in which an ordered double-layer Ge0.5Si0.5 interface, similar to the reported

ordered GeSi alloy [221], is indicated although there is no evidence for an ordered interface so

far. The interatomic spacings in this figure are taken from the Ge-Ge and Ge-Si bond lengths.

In this model, --1/2 of the Ge sites are replaced with the nearest neighbor Si sites. The average

local Ge/Si ratio, --0.4 for the Ge4Si4 SLS with the smallest interface mixing (Tg = RT) is still

smaller than this model. This suggests that the Ge/Si interchange during the Si growth on Ge

overlayers, or surface segregation, is much larger than 1/2 ML. This gives rise to an

asymmetric Ge/Si interface which intervenes between the Ge and Si layers. Such a chemical

disorder is also associated with a structural disorder as a result of bond length mismatch

between the Ge-Ge and Ge-Si pairs. The important feature in the distorted Ge/Si interface is the

Page 293: Analytical Spectroscopy Library_VOL 7

284

Ge4 Si4

Ge---~.47 (4) "~_/ ~ I(+o.I 18)

{'~ Ge/Si-~.40 (8) x., .J~ St/Ge-~ +0"051)

Si ___~ .35 161

Fig.4-59. A schematic representation of the double layer Ge-Si interface �9 taken from ref. 217.

Half of the Ge atoms at the Ge/Si interface exchange their sites with the nearest-

neighbor Si atoms. The ordered double-layer Ge0.5Si0.5 interface is formed.

fact that there exist strain components other than a uniaxial compression. This would strongly

affect the selection rules of optical excitation so that weak indirect transitions can be enhanced

or, on the contrary, normally inhibited direct transitions are allowed. In conclusion, the origin

of the 0.80 eV transition may not involve the zone-folded states but can be ascribed to a

disorder-enhanced indirect transition or quantum confinement. It should be noted that a "band

picture" based on a long-range order might not be meaningful for a very short-period SLS. Figure 4-60 shows the Ge K near-edge spectra for GenSi(001) (n - 0 . 5 - 8 ) and

(SiGe)4/Si(001) grown at Tg = 400~ together with those for Ge0.5Si0.5 and Ge0.05Si0.95

alloys. Because of a dipole selection rule, near-edge spectra primarily reflect the p-like state

density of conduction bands. For GenSi(001) SLSs (Tg - 400~ a sharp peak is newly

observed ~4 eV above the conduction band edge which is not observed for samples with Tg -

RT and gradually smears out with increase in n. This suggests new electronic states are

formed on the strained Ge atoms which replace Si sites. Since the GeSi SLSs grown at room

temperature show typical near-edge features found for GeSi alloys, such as Ge0.sSi0.5, the

local Ge/Si ratio cannot explain the spectral change. This new feature could be related to an

ordered heterointerface as a result of preferential site exchange, or the nature of strain on the Ge

atoms.

Page 294: Analytical Spectroscopy Library_VOL 7

285

.,.-... O'3

Z E3

> - r n..." I.- t -n n,.,

o

u _

I I I I I I I I

Ge K-edge ~._.n~o~ Si/Gen/Si(001) ni 7 w-.n"

~ _ ~ Si/6en/Si 1001) . ~ i n=2

Si/lSiGe)4/Si 1001)

~ " " x Geo.05 Si0.95 on.

6eo.5Sio.5 on Si 1001)

I I I I I

11100 11120 11140 11160 ENER6Y leVi

Fig.4-60. Ge K-XANES spectra for Gen/Si ( n = 0.5, 2, 4, 6, 8) and (SiGe)4/Si. The growth

was made on Si(001) at Tg = 400~ Each sample has a c a . 20 ML Si cap layer for

protection of oxidation. For comparison, the data for Ge0.5Si0.5 and Ge0.05Si0.95

alloys are also shown" taken from ref. 217.

4.5 .6 . S u r f a c e s m G e o v e r l a y e r s on S i (001 )

A Si(001) surface shows reconstruction with a (2 x 1) ordered structure. The

formation of dimer stabilizes the unreconstructed Si(001) surface [222], reducing the number

of dangling bonds at the sacrifice of surface strain, which affects at least three sub-surface

layers by elastic distortion. The nature of surface strain [223] is intrinsically layer- and site-

selective.Such strains would open up specific pathways or channels which preferentially

migrate atoms so that the rearrangement reduces the strains [224]. Secondly, the surface

reconstruction with the presence of additional strain due to bond length mismatch or the atomic-

size effect is an interesting problem itself. In the present study, we focus on the structure of Ge

overlayers on Si(001) in relation to the number of Ge layers. Here, we show that the Ge

overlayer structure is strongly connected with layer- and site-specific surface strains having

various origins. As the XAFS technique can provide the atom-selective local structure, the

observed bond lengths can be a good measure of strain on a probed species of atom. By tuning

Page 295: Analytical Spectroscopy Library_VOL 7

286

the photon energy to the Ge K-absorption edge, XAFS can probe the bond lengths and

coordination number for the Ge-Ge and Ge-Si pairs around the Ge atoms [75,225]. The strains

in the Ge overlayer and the interface Si atoms are directly estimated from the observed bond

lengths. It is found that the Ge overlayers show a unique surface rearrangement depending on

the number of Ge layers. This indicates that the surface strains arising from different origins,

i.e., surface reconstruction [222,226] and the atomic-size effect [223], greatly affect the surface rearrangement. Here, we use the word "rearrangement" in contrast to "reconstruction",

meaning that an interchange of an atom is involved.

The structure of Ge epitaxial overlayers on Si(001) has been studied by the surface- sensitive XAFS technique, in situ, after the growth by molecular beam epitaxy (MBE). Gen

overlayers (n < 7) were prepared on a well-oriented undoped Si(001) surface at 400~ and the

XAFS spectra were measured as a fluorescence yield for each sample immediately after the

growth. The Ge K-EXAFS spectra for Ge overlayers on Si(001) have been obtained by

detecting the fluorescence signal, using the 27-pole wiggler-magnet radiation described in

I I I I I I I I I I

Ge K- edge

v

X

�9 ~

N*= 1.T5Ge + 2Si

" N*=3.13Ge + 075Si

6 8 10 1 1 k (~-~)

Fig.4-61. Fourier-filtered first-shell Ge K-EXAFS oscillations for the Ge overlayers on

Si(001) (solid line) together with the calculated curves for model structures (ref.

221). N* indicates the effective coordination of Ge atoms, taking the polarization

factor into account. The first-shell EXAFS oscillations were generated for various

model structures, and best fit was obtained for 1 ML and 2 ML Ge overlayers,

assuming Ge-Si site exchange of 20% and 50%, respectively.

Page 296: Analytical Spectroscopy Library_VOL 7

287

Section 4.3.3. Surface-sensitivity of the order of ~0.1 ML is obtained by combining a grazing

incidence geometry with an energy analysis of the fluorescence spectrum [77]. In Fig. 4-61, the Fourier-filtered Ge K-EXAFS oscillations are shown for Gen/Si(001) (n = 1-3). Since the

backscattering amplitude I~(k,~)l for Si and Ge atoms are quite different, the ratio of the Ge-Ge

pair to the Ge-Si pair (NGe/NSi) is determined from the k-dependence of the EXAFS profile.

The NGe/NSi value increases with increase in the number of the Ge layer, n. The number of

Ge-Ge and Ge-Si pairs, as well as the bond lengths, were determined by a least-squares curve-

fit analysis for various structure models, taking the polarization factor into account. The total

phase shift for the Ge-Ge and Ge-Si pairs were determined experimentally from the data for crystalline Ge powder and Ge0.05Si0.95 grown on Si(001) by MBE, while theoretical

amplitude functions by curved wave calculations [34] were normalized to fit the experimental

data for Ge and GeSi alloys. The fitting procedure was repeated to obtain model-independent

bond lengths and mean square relative displacement.

Figure 4-62 compares the dimer geometry for 1 ML Ge on Si(001) with Si[227] and

As[228], where the inset arrows and values indicate the directions and magnitude of atom

displacement as a result of surface reconstruction. The results of curve-fit analysis indicate that

the 1 ML Ge on Si(001) forms an elongated dimer structure with the average adatom-adatom distance (Ra) of 2.51 + 0.01 A and the adatom-substrate distance (Rs) of 2.40 + 0.01 /~,

respectively. Interestingly, the observed Ra is much longer than the reported value (2.46/~) for

Si dimer on S i ~ - ~ , Si(OOl) C~,o--~ ~ sps

Si- ~ dayaram el el.

on G e ~ Ge dimer sePx Pl Si(O0') C~o-~ ~ ~ Si- ~ Oyanagi el al.

As ~c-,~__~ As dimer on(~_~ .~..~'~:, sep3 Si (001)

si KrOcjer el ol.

Fig.4-62. Schematic representations of dimer structures on Si(001) (ref. 224). The value for 1

ML Ge is determined experimentally in this work. The Si-Si distance is taken from

experiments in ref. 227, and the As-As value is obtained by the energy minimization

by Kruger etal. (ref. 228). For Si(001), the asymmetric dimer geometry is

observed, whereas for As dimers on Si(001), the symmetric configuration is

predicted from a total energy calculation.

Page 297: Analytical Spectroscopy Library_VOL 7

288

(2 x 1) Ge(001) by surface X-ray diffraction [229] or the interatomic distance in bulk (R0,

2.45/~), despite the uniaxial strain due to lattice mismatch, which would shorten the bond

length within a simple elastic-deformation model. Here, we define the relative relaxation factor,

r as Ra/RO and Aa as a-1. For GeSi SLSs on Si(001), the Ge-Ge distance is 2.42/~ (Aa =

- 0.012), which is almost independent of the choice of superlattice period if the epilayer is

coherently grown [217]. Although Aa usually takes negative values for epitaxial layers under

uniaxial compressive strain, Aa for a 1 ML Ge overlayer is positive (0.025). This unusual

expansion of atomic size is not observed for pure semiconductor surfaces.

According to the total energy calculation for (2 x 1) Si(001) [228], the adatom-adatom

bond length is 2.25/~ (Act = - 0.043). It is well known that the partially ionic bonding

character or charge transfer between adatoms opens up a semiconductor gap in the surface band

[222]. The lower Si atom of an asymmetric dimer takes an sp2-1ike geometry while the upper

Si atom is in an s2p3-1ike geometry. Recent XAFS experiments using photoemission yield for

(2 x 1) Si(001) reported that Ao~ increases from -0.064 to 0.04 upon surface doping by 1 ML

Na adsorption [230]. This indicates that an electron transfer to a dimer increases the adatom-

adatom distance as a result of repulsive lone pair interaction for s2p 3 bonds. From inspection

of Ra values, such an intra-dimer charge transfer between adatoms through the formation of an

asymmetric dimer, is unlikely for 1 ML Ge on Si(001) although asymmetric dimers have been reported for the (2 x 1) Ge(001) surface [231,232].

The local structure of 1 ML Ge on Si(001) is quite similar to that of As dimers on

Si(001). Their common features are an elongated adatom-adatom bond and an s2p3-like

bonding geometry. For a p3 configuration, adatom-adatom bonds tend to elongate in order to achieve orthogonal bond angles which are favorable for p-orbital overlapping. Secondly, a

repulsive Coulomb interaction between lone pairs also favors the elongated dimer geometry. In

the case of Ge on Si, elongated adatom-adatom bonds are favorable in terms of surface strain

because of the atomic-size effect. If the adatom bond angles were distorted beyond a certain

limit, to match the interatomic spacing of substrate as a result of coherent growth, the total

energy would sharply increase as a result of repulsive interaction between the adjacent bond

charges. It should be noted that the mismatch between adatom and substrate is much larger than

a common value deduced from the lattice constants of pure elements (4%). Partly assisted by

the fact that the sp mixing decreases on going from Si to Ge, as a chemical trend, this enhanced

mismatch is likely to induce a charge transfer between substrate and adatom which would

stabilize the structure by relieving strain.

The observed RGeGe and RGeSi values for 1 ML Ge deviate significantly from the

sum of covalent radii, which means that the mismatch strain effectively increases its magnitude.

This gives rise to an important feature; the mismatch strain amounts to more than 10 % for 1

ML Ge, which is much larger than the conventional lattice mismatch (4 %). Such a large

mismatch strain works to sharply increase the elastic strain in the second layer when another Ge

layer is deposited on 1 ML Ge. Careful examination of the Ge K-EXAFS profile for 2 ML Ge

did indeed indicate Ge/Si exchange [224]. The curve-fit analysis based on several model

Page 298: Analytical Spectroscopy Library_VOL 7

289

structures, assuming various exchange sites, indicated that-1/2 of the second-layer Ge atoms

are replaced with Si atoms in the third layer. To the author's knowledge, this is the first direct

observation of Ge/Si site exchange in Ge overlayers on Si(001). Kelires and Tersoff have

shown that the composition of GeSi alloys at a reconstructed Si(001) surface varies in an

oscillatory way as a result of surface stress [233].

Calculated EXAFS oscillations for various model structures were fitted to the

experimental data for 2 ML Ge, taking the polarization factor into account. Starting from a

simple model where 1/2 of Si atoms in the third layer exchange their sites with the Ge atoms in

the second layer, various exchange schemes between the second layer and the third layer were tested for the same amount of interchange, 1/2 ML. The N*Ge/N*si value is sensitive to the

choice of exchanged sites and the degree of exchange, where N* expresses the effective

coordination number, taking a polarization factor into account as expressed by Eqn. (4-23).

One of the candidate model structures consistent with the experiment is shown in Fig. 4-63

together with the structure for 1 ML Ge. The value of N*Ge/N*si for this model (1.1) agrees

well with the experimental value (1.14 + 0.2). Although the model cannot be uniquely

determined and no evidence has been obtained for the presence of ordering, this model

structure provide some insights on the mechanism of site exchange, as will be discussed.

For a (2 x 1) (001) surface, the second-layer sites and 1/2 of the third layer sites are

compressed by surface reconstruction while 1/2 of the third-layer sites has a tensile stress. For

1 ML Ge, the surface stresses due to dimer bonds and mismatch have the opposite signs in the

1ML Ge on Si(O01)

Ge dimer i

N*,-, 1.5Ge + 2Si

2ML Ge

N*'-' 1.75Ge + 2Si

Fig.4-63. Model structures for Ge overlayers on Si(001). : taken from ref. 224.

Page 299: Analytical Spectroscopy Library_VOL 7

290

first two layers canceling one another. For 2 ML Ge, however, the compressive stress at the

second layer sites sharply increases because of the surface reconstruction and atomic size

effects which have the same stress components. The second layer sites are therefore

unfavorable for elements with larger atomic size than Si, such as Ge. According to Tersoff

[226], the total energy per added Ge atom does indeed increase at n = 2 if the surface stress is

large enough. Interchange through special channels connecting these sites would stabilize the

structure, relieving the interface strain. Ordered interchanges through these channels would

further lower the elastic strain along a dimer row by a similar mechanism, with a missing dimer

[234].

The idea of strain-induced site exchange can be applied to a surface segregation problem

[235-237]. Upon the growth of 1 ML Si onto the Ge layers (n > 2), the Ge atoms in the

second layer under surface stress would interchange with Si atoms in the first layer through

special channels discussed above. Enhanced migration through these channels can be a driving

force for the surface segregation of Ge atoms associated with a subsequent growth of Si.

Surfactant atoms such as Bi and Sb inhibit the interface mixing, and are often related to the

suppression of diffusion length in the growth plane [237]. However, surfactants can also

inhibit the strain-induced migration channels since they can remove the stress due to surface

reconstruction, and the larger atoms do not need to occupy the unstable sites under compressive

strain. It is likely that surface strain is a dominant driving force of atomic migration during the

epitaxial growth.

4.6. FUTURE PROSPECTS

4.6.1. Third generation storage rings

In this section, some future prospects of XAFS research using high-brilliance photon

sources are described. The third-generation storage rings, such as ESRF, APS and SPring-8,

are planned to provide high-brilliance photons over a wide range in energy. At such facilities

with ultra-low (<10 nm rad) emittance, undulator radiation would be routinely used in a hard

X-ray region as a well-collimated, quasi-monochromatic, coherent light source. The feasibility

of the undulator as a circulaly polarized light source for magnetic XAFS experiments has been

discussed [238]. Let us focus our attention on the potential of the undulator as a high-brilliance

photon source, from the viewpoint a structural probe. A "tunable" X-ray undulator is a

promising insertion device which is designed to cover a hard X-ray region (4-30 keV) using

the fundamental and the third-higher harmonic radiation by varying a gap. The use of the

undulator in XAFS researches would dramatically improve sensitivity and resolutions in time,

space and energy. Because of the small source size and high degree of collimation, undulator

radiation is ideal for a beamline with high spatial and energy resolutions. For studies of dilute

systems using a fluorescence detection technique, the angle between the incident beam and a

sample should be as small as possible because of the geometrical factor in the fluorescence

Page 300: Analytical Spectroscopy Library_VOL 7

291

yield as discussed in Section 4.3. Moreover, in surface-sensitive geometries, such as a grazing

incidence [73] or grazing exit [239], a well collimated beam is required. In biological studies, high-brilliance photons would increase a sample-damage [240].

High-power insertion devices have the disadvantage of inducing serious heat-load

problems, which degrade not only the throughput but also the quality of beam, such as an

energy resolution. A high-power density (> 100 W/mm 2) gives rise to a serious heat problem

for optical elements [241,242]. A clear advantage of a high-brilliance beam for studies of dilute

systems is its capability of sensitive and rapid XAFS measurements. The feasibility of a

variable gap/band-width undulator and new fast- scanning techniques for applications in time-

resolved studies will be described in the following subsections. For a fluorescence yield above

a dilute limit, the increase in the incident-beam flux and detector solid angle 12 would further

reduce a volume-fraction, time-fraction and concentration. The ultra-low-emittance storage ring

is also favorable for compatibility with contradictory limitations to achieve high resolutions in space and energy.

4.6.2. Tunable X-ray undulator

Figure 4-64 shows the calculated brilliance for an X-ray undulator designed for SPring-

8 [243]. One can shift the energy of the fundamental and harmonics radiation, as indicated by

the envelope-functions (dashed line), by varying the undulator gap. The hard X-ray region (4-

30 keV) where the K and L-edges of all elements heavier than Ca (Z = 20) are included, can be

1 0 2 0

x5 18 ~ t0 - , , , - . :

0 - ~ 16 ~ 10 -

r ~ -

�9 - ~ --1n14 _

m ~ -

1012_ e--.

ca- lO

10 3

i i i i i i i i i

Si(lll) st Si12201 - - - . . . .

I I I i I i [ I I I

10 4

Photon Energy [eV] 10 5

Fig.4-64. Calculated brilliance for tunable X-ray undulator for SPring-8 �9 taken from ref. 243.

Page 301: Analytical Spectroscopy Library_VOL 7

292

covered by combining Si(111) and Si(220) crystals and switching from the fundamental and

third-higher harmonic radiations. Note that the energy for exchanging the Si crystal coincides

with the switching-point from the fundamental to higher-harmonic radiation. Thus, this broad

energy range is practically split into two regions from the viewpoints of both the light source and monochromator. In general, tunability in XAFS experiments can be treated in two categories: spectroscopic tuning (AE < 1 keV) and edge-to-edge tuning (1 keV < AE < 26

keV). The former tuning is routinely used to scan a spectral energy range ~-1 keV, while the

latter tuning is necessary when one wishes to move the monochromator in order to change the

absorption edge. Ideally, the undulator gap should be varied so that the fundamental peak coincides with the energy of the monochromator. Alternatively, if a band-width of undulator

radiation is wide enough to cover a spectroscopic energy range, the undulator gap can be varied only when one wishes to change the absorption edge.

In Fig. 4-65, the concepts of various quick scanning techniques are shown schematically. The first approach is a combination of full independent tuning and in-phase

I Ky = 2.5 ii ii =~.-----Non-tapered iI I I, ~Tapered ,/ A r,y :o.5

Undulator / / i / / spectram

~ ~ Edge-to-edge tuni~ , ~ / ] / "-~AE"I keY / I K . . . . . . . . jr", , . . _

I.-.~AE .,.1 keV ~ - - E Monochrorhator i l acceptance I | Spectroscopic

~E-,-2eV_~L_ ~ tumng JiUi~ IQ scon']J

Polychromotor I ' - - (bent crystal)

Movoble slit - ---- , . -~ ~ - - - - - S o m p l e

Fluorescence / \ detector I// '\ I I Q scan]TJ

, ,

----E

Fig.4-65. Schematic diagram for novel quick scanning techniques using a variable gap/band

width undulator �9 taken from ref. 78.

Page 302: Analytical Spectroscopy Library_VOL 7

293

scanning of the monochromator. The undulator gap should be varied, in the worst case, to

cover about 26 keV, while a spectroscopic tuning requires only 1 keV variation. As shown in

Figure 4-65, for quick scanning of the monochromator, a tapered undulator with a broader

distribution of the fundamental peak can be used alternatively in a partial independent tuning

mode, sacrificing the brilliance. In this case, the undulator gap is fixed during a scan. The

concept of quick scanning and use of a tapered undulator is called Q-scan I. In order to

optimize the undulator band width, a new undulator having variable band width capability and

tunability of gap is proposed (a variable gap/band-width undulator) [78].

4.6.3. Time-resolved studies in dilute system

For rapid measurements, one can use the energy-dispersive geometry in order to fully

utilize the polychromatic beam in a transmission mode. In an energy-dispersive geometry

[ 14,67,68], a cylindrically-bent crystal irradiated with quasi-parallel white X-ray beam reflects

X-rays which are focused at the sample so that the transmission spectra are recorded as a

function of the position behind the focus. At present, a typical time-resolution in the order of

100 msec is obtained for concentrated samples. The feasibility of time-resolved experiments

using energy-dispersive geometry in a transmission mode, using a highly brilliant beam, is

discussed elsewhere [244]. For concentrated samples, an ultimate time-resolution in the order

of msec is expected. The intrinsic problem in energy-dispersive XAFS is that it cannot be

applied to dilute systems, since the fluorescence-detection technique requires a point-by-point

data collection. In order to solve this problem, a new technique called Q-scan II was proposed.

In this approach, a narrow slit, which limits the energy spread, oscillates on a linear motor

drive. The fluorescence signal from a dilute sample is collected by a high-density multi-element

solid state detector, as a function of the linear position of the oscillating slit. Time-resolved

XAFS spectra are obtained for dilute systems by sequential data collection, while the time- resolution can be varied by changing the frequency of slit oscillation. The intensity-variation for

the incident beam, for normalizing fluorescence yield spectra, can be measured simultaneously

by an ionization chamber in front of the sample.

4.6.4. Microprobe XAFS with high energy resolution

Resolution in space and energy is strongly related to the angular divergence of the

incident beam. The present storage tings have a large acceptance-mismatch between the incident

beam and optical elements, in both the vertical and horizontal directions. A vertical mismatch

for the monochromator degrades the throughput, and a high energy-resolution spectrometer

sacrifices intensity. A horizontal mismatch between the divergence and acceptance functions of

the focusing optics degrades the throughput and the focus size. Undulator radiation allows us to

use a four crystal monochromator and microprobe optics, without serious intensity-loss. Figure

4-66 shows an example of X-ray optics designed to achieve high resolutions in space and

energy. The proposed beamline design consists of two branches; a high flux medium-focus

Page 303: Analytical Spectroscopy Library_VOL 7

294

branch or for high-energy/space-resolution branch. An eniptically-bent mirror is placed in front

of the monochromator in order to increase vertical collimation. The main feature of the

proposed beamline is a fixed exit (2 + 2) crystal monochromator. This monochromator can be

operated in either the four-crystal mode or double-crystal mode for the high-flux medium focus

branch and a high-energy/space-resolution branch, respectively. The upper beam is focused by

an ellipsoidal mirror while the lower beam is focused by crossed elliptical mirrors. Two sets of

Si(111) and Si(220) crystals are mounted on each axis and can slide to accept the fundamental-

and third-higher-harmonic undulator radiations, respectively. Thus, by switching from one

crystal to the other without breaking the vacuum, the full energy range (4-30 keV) can be

covered. For a high-flux medium-focus branch, a typical focus size less than 6 x 3 microns is

achievable. For micro-probe XAFS in a fluorescence mode, a ring-shaped multi-element solid

state detector can be used to accept the fluorescence signal over a large solid angle around a

point [77].

Fig.4-66. Schematic diagram of the X-ray optics for microprobe with a high energy resolution,

or a high-flux XAFS experiment : taken from ref. 78.

4.6.5. Concluding remarks

It is hard to predict the future prospects of XAFS research since this field is still

developing rapidly. However, the evolution of XAFS associated with the advances in the light

source gives us a hint. The use of the quasi-monochromatic well-collimated beam available

from an ultra-low-emittance storage ring will improve experimental limits and open up new

fields of XAFS research. A "tunable" X-ray undulator provides a highly collimated quasi-

monochromatic beam with controllable polarization characteristics. Undulator radiation can

enhance the sensitivity and resolutions in space, time and energy which would change the

present XAFS measurement quantitatively. A well-collimated beam from an undulator can be

used for high energy resolution XAFS spectroscopy. Mapping of not only the distribution but

also the chemical states would be practiced using a microprobe XAFS beamline. Because of the

acceptance-mismatch between the optical elements and the angular divergence, resolutions in

space and energy have been incompatible. The variable-gap/band-width undulator can provide a

highly brilliant X-ray beam in a hard X-ray region, using the fundamental and third higher

Page 304: Analytical Spectroscopy Library_VOL 7

295

harmonics. The variable band-width can optimize the spectral width of quasi-monochromatic undulator radiation which is essential for partial independent tuning. The author certainly wishes that these experimental developments will lead to the third generation XAFS research in

which progresses in theories and analytical methods of XAFS would be accelerated as well.

ACKNOWLEDGMENTS

The preparation of this chapter was made possible by the cooperation of many

colleagues and friends. The author would like to express his sincere thanks to the following

collaborators: T. Matsushita, T. Iizuka, M. Okuno, H. Hashimoto, Y. Kuwahara, H.

Yamaguchi, H. Kimura, K. Haga and R. Shioda. He thanks T. Sakamoto, K. Sakamoto, Y.

Yokoyama, H. Ihara, K. Oka, H. Unoki, H. Kawanami, T. Terashima and Y. Bando for

sample preparation. He also appreciates valuable discussions with A. Bianconi, B. Chance and

J. Goulon and encouragement by T. Ishiguro, D. Sayers, E. Stem, T. Sasaki and K. Kohra.

REFERENCES

1. R. de L. Kronig, Z. Phys., 75, 468 (1932).

2. H. Petersen, Z. Phys., 80, 258 (1933).

3. D.R. Hartree, R. de L. Kronig and H. Petersen, Physica (Amsterdam), 1, 895 (1934). 4. L.V. Azaroff, Rev. Mod. Phys., 35, 1012 (1963).

5. H. Winick and S. Doniach, (Editors), "Synchrotron Radiation Research", Plenum, New York, 1980.

6. E.A. Stem, Phys. Rev., B 10, 3027 (1974). 7. D. E. Sayers, E.A. Stem and F.W. Lytle, Phys. Rev. Lett., 27, 1204 (1971).

8. P.A. Lee, P.H. Citrin, P. Eisenberger and B.M. Kincaid, Rev. Mod. Phys., 53, 769 (1981).

9. T. M. Hayes and J. Boyce, "Solid State Physics", Academic Press, New York, 1982, p.173.

10. H. Oyanagi, "Synchrotron Radiation in the Biosciences", Oxford University Press, Oxford, 1994, p. 252.

11. M. Okuno, C.D. Yin, H. Morikawa, F. Marumo and H. Oyanagi, J. Non-Cryst. Solids, 87, 312 (1986).

12. W. L. Bragg and G.F. Claringbull, "Crystal Structure of Minerals," Comell Univ. Press, Ithaca, NY, 1965, ch. 6.

13. H. Oyanagi, T. Matsushita, M. Ito and H. Kuroda, KEK (Natl. Lab. High Energy Phys.) Report, 83-30, (1984).

14. T. Matsushita and P. Phizackerley, Jpn. J. Appl. Phys., 20, 2223 (1981). 15. H. Kitamura, Jpn. J. Appl. Phys., 19, L185 (1980).

Page 305: Analytical Spectroscopy Library_VOL 7

296

16. S. Yamamoto and H. Kitamura, Jpn. J. Appl. Phys., 26, L613 (1987).

17. J. M. J. Madey, J. Appl. Phys., 42, 1906 (1971) ; J. Goulon, P. Elleaume and D. Raoux,

Nucl. Instrum. Methods, A 254, 192(1987) ; H. Onuki, Nucl. Instrum. Methods, A 246,

94 (1986) ; H.A. Leupold and A. B. C. Morcos, Proc. SPIE - Int. Soc. Opt. Eng., 587,

100 (1986). 18. C.A. Ashley and S. Doniach, Phys. Rev., B 11, 1279 (1975). 19. P.A. Lee and J.B. Pendry, Phys. Rev., B 11, 2795 (1975).

20. W. Schaich, Phys. Rev., B 8, 4078 (1973).

21. J. St6hr and R. Jaeger, Phys. Rev., B 26, 4111 (1982). 22. J. Jaklevic, J.A. Kirby, M.P. Klein, A.S. Robertson, G.S. Brown and P. Eisenberger,

Solid State Commun., 23, 679 (1977). 23. A. Bianconi, M. Campagna and S. Stizza, Phys. Rev., B 25, 2479 (1982).

24. F. Sette and J. St6hr, "EXAFS and Near Edge Structure III", Springer, Berlin, 1984, p.

250. 25. R. de L. Kronig, Z. Phys., 70, 317 (1931); 75, 191 (1932). 26. P. Eisenberger, R.G. Shulman, B.M. Kincaid, G.S. Brown and S. Ogawa, Nature

(London), 274, 30 (1978). 27. S. P. Cramer and K.O. Hodgson, in S.J. Lippard (Editor), " Progress in Inorganic

Chemistry" Vol. 25, Wiley, New York, 1979, p. 1. 28. F.W. Lytle, in J.A. Prins (Editor), "Physics of Non-Crystalline Solids", North-Holland,

Amsterdam, 1965, p. 12. 29. C. Lapeyre, J. Petiau, G. Calas, F. Gautier and J. Gombert, Bull. Mineral., 11)6, 77

(1983). 30. J.J. Rehr, R.C. Albers, C.R. Natoli and E.A. Stem, Phys. Rev., B 34, 4350 (1986).

31. S.J. Gurman, N. Binsted and I. Ross, J. Phys. C 17, 143 (1984). 32. A. Bianconi, D. Jackson and K. Monahan, Phys. Rev., B 17, 2021 (1978); J. Goulon,

C. Goulon-Ginet, R. Cortes and J.M. Dubois, J. Phys. (Paris), 43, 539 (1982); J. Goulon, P. Tola, M. Lemonnier and J. Dexpert-Ghys, Chem. Phys., 78, 347 (1983);

R.F. Pettifer and A.J. Bourdillon, J. Phys., C 20, 329 (1987). 33. B.K. Teo and P.A. Lee, J. Am. Chem. Soc., 101, 2815 (1979). 34. A.G. McKale, B.W. Veal, A.P. Paulikas, S.K. Chan and G.S. Knapp, J. Am. Chem.

Soc., 110, 3763 (1988). 35. J.J. Rehr and R.C. Albers, Phys. Rev., B 41, 8139 (1990).

36. S.J. Gurman, J. Phys., C 21, 3699 (1988).

37. G. Bunker and E.A. Stem, Phys. Rev. Lett., 52 1990 (1984). 38. B.K. Teo, in A. Bianconi, L. Incoccia and S. Stipcich (Editors), "EXAFS and Near Edge

Structure", Springer, Berlin, 1983, p.11. 39. G. Beni and P.M. Platzman, Phys. Rev., B 14, 1514 (1976).

40. E. Sevillano and H. Meuth, Phys. Rev., B 20, 4980 (1979).

41. P.P. Lottici and J.J. Rehr, Solid State Commun., 35, 565 (1980).

42. P. Eisenberger and G.S. Brown, Solid State Commun., 29, 481 (1979).

Page 306: Analytical Spectroscopy Library_VOL 7

297

43. 44. 45. 46.

47. 48.

49.

50.

51.

52. 53.

54.

55.

56.

57.

58. 59. 60.

61. 62.

63.

D. Lu and J.J. Rehr, Phys. Rev., B 37, 6126 (1988). E.A. Stern, B.A. Bunker and S.M. Heald, Phys. Rev., B 21, 5521 (1980). T.A. Carlson, "Photoelectron and Auger Spectroscopy", Plenum, New York, 1975. J.J. Rehr, E.A. Stern, R.L. Martin and E.R. Davidson, Phys. Rev., B 17, 560 (1978).

L. Hedin, Physica B (Amsterdam), 158, 344 (1989). T. Fujikawa and L. Hedin, Phys. Rev., B 40, 11507 (1989).

J.E. Muller and W.L. Schaich, Phys. Rev., B 27, 6489 (1983). M. Pompa, C. Li, A. Bianconi, A. Congiu Castellano, S. Della Longa, A. M. Flank, P. Lagarde, D. Udron, Physica C (Amsterdam), 51, 184 (1991); T. Fujikawa, T. Matsuura and H. Kuroda, J. Phys. Soc. Jpn., 52, 905 (1983); P.J. Durham, J.B. Pendry and C.H.

Hodges, Computer Phys. Commun., 25, 193 (1982). E. Mehreteab and J.D. Dow, Solid State Commun., 43, 837 (1982). L.G. Parratt, Rev. Mod. Phys., 31, 616 (1959). C.R. Natoli, D.K. Misemer, S. Doniach and F.W. Kutzler, Phys. Rev., A 22, 1104 (1980). H. Oyanagi, K. Oka, H. Unoki, Y. Nishihara, K. Murata, H. Yamaguchi, T. Matsushita, M. Tokumoto and Y. Kimura, J. Phys. Soc. Jpn., 58, 2896 (1989). C.R. Natoli, in A. Bianconi, L. Incoccia and S. Stipcich (Editors), "EXAFS and Near Edge Structure" Springer, Berlin, 1983, p.43.

M. Lemonnier, O. Collet, C. Depautex, J.M. Esteva and D. Raoux, Nucl. Instrum. Methods, 152, 109 (1978); J.A. Golovchenko, R.A. Levesque and P.L. Cowan, Rev. Sci. Instrum., 52, 509 (1981); P.L. Cowan, J.B. Hastings, T. Jach and J.P. Kirkland, Nucl. Instrum. Methods, 208, 349 (1983); D.M. Mills and M.T. King, Nucl. Instrum. Methods, 208, 341 (1983); D.M. Mills, Nucl. Instrum. Methods, 208, 355 (1983); J.

Goulon, M. Lemmonier, R. Cortes, A. Retoumard and D. Raoux, Nucl. Instrum. Methods, 208, 625 (1983); P. Spieker, M. Ando and N. Kamiya, Nucl. Instrum. Methods, 208, 196 (1984).

T. Matsushita, T. Ishikawa and H. Oyanagi, Nucl. Instrum. Methods, A 246, 377 (1986).

H. Oyanagi, R. Shioda and K. Haga, in preparation. S.M. Heald and E.A. Stern, Phys. Rev., B 16, 5549 (1977). M. Sato, T. Iizuka, M. Shiro, Y. Kuwahara, H. Yamaguchi and H. Oyanagi, J. Jpn. Soc. of Synchrotron Radiation 4, 151 (1991) (in Japanese).

E.A. Stern and S.M. Heald, Rev. Sci. Instrum., 50, 1597 (1979). F.W. Lytle, R.B. Greeger, D.R. Sandstrom, E.C. Marques, J. Wong, C.L. Spiro, G.P. Hoffman and F.E. Huggins, Nucl. Instrum. Methods, 226, 542 (1984).

S.P. Cramer and R. Scott, Rev. Sci. Instrum., 52, 395 (1981) ; B. Chance, W. Pennie,

M. Carman, V. Legallais and L. Powers, Anal. Biochem., 124, 248 (1982); H. Oyanagi, T. Matsushita, H. Tanoue, T. Ishiguro and K. Kohra, Jpn. J. Appl. Phys., 24, 610 (1985).

Page 307: Analytical Spectroscopy Library_VOL 7

298

64.

65. 66.

67. 68.

69.

70.

71.

72.

73. 74. 75.

76. 77.

78. 79. 80.

81. 82.

83. 84.

85.

86. 87.

88. 89.

90.

S.P. Cramer, O. Tench, M. Yocum, G.N. George, Nucl. Instrum. Methods, A 266, 586 (1988); H. Oyanagi, M. Saito and M. Martini, in preparation. G.S. Waldo and J. Penner-Hahn, personal communication. L. Troger, D. Arvanitis, K. Baberschke, H. Michaelis, U. Grimm and E. Zscech, Phys. Rev., B 46, 3283 (1992).

U. Kaminaga, T. Matsushita and K. Kohra, Jpn. J. Appl. Phys., 20, 355 (1981). R.P. Phizackerley, Z.U. Rek, G.B. Stephenson, S.D. Conradson, K.O. Hodgson, T. Matsushita and H. Oyanagi, J. Appl. Cryst., 16, 220 (1983). E. Dartyge, C. Depautex, J.M. Dubuisson, A. Fontaine, A. Jucha, P. Leboucher, G. Tourillon, Nucl. lnstrum. Methods, A 246, 452 (1986).

N.M. Allinson, G. Baker, G.N. Greaves and J.K. Nicoll, Nucl. Instrum. Methods, A 266, 592 (1988).

H. Oyanagi, T. Matsushita, U. Kaminaga and H. Hashimoto, J. Phys. Colloq., 8, 139 (1986).

T. Matsushita, H. Oyanagi, S. Saigo, U. Kaminaga, H. Hashimoto, H. Kihara, N. Yoshida and M. Fujimoto, Jpn. J. Appl. Phys., 25, L523 (1986). S.M. Heald, E. Keller and E.A. Stem, Phys. Lett., A 103, 155 (1984). R.S. Becker, J. A. Golvchenko and J.R. Patel, Phys. Rev. Lett., 50, 153 (1983). H. Oyanagi, T. Sakamoto, K. Sakamoto, T. Matsushita,T. Yao and T. Ishiguro, J. Phys. Soc. Jpn., 57, 2086 (1988). H. Oyanagi, Appl. Surf. Sci., 60/61, 522 (1992). S. Sasaki, S. Yamamoto, T. Shioya and H. Kitamura, Rev. Sci. Instrum., 60, 1859

(1989). H. Oyanagi, Jpn. J. Appl. Phys., 32, Suppl. 32-2, 861 (1993). R. Frahm, Rev. Sci. Instrum., 60, 2515 (1989). T. Oversluizen, T. Matsushita, T. Ishikawa, P.M. Stefan, S. Sharma and A. Mikuni, Rev. Sci. Instrum., 60, 1493 (1989). H. Oyanagi, Proc. SPIE-Int. Soc. Opt. Eng., 1741), (1992). C.J. Sparks, G.E. Ice, J. Wong and B.W. Batterman, Nucl. Instrum. Methods, A 266, 457 (1988). S. M. Heald and D.E. Sayers, Rev. Sci. Instrum., 60, 1932 (1989).

R. Shioda, H. Oyanagi, Y. Kuwahara, Y. Takeda, K. Haga and H. Kamei, Jpn. J. Appl. Phys., in press.

J.A. Victoreen, J. Appl. Phys., 19, 855 (1948). P.H. Citrin, P. Eisenberger and S.M. Heald, Phys. Rev., B 21, 5521 (1980).

P. Eisenberger and B. Lengeler, Phys. Rev., B 22, 3551 (1980).

G. Bunker, Nucl. Instrum. Methods, 207, 437 (1983).

A.I. Frenkel and J.J. Rehr, Phys. Rev., B 48, 585 (1993-I). H. Shirakawa, E.J. Louis, A.G. MacDiarmid, C.K. Chaing and A.J. Heeger, J. Chem. Soc., Chem. Commun., 578 (1977).

Page 308: Analytical Spectroscopy Library_VOL 7

299

91. P.J. Nigrey, A.G. MacDiarmid and A.J. Heeger, J. Chem. Soc., Chem. Commun., 594

(1979). 92. C.K. Chiang, Y.W. Park, A.J. Heeger, H. Shirakawa, E.J. Louis and A.G. MacDiarmid,

J. Chem. Phys., 69, 3098 (1978). 93. A. Pron, I. Kulszewicz, D. Billaud and J. Przyluski, J. Chem. Soc., Chem. Commun.,

783 (1981). 94. C.K. Chiang, C.R. Fincher, Jr., Y.W. Park, A.J. Heeger, H. Shirakawa, E.J. Louis,

S.C. Gau and A.G. MacDiarmid, Phys. Rev. Lett., 39, 1098 (1977).

95. W.P. Su, J.R. Schrieffer and A.J. Heeger, Phys. Rev. Lett., 42, 1698 (1979). 96. R.H. Baughman, S.L. Hsu, L.R. Anderson, G.P. Pez and A.J. Signorelli, in W.E.

Hatfield (Editor), "Molecular Metals" NATO Conference Series, Plenum, New York,

1979. 97. C.R. Fincher, Jr., C.E. Chen, A.J. Heeger, A.G. MacDiarmid and J.B. Hastings, Phys.

Rev. Lett., 48, 100 (1982). 98. R.H. Baughman, S.L. Hsu, G.P. Pez and A.J. Signorelli, J. Chem. Phys., 68, 5405

(1978). 99. T. Matsuyama, H. Sakai, H. Yamaoka, Y. Maeda and H. Shirakawa, Solid State

Commun., 40, 563 (1981). 100. H. Morawitz, P. Bagus, T. Clarke, W. Gill, P. Grant, G.B. Street and D.E. Sayers,

Synth. Met., 1, 267 (1979/80). 101. H. Kuroda, I. Ikemoto, K. Asakura, H. Ishii, H. Shirakawa, T. Kobayashi, H. Oyanagi

and T. Matsushita, Solid State Commun., 46, 235 (1983). 102. M. Tokumoto, H. Oyanagi, T. Ishiguro, H. Shirakawa, H. Nemoto, T. Matsushita, M.

Ito, H. Kuroda and K. Kohra, Solid State Commun., 48, 861 (1983). 103. H. Morawitz, W.D. Gill, P. Grant, G.B. Street and D.E. Sayers, Proc. Conf. on Quasi

One-Dimensional Conductors, Dubronbnic, 1978, S. Barisic, A. Bjelis, C. Cooper and B. Leontic (Editors), "Lecture Note in Physics" 96, 1979, p. 390.

104. I. Ikemoto, Y. Cao, M. Yamada, H. Kuroda, I. Harada, H. Shirakawa and S. Ikeda, Bull. Chem. Soc. Jpn. 55, 721 (1982).

105. H. Oyanagi, M. Tokumoto, T. Ishiguro, H. Shirakawa, H. Nemoto, T. Matsushita, M. Ito and H. Kuroda, J. Phys. Soc. Jpn., 53, 4044 (1984).

106. S.L. Hsu, A.J. Signorrelli, G.P. Pez and R.H. Baughman, J. Chem. Phys. 69, 106 (1978).

107. M.N.G. James and G.J.B. Williams, Acta Cryst., B 29, 1172 (1973). 108. J.D. Jorgensen, B. Dabrowski, Shiyou Pei, D.G. Hinks, L. Soderholm, B. Morosin,

J.E. Shiber, E.L. Venturini and D.S. Ginley, Phys. Rev. B 38, 11337 (1988).

109. J.B. Torrance, Y. Tokura, A.I. Nazzal, A. Bezinger, T.C. Huang and S.S. Parkin,

Phys. Rev. Lett., 61, 1127 (1988). 110. N.A. Fortune, K. Murata, Y. Yokoyama, M. Ishibashi and Y. Nishihara, Physica C

(Amsterdam), 178, 439 (1991); W. Jiang, J. L. Peng, Z.Y. Li and R.L. Greene, Phys. Rev., B 47, 8151 (1993).

Page 309: Analytical Spectroscopy Library_VOL 7

300

111. H. Oyanagi, Y. Yokoyama, H. Yamaguchi, Y. Kuwahara, T. Katayama and Y. Nishihara, Phys. Rev., B 42, 10136 (1990).

112. H. Oyanagi, Y. Yokoyama, H. Yamaguchi, T. Katayama and Y. Nishihara and Y.

Kuwahara, Physica C (Amsterdom), 185-189, 841 (1991).

113. R.J. Cava, B. Batlogg, C.H. Chen, E.A. Rietman, S.M. Zahurak and D. Weder, Phys. Rev., B 36, 5719 (1987); E. Takayama-Muromachi, Y. Uchida, M. Ishii, T. Tanaka and K. Kato, Jpn. J. Appl. Phys., 26, L1156 (1987).

114.J.D. Jorgensen, B.W. Veal, A.P. Paulikas, L.J. Nowicki, G.W. Crabtree, H. Claus and W.K. Kwok, Phys. Rev., B 41, 1863 (1990).

115. M. Tokumoto, H. Ihara, T. Matsubara, M. Hirabayashi, N. Terada, H. Oyanagi, K.

Murata and Y. Kimura, Jpn. J. Appl. Phys., 26, L1565 (1987). 116. H. Oyanagi, H. Ihara, T. Matsubara, M. Tokumoto, T. Matsushita, M. Hirabayashi, K.

Murata, N. Terada, T. Yao, H. Iwasaki and Y. Kimura, Jpn. J. Appl. Phys., 26, L1561

(1987). 117. H. Tolentino, M. Medarde, A. Fontaine, F. Baudelet, D. Guay and G. Tourillon, Phys.

Rev., B 45, 8091 (1992-II). 118. J. Kondo and S. Nagai, J. Phys. Soc. Jpn., 57, 4334 (1988). 119. P.W. Anderson, G. Baskaran, Z. Zou and T. Hsu, Phys. Rev. Lett., 58, 2790 (1987). 120. J. Mustre de Leon, S.D. Conradson, I. Batistic, A.R. Bishop, I.D. Raistrick, M.C.

Aronson and F.H. Garzon, Phys. Rev., B 45, 2447 (1992). 121. B.H. Toby, T.E. Egami, J.D. Jorgensen and M.A. Subramanian, Phys. Rev. Lett., 64,

2414 (1990). 122. M. Arai, K. Yamada, Y. Hidaka, S. Itoh, Z.A. Bowden, A.D. Taylor and Y. Endoh,

Phys. Rev. Lett., 69, 359 (1992). 123. R.P. Sharma, L.E. Rehn, P.M. Baldo and J.Z. Liu, Phys. Rev. Lett., 62,2869 (1989). 124. T. Haga, K. Yamaya, Y. Abe, Y. Tajima and Y. Hidaka, Phys. Rev., B 38, 826 (1990). 125. A. Bianconi, M. Missori, H. Oyanagi, H. Yamaguchi, D.H. Ha and S. Della Longa,

Proc. of ETL Workshop on High Temperature Superconductors, Tsukuba, 1993, in

press. 126. H. Oyanagi, H. Kimura, T. Terashima and Y. Bando, in preparation.

127. J.G. Bednorz and K.A. Muller, Z. Phys., B 64, 189 (1986). 128. S. Uchida, H. Takagi, K. Kitazawa and S. Tanaka, Jpn. J. Appl. Phys., 26, L1 (1987).

129. S.M. Heald, J.M. Tranquada, A.R. Moodenbaugh and Xouwen Xu, Phys. Rev., B 38,

38 (1988). 130. K. Oka and H. Unoki, Jpn. J. Appl. Phys., 26, L1416 (1987). 131. J.D. Jorgensen, H.B. Schuttler, D.G. Hinks, D.W. Capone II, K. Zhang and M.B.

Brodsky, Phys. Rev. Lett., 58, 1024 (1987). 132. N. Kosugi, T. Yokoyama, K. Asakura and H. Kuroda, Chem. Phys., 91,249 (1984). 133. N. Kosugi, in J. Kanamori and A. Kotani (Editors), "Core-Level Spectroscopy in

Condensed Systems", Springer, Berlin, 1988, p. 203.

Page 310: Analytical Spectroscopy Library_VOL 7

301

134. T.A. Smith, J.E. Penner-Hahn, M.A. Berding, S. Doniach and K.O. Hodgson, J. Am. Chem. Soc., 107, 5945 (1985).

135. H. Oyanagi, H. Ihara, T. Matsushita, M. Tokumoto, M. Hirabayashi, N. Terada, K. Senzaki, Y. Kimura and T. Yao, Jpn. J. Appl. Phys., 26, L488 (1987).

136. J.M. Tranquada, S.M. Heald, A.R. Moodenbaugh and M. Suenaga, Phys. Rev., B 35, 7187 (1987).

137. E.E. Alp, G.K. Shenoy, D.G. Hinks, D.W. Capone II, L. Soderholm, H.B. Schuttler, J. Guo, D.E. Ellis, P.A. Montano and M. Ramanathan, Phys. Rev., B 35, 7199 (1987).

138. F.W. Lytle, R.B. Gregor and A.J. Panson, Phys. Rev., B 37, 1550 (1988).

139. J. St/Shr, R. Jaeger and S. Brennan, Surf. Sci., 117, 503 (1982). 140. C. Li, M. Pompa, A.C. Castellano, S. Della Longa and A. Bianconi, Physica C

(Amsterdam), 175, 369 (1991). 141. Z. Tan, M.E. Filipkowski, J.I. Budnick, E.K. Heller, D.L. Brewe, B.L. Chamberland,

C.E. Bouldin, J.C. Woicik and D. Shi, Phys. Rev. Lett., 64, 2175 (1990).

142. Y. Tokura, J.B. Torrance, T.C. Huang and A.I. Nagai, Phys. Rev., B 38,7156 (1988). 143. Y. Kuwahara, H. Oyanagi, H. Yamaguchi, Y. Nishihara, Y. Okajima, K. Yamaya and

M. Aono, Jpn. J. Appl. Phys., 32, Suppl. 32-2, 608 (1992). 144. H. Maruyama, T. Ishii, N. Bamba, H. Maeda, A. Koizumi, Y. Yoshikawa and H.

Yamazaki, Physica C (Amsterdam), 160, 524 (1989). 145. C. Thomsen, B. Friedl and M. Cardona, Solid State Commun., 75, 2447 (1992). 146. L. Genzel, A. Wittlin, M. Bauer, M. Cardona, E. Schonherr and A. Simon, Phys. Rev.,

B 40, 2170 (1989). 147. C. Thomsen and M. Cardona, Phys. Rev., B 47, 12320 (1993-1I). 148. J. Mustre de Leon, I. Batistic, A.R. Bishop, S.D. Conradson and I.D. Raistrick, Phys.

Rev., B 47, 12322 (1993-II). 149. J. Mustre de Leon, S.D. Conradson, A.R. Bishop and I.D. Raistrick, Jpn. J. Appl.

Phys., 32, Suppl. 32-2, 573 (1993) 150. H. Yamaguchi, S. Nakajima, Y. Kuwahara, H. Oyanagi and Y. Shono, Physica C

(Amsterdam), 213, 375 (1993). 151. H. Kimura, H. Oyanagi, T. Terashima, H. Yamaguchi, Y. Bando and J. Mizuki, Jpn. J.

Appl. Phys., 32, 584 (1993). 152. Y. Bando, T. Terashima, K. Shimura, T. Sato, Y. Matsuda, S. Komiyama, K. Kamigaki

and H. Terauchi, Physica C (Amsterdam), 204, 185 (1991).

153. E.A. Stem, M. Qian, Y. Yacoby, S.M. Heald and H. Maeda, in Y. Bar-Yam, T. Egami, J. Mustre de Leon and A.R. Bishop (Editors), "Lattice Effects in High Tc Superconductors", World Scientific, Singapore, 1992, p. 51.

154. Yacoby et al., Bull. Am. Phys. Soc., 36, 989 (1991). 155. H.A. Mook, M. Mostoller, J.A. Harvey, N.W. Hill, B.C. Chakoumakos and B.C.

Sales, Phys. Rev. Lett., 65, 2712 (1990). 156. B. Renker, F. Gompf, E. Gering and D. Ewert, Physica C (Amsterdam), 162-164, 462

(1989).

Page 311: Analytical Spectroscopy Library_VOL 7

302

157. J.D. Sullivan, P. Bordet, M. Marezio, K. Takenaka and S. Uchida, Phys. Rev., B 48, 10638 (1993-11).

158. M. Bacci, Jpn. J. Appl. Phys., 27, L 1699 (1988). 159. H. Kamimura, Jpn. J. Appl. Phys., 26, L627 (1987).

160. D.J. Bishop, P.L. Gammel, A.P. Ramirez, R.J. Cava, B. Batlogg and E.A. Rietman, Phys. Rev., B 35, 8788 (1987).

161. H. You, U. Welp and Y. Fang, Phys. Rev., B 43, 3660 (1991). 162. A.J. Millis and K.M. Rabe, Phys. Rev., B 38, 8908 (1988).

163. S. Bhattacharya, M.J. Higgins, D.C. Johnston, A.J. Jacobson, J.P. Stokes, D.P. Goshorn and J.T. Lewandowski, Phys. Rev. Lett., 60, 1181 (1988).

164. D. Emin, Phys. Rev. Lett., 62, 1544 (1989).

165. M. Takigawa, A.P. Reyes, P.C. Hammel, J.D. Thompson, R.H. Heffner, Z. Fisk and K.C. Ott, Phys. Rev., B 43, 247 (1991).

166. M. Arai, K. Yamada, Y. Hidaka, S. Itoh, Z.A. Bowden, A.D. Taylor and Y. Endoh,

Phys. Rev. lett., 69, 359 (1992). 167. T. Ito, K. Takenaka and S. Uchida, Phys. Rev. Lett., 70, 3995 (1993). 168. T. Tanamoto, K. Kohno and H. Fukuyama, J. Phys. Soc. Jpn., 61, 1886 (1992). 169. P. George, J. Beetlestone and J. S. Griffith, Rev. Mod. Phys., 36, 441 (1964). 170. T. Iizuka and T. Yonetani, Adv. Biophys., 1, 157 (1970). 171. S. Neya, S. Hada, N. Funasaki, J. Umemura and T. Takenaka, Biochim. Biophys. Acta,

827, 157 (1985). 172. M. F. Perutz, Nature (London), 228, 726 (1970). 173. P. Eisenberger, R. G. Shulman, B. M. Kincaid, G. S. Brown and S. Ogawa, Nature

(London), 274, 30 (1978). 174. M. F. Perutz, S. S. Hasnain, P. J. Duke, J. L. Sessler and J. E. Hahn, Nature

(London),295, 535 (1982). 175. P. Eisenberger, R. G. Shulman, G. S. Brown and S. Ogawa, Proc. Natl. Acad. Sci.

USA, 73, 491 (1976). 176. B. Chance, R. Fischetti and L. Powers, Biochemistry, 22, 3820 (1983). 177. A. Bianconi, A. Congiu-Castellano, M. Dell'Ariccia, A. Giovannelli, P. J. Durham, E.

Burattini and M. Barteri, FEBS Lett., 178, 165 (1984). 178. A. Bianconi, S. Alema, L. Castellani, P. Fasella, A. Giovannelli, S. Mobilio and B.

Oesh, J. Mol. Biol., 165, 125 (1983). 179. H. Oyanagi, T. Iizuka, T. Matsushita, S. Saigo, R. Makino, Y. Ishimura and T.

Ishiguro, J. Phys. Soc. Jpn., 56, 3381 (1987). 180. N. Kosugi, T. Yokoyama, K. Asakura and H. Kuroda, Chem. Phys., 91,249 (1984).

181. T. A. Smith, J. E. Penner-Hahn, M. A. Berding, S. Doniach and K. O. Hodgson, J.

Am. Chem. Soc., 107, 5945 (1985). 182. A. Bianconi, A. Congiu-Castellano, P. J. Durham, S. S. Hasnain and S. Phillips, Nature

(London), 318, 685 (1985). 183. T. Takano, J. Mol. Biol., 110, 537 (1977).

Page 312: Analytical Spectroscopy Library_VOL 7

303

184. J. L Hoard, M. J. Hamor, T. A. Hamor and W. S. Caughey, J. Am. Chem. Soc., 87, 2312 (1965).

185. A. Bianconi, A. Congiu-Castellano, M. Dell'Ariccia, A. Giovannelli and S. Morante,

FEBS Lett., 191, 241 (1985).

186. M. R. Chance, L. J. Parkhurst, L. S. Powers and B. Chance, J. Biol. Chem., 261,

5689 (1986).

187. M. G. Craford, G. E. Stillman, J. R. Rossi and N. Holonyak, Jr., Phys. Rev., 168,

867 (1968).

188. D. V. Lang, R. A. Logan and M. Jaros, Phys. Rev., B 19, 1015 (1979).

189. Y. Seki, J. Matsui and H. Watanabe, J. Appl. Phys., 47, 3374 (1976).

190. A. Shimizu, S. Nishine, M. Morioka, K. Fujita and S. Akai, "Semi-lnsulating III-V Materials", Ohm-sha, Tokyo, 1986, p. 41.

191. H. Ehrenreich and J. P. Hirth, Appl. Phys. Lett., 46, 668 (1985).

192. J. C. Mikkelsen and J. B. Boyce, Phys. Rev., B 28, 7130 (1983). 193. C.Y. Fong, W. Weber and J.C. Phillips, Phys. Rev., B 14, 5387 (1976).

194. H. Oyanagi, Y. Takeda, T. Matsushita, T. Ishiguro, T. Yao and A. Sasaki, Solid State Commun., 67, 453 (1988).

195. K. C. Haas, R. J. Lempert and H. Ehrenreich, Phys. Rev. Lett., 52, 77 (1984).

196. H. Oyanagi, Y. Takeda, T. Matsushita, T. Ishiguro and A. Sasaki, Proc. 12th Int. Symp.

on Gallium Arsenide and Related Compounds, Karuizawa, 1985, "Gallium Arsenide and Related Compounds 1985" Inst. Phys. Conf. Ser. 79, 1986, p. 295.

197. C.K. Shih, W.E. Spicer and W.A. Harrison, Phys. Rev., B 31, 1139 (1985).

198. H. Kawanami, T. Sakamoto, T. Takahashi, E.Suzuki and K. Nagai, Jpn. J. Appl. Phys., 21, L68 (1982).

199. W. I. Wang, Appl. Phys. Lett., 44, 1149 (1984).

200. M. Akiyama, Y. Kawarada and K. Kaminishi, J. Cryst. Growth, 68, 21 (1984). 201. W. T. Masselink, T. Henderson, J. Klein, R. Fischer, P. Perah, H. Morkoc, M. Hafic,

P. D. Wang and G. Y. Robinson, Appl. Phys. Lett., 45, 1309 (1984). 202. W. A. Harrison, E. A. Kraut, J. R. Waldrop and R. W. Grant, Phys. Rev., B 18, 4402

(1978).

203. H. Kroemer, J. Cryst. Growth, 81, 193 (1987). 204. S. Nishi, H. Inomata, M. Akiyama and K. Kaminishi, J. Appl. Phys., 24, L391 (1985). 205. M. Kawabe, T. Ueda and H. Takasugi, Jpn. J. Appl. Phys., 24, L114 (1987).

206. H. Oyanagi, H. Kawanami, R. Shioda, H. Yamaguchi and Y. Kuwahara, Proc. 19th Int. Symp. on Gallium Arsenide and Related Compounds, Karuizawa, 1992, "Gallium Arsenide and Related Compounds 1992", Inst. Phys. Conf. Ser. 129, 1993, ch. 3,.p.

193.

207. R. I. G. Uhrberg, R. D.Bringans, R. Z. Bachrach and J. E. Northrup, Phys. Rev. Lett., 56, 520 (1986).

208. A. Kawazu and H. Sakama, Phys. Rev., B 37, 2704 (1988).

209. W. Stolz, M. Naganuma and Y. Horikoshi, Jpn. J. Appl. Phys., 27, L283 (1988).

Page 313: Analytical Spectroscopy Library_VOL 7

304

210.

211.

212.

213. 214. 215.

216.

217.

218.

219.

220.

221.

222.

223.

224.

225.

226.

227.

228.

229.

230.

231.

B. Bourguignon, K. L.Carleton and S. R. Leone, Surf. Sci., 204, 455 (1988).

E. Kaxiras, O. L. Alerhand, J. D. Joannopoulos and G. W. Turner, Phys. Rev. Lett., 62, 2484 (1989).

T.P. Pearsall, J.Bevk, L.C.Feldman, J.M. Bonar and J.P. Mannaerts, Phys. Rev. Lett., 58, 729 (1987).

M.S. Hybertsoen and M. Schluter, Phys. Rev., B 36, 9683 (1987). S. Froyen, D.M. Wood and A. Zunger, Phys. Rev., B 37, 6893 (1988). S. Satpathy, R.M. Martin and Van de Walle, Phys. Rev., B 38, 13237 (1988).

K.B. Wong, M. Jaros, I. Morrison and J.P.Hagon, Phys. Rev. Lett., 60, 2221 (1988).

H. Oyanagi, K. Sakamoto and T. Sakamoto, Jpn. J. Appl. Phys., 32, Suppl. 32-1,

119 (1993).

R. Zachai, E. Frieess, G. Abstreiter, E. Kasper and H. Kibbel: Phys. Rev. Lett., 64,

1055 (1990).

U. Menczigar, J. Brunner, E. Frieess, M. Gail, G. Abstreiter, H. Kibbel, H. Presting

and E. Kasper, Thin Solid Films, 222, 227 (1992). T. Sakamoto, H. Funabashi, K. Ohta, T. Nakagawa, N.J. Kawai and T. Kojima, Jpn. J. Appl. Phys., 23, 153 (1983). A. Ourmazd and J.C. Bean, Phys. Rev. Lett., 55, 765 (1985).

D.J. Chadi, J. Vac. Sci. Technol., 16, 1290 (1979).

D. Vanderbilt, Phys. Rev. Lett., 59, 1456 (1987). H. Oyanagi, K. Sakamoto, R. Shioda and K. Sakamoto, Extended Abstracts of Int.

Conf. on Solid State Devices and Materials, Makuhari Messe, 1993, p. 919; Jpn. J. Appl. Phys., 33, 3545 (1994). P. Aebi, T. Tyliszczak, A.P. Hitchcock, K.M. Baines, T.K. Sham, T.E. Jackman, J. -M. Baribeau and D.J. Lockwood, Phys. Rev., B 45, 13579 (1992).

J. Tersoff, Phys. Rev., B 43, 9377 (1991-I). G. Jayaram, P. Xu and L.D. Marks, Phys. Rev. Lett., 71, 3489 (1993).

P. Kruger and J. Pollmann, Phys. Rev., B 47, 1898 (1993-I1).

R. Rossmann, H.L. Meyerheim, V. Jahns, J. Wever, W. Moritz, D. Wolf, D. Dornish

and H. Schulz, Surf. Sci., 279, 199 (1992). P.S. Mangat, P. Soukiassian, K.M. Schirm, L. Spiess, S.P. Tang, A.J. Freeman, Z.

Hurych and B. Delley, Phys. Rev., B 47, 16311 (1993-11).

M. Lohmeir, H.A. van der Vegt, R.G. van Silfhout, E. Vlieg, J.M.C. Thornton, J.E.

Macdonald and P.M.L.O. Scholte, Surf. Sci., 275, 190 (1992). 232. C.A. Lucas, C.S. Dower, D.F. McMorrow, G.C.L. Wong, F.J. Lamelas and P.F.

Fuoss, Phys. Rev., B 47, 10375 (1993-11).

233. P.C. Kelires and J. Tersoff, Phys. Rev. Lett., 63, 1164 (1989).

234. U. Kohler, O. Jusko, B. Muller, M. Hom-von Hoegen and M. Pook, Ultramicroscopy, 42-44, 832 (1992).

235. M. Copel, M.C. Reuter, M. Horn von-Hoegen and R.M. Tromp, Phys. Rev., B 42,

11682 (1990-1I).

Page 314: Analytical Spectroscopy Library_VOL 7

305

236. K. Sakamoto, K. Kyoya, K. Miki, H. Matsuhata and T. Sakamoto, Jpn. J. Appl. Phys., 32, L204 (1993).

237. J. Massies and N. Grandjean, Phys. Rev., B 48, 8502 (1993-1). 238. P. Elleaume, H. Emerich, J.Goulon, G. Marot, J.Susini, L. Braicovich, and C.

Malgrange, in S. Hasnain (Editor), "X-Ray Absorption Fine Structure", Ellis Horwood,

London, 1991, p. 646. 239. Y. Suzuki, Phys. Rev., B39, 3393 (1989). 240. B. Chance, L. Powers, K. Zhang, C.-H. Lee and K.S. Reddy, "Synchrotron Radiation

in the Biosciences", Oxford University Press, Oxford, 1994, p. 247. 241. L.E. Berman and M. Hart, Nucl. Instrum. Methods, A 300, 415 (1991). 242. G Marot, A.K. Freund, M. Rossat, H. Kawata, S. Jocksch, E. Ziegler, L.E. Berman, D.

Chapman, J.B. Hastings and M. Iarocci, Rev. Sci. Instrum., 63, 477 (1992).

243. S. Sasaki, personal communication. 244. A. Fontaine, Jpn. J. Appl. Phys., 32, Suppl. 32-2, 856 (1993).

Page 315: Analytical Spectroscopy Library_VOL 7

This Page Intentionally Left Blank

Page 316: Analytical Spectroscopy Library_VOL 7

Applications of Synchrotron Radiation to Materials Analysis H. Saisho and Y. Gohshi (Editors) �9 1996 Elsevier Science B.V. All rights reserved. 307

CHAPTER 5

APPLICATION TO SURFACE STRUCTURE ANALYSES

Toshiaki OHTA, Kiyotaka ASAKURA and Toshihiko YOKOYAMA

Depar tmen t of Chemis t ry , School of Science, The Univers i ty of Tokyo

7-3-1, Hongo , Bunkyo-ku , Tokyo, 113, Japan

5.1. INTRODUCTION

The characterization of solid surfaces is a very important subject in analytical chemistry.

So far, a number of surface analytical techniques have been developed, as summarized in

Table 5-1. For surface analysis, high sensitivity towards the surface is essential, as the

number of surface atoms is roughly ten orders of magnitude smaller than that of bulk atoms.

Electrons and ions have strong interactions with materials and as a result they have short

mean free paths and are very surface sensitive probes. Thus electron (ion) spectroscopy and

scattering have been adopted as the major methods for surface analysis. In contrast, photons,

especially those with high energy, interact with materials very weakly. In other words, photons themselves are not surface sensitive and when we use photons as the probe of

surface analysis, it is necessary to adopt techniques to enhance surface sensitivity. For

example, we combine the photon probe with surface-sensitive phenomena such as photoemission and photodesorption, or apply an experimental technique such as total

reflection. The advantage of the methods using photons is that the analysis is straightforward

compared with those using electrons or ions, where we have to deal with collision

phenomena and cannot neglect the multiple scattering effects. In fact, there are several

techniques using laboratory photon sources, but the advent of synchrotron radiation as a light

source has brought about the revolution in the analytical methods using photons. Synchrotron

radiation has several unique features: high intensity, continuous spectral distribution from

infrared to X-ray photons, high degree of polarization and pulse structure. Synchrotron

radiation has made it possible to apply the conventional techniques to more difficult and

sophisticated subjects and also to exploit new methods of surface structure analysis. In this

Page 317: Analytical Spectroscopy Library_VOL 7

308

chapter we will review the most prominent advances in surface structure analysis using

synchrotron radiation, especially addressing their potential as well as some selected examples

of research.

Table 5-1. Surface analysis techniques.

Incoming Outgoing Method Phenomenon Information

electron electron LEED diffraction structure RHEED diffraction structure EELS energy loss vibration EXELFS energy loss structure AES core hole decay elemental analysis

photon IPES electronic transition electronic states XMA core hole decay elemental analysis

ion ESD ion desorption structure

ion ion RBS scattering chemical analysis MEIS scattering structure

electron INS electron transfer electronic states photon IEXR X-ray emission elemental analysis

photon photon IRAS reflection and vibration absorption

XRD scattering structure and diffraction

XAFS absorption structure and electronic states XSW diffraction structure XPS photoemission electronic states and

(core) chemical analysis UPS photoemission electronic states

(valence) ARUPS photoemission electronic states ARPEFS photoemission structure

and diffraction

LEED = Low Energy Electron Diffraction; RHEED = Reflection High Energy Electron Diffraction; EELS = Electron Energy Loss Spcetroscopy; EXELFS = EXtended Energy Loss Fine Structure; AES = Auger Electron Spectroscopy; IPES = Inverse PhotoElectron Spectroscopy; XMA = X-ray MicroAnalysis; ESD = Electron Stimulated Desorption; RBS = Rutherford BackScattering; MEIS = Medium Energy Ion Scattering" INS = Ion Neutralization Spectroscopy; IEXR = Ion Excited X-ray Radiation; IRAS = Infrared Reflection Absorption Spectroscopy; XRD = X-Ray Diffraction; XSW = X-ray Standing Wave; XPS = X-ray Photoelectron Spectroscopy; UPS = Ultraviolet Photoelectron Spectroscopy; ARUPS = Angle Resolved Ultraviolet Photoelectron Spectroscopy; ARPEFS = Angle Resolved Photoelectron Extended Fine Structure

Page 318: Analytical Spectroscopy Library_VOL 7

309

5.2. SURFACE EXAFS AND NEXAFS

5.2.1. Introduction

The Extended X-ray Absorption Fine Structure (EXAFS) technique has been widely used

to determine local structures of crystalline and non-crystalline materials [1]. The EXAFS

method applied to surface systems is usually named SEXAFS (Surface EXAFS), and has

also been developed extensively owing to the use of synchrotron radiation. SEXAFS is now

a powerful technique for investigating the local adsorption geometry of adsorbate-substrate

systems quantitatively since SEXAFS can extract local structural information only around X-

ray absorbing atoms. Local structures of clean surfaces are, in contrast, difficult to examine

because of the same elements are in the surface and bulk atoms. In this subchapter, we will

mainly focus our attention on the surface structure analysis of adsorbate-substrate systems. We will first discuss a simple application of SEXAFS, the determination of adsorption sites

of atomic adsorbates, and subsequently present further examples of SEXAFS studies on

surface reconstruction, molecular adsorbate systems, and the use of the temperature

dependence of SEXAFS to investigate surface dynamic properties.

Near-Edge X-ray Absorption Fine Structure (NEXAFS) [2] appears in the vicinity of X-

ray absorption edges, and is caused by the electron transition from a core orbital to discrete

or quasi-discrete unoccupied levels. NEXAFS contains information not only on electronic

structures but also on local atomic structures. Although NEXAFS includes a higher order of

information on local structures than EXAFS, it is not always easy to analyze quantitatively

for atomic adsorbate systems because of the complicated contributions of multiple scattering.

The spectra of molecular adsorbate systems are much easier to understand since the

intramolecular resonance dominates the whole spectrum. NEXAFS is now mainly applied in

order to determine the orientation angles of molecules on surfaces and the intramolecular bond distances.

These X-ray Absorption Fine Structure (XAFS) spectroscopies, SEXAFS and NEXAFS,

have several advantages compared to diffraction techniques. First of all, XAFS spectroscopy

requires no long-range order which is needed for LEED (Low Energy Electron Diffraction)

and surface X-ray diffraction. Adsorbate-substrate systems often provide no LEED patterns except for fundamental spots from substrates, even when the adsorbates have uniform short-

range order. Secondly, electron-probed techniques such as LEED happen to induce molecular

dissociation by the impact of high energy electrons, whose probability would be several

orders of magnitude greater than in photon-probed techniques. Thirdly, the XAFS technique

is available for most elements in the periodic table; there have been published SEXAFS and

NEXAFS from carbon (Z=6), while it is difficult to investigate such light elements by means

of surface X-ray diffraction. In contrast, XAFS spectroscopy has several disadvantages.

SEXAFS contains information only about the vicinity of the X-ray absorbing atoms (less

than ~5 A). Furthermore, information for the higher than first nearest neighbours is often

Page 319: Analytical Spectroscopy Library_VOL 7

310

difficult to extract reliably due to the existence of closely-lying other neighbours and

multiple-scattering paths. Even for the first nearest neighbours, if they contain more than two

different kinds of X-ray absorbing atoms with different environments, reliable SEXAFS

analysis is not straightforward because the EXAFS spectra give only averaged structural

information which is difficult to disentangle. Thus SEXAFS would not be suitable to

investigate systems with large unit cells. Another problem in SEXAFS is that it requires

sophisticated, excellent beamlines which covers a large energy range with a high photon flux.

On the other hand, NEXAFS is not always easy to understand theoretically, although its

experiment is much easier.

5.2.2. Experimental techniques

In order to obtain reliable SEXAFS and NEXAFS spectra from a small amount of surface

adsorbate, a sophisticated beamline with a high photon flux is strongly desired. SEXAFS

does not always require high energy resolution of the monochromator (a few eV is

sufficient), while NEXAFS needs high resolution for detailed discussion. For soft X-ray

regions below 1500 eV, a grazing-incidence grating monochromator is available, while for

higher energies a double-crystal monochromator has been developed. Details of the beamline

optics are described in the other chapters. A measurement chamber for SEXAFS and

NEXAFS requires standard surface analysis systems such as LEED and Auger optics, and a

sample-cleaning apparatus with an ion sputtering gun, a heater and others. The base pressure

should be in the ultra-high vacuum range of better than lx10 .8 Pa.

Because of low concentration of surface atoms, the usual transmission measurements cannot be applied to SEXAFS or NEXAFS. Indirect detection modes have therefore been

examined. Fluorescence yield and electron yield measurements have been shown to provide

reliable spectra equivalent to the absorption spectrum, based on the simple concept that the

absorption coefficient is proportional to the number of created core holes, which should also

be proportional to the emitted fluorescence or (Auger) electron yields. Figure 5-1 shows these decay processes schematically. The incident X-rays come deeply

into the bulk material, and fluorescence X-rays are emitted from both the surface and bulk,

while electrons come out only from the vicinity of the surface (~ 50 ,~ for secondary electrons

and ~ 10 .& for Auger electrons). The electron yield mode is thus surface-sensitive, while the

fluorescence yield cannot be applied if the same element as the adsorbate is present in the

bulk. The other decay process depicted in Fig. 5-1 is the desorption of adsorbate atoms. The

desorption probability is also proportional to the absorption cross section in some cases of

ionic bondings. Although this detection method is highly surface-sensitive, it is not always

applicable because of complex nature of the desorption process. We will not discuss this

method further, here. We have to consider two different factors before determining which

mode is a superior one. The signal-to-background (S/B) ratio is usually much higher in the

fluorescence yield mode than in the electron yield mode, because in the electron yield

Page 320: Analytical Spectroscopy Library_VOL 7

311

fluorescentX Adsorbed at

Electro

�9 bstrate

th

Fig. 5-1. Several decay processes after X-ray absorption. The incident X-rays come deeply

into the bulk material, and both surface and bulk atoms are excited. The escape depth of

Auger electrons is typically ~ 10 A, and the electrons come out only from a few surface

layers. Low energy secondary electrons have a larger escape depth of -50 .A, implying that

they are less surface-sensitive. Fluorescence X-rays are not at all surface sensitive, the escape

depth being at least thousands of ,~.

mode there exist significant amounts of secondary electrons which have the same kinetic energy as the Auger electrons of interest and are derived from substrates. In the fluorescence

yield mode, background contribution can be neglected when the atomic numbers of the

adsorbate and substrate are quite different. The signal-to-noise (S/N) ratio is also very

important for one to analyze spectra. Usually more than five hundred thousand counts of

signals are required.

For soft X-ray regions such as the C, N, O and F K-edge (at less than 1000 eV), the

probability of the fluorescent decay process is much smaller (0.5 % at the C K-edge) than

that of the Auger decay. Furthermore, detection of very low energy fluorescence is not easy

because of the presence of electronic noise. This means that the electron yield detection is

superior to the fluorescence yield. The Auger electron yield mode, using an electron energy

analyzer such as CMA (Cylindrical Mirror Analyzer) is, however, not applicable to

SEXAFS. This is because the elastic photoelectron signals enter the analyzer at a certain

photon energy, resulting in a huge increase in the yield spectrum. Instead of the Auger

electron yield mode, a partial electron yield technique has been proposed.

Page 321: Analytical Spectroscopy Library_VOL 7

312

Metal grid sample

Io monitor (chaneltron)

Retarding field

Total or partial electron yield (chaneltron)

Fig. 5-2. Experimental system for the partial electron yield mode. A fine Cu grid is placed

upstream of the sample, which gives the intensity I0 by measuring emitted electrons with a

channeltron. Electrons from the sample are measured by a channeltron under the sample. The

upper grid is grounded, and the lower grid is biased with a retarding voltage to prevent low

energy secondary electrons from entering the detector. It is important to place the detector

underneath the sample in order to avoid a change of background during rotation of the sample to measure polarization dependence.

Figure 5-2 shows a schematic view of the partial electron yield measurements. In this

method, a channeltron or a multichannel plate is used, and a retarding voltage is applied before the detector to eliminate low-energy secondary electrons. The grid upstream of the

sample is used to monitor the intensity of the incident X-rays (I0). Although the S/B ratio is better in the Auger electron yield mode, the partial electron yield mode can avoid a

photoelectron contribution and is thus suitable for a long energy scan as in the case of

SEXAFS. The lowest limit of the adsorbate coverage in these energy range would be ~0.1

ML because of a low S/B ratio. Further improvements of the S/B ratio are required especially when large molecules are studied which contain only a small number of atoms of interest. In

order to perform experiments for such systems, a development of a high-count-rate

fluorescence detector is nevertheless desirable from the viewpoint of the S/B ratio. For bulk

materials, it is already shown that the fluorescence yield mode, using a Si(Li) detector, gives

more reliable spectra than the electron yield mode, and thus we hope to obtain a sophisticated

high-count-rate, low-noise fluorescence detector in these energy range for SEXAFS

measurements.

For the higher-energy soft X-ray regions of the K absorption edges of the second row

elements in the periodic table, both Auger electron yield and fluorescence yield modes are

available. Figure 5-3 shows the experimental design for the Auger electron yield mode by

uisng a CMA and for the fluorescence yield mode, uisng a proportional counter, together

Page 322: Analytical Spectroscopy Library_VOL 7

313

CMA(electron energy analyser)

M . " ~'~,.'~h,~

etal grid " ~

h'v - v . . , , ~ . , , l ~ F ~ A A

X-ray detector (Proportional counter)

Io monitor Total electron detector(channeltron)

Fig. 5-3. Experimental design of the Auger electron yield method using CMA, the

fluorescence yield method using a proportional counter and the total electron yield method

using a channeltron.

with a channeltron which measures the total electron yield from the sample. In these energy

ranges, photoelectron sweeping in the Auger window does not occur very often, and we can

obtain Auger-yield SEXAFS spectra in a sufficiently wide energy range for most systems

without disturbance by photoelectrons. Nevertheless, the fluorescence yield mode usually provides a much higher S/B ratio and a comparable S/N ratio. For example, in the S K-edge

SEXAFS of c(2x2)S/Ni(100), the S/B ratio is more than ten, using the fluorescence yield

mode with a proportional counter, while the S/B ratio is only 0.1 in the Auger electron yield

mode using CMA. Although the fluorescence yield mode is not surface-sensitive, the fluorescence yield detection is usually a better solution, as long as there is little fluorescence emission from the bulk with similar photon energies.

Inhard X-ray regions (higher than 4000 eV), although the probability of fluorescence

decay is further enhanced, we will encounter another problem. Because of the use of

crystalline substrate, some Bragg reflections come into the detector and give intense spikes in the yield spectrum. In order to avoid Bragg reflections, a solid state detector which separates the adsorbate fluorescence completely from elastic diffraction is required. To improve the

S/N ratio, a multielement solid state detector has been exploited.

It is essential to be able to measure the intensity of the incident X-rays (I0) with an

extremely good quality. The resultant SEXAFS spectrum will be obtained by dividing the

yield spectrum (/) by I0. Usually it is not easy to divide out because the transmission function

(I0) has many spikeS and edges caused by absorption (or diffraction) by the mirrors,

monochromators and other optics. If the S/B ratio is not good, especially in the electron yield

mode, a simple I0 monitor such as that shown in Figs. 5-2 and 5-3 does not always provide

Page 323: Analytical Spectroscopy Library_VOL 7

314

suitable data. There are several established techniques to allow one to divide out

successfully. First, an identical detection method should be used for I0 and I measurements.

For the electron yield mode, the yield spectrum of clean surfaces is first measured for I0 and

that of adsorbate-deposited surfaces is subsequently taken for I. By use of this method,

simultaneous measurements of I0 and I cannot be performed, and stability of the beam is

therefore required. For the fluorescence yield mode, if the substrate fluorescence (I0) can be

completely isolated from the adsorbate signal, simultaneous measurements are possible. If

the above identical detection is not available, one has to take care to measure the same beam

between I0 and I. The intensity I0 can be measured by use of a fine grid upstream of the

sample, which gives an electric current proportional to I0. Normal incidence- are much easier

than grazing incidence measurements. In order to avoid these difficulties in SEXAFS

measurements, it is natural that one should choose optical materials before construction of

the beamline. Absorption edges of the elements of the mirrors and monochromators should

be avoided. For the measurements of soft X-ray SEXAFS, great care must be taken to avoid

carbon and oxygen contaminations.

Although we have so far discussed SEXAFS measurements, NEXAFS measurements can

basically be carded out using the same experimental system and one does not have to take

such great care in I/Io normalization as in SEXAFS. Improvements in NEXAFS

measurements would be provided by a higher energy resolution of the monochromator. For

soft X-ray regions, highly monochromatic X-rays are available, which give vibrational fine

structures.

5.2.3. Determination of molecular orientation by NEXAFS

NEXAFS corresponds to the electronic transition from a core orbital to unoccupied

discrete and/or quasi-discrete levels. Let us consider a simple molecule such as N2. The

unoccupied valence orbitals of N2 are lng* and 3Ou*, which consist of N 2p orbitals. The

lng* orbital is located below the ionization threshold, while 3Ou* is strongly antibonding and

lies beyond the threshold, exhibiting a quasi-discrete level. Since the l~g* (3Ou*) orbital is

perpendicular (parallel) to the molecular axis, the transition probability I from the N ls core

orbital is different from each other, depending on the direction of the electric field vector E

of the incident X-rays [3]:

I o~ I(ileE. rlf)l 2 (5-1)

where i is the initial-state one-electron orbital, Nls, andfis the final-state one, lng* or 3Ou*.

If E is parallel to the molecular axis, the Nls-to-3Ou* transition is allowed and the Nls-to-

l~;g* one is forbidden, while in the case of E perpendicular to the molecular axis, only the

l~;g* transition is expected. Taking account of the linear polarization factor P, the transition

probability I is given as a function of a polar angle 0 of the electric field vector of X-rays, in

Page 324: Analytical Spectroscopy Library_VOL 7

315

the case of higher than threefold symmetric substrate. It depends on the type of orbitals" a vector-type orbital (3Ou* in the present case) or a plane-type orbital (l~g*), and these transition probabilities, Iv and Ip, are respectively given as [3]"

and

1 E 1 ]1 I v = -~AP 1 + ~ ( 3 c o s 2 0-1) (3cos 2 w - l ) + ~ A ( 1 - P ) s i n 2 w (5-2)

3 1 1 ]1 Ip = BP 1--~-(3cos 2 0-1) (3cos 2 a ) - l ) + B (1- P) (l + cos 2a)) (5-3)

where m is the polar angle of the bond direction for Iv or the normal vector of corresponding

planes for Ip. These formulae are generally available for the transitions from ns (n=l,2..) core orbitals to p-type orbitals.

Figure 5-4 shows N K-edge NEXAFS spectra of gaseous N2 and adsorbed N2 on Ni(110) [3,4]. In the gas-phase spectrum, peaks A and B are attributed to the lng* and 3Ou*

transitions, respectively, and other features are also observed around 405-410 eV (Rydberg- type transitions) and -414 eV (multi-electron transitions). In the adsorbed-phase spectra, the

n* and o* resonances are observed, while the Rydberg transitions disappear. The n* and o*

resonances exhibit a noticeable polarization dependence; the o* resonance is completely

"~ 1.0

o

3 0.5

>-

z w 0

z

400

i I i I i l A N z Gas

B

4 1 0 4 2 0 ENERGY LOSS (eV)

1.25

1.00

0 . 7 5

rid O.5O

0 . 2 5

z 4 w

o

5 3

2

!

4 0 0 4 1 0 4 2 0 PHOTON ENERGY (eV}

Fig. 5-4. N K-shell excitation spectra of molecular nitrogen [3,4]. (a) The

electron energy loss spectrum (EELS)

of gaseous N 2 which gives a spectrum

essentially equivalent to NEXAFS. Peaks A and B, respectively, correspond to Jt* and o* transitions. The N ls binding energy relative to the vacuum

level is denoted as "XPS." (b) The N K- edge NEXAFS spectra of N2 chemi- sorbed on Ni(110). The pronounced polarization dependence of the ~t* and

o* resonances is caused by the vertical

orientation of N2 on the surface. The N ls binding energy for a lower energy

peak (well-screened state) is given with respect to the Fermi level.

Page 325: Analytical Spectroscopy Library_VOL 7

316

quenched in the normal incidence spectrum, while the intensity of the x* resonance is

significantly reduced in the grazing incidence one, clearly demonstrating that the nitrogen

molecule is standing up on the Ni(ll0) surface. After detailed analysis, it is concluded that

the polar angle of the molecular axis is 0+5*. Although the accuracy of the determined

orientation angle strongly depends on the quality of the spectra, it is tentatively estimated to

be +8* for typical cases [3].

Polarization and coverage dependent N K-edge NEXAFS spectra of pyridine/Ag(111)

were measured [5]. Figure 5-5 shows the intensity of the n* resonance at normal incidence

(190) and the intensity ratio between 20* and 90* incidence (I2o/I9o), as a function of the

pyridine dosage. The 12o/19o value remains constant up to ca. 3.5 L (1 L = l x l 0 -6 (Torr.s)), subsequently decreases abruptly until ca. 5.5 L, and finally increases again, approaching

unity, which signifies random orientation of multilayers. The 190 curve shows the opposite

trend, and both results indicate that the orientation of pyridine molecules is suddenly changed

around 4.5 L like a phase transition, and that the molecule which has adsorbed relatively flat

on the surface (~o=45", where a~ is the angle between the surface and molecular planes) is

beginning to stand up ((0=70*). These results imply that at a lower coverage pyridine favours

a flat orientation, to increase the strength of its interaction with the substrate Ag through the

pyridine n electrons, while at a higher coverage pyridine is likely to stand up so that a larger

2 . 2 - -

2 . 0 - 1 8 -

1.6 i

l . / , .~ o 1 2 i 0 1 �9

--~:) I 0 ~

,-~ 0.8

OG O.L,

0.2

0

I K x x ~ 2 - ' - 4_ " _ x [ ~,

condensed m u l t i l a y e r

�9 �9 �9 �9 J �9 I

-- I monolayer I

I I I i i ! I i i I / / I

I 2 3 ~ 5 G 7 B 9 15 Dose IL ( u n c o r r e c t e d )

-36

-3L

- 32 , .~ " 0 - 3 0 ~ -

- 2 8 o "

- 2 6 g

- 2 2

- 2 0 - I B - 1 6

Fig. 5-5. The intensity of the N Is-to-Jr* resonance at normal incidence (/90) and the

intensity ratio (120/190) between normal and grazing (20*) as a function of pyridine dosage to

a A g ( l l l ) surface [5]. At ca. 4.5 L, a phase transition occurs from the parallel to

perpendicular orientations of pyridine. Multilayer pyridine shows random orientation.

Page 326: Analytical Spectroscopy Library_VOL 7

317

amount of pyridine can directly interact with the substrate through its N lone-pair electrons.

It is noted that, even at a low coverage, pyridine is not lying completely flat on the surface,

indicating the greater importance of the interaction of the N 2p o lone pair than the n

electrons.

5.2.4. Estimation of intramolecular bond distance ,by NEXAFS

The other useful application of NEXAFS is in estimating the intramolecular bond

distances from the energy position of u* resonances. The o* orbital is of a highly

antibonding character, and its resonance energy is strongly dependent on the corresponding

bond distance. The shorter the bond distance is, the more the antibonding character is

enhanced and the higher the o* resonance energy becomes. The o* resonance energies of

many kinds of atom pairs relative to the ionization threshold were plotted as a function of the

bond distance [6]. Figure 5-6 gives the results, indicating that the resonance energy decreases

linearly as the bond distance becomes longer, and the line is identical for the same Z, where Z

2O i

15 i-

t Z

9 o l o o .

U C H 3 H C O ' ~ ]

z < CF 4 (CH 3) H2 H 6 o ~ . ~ oq ILl n."

_-- . NF~ ~ t - I 0 .

' I I ! ! ! I ! I I ! t ! l ! ! ~ ! t t ~ ~ ! ~ t t t.zo 1.2o 1.3o t.4o Lso

BONO LENGTH R (,~)

Fig. 5-6. The correlation between the o* resonance energy, relative to the ionization

threshold, and the distance of the corresponding bond [6]. Z denotes the sum of the atomic

numbers of atom pairs. By use of this plot, one can estimate the bond distance of structurally unknown molecular systems.

Page 327: Analytical Spectroscopy Library_VOL 7

318

denotes the sum of the atomic numbers. Although the linearity should be a crude

approximation, from the theoretical point of view, and the estimated error bar (+0.03 ,~ or

more) is larger than from SEXAFS results, it provides valuable information since SEXAFS

signals for light element scatterers are difficult to detect.

Figure 5-7 shows the polarization dependent C- and O K-edge NEXAFS spectra of

CO/Pt(l l l) and CO/Na(0.2 ML)/Pt(lll) [7]. Both C and O K-edge spectra reveal that the o*

resonance appears at a lower energy in the presence of Na than when Na is absent, implying an increase of the C-O distance owing to the presence of Na. By use of Fig. 5-6, the C-O

distance is estimated to be 1.15+0.03 A in CO/Pt(ll l) and 1.27+0.06 A in CO/Na/Pt(lll).

These remarks indicate that the electron back donation from the substrate to the CO 2~*

antibonding orbital is enhanced in Na coadsorption, resulting in the weakening and

elongation of the C-O bond. Correspondingly, the ionization threshold measured by XPS is

lowered and the 2Jr* intensity is reduced because of a greater amount of charge transfer from

the substrate to the 2Jr* orbitals.

The O-O bond distance of chemisorbed 02 molecules on several metal surfaces such as

P t ( l l l ) [8,9], Ag(ll0) [9] and Cu(100) [10] has been determined by O K-edge NEXAFS.

Although the O-O distance is not perturbed in the physisorbed states compared to the gas-

phase distance, the chemisorbed oxygen exhibits significant elongation of the O-O bond:

i.lJ / ILl . J

- n.n I -

"(~ t o,0 fl/ ,

o o:: �9 ! , , t , I , t T t I t I t t ! t t , ,

280 290 300 310 320

' ( h ' l ' ' - . ' ' I . . . . I . . . . I " ' '

I

I . I

~ I , -

o t h, i 0 .9 W ' [~ A B

I r , I , , t t I , ~ , , I , t t , i , t 530 540 550 560

PHOTON ENERGY (eV )

Fig. 5-7. C- and O K-edge NEXAFS

spectra of CO/Pt ( l l l ) and CO/Na/

Pt ( l l l ) [7]. Peaks A and B are respec-

tively assigned to the n* and o* reso-

nances. The o* resonance energy is

shifted to the lower energy side because

of the Na coadsorption, implying the

elongation of the C-O bond.

Page 328: Analytical Spectroscopy Library_VOL 7

319

1.37+0.03 A, in Pt(111), 1.47+0.03 A for Ag(110) and 1.52+0.03 A, for Cu(100), compared to the gaseous, solid and physisorbed length of 1.21 A,. These results indicate that the amount of

charge transfer from the substrate to oxygen ~* orbitals is dependent on the substrate; Cu

interacts with 02 more strongly than Ag and Pt.

5.2.5. Determination of adsorption geometry by SEXAFS

The principles of EXAFS are given in the preceding chapter. The polarization dependent

EXAFS function z(k) ~ is the wave number of emitted photoelectrons) can be written as

* [ ~ ' i l l - 4 C 3 i k 3 1 ( 5 - 4 ) z(k) = Z Ni Fi (k) exp -2C9 i k2 - sin 2kR i + q~i (k) -~ i k1~'2 "'

where Fi(k) and r~i(k) are respectively the back-scattering amplitude and total phase shift of

the i-th shell with the averaged distance of R i and the effective coordination number Ni*, and

Ai is the mean free path of the photoelectron. C2,i and C3,i are the second (EXAFS Debye-

Waller factor) and third cumulant moments, which describe respectively the width and asymmetry of the distribution function of the i-th shell. Higher cumulant moments are

neglected in this formula and the intrinsic damping factor is implicitly included in El(k). The

effective coordination number Ni* is given as a function of angle 6 between the electric field

vector of the incident X-rays and the bond direction. In the case of K-shell (S)EXAFS, Ni* is

expressed as

Ni Ni* = 3~] COS200 �9 (5-5)

i=1

where ~3- is the angle for thej-th bond in the i-th shell, and Ni is the true coordination number

of the i-th shell. For the sample with higher than threefold symmetry, the polar angle 09 of the bond can be given by a formula similar to Eqn.(5-2):

, [ 1 ] 3 N i = NiP 1+~(3cos 2 ~-~1)(3cos 2 0 -1 ) + ~ N i ( 1 - P ) s i n 2 o9 (5-6)

Let us consider a simple application. The polarization dependent S K-edge SEXAFS

spectra of c(2x2)S/Ni(100) were measured [11], and N*(O) and R (0), -where 0 is the polar

angle of the electric field vector of the incident X-rays, for the first nearest neighbour S-Ni

coordination were determined experimentally in a similar manner to the bulk EXAFS analysis. The Fourier transforms of the SEXAFS spectra are shown in Fig. 5-8. The value of

R(O) is found to be independent of 0, implying the presence of the single S-Ni shell for the

first nearest neighbour. The numerical results of N*(O) and its ratios are given in Table 5-2.

Next, one can calculate N*(O) for typical adsorption geometries such as hollow, bridge and

atop sites, as shown in Fig. 5-9, by use of the experimentally-determined S-Ni distance R of

2.19+0.03 ,&. Comparing the calculated and experimental values, one can immediately

Page 329: Analytical Spectroscopy Library_VOL 7

320

conclude that the adsorption site of S atoms is fourfold hollow. It should be noted that the

polarization dependent measurements are necessary for determining the adsorption geometry

precisely because the error bars of the N* ratio are much smaller than those of the absolute

N* values.

Table 5-2. Experimental and calculated effective coordination numbers N* and their

ratios for the first nearest neighbor S-Ni pair of c(2x2)S/Ni(100).

0[ ~ Experimental Calculated*

hollow bridge atop

10/90 1.16__+0.15 1.09 4.08 o o

10/45 1.15-t-0.15 1.04 1.58 1.94 10 4.42+1.04 4.22 3.96 2.91 45 3.77+0.79 4.06 2.51 1.50 90 3.94__+0.75 3.88 0.97 0.00

* The S-Ni distance is assumed to be 2.19 A. Although the original Ref. [11] gives R=2.23

and hence slightly different N* and its ratios, the present authors have recalculated these

values because recently corrected S-Ni phase shift is more reliable and the S-Ni distance of

2.19 ,~ is in complete agreement with that given by LEED. . ; i I ~ I , ~ , ~ I I I t I I J ~ I 1 _ 1 2 0 0

: ~-/l', ~(~x~)soo N,(,oo) :1 ,~o- I l l ' o,~o" -'1,~o

" I I

I O 0 .:- I l - ' 00

50 i 50

_

200 :/TI, o: ,o" " t I I~ t 50

I I l l t 50 I t

"li t I tOO tOO .

0 0 0 2 4 6 8 0

--t--l--r-;-- i i t e-45" i

I I! NiS Powder Somple I / I t ( lOlOI yield ) '/l I i i t

2 4 6

DISTANCE (~)

Fig. 5-8. Fourier transforms of polarization-dependent S K-edge SEXAFS spectra of

c(2x2)S/Ni(100) and also that of nickel sulphide as a standard [11]. The dominant peaks for

all the spectra are ascribed to the first nearest neighbour S-Ni shell.

Page 330: Analytical Spectroscopy Library_VOL 7

321

( (

hollow bridge atop

Fig. 5-9. Typical adsorption geometries such as fourfold hollow, bridge and atop sites of S on Ni(100). The adsorption site gives the different polarization dependence of an effective

coordination number N*.

5.2.6. Surface reconstruction by SEXAFS

Surface reconstructions have been reported for many kinds of adsorbate-substrate systems.

The adsorption of S on Ni(111) provides a stable and clear LEED pattern of so-called

(5~/3x2), while simple states such as p(2x2) (1/4 ML) and (~/3x~/3)R30* (1/3 ML) are

unstable, even at room temperature. The polarization dependent S K-edge SEXAFS of

(5~/3x2) S/Ni (111) was measured [ 12], and drastic reconstruction of the Ni (111) substrate

surface was elucidated. By use of the polarization dependence of N*(O) for the first nearest

neighbour S-Ni shell, the averaged bond angle co (see Eqn. (5-6)) is determined to be 57+_5*,

which is much larger than the values for simple adsorption geometries such as threefold

hollow (co--40.4"), bridge (34.1") and atop (0.0") sites. As a structure model which satisfies

the SEXAFS results and also the LEED pattern, a pseudo-c(2x2)S/Ni(100) surface is

proposed, which is depicted in Fig. 5-10.

[171 2.492 A

L. J

2.697A= ~ x 2.492

Fig. 5-10. A surface reconstruction model of so called (5~/3x2)S/Ni(lll) [12]. The surface

loses the threefold symmetry of the original Ni(111) plane and is reconstructed into the

pseudo-c(2x2)S/Ni(100) with a nearly fourfold symmetry.

Page 331: Analytical Spectroscopy Library_VOL 7

322

The calculated co for this model is 55.8 ~ , which is in excellent agreement with the

experimental value of 57 ~ Although the (5~/3x2) unit mesh is quite large, all S atoms adsorb

on the equivalent hollow sites of the drastically reconstructed surface, which loses the

threefold axis of the original Ni(111) surface and exhibits nearly fourfold symmetry.

The p4g(2x2)N/Ni(100) system shows rotational reconstruction of the Ni (100) top layer

[13]. The N atom is found to adsorb on the fourfold hollow site with a bond distance between

N and the surface-layer Ni of 1.88+_0.03 ,~, also interacting with the second-layer Ni with a

distance of 1.85+_0.03 .~. This result requires a squeezed square of the four Ni atoms at the

top layer, as shown in Fig. 5-11(b). The polarization dependence of the N* ratio also agrees

with this, and gives a lateral displacement (see Fig. 5-11) of 0.68+_0.10 ,~. This result is quite

interesting as a comparison with the c(2x2)O/Ni(100) which exhibits no surface

reconstruction. The O atoms are located on the fourfold hollow site on the unreconstructed

surface with an O-Ni distance of 1.93+_0.02 ,~ and have no direct bonding with the second

layer Ni. The difference in the chemical bonding between N and O with Ni can be linked to

the occupation of 2p orbitals. Other surface reconstructions have been characterized by

SEXAFS for (~/7x~/7)R19*S/Cu(lll)[14], (~/17x~/17)R14~ [15], (2xl)O/Ni(ll0)

[16], (2xl)O/Cu(l l0) [17], (~/2x2~/2)R45~ [18] and so forth.

�9 e oQe

�9 <.im

9 O ---tl00)

(b) t o p view

Fig. 5-11. A surface reconstruction

model of p4g(2x2)N/Ni(100) (lower

panel) compared to the non-reconst-

ructed c(2x2)O/Ni(100) surface (upper)

[13]. The surface Ni atom is squeezed

maintaining a fourfold hollow adsorp-

tion geometry for nitrogen. The N atom

is also bonded with the second layer Ni

atom.

Page 332: Analytical Spectroscopy Library_VOL 7

323

5.2.7. Adsorption of molecules studied by NEXAFS and SEXAFS

As mentioned in Section 5.2.1, applications of SEXAFS to molecular adsorption are quite

important. Thiophenol (C6HsSH) adsorption on Ni(100) has been investigated by means of S

K-edge SEXAFS and NEXAFS [19]. Multilayer thiophenol is deposited on the surface

below 180 K, and most molecules desorb at that temperature. A chemisorbed species (0.17

ML) remains on the surface around 200 K, which was structurally studied in detail. Figure 5-

12 shows polarization dependent S K-edge NEXAFS spectra of this stage. Peak a

corresponds to the S ls-to-o*(S-C) transition, which is emphasized at grazing incidence and

suppressed at normal incidence. This implies that the S-C bond is nearly vertical to the

surface plane, and its polar angle to is calculated to be 19_+8 ~ Peak b is associated with the S-

o o

o o

o t . . .

o

LL

e ~ - - - - - - ~ 9 0 "

r / ' / - r ' ' ~ ' ~ 75"

! I 2/.60 2/.70 2480

60"

3o"

15

2/.90 2500 2510 Photon Energy(eV)

Fig. 5-12. Polarization dependent S K-

edge NEXAFS spectra of thiophenol

(C6HsSH) adsorbed on Ni(100)

annealed at 200 K [19]. The adsorbed species is identified as C6H5S-. Peaks

a and b correspond to the transitions of the o*(S-C) resonance and the S-Ni

bondings, respectively. The polarization

dependence of the o*(S-C) resonance indicates the nearly vertical orientation

of the S-C bond (to=19~

Page 333: Analytical Spectroscopy Library_VOL 7

324

E k-

O

E c0 L. �9

90

k_ �9 z 5 O

l J _

I t ! !

0 1 2 3 4 5 6 D i s tonce (~,)

Fig. 5-13. Fourier transforms of the polarization dependent S K-edge SEXAFS spectra of

thiophenol adsorbed on Ni(100) annealed at 200 K [19]. The dominant peak is assigned to

the first nearest neighbour S-Ni shell.

2.21

2.49/k

Fig. 5-14. Schematic surface structure of thiophenolate (C6H5S-) adsorbed on Ni(100)

determined by S K-edge NEXAFS and SEXAFS [19].

Page 334: Analytical Spectroscopy Library_VOL 7

325

Ni bonding, which also appears in the spectrum of atomic S on Ni(100). Taking account of the configuration of the S-C bond, the adsorbed species is identified as thiophenolate (C6H5S--). The Fourier transforms of the S K-edge SEXAFS are depicted in Fig. 5-13. The dominant contribution to all the incident angles is attributed to the first nearest neighbour S- Ni shell, and the shoulder on the shorter distance side (~ 1.4/k) which is enhanced in grazing incidence corresponds to the S-C coordination. A similar analysis to that of c(2x2)S/Ni(100)

shows that S locates at the fourfold hollow site with an S-Ni distance of 2.21_+0.03 ,~, which is nearly the same, or a little longer than, that of c(2x2)S/Ni(100), and that the S-C distance

is 1.84+0.05 A. A schematic view of the thiophenolate adsorption is depicted in Fig. 5-14. SEXAFS studies on molecular adsorption have also been reported for CH3S/Cu(111) [20], CS~/Ni(100) [21], O2/Cu(100) [10] and other systems.

5.2.8. Temperature dependence of SEXAFS

As we have discussed in this section, SEXAFS is regarded as a tool of surface structure analysis. SEXAFS contains, however, further information on dynamic properties. The EXAFS formula given in Eqn. (5-4) includes C2 and C3, which are apparently temperature dependent. By use of a simple anharmonic pair potential for the probed shell as:

1 V(r) = ~ a ( r - r 0 )2 -fi(r-ro )3 (5-7)

C2=<(r-r0)2> and Ca=<(r--r0)3>, where < > denotes the thermal average, can be given through a quantum mechanical calculation:

lch2/1/2 co th (2~) (5-8) c2=2t, , ) and

3coth2( ) 11 s9, c3= ,L2 When one measures temperature-dependent SEXAFS, the differences of C2 and C3 are evaluated with high accuracy since other parameters such as N*, AE0, (correction of edge energy), F(k), ~(k) and A(k) are temperature independent and the only parameters to be fitted

are R, C2 and C3. Once the differences in C2 and C3 are known, the cubic potential V(r) is determined through Eqns. (5-7)-(5-9), and important dynamical parameters such as (Einstein)

characteristic temperature OE and thermal expansion coefficient at are immediately obtained. Systematic temperature-dependent studies have been carried out for p4g(2x2)N/Ni(100) [22,18,24], c(2x2)N/Cu(100) [23], c(2x2)O/Ni(100) [24], pseudo-c(2x2)O/Cu(100) [18],

(~2x2~/2)R45*O/Cu(100) [18] and c(2x2)S/Ni(100) [25]. Table 5-3 summarizes the values of

OE and at(300 K). One can find in this Table much information on the strength and

Page 335: Analytical Spectroscopy Library_VOL 7

326

anharmonicity of the chemical bonds for many kinds of atom pairs, including their

anisotropy. Although one might think that vertical motion would be larger and more

anharmonic at the surface, the results given for p4g(2x2)N/Ni(100) and c(2x2)S/Ni(ll0)

contradict the simple concept, and it can be concluded that the shorter the bond distance

becomes the higher the characteristic temperature is, and the more harmonic is the potential.

It is interesting to note that the potential is more harmonic in the reconstructed surfaces than

in the unreconstructed ones, indicating that more stable chemical bonds between adsorbate

and substrate require the reconstruction of the surfaces.

Table 5-3. The equilibrium distance r0, the Einstein characteristic temperature @E and the

thermal expansion coefficient at(300 K) for several adsorbate-substrate systems determined

by temperature dependent SEXAFS analysis.

System Reconst. Bond ro[,~] OE[K] oil [K -1] Ref.

p4g(2x2)N/Ni(100) yes N-Ni(2) 1.85 690 0.9x10 -5 22,18,24

N-Ni(1) 1.88 557 1.4x10 -5

c(2x2)N/Cu(100) no N-Cu 1.85 414 2.2x10 -5 23

c(2x2)O/Ni(100) no O-Ni 1.93 414 2.1x10 -5 22,18,24

"c(2x2)"O/Cu(100) no O-Cu 1.86 364 2.5x10 -5 22,18,24

(~2x2~/2)R45*O/ yes O-Cu(1) 1.84 667 0.9x10 -5 18

/Cu(100) O-Cu(2) 2.05 260 4.2x10 -5 18

c(2x2)S/Ni(100) no S-Ni(1) 2.19 328 2.7x10 -5 25

S-Ni(2) 3.16 203 3.0x10 -5

c(2x2)S/Ni(110) no S-Ni(2) 2.19 386 0.6x10 -5 25

S-Ni(1) 2.28 330 2.6x10 -5

For "bond" notation, "N-Ni(2)" denotes the bond between adsorbate N and the second layer

Ni, and for "reconst.", "yes" means reconstructed surface while "no" means unreconstructed

surfaces. "c(2x2)"O/Cu(100) provides only diffuse c(2x2) LEED patterns. Some values were

calculated by the present authors.

Page 336: Analytical Spectroscopy Library_VOL 7

327

5.3. SURFACE X-RAY DIFFRACTION

5.3.1. Introduction

X-ray diffraction has been used for many years for the structural analysis of crystalline

materials. One of the advantages of this technique is that a kinematical (single scattering)

approach can be used for data analysis. In an other sense, it means the weak interaction of X-

rays with materials, and the detection of surface diffraction is very difficult because the

number of atoms on surfaces is extremely small. Accordingly, an intense X-ray source such

as synchrotron radiation is indispensable for performing the X-ray diffraction experiments on

solid st~rfaces. In fact, the number of surface X-ray diffraction experiments rapidly increased

with the increasing availability of synchrotron radiation. For details one should refer to the

recent review paper by Feidenhans'l [26].

5.3.2. Principle of the surface diffraction

The principle of the surface diffraction is quite similar to that of LEED. The electric

vector Ee of the scattered X-ray observed at a distance R from the sample can be written as,

e 2 Ee = E0 p1/2~_,fj (q)eiq.R (5-10)

mc2R J

where j~.(q) is the form factor directly related to the electron density, q the momentum

transfer, e the charge of electrons, m the mass of electrons, and c the light velocity. P is the

polarization factor. The value of P=I if E0 is normal to the scattering plane, and P=cos220B when E0 is in the scattering plane. If atoms are arranged in a two-dimensional lattice with

vectors a l and a2, the position of each atom is given as

Rj = jlal + j2a 2 + rj (5-11)

where rj describes the atomic position measured from the origin of the unit cell. The

amplitude of the scattered electric vector is given by,

e2 N 1-1N 2-1 Ee = E0 mc2R p1/2F(q ) ~ E eiq'(jlal +j2a2) (5-12)

Jl J2 where N1 and N2 are extensions of two dimensional crystal lattice and F(q) is the structure factor summed over the unit cell:

F(q) = ~ , f j (q)e -Bj (q/4Z)eiq'rj (5-13)

J

Page 337: Analytical Spectroscopy Library_VOL 7

328

where Bj represents the thermal vibration. Since the intensity l(q) of the scattered wave is

equal to the square of Ee, l(q) is given as

e 4 sin2/2Nlq "al)s in2/2N2q "a2 )

I(q) =l~ m2c4R21~F(q)[2 sin2(2 q.al)sin211q.a2 ) (5-14)

l(q) has peaks when two-dimensional Laue conditions are fulfilled:

q . a I = 2Jrh and q .a 2 = 2xk (5-15)

where h and k are the integers. This means that the component parallel to the surface q//is

the point of two-dimensional reciprocal lattice. Then the peak intensity at hk is

iPhkeak e 4 (q) = 10 m2c4R2 PlFhk (q)I2N12N22 (5-16)

where

Fhk (qz ) = ~ f j (q) e2xi(hxj+kyj)+iq~zj (5-17)

J Note Fhk assumes an intensity continuously along the z direction called a reciprocal rod like

LEED pattern. Accordingly, the diffraction from the surface lattice gives the rod profile

normal to the surface. It is important to separate this from the normal spot-like diffraction from the bulk. The diffraction along the Bragg rod arises from the surface lattice point and, if it is large enough compared with the thermal diffraction from the bulk, one can determine the positions of surface atoms from the profiles of the Bragg rod. Moreover, when the surface is

reconstructed, fractional order Bragg rods would appear, which do not involve any strong

bulk Bragg peaks. In order to determine the surface structure, we perform a surface-projected

Patterson analysis, which gives the relative position of each atom on the surface.

The important point for obtaining good data suitable for the analysis is to reduce the

thermal diffuse scattering from the bulk to a level where the surface signal can be observed

with reasonable accuracy. This can be achieved by adopting the glancing incidence geometry

[27,28], as shown schematically in Fig. 5-15. When the incident angle oci is smaller than the

critical angle ac, the penetration depth of the X-rays is reduced to a few tens of A and total

external reflection occurs. Typical values for the critical angle are in the range of 0.2*-0.6*

for X-ray wavelengths around 1.5 ,~.. Consequently, background scattering such as thermal

diffuse scattering from the bulk is greatly suppressed. Fig. 5-16 shows the transmission

coefficient Ti vs. the incident angle [26]. The value of Ti is defined by the ratio of the

amplitude of the reflected or evanescent waves and that of the X-ray incident at the surface.

The maximum transmission coefficient is at ai=ac. This means that the amplitude of the

Page 338: Analytical Spectroscopy Library_VOL 7

329

evanescent wave at the surface is twice as large as that of the incident X-rays at the critical

angle because of the constructive interference between the incident and the reflected X-rays

Therefore, performing a surface diffraction experiment with the incident angle equal to the

critical angle greatly enhances the surface signal. The situation is similar to the emitted X-

rays. If the exit angle ae is less than ac, the X-rays scattered from the bulk cannot come out.

Only the X-ray from the area with the penetration depth A from the surface can be detected.

q

* ' : ~ " : " "" "i -. , ; , ~ �9 . . . . '~

Fig. 5-15. Glancing angle geometry. The X-ray impinges on the surface with the wave

vector kin at the angle ai. Diffracted X-rays exit with kout at the angle ae. 0 is the diffraction

angle and q is the momentum transfer.

z ~ - O ~ i ~ I

3.0

~ 2.0

o 1.0

0.0 , l , I

0.0 1.0 2.0 cti/Ctc

I

m

_

m

o =

, 1

3.0

Fig. 5-16. Transmission coefficient IT/I 2 as a function of the incident angle ai for InSb(111)

with the wavevector of 1.2 ,~ and the critical angle ac of 0.25 ~ [26].

Page 339: Analytical Spectroscopy Library_VOL 7

330

When the incident angle ai and exit angle ae are both set at the critical angle, the surface sensitivity is doubly enhanced. The structure information normal to the surface can be

obtained by measuring F(q) with various exit angles changing q along the Bragg rods.

5.3.3. Experimental System

In order to analyze the surface structure it is necessary to construct an UHV environment

for preparing and maintaining clean and well-defined surfaces. Moreover, it is important to

carry out other surface characterizations in addition to the X-ray diffraction. Several types of

apparatus for surface X-ray diffraction experiments have been developed [29,30]. A typical example [31,32] is shown in Fig.5-17. Many required tools for sample preparations and

characterizations are assembled in the diffractometer. A sample manipulator is surrounded by

a 360~ Be window, through which the incident X-rays can enter and the scattered X-

rays exit to the detector. Four kinds of rotation are possible in this apparatus: 0 (incident

angle), 20 (scattering angle), a (the incident angle by tilting the whole system), and af

(detector moves out of plane to detect diffractions of different qz). Because the X-ray is polarized horizontally, the vertical scattering geometry is better. In

this case the polarization factor P is unity. There are two types of scanning method. One is

the m-scan and the other is rod-scan. The co scan involves the scanning of crystal around the

axis normal to the scattering plane spanned by kin and kou t and the detector is fixed. The

diffraction occurs when the momentum transfer q(= kin-kout) is intersecting the Ewald

sphere. In order to get the three dimensional information of the surface one has to carry out

d e t e c t o ~ 20

, ,

" I

d r i v e ~ 0 drive

J

Fig. 5-17. A sketch of an X-ray diffractometer with the UHV chamber

[31]. The sample is lo-

cated inside the cham- ber. The whole chamber

is rotated around three

axes (0, 20, a ) . The

detector moves out of the

surface plane. The cham-

ber is evacuated by ion pump which is connected

to the chamber through

the diffractometer. It also

contains the LEED, ion

sputtering gun and metal

evaporator.

Page 340: Analytical Spectroscopy Library_VOL 7

a

out-of-plane measurements called rod scan to get the Fhk(q) with various oz.

5.3.4. Application to InSb(111) surface structure

The III-V semiconductors, such as InSb have a zinc-blende type crystal structure. There

are two possible planes; one consists entirely of Group III atoms (In) and the other of Group

V atoms (Sb). The Sb plane shows a 3x3 surface structure and the In plane shows a 2x2

surface structure. An X-ray diffraction measurement was carried out for this system and the

f A / J / w

Fig. 5-18. (a) Contour map of the Patterson function for (2x2)InSb(111). (b) Interatomic

vectors as derived from the vectors 1 to 4 in (c). (c) Undistorted and the distorted hexagonal

arrangement of the Ir iSh(i l l ) surface. The open and closed circles indicate the

0 U n r e c o n s t r u c t e d

�9 R e c o n s t r u c t e d

.1

3 2 3 C

unreconstruced and reconstructed atoms, respectively [33].

.C} _I I

/ /

J ( I ,$ I

i

331

t. /

/I /

I

' I

I I

; / J

Insb(lll)

Fig 5-19. Projected atom positions of unreconstructed surface (a) and (2x2)InSb(lll)

surface (b) determined by surface X-ray diffraction. The open and filled circles respectively

represent Sb and In atoms [33].

Page 341: Analytical Spectroscopy Library_VOL 7

332

half order reconstructed spots were recorded [33]. The Patterson function did not agree with

that expected from the undistorted structure as shown in Figs. 5-18 (a) and (b). The surface

was reconstructed as shown in Fig. 5-18 (c).

Further refinements of the model structure were made to reproduce the observed

IFhk(Obs)l 2 and the reconstructed structure shown in Fig. 5-19 (b) was proposed, where the

one element moves inward by 0.24 ,~ and the other outward by 0.48 A, keeping the 3m

symmetry. It is impossible to discriminate between In and Sb because the scattering powers

of In (Z--49) and Sb (Z-51) are almost the same. The studies of similar systems, GaSh and

GaAs made possible to determine that the inward displaced atoms were In and the outward

displaced atoms were Sb [34].

The driving force of the above reconstruction is orbital rehybridization. The Group III

atom (In) at the surface prefers a planar sp 2 geometry with a bond angle of 60 ~ while the

Group V atom (Sb) favors an s2p 3 configuration with the p-type bonding which prefers the

bond angle of 90 ~ . As can be seen in Fig. 5-19, the angle around In is nearly 60 ~ , though that

around Sb is more obtuse. The rod scans were performed and showed that the surface

structure of In and Sb was almost flat within --0.2 ,~.

5.3.5. Wavelength scanning X-ray diffraction

As with the I-V curves of LEED, the wavelength scanning with X-rays gives information

about qz. Takahashi et al. applied this method to the structure analysis of (~3x~/3)Ag/Si(111)

[35-37]. The measurement was carried out with the geometry of equal incidence and exit

angles, as shown schematically in Fig. 5-20. In this arrangement, the scattering vector q is

perpendicular to the surface i.e., parallel to the qz which involves the out-of-plane structure.

etector

Surface" normal

, , ' \ , , ' , / \

hv

.i' "- ./"_. .i'

Fig. 5-20. Experimental geometry of the wavelength scanning mode.

Page 342: Analytical Spectroscopy Library_VOL 7

333

Fig. 5-21 shows the intensity change of the (00) spot as a function of the wavelength of X-

rays. The huge peaks correspond to the bulk Bragg diffractions. It should be noted that the regions between the strong Bragg diffraction peaks are not symmetrical. This originates from

the interference between diffracted waves of the surface Ag layer and bulk Si substrate. By

comparison with the calculated intensity profiles, it was concluded that the Ag atoms were

located at 2.9 A above the unreconstructed Si first layer. A similar wavelength-scanning

measurement was also carried out in an asymmetrical arrangement with unequal incidence

and exit angles. This provides information on the in-plane structure. By combining these

results, the authors proposed a possible model for Ag adsorbed structure on Si(111) surface

as shown in Fig. 5-22.

l l /, >-

3 ~o Z LU I-- Z

2

I

0 1.0

o 333 O 0 _

1.2 1.~ 1.6 1.a ?.o 2.? 2.~ ?.~ W A V E L E N G T H (A)

Fig. 5-21. The intensity profile of the (00) spot as a function of the wavelength of X-rays.

Large peaks correspond to the bulk diffractions [36].

4g

0 lsl Si o 2nd Si t 112] ---,--

o o oo 0 0 o�9 o�9 O oQOdoqOGoqO Oo�9 �9 �9 �9169 c O o--~0--.. .. < D o o %-Q--.o, �9 o o

~ . x ~ ' I<D-"~ o ' ' o t . . . . . . . o " $ _ 6 ~ ( - h o o ( - h o o(~." ~(~ o o

o o x ox,_6 o"-6 o x"Jo Xo ~"1o o

Ca) (b) Fig. 5-22. The adsorption site of the Ag atoms with the reconstructed Si crystal [35]. The

large open circle is Ag. The middle and small circles indicate the 1st and 2nd Si atoms,

respectively. Good fits were obtained for sites (a) and (b).

Page 343: Analytical Spectroscopy Library_VOL 7

334

5.4. X-RAY STANDING WAVE METHOD

5.4.1. Introduction

The X-ray standing wave technique gives the height of the adsorbate atoms relative to the

X-ray diffracted plane. This provides information complementary to SEXAFS, which gives

the local atomic structure around an absorbing atom. Until the early 1980s it was applicable

only to a perfect single crystal with a very low mosaicity like Si and Ge [38-42]. However,

since the X-ray standing wave was found in the soft X-ray regions, it became one of the most

powerful surface structure analysis techniques. In this section we will describe principles and applications of the X-ray standing wave method, mainly focusing on the works in the soft X- ray region.

5.4.2. Principle of X-ray standing wave

The dynamical theory of X-ray diffractions predicts that a well-defined X-ray standing wave is generated when an X-ray plane wave is Bragg diffracted from a thick and perfect

single crystal in the Bragg case geometry [38]. In this geometry, the interference between

incident and scattered X-rays creates a standing wave normal to the (hkl) diffracted plane with the same periodicity, as illustrated in Fig. 5-23.

incident X-ray diffracted X-ray

~lalding wave

9<--~176176 ~ ~ 1 7 6 ~ ~ ( ! o ~ o ~ o--..9~o~o p o~o~ o ~ ~ o ~ o ~ o ~ o (

) ( )

o~--o~o-"o-...9~ o ~o-'-m~o ( 0% o o ~ o 0 " 6 )

l

amplitude intensity

P

Fig. 5-23. Schematic picture of the X-ray standing wave pattern at a Bragg diffraction

condition by interference between the incident and diffracted beams.

Page 344: Analytical Spectroscopy Library_VOL 7

335

The amplitude of the X-ray electric field in the crystal, E(r), is expressed by:

E(r) - E 0 exp(- ik 0 �9 r) + n n exp(- ik n �9 r) (5-18)

where E0 and EH are the incident and diffracted X-ray fields, and k0 and kH are the wave vectors of the incident and diffracted X-ray beams. The intensity I of the X-ray field at the

distance ziz from the crystal plane whose spacing is dH is expressed as:

I /I 2 l= lE( r ) l 2 = l + ( E H / e x p ( 2xiAz

IE01 ,n0) dH (5-19)

Eqn. (5-19) shows that the X-ray field varies in a sinusoidal way with the periodicity of dH.

The EH/E0 is expressed by the X-ray structure factors FH and F~ for the H and H reflections and the displacement parameter W:

EH _(FHI1/2[W++_(W2_I)] (5-20)

The intensity of the standing wave field changes with the incident photon angle and energy.

For a Bragg angle OB far from 90 ~ W is linearly dependent on the deviation AO from the

Bragg angle:

W = AOsin(2OB) + FF~ (5-21) [P~(FHF~) 1/2

where P is the polarization factor just as in Section 5.3 and F is the function of the X-ray wavelength A, as expressed in Eqn. (5-22):

F = (5-22) 4r 2 JrV

with V the volume on the unit cell. By advancing the incident angle through the Bragg reflection, the equal-intensity plane of this standing wave moves in a continuous fashion in

the -q (=kH-k0) direction by one-half of a d spacing. On the lower-angle side, the nodal

planes of the standing wave field become close to the diffraction planes and at the higher-

angle side the antinodal planes become close to the diffracted planes. A characteristic profile

can be observed in the angular dependence of the X-ray absorption cross section of atoms

because of the drastic change in the interaction between the atoms and the standing wave field. The variation in the X-ray absorption cross section can be monitored using the X-ray

fluorescence or Auger electron yield [39-41]. Since Eqn. (5-19) contains the exp(-2xiAz/ds) term, the profile of the intensity depends on ziz as shown in Fig. 5-24.

Page 345: Analytical Spectroscopy Library_VOL 7

336

4.0

c- O :~ 3.0 EL k - 0 vl r'l o 2.0 r >

0

-~ 1.0 - - - - - - - - _ _ _ . _ _

0 I -2

1.0~,

I ! t I -1 0 1 2

Retative photon energies (eV)

Fig. 5-24. Schematic view of the X-ray standing wave profiles with various z3z. [57].

By analyzing the profile of the standing wave using Eqns. (5-19) and (5-20), zlz, the height

of an atom of interest, can be determined inside the crystal. Since the X-ray standing wave

extends over the perfect crystal region, the position of adsorbates on the surface of a perfect

crystal can be determined as for Br on Si(111) and on Ge(111) [43-46]. These experiments in

hard X-ray regions have been carried out mostly on perfect single crystals using a well-

collimated beam with a high-precision goniometer. On the other hand, in the soft X-ray region (1-4 keV), the Bragg conditions for most

single-crystal metals are fulfilled at 0B=90 ~ At 0//=90 ~ the Bragg reflection width (Darwin

width) is enormously broadened [47], relaxing the demanding requirement of a high degree

of crystalline perfection of the sample as a prerequisite to the application of the X-ray

standing wave method. As shown in Eqn. (5-20), the region of total reflections is limited to

the range of W between-1 and 1, which corresponds to a Darwin-angle width co. co is

approximately 1 minute of arc for Cu(111) with a 45 ~ incidence. Thus, the structural

imperfections such as mosaic structure in the crystal directly affect the standing wave

amplitude. On the other hand, in the normal-incidence case, where the Bragg angle is nearly

90 ~ co is enormously broadened. For example the Cu(111) reflection has co of as large as 2.9 ~

at 0B=90 *. As an usual mosaic spread of the single crystal is 0.2-0.5 ~ the standing wave can

be observed on the metal surface and it is applicable to the structure analysis of adsorbates on

metal surfaces [48-50]. If OB is close to 90 ~ W is no longer linear in A0. Instead, W is a

linear function of the energy deviation z~E from the Bragg condition:

W = -2(A~/E)sin2 0B + rFo (5-23)

II~(FrlF~) vz

Page 346: Analytical Spectroscopy Library_VOL 7

337

In the soft X-ray region the measurement of the standing wave is usually carded out with

the energy scan mode. Another advantage is that a high precision goniometer is not

necessary. In summary, the use of the normal incidence standing wave in the soft X-ray

region offers a much more convenient and powerful mehod for surface analysis.

5.4.3. Analysis of standing wave

In the practical analysis we have to take into account the coherence factor Fco which

reflects thermal and static fluctuations in z3z and Eqn. (5-19) should be rewritten as

l=]E(r)] 2

IEol

I i i = F 2 EH " l+Fco.EH.exp. + ( 1 - co) t, E0) t, dH E0

(5-24)

In addition, the standing wave profile is modified by the mosaic spread of substrate and the

energy resolution of incident photons. Thus the observed profile can be determined by the

four parameters; the energy width of the incident X-ray bE, the mosaicity of the substrate

crystal 60, the coherence factor, Fco, and Ziz. The first two parameters can be estimated from

the reflectivity measurements at various incident energies and angles since the observed

reflectivity is expressed via convolution of the Gaussian distribution functions G of incident

angle 0 and E [50]:

>.. I -- , , . - . ,

t./3 Z l . 2 W I,-- Z , , - - . ,

O W N , , . . - - ,

. g <1.0

o z

3510

;- o.o8 0.O4 A ~ 0.00 ~,

i ! 1

3530 3550 PHOTON ENERGY /eV

Fig. 5-25. Simulation of standing

wave profiles for the Ni(200)

Bragg reflection, z~z is changed

from 0.00 ,~ to 0.08 ,& [52].

Page 347: Analytical Spectroscopy Library_VOL 7

338

R(O,E) = ~~ R(O',E') . G((O'-O)/60) . G((E- E')/6E) d O'dE' (5-25)

A similar convolution is carried out on the intensity of the standing wave expressed by Eqn.

(5-24). Therefore the curve fitting analysis is carried out to obtain the best fit values of ziz

and Fco. In the case of adsorption on a metal single crystal, Fco is usually 100 %. As an

example, simulated results for the Ni(200) standing wave from c(2x2)C1/Ni(100) is shown in

Fig. 5-25, which demonstrates the sensitivity to Zlz.

5.4.4. Experimental

The normal-incidence standing wave experiment is usually carried out in the energy scan

mode with the same configuration as the conventional surface EXAFS experiment. As

mentioned above, the energy spread reduces the intensity of the standing wave. Thus a high

energy resolution for the beamline is preferred with a well-collimated beam and a high

energy resolution monochromator. A standing-wave signal is monitored either by the Auger

electron yield or by the fluorescence yield emitted from the adsorbate. In general, Auger

electron signal has a large background of photoelectrons, as in surface EXAFS experiments.

Especially for the cases of S/Ni and C1/Ni, the Auger electrons from S or C1 appear on a huge

Ni 2p photoelectron peaks and the S/B ratio is less than 0.1. It is essential to remove the

background for the quantitative analysis of the standing wave profiles because the

background signal has its own standing wave profile. An adequate S/t3 ratio can be obtained

by the fluorescence yield method [51-53]. The fluorescence can be monitored by a gas-flow proportional counter. However, its energy resolution is not high enough (z1E/E is about 10 %)

and it is necessary to remove the background arising from the elastic scattering X-rays by the

independent measurement of the background X-rays if their energy appears near of the

fluorescence as in the cases of C1/Ni and S/Ni. Further improvements to remove the

scattering X-rays is possible by using an SSD (Solid State Detector), which provides spectra with an S/B ratio one order of magnitude higher than obtained using gas-flow proportional

counters [54].

In order to determine the mosaicity of crystals and the energy resolution of the

monochromator, it is necessary to measure reflectivity curves with different angles and

energies. In the soft X-ray standing wave method, normal incidence and normal reflection

occur. Thus the reflectivity (Rm) can be determined by measuring the electric current on a Cu

mesh in front of the sample using the following equation:

I m = I o (1 + R m T) (5-26)

Here, Im and I0 are the measured electric currents of the Cu mesh, with and without the

Bragg diffraction from the sample, and T is the transmission factor of the Cu mesh. Fig. 5-26

Page 348: Analytical Spectroscopy Library_VOL 7

339

40

v

I--- ,,_..

20 U IL l _J la.. I,.IJ or"

,.-. (a) /~ 90"

s ~ o~ . / > ......... calc. /

/

~ 20 U W _ J U. .

W

0 L - ~ . . ~ . . . . . . ." i

(b) 80 ~ ~ obs.

......... calc.

-6 0 6 RELATIVE PHOTON ENERGY /eV

Fig. 5-26. Reflectivity curves of the Ni

(200) Bragg reflection from Ni(100).

The solid and dotted lines represent the

observed and calculated data, respec-

tively [52].

shows the reflectivity of the Ni(200) diffraction, together with the calculated data. In this

case the mosaic spread was 0.3 ~ and the energy resolution was 2.0 eV [52].

5.4.5. Applicat ion of soft X-ray standing wave

(1) c(2x2)Cl/Ni(l O0)

The soft X-ray standing wave profile of c(2x2)C1/Ni(100) was investigated [52,55]. Fig. 5-27 shows the C1 Kcx fluorescence-yield and total current spectra of c(2x2)C1/Ni(100). The

standing wave profile from the C1 fluorescence yield provides information on the C1 position

with respect to the (200) diffraction plane. The total electron yield reflects the standing wave

field profile of the bulk Ni substrate. The fact that these two standing wave profiles resemble

each other indicates that the C1 atom is located near the virtual lattice plane of Ni(100).

Accurate analysis revealed that the vertical displacement of the C1 atom from the bulk

substrate is (0.04_+0.03) .~. The layer spacing between C1 and Ni is 1.80 ,~ since the Ni layer

spacing in the Ni(100) plane is 1.76 ,~. The surface EXAFS was also taken and it was found

that a C1 atom is located at the fourfold-hollow site with the C1--Ni bond distance of 2.38 A,

corresponding to a vertical layer spacing between C1 and Ni of 1.60 ,A. These two results

indicate that outward relaxation of the first Ni layer occurs and the first and second layer

spacing expands by 0.20 A as shown in Fig. 5-28. It was explained that the difference arises

from the expansion between the first and the second Ni layers from 1.76 .~ to 1.96 A. Similar

expansion of the first-to-second Ni layer spacing has been also reported by Sette et al. [56],

Page 349: Analytical Spectroscopy Library_VOL 7

340

1.30 > -

z w ~-I15 Z "

0 W U , . . - ,

_a 1.00 Q~ 0 Z

0.85 1.30 >-

z ILl I.-- Z 1 . 1 5

o LU N .a 1.00

0 Z

C I - K c ~

o b s .

...... calc.

I

T E Y

_ - - o b s .

. . . . . . c a l c . ::

0.85 I / I -10 0 10

RELATIVE PHOTON ENERGY /eV

Fig. 5-27. X-ray standing wave profiles of c(2x2)C1/Ni(100) [55]. (a) C1 Kct fluorescence yield and (b) Total electron yield. The latter corresponds to the profile from the bulk Ni. The solid and dotted lines are observed and calculated ones, respectively.

(a) (b )

o �9

0.04 A .2.38 A

1.76A ~ ~ ( ~ _ ' ~ . ~ . _ _ i~9~ ,&,

Fig. 5-28. The surface structure of c(2x2)C1/Ni(100) obtained both from the SEXAFS and soft X-ray standing wave methods [55]. (a) Plan view (from SEXAFS), (b) Side view (left

side from X-ray standing wave and right side from SEXAFS).

Page 350: Analytical Spectroscopy Library_VOL 7

341

from the analysis of higher coordination shells in the surface EXAFS.

The standing wave measurement can be performed using the same system as for surface

EXAFS measurement. The two techniques provide complementary information. Standing-

wave technique provides the vertical displacement of adsorbates relative to the substrate lattice. Surface EXAFS gives the bond distance and adsorption site. The relaxation of the

surface layer has been determined by standing wave analysis for c(2x2)C1/Cu(100) [53] and

(~/3x~/3)R30*C1/Cu(111) combined with surface EXAFS techniques [57].

(2) (V/3x~/3)R30~ l l) The C1 atom adsorbed on Ni( l l l ) forms a ({3x~/3)R30 ~ superstructure and the EXAFS

analysis has shown that C1 is located at a threefold hollow site with a C1-Ni distance of

2.33+0.02 ~, [58]. The standing wave analysis of C1 Ka fluorescence showed 3z=1.84 ~,,

corresponding well to that derived from surface EXAFS (1.83 ~,), indicating that little

surface relaxation occurs on (~/3x~/3)R30~ There are two adsorption sites on

Ni(111). One is thefcc site, which would be occupied by the next layer of Ni atoms in

building the bulk crystal, and the other is the hcp site where the C1 atoms sit directly above

the second-layer Ni atoms as shown in Fig. 5-29.

( T o p V i c w ]

( S i d e V i e w )

dlt i dl l i

1 . 97A '1.29 A

dill

dil l

# t

Cl

Ni (1)

Ni (2)

Ni (3)

Fig. 5-29. The surface structure

of (~/3• obtain-

ed from SEXAFS [58]. There are

two possible adsorption sites; fcc and hcp for the threefold hollow

site.

O fC:C 0 h c p

Page 351: Analytical Spectroscopy Library_VOL 7

342

b 09

o

1 . 4

1.0

(]1i) I ~ . ' . ! I . " "

I I " "

....... f . c . c . / ~: "

. . . . h . c . p . I " 7 -. o b s . ;

i I

i I

I

~ J | �9 . . ~

I "

I

~ s

I i , i , 1 [ ! I ! 1

3042 3 0 4 7 3 0 5 2

Photon energy (eV) Fig. 5-30. Comparison of the observed profile with model calculations for the (11 1)

standing wave profile of C1/Ni(111). The solid curve is the observed profile, while the

dashed and dotted curves are simulated curves for the hcp and)%c sites, respectively [59].

Although both sites have the same zlz with respect to the (111) diffraction, the zlz values of

these two sites are different with respect to the (11 1) diffraction as shown in Fig. 5-30. The

former site is located 1.97 .& above the (11 T) plane, while the latter site is 1.29 ,~. The

standing wave experiment using Ni (11 ]-) diffraction was carried out [59]. Fig. 5-30. shows

the standing wave profile of the (11 1) diffraction of C1/Ni(111). The calculated standing

wave profiles based on the fcc and hcp models had opposite energy dependencies. Thus a

definite site assignment is possible. As a result, the observed data are in good agreement with

the calculated ones based on thefcc model, indicating the C1 atom is located at thefcc site.

5.5 ARPEFS

5.5.1. Introduct ion

Photoemission is a phenomenon in which a bound electron is excited to a free electron

state by a photon with an energy higher than the ionization threshold. The photoemisson

spectra of valence and core levels reflect on the electronic strucutures of materials, and this

method has been widely used for surface analysis. In this section, we focus on another aspect

of the photoemission; its application to surface structure analysis. In core level photo-

Page 352: Analytical Spectroscopy Library_VOL 7

343

emission, the initial state is localized on a particular atom, and the final state consists of one

component emitted directly toward the detector and another component scattered off the

nearby atoms before travelling to the detector. If the system is an adsorbate-deposited single

crystal, we can expect interference between these components. This phenomenon, named

photoelecton diffraction, is regarded as a kind of LEED, in which the source of electrons is a

localized species. In fact, we can use the same algorithms developed in treating LEED and

obtain information about the local atomic structure around the photon-absorbing atom.

Photoelectron diffraction is carried out using two experimental modes. One is to observe

the diffraction pattern by varying the azimuthal and polar angle of a detector with fixed

photon energy. Liebsch [60] suggested the theoretical possibility of deriving the structural

information from the photoelectron diffraction. Farrel et al. [61] studied the adsorption

structure of (~/3x~/3)R30~ by the azimuthal photoelectron diffraction. They

concluded that the iodine atom sits on the threeholdfcc sites using comparison with

theoretical calculations. This technique can be conducted in a laboratory system and we shall

not describe it further.

In the other experimental mode, one detects the photoelectron as a function of the photon

energy with a fixed detector position. In the early 1980s, normal photoelectron diffraction

(NPD) was used to determine the vertical distance between the adsorbate and substrate layers

by measuring the modulation in intensity of the photoelectron in the normal direction.

Rosenblat et al. [62] studied the structure of c(2x2)O(ls)/Ni(100) and c(2x~2)S(2p)/Ni(100)

using this method. This technique was developed to ARPEFS (Angle Resolved Photo-

emission Extended Fine Structure) with the improvement of a theoretical treatment.

5.5.2. Principle of ARPEFS

The angle-resolved photoemission intensity varies with the photon energy, the interatomic distance between the photon-absorbing atom and its neighbouring atom, j , and three angles

ctj, flj, 7 as given in Fig. 5-34 [63]. aj is the angle between the bond vector rj and the

direction to the detector; ~. is the angle between the electric vector, E, and t).; and 7 is the

angle between E and the detector direction. In the region of the electron kinetic energies less

than a few hundred eV, one must treat the modulation using the multiple-scattering theory.

However, when the kinetic energy of the electron is large enough, the single-scattering

theory can reproduce the ARPEFS modulation quite well [64,65]. Although the final

quantitative analysis requires spherical-wave multiple-scattering theory, a single-scattering

plane wave analysis is useful to analyze the data before starting a more accurate but much

more laborious multiple scattering calculation. In the single scattering plane wave theory, a

modulation in the angle-resolved photoelectron intensity, z(k)(=(l(k)-lo)/lo), is given by,

Page 353: Analytical Spectroscopy Library_VOL 7

344

electron energy analyser

e - e -

primary X-ray .._ scattered

____~,y" E " P?OvtOelectr0n

\ \ -'---

0 0 0 0 0 0 0 0 0

primary photoelectron wave

Fig. 5-31. Experimental geometry of ARPEFS. The angle resolved electron energy

analyzer is along the vector labeled e-. See text for the angles, aj, flj and 7.

.l_cos.j . J cos r ~) ~(k, aj

exp[ rj(1-c~ A, a2 (1- c~

(5-27)

where k is the photoelectron wave number as an EXAFS. The scattering factor F(k,aj) is expressed as Eqn.(5-28):

~ (~, ~J) -l~ (~, ~J ~I ~'*~ ~''% (5-28)

Here, A. is the mean free path of a photoelectron and o) 2 is the mean square relative

displacement between the photoemitter and the scattering atom (Debye Waller like factor) owing to thermal and static disorder [65]. The Fourier transform of the cosinusoidal modulation of X(k) produces peaks in the radial distribution function, whose strengths are

proportional to IFj(k,a~.)l and whose positions are approximately equal to 1).(1-cosaj). Thus the information given by ARPEFS is similar to that from the surface EXAFS, but the Fourier trasnforms vary with the detector direction because of the cosa] term. Accordingly, if we analyze the ARPEFS spectra at several detector positions, a complete surface structure

should be obtained.

Page 354: Analytical Spectroscopy Library_VOL 7

345

5.5.3. Applications of ARPEFS

(1) (~/3 x~/3)R30"CI/Ni(l l l) C1 Is ARPEFS spectra of (~/3x~/3)R30~ in two geometries [111] and [110] were

recorded, which are shown in Fig. 5-32 [67]. In the [111] geometry, photoelectrons were

collected along the surface normal with the electric vector 35 ~ from the surface normal to the m

[112] direction. In the [110] geometry, the detector direction and the electric vector were

collinear along the [110] direction. The thin curve with dots is x(k) measured at 300 K and

the thicker curve is at 120 K. Enhancement of the oscillation is caused by the reduction in

thermal fluctuation at low temperature. In the Fourier transform of the data from the [110]

geometry, the strong peak at 4.6 .~ arose from the first-nearest Ni atom, as shown in Fig.

5.33. This peak only appears when C1 is located at the threefoldfcc site of Ni( l l l ) faces, as

shown in Fig. 5-29, which is in agreement with the standing wave experiment [59]. The CI-

Ni-Ni bonding lies nearly collinearly along the [110] direction. In this case the double

-scattering amplitude has a similar amplitude to that of the single scattering and these two

waves constructively interfere. The consequent wave is nearly as large as that expected from

a simple single scattering theory and produces a strong peak in the Fourier transform. Such

an enhancement is called a focusing effect. The peak appearing at 7.6 A and 9.1 ,i, in the

[110] direction could be attributed mainly to the scattering from the atoms in the second

Ni(ll0) plane and the peak at 2.5 ,i, is attributed to the other nearest neighbour atoms. The

Fourier peaks in the [111] geometry appear at different positions from those in the [110]

geometry. This is because the peak position depends not only on the interatomic distance but

also on the scattering angle aj. In the [111] geometry, the first peak arises from the three

nearest-neighbour Ni atoms and the second peak corresponds to the scattering from three

third-nearest neighbour atoms in the second Ni layer. Thus, by varying the detector direction,

the bondings with similar bond distances can be separated. Further quantitative analysis, to

obtain the accurate bond length, requires the multiple-scattering spherical-wave calculation

(MSSW) [60]. As a result, the separation between C1 and the first Ni layer and between C1

and the second Ni layer are 1.837 and 3.763 ~k, respectively and the C1-Ni distance is 2.332

,~. Consequently, the separation between the first and second Ni layers is 1.926 ,~ (5 %

contraction). The C1-Ni distance is in good agreement with the surface EXAFS data.

However, the above result for the relaxation between the first and second Ni layers

contradicts with the standing wave observation, which indicates no remarkable contraction,

as described in the previous section.

(2) c (2 x2) S/Ni (l O0) Fig. 5-34 shows the Fourier transform of x(k) of c(2• [68]. The detector was

located along normal to the surface and the polar angle of the electric vector of the light, E,

was 30*. The main peak at 6.2 A comes from the back-scattering from the second-layer Ni

atoms and the peak at 10 .A arises from the third-layer atoms [69]. In this geometry,

Page 355: Analytical Spectroscopy Library_VOL 7

346

0.,5

I J . . I

0.0

-o .5

0~5

I , j v ;,< o.0

•-t1.5

, - . . ~

I i r r i

O0 ZOO ~00 400 500

K i n e t i c E n e r g y E ( e V )

FiB. 5-32. ARPEF~q modulatior~s

z(k) of (~/3x'~13)R30°Cl/Ni(l 11 ) in

two geometries 1111] and [[10]

(Ref. [67]). Thick solid t[ne was

obtained at 120 K, ~nd tMn solid

line with dots at 300 K.

qJ

"O

,Cr,,

L _

O 1.4_

n ~

2 C O~ O

O

[11t)

o 5 10

path length di"fv.runce (~)

Fig. 5-33. Fourier ~pectra of AI<-

PEFS X(k) from (x/3x43)R30'CI/

Ni(11 l) I671. More intense curves

are the spoctra at 120 K, and ]es~

intense ones a~ those ,qt 300 K.

Page 356: Analytical Spectroscopy Library_VOL 7

347

the first peak should appear at 3.5 ,~, corresponding to the back-scattering from the first-

neighbour. However, positions of two peaks appearing below 5 ,~ does not correspond to

those of the expected structure. Barton et al. [69] showed that this abnormal behaviour in the

Fourier transform is caused by the generalized Ramsauer-Townsend effect. At a certain scattering angle, aj and kinetic energy, the scattering amplitude is weak and the phase

changes rapidly, almost by ~ tad. These abrupt changes in the amplitude function modify the

shape of the Fourier transforms. The S-Ni nearest neighbour distance could be derived from

the %(k) data, in the presence of the generalized Ramsauer-Townsend effect, using curved-

wave multiple-scattering calculations. The S-Ni distance was found to be 2.20 ,~ and the S-

Ni interplanar distance 1.32 ,~.

c(2X2)S/Ni(00 i)-[ 001 ]

. , - 4

k~

O

f

A u t o - r e g .

~

| -

l I

" Y L l 0 5 10

path length difference (~)

Fig. 5-34. Fourier transforms versus scattering path length differences of ARPEFS of c(2x2)S/Ni(100): (a) The conventional Fourier transform and (b) The auto-regressive linear prediction method [68].

(3) c (2 x2) S / N i (l l O)

S.W.Robey et al. investigated S/Ni(ll0) by means of ARPEFS [70]. They carried out experiments with different geometries and determined the S-Ni(first layer) distance of 2.31

and the S-Ni(second layer) one of 2.18 ,~, which corresponds well to the SEXAFS results [71,72].

Page 357: Analytical Spectroscopy Library_VOL 7

348

5.6. CONCLUSION

Synchrotron radiaton offers new and powerful techniques to surface science, with its high

intensity, linear polarization and energy tunability. One can get considerable information

about surface structures, such as the orientation of a molecule, adsorption sites, surface

reconstruction, and surface relaxation. The information on the surface strucuture had been

less easily and less accurately obtained before the advent of synchrotron radiation. Although

experiments are limited by the sharing of beam time at present, the experiments using

synchrotron radiation have increased year by year. We now have the third-generation

synchrotron source which will enable us to carry out new surface science experiments, such

as time- and space-resolved experiments and spin-polarized experiments. In the next ten

years, our knowledge on the surface of materials will be renewed by these new techniques.

REFERENCES

1. See for example, X-ray Absolption: Principles, Applications, Techniques of EXAFS SEXAFS and XANES, ed. D. C. Koningsberger and R. Prins, Wiley, New York, 1988.

2. See for example, J. StShr, NEXAFS Spectroscopy, Springer, Berlin, 1992.

3. J. St6hr and D. A. Outka, Plo~s. Rev., B36, 7891 (1987).

4. J. St6hr, R. Jaeger and J. J. Rehr, Plo,s. Rev. Lett., 51,821 (1983).

5. M. Bader, J. Hasse, K. H. Frank, A. Puschmann and A. Otto, Phys. Rev. Lett., 56, 1921

(1986). 6. F. Sette, J. St6hr and A. P. Hitchcock, J. Chem. Phys., 81, 4906 (1984).

7. F. Sette, J. StShr, E. B. Kollin, D. J. Dwyer, J. L. Robbins and A. L. Johnson, Phys. Rev. Lett., 54, 935 (1985).

8. W. Wurth, J. StShr, P. Feulner, X. Pan, K. R. Bauchspiess, Y. Baba, E. Hudel, G. Rocker

and D. Menzel, Phys. Rev. Lett., 65, 2426 (1990).

9. D.A. Outka, J. St6hr, W. Jark, P. Stevens, J. Solomon and R. J. Madix, Phys. Rev., B35,

4119 (1987). 10. D. Arvanitis, T. Yokoyama, T. Lederer, G. Comelli, M. Tischer and K. Baberschke, Jpn.

J. Appl. Plo, s., Suppl. 32-2, 371 (1993)" T. Yokoyama, D. Arvanitis, T. Lederer, M.

Tischer, L. Tr6ger, K. Baberschke and G. Comelli, to be published.

11. S. Brennan, J. StShr and R. Jaeger, Plo,s. Rev., B24, 4871 (1981);

S. Brennan, Ph.D. Thesis, Stanford University, 1982. 12. Y. Kitajima, T. Yokoyama, T. Ohta, M. Funabashi, N. Kosugi and H. Kuroda, Surf Sci.,

214, L261 (1989). 13. L. Wenzel, D. Arvanitis, W. Daum, H. H. Rotermund, J. St6hr, K. Baberschke and H.

Ibach, Phys. Rev., B36, 7689 (1987).

14. Y. Kitajima, Y. Takata, H. Sato, T. Yokoyama, T. Ohta and H. Kuroda, Jpn. J. Appl. Phys., Suppl. 32-2, 377 (1993);

Page 358: Analytical Spectroscopy Library_VOL 7

349

Y. Kitajima, T. Yokoyama, Y. Takata, M. Yoshiki, T. Ohta, M. Funabashi and H.

Kuroda, Phys. Script., 41,958 (1990). 15. Y. Kitajima, Y. Takata, T. Yokoyama, M. Yoshiki, M. Funabashi, T. Ohta and H.

Kuroda, X-ray AbsoJption Fine Structure, ed. S. S. Hasnain, p. 226, Ellis Horwood, 1991. 16. K. Baberschke, U. D6bler, L. Wenzel, D. Arvanitis, A. Baratoff and K. H. Rieder, Phys.

Rev., B33, 5910 (1986); U. D6bler, L. Wenzel, D. Arvanitis and K. Baberschke, J. Phys. (Paris) Colloq., 47, C8-473 (1986).

17. U. D6bler, K. Baberschke, J. Haase and A. Puschmann, Phys. Rev. Lett., 52, 1437 (1984)"

M. Bader, A. Puschmann, C. Ocal and J. Haase, Phys. Rev. Lett., 57, 3273 (1986).

18. D. Arvanitis, T. Lederer, G. Comelli, M. Tischer, T. Yokoyama, L. Tr6ger and K.

Baberschke, Jpn. J. Appl. Phys., Suppl. 32-2, 337 (1993); D. Arvanitis, G. Comelli, T.

Lederer, H. Rabus and K. Baberschke, to be published; T. Lederer, D. Arvanitis, G. Comelli, L. Tr6ger and K. Baberschke, to be published.

19. Y. Takata, T. Yokoyama, S. Yagi, N. Happo, H. Sato, K. Seki, T. Ohta, Y. Kitajima and

H.Kuroda, Sulf Sci., 259, 266 (1991).

20. N. P. Prince, D. L. Seymour, D. P. Woodruff, R. G. Jones and W. Walter, SuJf Sci., 215, 566 (1989).

21. T. Yokoyama, S. Yagi, Y. Takata, H. Sato, T. Asahi, T. Ohta and Y. Kitajima, Stof Sci., 274, 222 (1992).

22. L. Wenzel, J. St6hr, D. Arvanitis and K. Baberschke, Phys. Rev. Lett., 60, 2327 (1988).

23. T. Lederer, D. Arvanitis, M. Tischer, G. Comelli, L. Tr6ger and K. Baberschke, to be

published. 24. L. Wenzel, D. Arvanitis, H. Rabus, T. Lederer, K. Baberschke and G. Comelli, Phys. Rev.

Lett., 64, 1765 (1990).

25. T. Yokoyama, H. Hamamatsu, Y. Kitajima Y. Takata, S. Yagi and T. Ohta, to be published.

26. R. Feidenhans'l, Sulf Sci. Report, 10, 106(1989). 27. W. C. Marra, P. Eisenberger and A. Y. Cho, J. Appl. Phys., 50, 6927 (1979). 2~3. P. Eisenberger and W. C. Marra, Phys. Re~: Lett. 46, 1081 (1981).

29. R. H. Fuoss and I. K. Robinson, Nucl. Instr. Methods, A222, 171 (1984).

30. R. L. Johnson, J. H. Fock, I. K. Robinson, J. Bohr, R. Feidenhans'l, A. Nielsen, M.

Nielsen and M. Toney, in The Structure of Surfaces, eds. M.A.Van Hove and S.Y.Tong, Springer, Berlin, 1985.

31. S. Brennan and P. Eisenberger, Nucl. Instl: Methods, A222, 164 (1984)

32. E. Vlieg, A. Van't Ent, A. P. Jongh, H. Neerings and J. F. van der Veen, Nucl. Instr. Methods, A262, 522 (1987).

33. J. Bohr, R. Feidenhans'l, M. Nielsen, M. Toney and R. L. Johnson, Pto,s. Rev. Lett., 54, 1275 (1985).

34. R. Feidenhans'l, M. Nielsen, F. Grey, R. L. Johnson and I. K. Robinson, Sulf Sr 186, 499 (1987).

Page 359: Analytical Spectroscopy Library_VOL 7

350

35. T. Takahashi, S. Nakatani, T. Ishikawa and S. Kikuta, Sulf ScL, 191, L827 (1987). 36. T. Takahashi, S. Nakatani, N. Okamoto, T. Ishikawa and S. Kikuta, Jpn. J. Appl. Plus.,

27, L753 (1988).

37. T. Takahashi, S. Nakatani, N. Okamoto, T. Ishikawa and S. Kikuta, Rev. Sci. Instrum., 60, 2365 (1989).

38. B.W. Batterman and H. Cole, Rev. Mod. Phys., 36, 681 (1964).

39. B. W. Batterman, Pl~s. Rev., 133, A759 (1964).

40. R. Patel and J. A. Golovehenko, PlUs. Rev. Lett., 50, 1858 (1983).

41. T. Takahashi and S. Kikuta, J. Phys. Soc. Jpn., 47, 620 (1979).

42. P.L. Cowan, J. A. Golovchenko and M. F. Robbins, Plus. Rev. Lett., 44, 1680 (1980).

43. J. A. Golovehenko, J. R. Patel, D. R. Kaplan, P. L. Cowan and M. J. Bedzyk, P/~s. Rev. Lett., 49, 560 (1982).

44. G. Materlik and J. Zegenhagen, Plus. Lett., 104A, 47 (1984). 45. G. Materlik, A. Frahm and M. H. Bedzyk, Pl~s. Rev. Lett., 52, 441 (1984).

46. M. Bedzyk and G. Materlik, Su~ S Sci., 152/153, 10 (1985).

47. K. Kohra and T. Matsushita, Z. Natulforsch., 27a, 484 (1972).

48. T. Ohta, Y. Kitajima, H. Kuroda, T. Takahashi and S. Kikuta, Nuc[. bzstrum. Methods, A246, 760 (1986).

49 D.P. Woodruff, D. L. Seymour, C. F. McConville, C. E. Riley, M. D. Crapper, N. P.

Prince and R. G. Jones, Pto, s. Rev. Lett., 58, 1460 (1987).

50. H. Hashizume and T. Nakahata, Jpn. J. Appl. Phys., 27, L1568 (1988).

51. T. Yokoyama, M. Funabashi, Y. Kitajima, T. Ohta and H. Kuroda, Physica B, 158,237

(1988). 52. T. Yokoyama, Y. Takata, M. Yoshiki, T. Ohta, M. Funabashi, Y. Kitajima and H.Kuroda,

Jpn. J. Appl. Phys., 28, L1637 (1989).

53. J. R. Patel, D. W. Berreman, F. Sette, P. H. Citrin, J. E. Rowe, P. L. Cowan, T. Jach and

B. Karlin, Phys. Rev., B40, 1330 (1989).

54. Y. Takata, T. Yokoyama, Y. Kitajima, M. Funabashi, H. Kuroda and T. Ohta, X-ray Absorption Fine Structure ed. by S.Hasnain, Ellis Horwood, p.254, 1991.

55. T. Yokoyama, Y. Takata, T. Ohta, M. Funabashi, Y. Kitajima and H. Kuroda, Phys. Rev. B42, 7000 (1990).

56. F. Sette, T. Hashizume, F. Comin, A. A. MacDowell and P. H. Citrin, Plo~s. Rev. Lett., 61, 1384 (1988)

57. D. P. Woodruff, D. L. Seymour, C. F. McConville, C. E. Riley, M. D. Crapper and N. P.

Prince, Surf Sci., 195, 237 (1988).

58. M. Funabashi, T. Yokoyama, Y. Takata, T. Ohta, Y. Kitajima and H. Kuroda, Surf. Sci., 242, 59 (1991).

59. Y. Takata, H. Sato, S. Yagi, T. Yokoyama, T. Ohta and Y. Kitajima, Surf Sci., 265, 111

(1992).

60. A. Liebsch, Phys. Rev. Lett., 32, 1203 (1974).

Page 360: Analytical Spectroscopy Library_VOL 7

351

61. H. H. Farrell, M. M. Traum, N. V. Smith, W. A. Royer, D. P. Woodruff and P. Johnson,

SulJ~ Sci., 102, 527(1981). 62. D. H. Rosenblatt, J. G. Tobin, M. G. Mason, R. F. Davis, S. D. Kevan, D. A. Shirley, C.

H. Li and S. Y. Tong, Plg's. Rev., B23, 3828 (1981).

63. J.J. Barton, C. C. Bahr, Z. Hussain, S. W. Robey, J. G. Tobin, L. E. Klebanoff and D. A.

Shirley, Phys. Rev. Lett., 51,272 (1983).

64. P.J. Orders and C. S. Fadley, Phys. Rev., B27, 781 (1983).

65. J.J. Barton, S. W. Robey and D. A. Shirley, Plo,s. Rev., B34, 778 (1986).

66. J.J. Barton and D. A. Shirley, Plo2s. Rev., B32, 1892 (1985).

67. Li-Qiong Wang, Z. Hussain, Z. Q. Huang, A. E. Schach von Wittenau, D. W. Lindle and

D. A. Shirley, Pl~s. Rev., B44, 13711 (1991).

68 J.J. Barton, Z. Hussain and D. A. Shirley, Phys. Rev., B35, 933 (1987).

69 J.J. Barton, C. C. Bahr, S. W. Robey, Z. Hussain, E. Umbach and D. A. Shirley, Plo,s. Rev., B34, 3807 (1986).

70. S. W. Robey, J. J. Barton, C. C. Bahr, G. Liu and D. A. Shirley, Plo,s. Rev.. B35, l 108

(1987).

71. T. Ohta, Y. Kitajima, P. M. Stefan, M. L. Stefan, N. Kosugi and H. Kuroda, J. Phys. (Paris) Colloq., 47, C8-503 (1986).

72. D. R. Warburton, G. Thornton, D. Norman, C. H. Richardson, R. McGrath and F. Sette,

Slu S Sci., 189/190,495 (1987).

Page 361: Analytical Spectroscopy Library_VOL 7

This Page Intentionally Left Blank

Page 362: Analytical Spectroscopy Library_VOL 7

Applications of Synchrotron Radiation to Materials Analysis H. Saisho and Y. Gohshi (Editors) �9 1996 Elsevier Science B.V. All fights reserved. 353

CHAPTER 6

STRUCTURE ANALYSIS BY SMALL-ANGLE X-RAY SCATTERING

Kanji KAJIWARA

Faculty of Engineering & Design, Kyoto Insitute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606, Japan

Yuzuru HIRAGI

Institute for Chemical Research, Kyoto University, Uji, Kyoto-fu 611, Japan

6.1. GENERAL PRINCIPLES OF SMALL-ANGLE SCATTERING

6.1.1. Characteristics of small-angle scattering

Small-angle X-ray scattering is characterized by its small scattering angle. A scattering process is described in terms of a reciprocal law. Imagine that a particle of diameter D is immersed in a beam of X-rays. The X-rays are scattered by all the electrons of the particle and interfere with each other, giving a scattered intensity which decreases with increasing scattering angle. The scattered intensity has its maximum in the direction of the incident beam (i.e., at zero scattering angle), where the scattered rays are all in phase. This intensity at the zero scattering angle is proportional to the number of electrons in the particle. The phase difference between scattered rays of wavelength A becomes more prominent as the scattering angle increases, and eventually diminishes at a scattering angle of the order of A/D. For example, the limiting scattering angle to be observed is equal to 0.45 ~ when D = 100 A, or to 0.045* when D = 1000 .~, for the X-ray wavelength of 1.54 A from the CuK~-line. Thus the scattering pattern provides a method for evaluating the particle size. However, the particle size should lie in a certain range for the scattered X-ray to be observed with reasonable accuracy.

The scattered X-rays are coherent, and the scattered intensity is given by the

Page 363: Analytical Spectroscopy Library_VOL 7

354

square of the amplitude resulting from the summation of all the amplitudes of scattered X-rays. The amplitudes are of the same magnitude but differ in their

phase, depending on the position of electrons in space, so that the total amplitude A(q) of the scattered rays at a point q is given by [1]

A(q) = p(r). e-iq'~dr (6-1)

where p(r) is the electron density of the particle at a point r, and the scattering vector q is defined as

q = (27r/A)(s - So) (6-2)

Here s and so denote the unit vectors in the direction of the scattered and incident X-rays, respectively. As illustrated in Fig. 6-1, the scattering vector q has the same

direction as ( s - so), and the magnitude is given by

q = (47r/A) sin 8 (6-3)

v

Incident rays

v

Scattered rays

s ,, \ S _ s ~ q

Figure 6-1" Diffraction by a single particle

Eqn. (6-1) shows that the amplitude A(q) of scattering in the direction of q is the Fourier transform of the electron density distribution p(r). The scattered intensity

is then given by the product of the amplitude A and its complex conjugate A* as

fo f0 ]'(q) = /9(1"1)/9(1"2)" e - iq ' ( r ' - r2 )dr ld r2 (6-4)

Page 364: Analytical Spectroscopy Library_VOL 7

355

which involves the separation ( r l - - r 2 ) for every pair of scattering points. Con- straining (rl - r2) = r, eqn.(6-4) is modified as

X(q) = e- iq"dr (6-5)

where ~2(r) is regarded as the density of electron pairs with separation r. The value t52(r) is determined by the structure of the particle, and is given by the

inverse Fourier transform of the scattered intensity as

/52(r) = (1/27r) a I(q). eiq'rdr (6-6)

, Assuming the sytem is statistically isotropic, the phase factor e - iq ' r is replaced

by its space average according to Debye [2]:

sin qr < e - iq ' r > - - (6-7)

qr

and eqn.(6-5) reduces to

fO ~ I(q) = 4rr2/52 (r) sin qr dr (6-8)

qr

The distance distribution function p(r), defined from

or its Fourier transform:

fO ~ I(q) = 47r p(r) sin qr dr

qr

1 fo~ p(r) = ~ qrI(q) . sin(qr)dq,

is related to the correlation function -/(r) of Debye and Bueche [3] as

(6-9a)

(6-9b)

if0~176 VT(O) = q2I(q)dq (6-11)

where the correlation function 7(r) represents the correlation of the electron density fluctuation at a distance r, and is introduced by subtracting the constant term at a long distance (which should be equal to Vp 2 with ~ being a mean value) from the density of electron pairs (/~2(r)). In the special case of r = 0, the mean square

fluctuation of electron density ,~(0) is obtained from eqns. (6-9) and (6-10) as

p(r) = Vr 2. 7(r) (6-10)

Page 365: Analytical Spectroscopy Library_VOL 7

356

which is invariant with respect to the particle structure. Conventionally the invariant

Q is defined [4] as

O = q~I(q)dq (6-12)

6.1.2. Particle scattering

In this section we consider briefly the scattering from a single particle in solvent. The particle and solvent are assumed to be homogeneous and have constant electron densities p and po, respectively. The electron density difference Ap = p - p o

causes the excess scattering from the particle, which contains the information on the shape and size of the particle. The excess scattering amplitude at the zero scattering angle should be equal to the number of excess electrons An, [5,6], i.e.,

A(0) = Anr = Ap. V (6-13)

irrespective of the size and shape of the particle. Eqn.(6-1) implies that the nor- malized scattering amplitude Ao(q) is given generally for a homogeneous particle

with or without a hollow as [7]

ao(q) = f D P ( r ) ' e - i q ' ~ d r / f D P ( r ) d r

fD(2) p ( r ) " e - i q ' r d r - f D ( 1 ) p ( r ) , e - i q ' r d r

= fD(2) p( r )d r - fD(a)p(r)dr (6-14)

where D denotes the domain specified by the number 2 (the whole body) or 1 (a hollow domain). Assuming the homogeneous electron density, p ( r ) in eqn.(6-14) is replaced with Ap, as argued above, and the denominator is given by eqn.(6-13).

Thus eqn.(6-14) reduces to:

Ao(q) = (F~ - F2)/(V~ - V2) (6-15)

with Fk = fo(k) e-iq'rdr and Vk = lock) dr (k = 1 or 2). Apparently, V~ corresponds to the volume of the domain specified by i. When the term e - i q ' r is replaced by r 2, eqn.(6-15) yields the radius of gyration Ra as shown in the next section. The scattering amplitude from a triaxial body of orientation specified by 0 (zenith angle)

and r (azimuth angle) is a function of the semi-axes A, B and C as designated as

Fi(A,B, C, ri, O, r where rl = r sin 0

(6-16) r2 -- r cos

Page 366: Analytical Spectroscopy Library_VOL 7

357

and is calculated as: (a) Isosceles triangular prism

V~ = 4 A B C (6-17)

8 A B C e x p ( - 4 i A r l cos r F/=

(B 2 sin 2 r - 4A 2 cos 2 r

• [exp(2iAri cos r cot r sin(Br, sin r - cos(Brl sin r + 1]~c

(6-18)

(b) Rectangular prism

Vi = 8 A B C

sin(Bra sin r sin(Arl c~ r [ ]~I/c [ Fi 8 A B C t Arl cosr B r l s i n r

(6-19)

(6-20)

(c) Regular polygonal prism of n sides

Vi = 2nA2C t an( r /n)

Fi = 4A2C fk(r l , r 27r k ) exp{ iAr l cos ( r ---~--k)} ~c, n k=l

(6-21)

(6-22)

where

fk = 1 AZr~ {tan 2 ~ sinZ(Tr - ~-~r) - cos 2 r

x i c o t ( r -n-k) sin(rlA sin(r - 2~r k ) ) - tan - cos(rlAtan - sin r + tan n Tt Tt ~ (6-23)

(d) Elliptical cylinder

Vi = 2 A B C (6-24)

Fi = 47rJ l ( r1K) ~e (6-25) r l K

where K = x/A 2 cos 2 r + B 2 sin 2 r and J1 denotes the first order Bessel function.

(e) Ellipsoid

Vi = (4/3)TrABC (6-26)

Fi = 4~r sin(rL) - rL cos(rL) (rL) 3 (6-27)

Page 367: Analytical Spectroscopy Library_VOL 7

358

where L = x/A 2 sin2'0 cos 2 r + B 2 sin 2 0 sin 2 r + C 2 cos 2 0.

As the normalized scattering amplitude is defined by eqn.(6-15), the particle scattering factor of an oriented particle P(q, O, r is given by the product of A0(q)

and its complex conjugate A~(q) as P(q, O, r = A0(q)A~(q). If a particle in solution prefers no specific orientation, the observable particle scattering factor is calculated by integration of P(q, O, r with respect to 0 and r as

p(q) = fo~=o f4,~o P(q, O, r 0d0dr

fo f02'~ sin 0d0dr (6-28)

which is written by specifying the size of a hollow by aA, fiB, and 7C as

p(q) = fo f2o '~ IF~ (A, B, C, r, O, r - F2(aA, 13B, TC, r, tg, r 2 sin0d0dr 47r IVI(A, B, C) - V2(aA, fiB, 7C)I 2

(6-29)

The particle scattering factor is calculated for simple homogeneous triaxial bodies as summarized below:

(a) Sphere (radius R)

where

P(q) = r (6-30)

X 3

(b) Hollow sphere (outer and inner radii Ra and R2, respectively)

[ R~ f(qRi ).~I _ R]r ] 2 P(q)

(c) Ellipsoid of revolution (semi-axes a, a, c~a)

(6-31)

(6-32)

[ ~r/2

P(q) = +2(qajcos2 8 + a2 sin 2 0/cos 0d0 J 0

(6-33)

(d) Cylinder (radius R and height 2H)

[ ,~/2 sin2(qH cos0) P(q) = q2H2 d 0 C082 ~

which reduces to

where

4J~(qRsin O) sin 0d0 q2R2 sin 2 0

p(q) = Si(2qH) _ sin2(qH) qH q2H2

Si(x) = fo ~ sint t dt

(6-34)

(6-35)

(6-36)

Page 368: Analytical Spectroscopy Library_VOL 7

359

when R ~ 0 (in the case of a rod of length 2H and infinitesimal radius), or to

P(q)=q22 [ 1 - 1 R2 --~J~(2qR)] (6-37)

when H ---, 0 (in the case of a disk of radius R and infinitesimal thickness). The

Gaussian chain consisting of N units jointed by a link of length b yields also a

simple particle scattering factor [8]

P(q) = ( 2 N 2 / x 2 ) [ e x p ( - x ) - 1 + x] (6-38)

where x = q2Nb/6.

6.1.3. Structural Parameters

Although the scattering from a single particle in solvent was considered in the

preceding section, in practice the scattering factors derived above are valid for a

dilute system consisting of N scattering particles, which are sufficiently isolated so

as not to interact with each other. The sine expansion of the particle scattering

factor yields, at very small angles

lq fv fv P(q) = 1 - ~ p(r)- �9 dV/ p(r)dV (6-39)

where the second term in eqn.(6-39) represents the radius of gyration Ra. The

Guinier approximation [9] replaces the sine expansion with the exponential function as

P(q) '~ exp(-q2R~/3) (6-40)

Conventionally, the Guinier approximation is also applied to evaluate the ra-

dius of gyration corresponding to the cross-section of a rod-like molecule or the thickness of a flat particle. For example, the scattering function from a cylinder,

eqn.(6-34), is composed of two factors which are regarded as nearly independent, and is approximated as

71"

Pcylinder(q) "~ " ~ q " P~(q) (6-41)

where P~(q) denotes the scattering function from the cross-section. The factor 1/q is characteristic of a rod-like molecule, and eqn.(6-41) is valid only when the

condition Hq < 1 is satisfied. Then P~(q) is given in terms of the cross-sectional radius of gyration R~ as

P~(q) = exp(-q2R2~/2) (6-42)

Page 369: Analytical Spectroscopy Library_VOL 7

360

In the case of a circle of r in radius, the cross-sectional radius of gyration is given as R~ =~/vS.

Similarly, the scattering function from a fiat particle is approximated as

271" PIt,t v,~tid,(q) ~ -7-~_~ " Pt(q) (6-43) ~q-

with A being the cross-sectional area. Here Pt(q) denotes the scattering function from the thickness, and is given by the Guinier approximation as

Pt(q) = exp(-q2Rt 2) (6-44)

The thickness radius of gyration Rt is related to the thickness T as Rt = T / x / ~ .

Thus, a ln qPcylinder vs. q2-plot or a lnq2pllat particle vs.q2-plot yields the cross- sectional radius of gyration (as R~/2) or the thickness radius of gyration (as Rt 2) from the respective slopes. Examples are shown in Figs. 6-2 (a), (b), (c) and (d) for the model trixial bodies of Re = 50 /l., where the lines are drawn with the slopes specified by the corresponding radii of gyration (see eqns. (6-40), (6-42) and (6-44)).

Radii of gyration RG and cross-sectional radii of gyration R~ are summarized below for simple triaxial bodies:

Table 6-1: Radius of gyration R e of simple triaxial body

Triaxial body R~

Sphere of radius R Hollow sphere of radii R1 (inner), R2 (outer)

Ellipsoid of semi-axes a, b, c Prism with edge lengths A, B, C

Elliptic cylinder of semi-axes a, b and height h Hollow cylinder of radii R1, R2 and height h

3R2/5 3(R~ - nl~)/5(n~ - n~)

(a 2 + b 2 +c2) /5 (A 2 + B 2 + C2)/12

{(a 2 + b2)/4} + (h2/12) {(R1 ~ + R~) /2} + (h~/12)

Table 6-2: Cross-sectional radius of gyration R~

Cross sectional shape R~

Circle of radius R Ring of inner radius R1 and outer radius R2

Ellipse of semi-axes a, b Rectangle with edge lengths A, B

R2/2 (R~ + R~)/2 (~ + b~)/4

(A 2 + B2)/12

Page 370: Analytical Spectroscopy Library_VOL 7

361

1 . 0 o

o

0 . 8 -

0 . 6 -

0 . 4 -

0 . 2

0.0 0.00

0

-5

~-10

-15

(a)

0.05 0.10 q

o

o

-20 0 10 2~

1.2 q

1.0-- ~ ~

0 . 8 - /

~0.6 - g o o g o "K g

0 . 4 - / o

oe o

0.2 g

0 . 0 I I o ,o

0.15 O.2O

(c)

10 ~

10 -1

10 .2 -

10 .3 -

10 .4 _

i i 1 i 1 i i i 1 1.1u "5 2 4 6 8

0.001 0.01 5OO

0 0

0 0

0

0

0

(b)

o

c ~ o o

o ~ o

o ~ o o o

0o ~

o O O

2 4 6 8 2 4 6 8

O .1 q

(d) 400 i- ~ ~

o o

o ~ 3 0 0

�9

100 ,

o o o o o

o 0 0 I 0 I ooo I O o : o o o ? O o ~ o . . . .

30 40x10 -3 0.00 0.05 0.10 0.15 q

(e)

I

150 200

Figure 6-2: Scattering from a sphere of radius 64.55 A (Re - 50 A); (a) the normal plots, (b) the double logarithmic plots, (c) the Guinier plots where the line represents the initial slope specified by the value R~/3 (eqn. (6-40)), (d) the Kratky plots (q2I(q) vs. q) and (e) the distance distribution function (eqn. (6-9)).

0.20

Page 371: Analytical Spectroscopy Library_VOL 7

3 6 2

1 . 0 o

o

o

0 . 8 - o

0 . 6 - o

o

0 . 4 - o

o

0 . 2 -

0.0 0.00

(a)

o

~ ~

I ~ . . . . . l . . . . . . . . . l . . . . . . . . . .

0.05 0.10 0.15 0.20 q

0

- 2

- 4

~ - 6 Oo

-8

-10

-12 0 10

1.2

(c)

0 0

0 0

0 0 0 0 0 0 0 0

I I

20 30 2

q

1 . 0 - -

0 . 8 -

~ 0 . 6 - s

0 . 4 - o g

o

0 . 2 - o

0.0 / 0

o g

o o o

o o

o o

g o

\

I

50 ~ ( ~ 150

(e)

10 ~ _~ _

1 0 -1 ___-- _ _ _ _

_

10 -2 ==- _

- _

1 0 "3 ___ _

_

10 -4 _ _

_

1 0 -5

0.001

500

400 l

0 ~ 0 o o

o o

o o

o o

o

o

o

o

�89 o

2 4 6 8 2 4 6 8

0.01 0.1 q

( b )

o o

~o o

~o

i k i i ii 2 4 6 8

o o o ( d )

~ 300 ~- o

~ 2 0 0 - o

100 t -o

o o O O O o o ~

0~ ~ i ~ 1 7 6 1 7 6 1 7 6 o t . . . . . . . . .

40x10 -3 0.00 0.05 0.10 0.15 q

200

0.20

Figure 6-2: (continued) Scattering from an ellipsoid of three semi-axes 91.29 A, 45.64 A and 45.64 A (RG = 50 A); (a) the normal plots, (b) the double logarithmic plots, (c) the Guinier plots where the line represents the initial slope specified by the value R~/3 (eqn. (6-40)), (d) the Kratky plots (q2I(q) vs. q) and (e) the distance distribution function (eqn. (6-9)).

Page 372: Analytical Spectroscopy Library_VOL 7

363

1 . 0 ' o

o

o

0 . 8 - o

o 0 . 6 -

o

0 . 4 -

0 . 2 -

0.0 0.00 0.05 0.10 0.15

0 q

-1 (c)

-2 O o o o ~

~ - 3 ~ ~ ~

- 4 o o

~ o ~

- 5 o

-6 l I l 0 10 2 20 3 30

q xlO

1.0 2 ~ (e)

0.8 ~ ~N~ o

.0.6 :

, , _ _

(a)

o

~ o o

o

~ 1 7 6 1 7 6

I , I oo . . . . . r . . . . . . . . .

0.20

o o

o

40

10 ~

1 0 "1

1 0 -2

10 .3 _

1 0 -a _

10 -5

o.ool

1.0

o o o ~ ( b )

o o o o

o

i I i i i i i | l i 1 i i i i i l l i i i I i i l l

2 4 6 8 2 4 6 8 2 4 6 8

0 .Ol 0.1 q

0.8

0.6

0.4

0.2

0.0

o O O O O o o ~ o

o o o o

o o o

o o

o o

o o

o o

o

- - o

o

o I I I

0.00 0.05 0.10 0.15 q

o ~ o ~

-7 I - 8

0

I I I

0 50 100 150 200 10 z 20 30 q xl03

r (A)

(d)

o

o o

o o

o o

o o

Figure 6-2; (continued) Scattering from a cylinder of cross-sectional radius

16.82 A and height 168.23 ,~ (Ra = 50 .~); (a) the normal plots, (b) the double logarithmic plots, (c) the Guinier plots where the line represents the initial slope specified by the value R~/3 (eqn. (6-40)), (d) the Kratky plots (q2l(q) vs. q), (e) the distance

distribution function (eqn. (6-9)), and (f) the Guinier plots for cross-section where the line represents the slope specified by the value R~/2 (R~ = 11.90 A in eqn. (6-42)).

0.20

(f)

o

40

Page 373: Analytical Spectroscopy Library_VOL 7

364

1 . 0 o

o

o 0 . 8 -

o

0 . 6 - o

o ~ o

0 . 4 - o

o

0 . 2 - o

0.0 0.00 0.05

O

-2-

-4 ' ~176176176 ~ o o

-10

-12 0 10

1.0

0.8

0.6

0.4

0.2

10 ~ (a)

~ 1 7 6 ~

0.10 0.15 q

0 0 0 0 0 0 O

O

I

2~ 30 q

10 -]

10 .2

10 .3

10 -4

10 -5 0.20

0.001 500

(c)

4 0 0 -

100

40xlO 3

_ o

- - o

o 0 0.00

(e)

g

1

50 1 O0 150 200

8 ~ 0

i i i i i i i i I 2 4 6 8

0.01

0 0 o ~ ( b )

~ o Oo\ \

\ o

%

o

i i i I i i i 1 [ i i i ~ i i 1 |

2 4 6 8 2 4 6 8 q 0.1 1

0 0 0

0 0

(d)

I

0.05

o ~

o o

o

~ 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6 ~

I 1 * o

0.10 0.15 0.20 q

(0

o

_8 ~

"~10~

-12

-14 0

0.0 I I 0 2~ 30 40xlO 3

q

I

10

r(A)

Figure 6-2: (continued) Scattering from a disk of radius 69.79 A and thick-

ness 27.91 .~ (Ra = 50 .~); (a) the normal plots, (b) the double

logarithmic plots, (c) the Guinier plots where the line represents

the initial slope specified by the value R~/3 (eqn. (6-40)), (d) the Kratky plots (q2I(q) vs. q), (e) the distance distribution function (eqn. (6-9)), and (f) the Guinier plots for thickness

where the line represents the slope specified by the value Rt 2

(Rt = 8.06 ]~ eqn. (6-44)).

Page 374: Analytical Spectroscopy Library_VOL 7

365

1 . 0 o 10 ~ " o . o

~ o

~ (a) ~ (b) 0 . 8 -- o 10-1

- o ~

0 . 6 - o 10 .2 F-

0 . 4 - o 10" 3 ~

_ o 0000%0 0 . 2 - o 10 "4 ~- o oo ~

0 0 ~ . . . . . . . . . + . . . . . . . . . 1 . . . . . . . . . 10-s - , . . . . . . . I o,o :,2~ . . . . "0.00 0.05 -- 0.10 . . . . . . 0.15 . . . . . . . 0.20 0 001 '2 ' 4'6'i'.101 2 4 6 %1 2 4 - - 6 8 1

0 V - - - - - - - - " - ~ ~ 400 V . . . . . . q

-~b\ '~) I / o , . )

-4t~176176176176 " ~ o ~_6~ o o \ o oo . I ~ 0 0 ~ ~ \ o o Oo ~ i ~ / o

t OoOOl, ko 10 o

_ -121 I \ I I " " I 0 l ~ I ~ ~ / / o

o ,o ~o ~o 4ox,o-~ o.oo o.o~ o.1o o.,~ o.~o 2

1.4 [ ~ _ ~ q

1.2~- ~ (e)

1~ V / ': ~ 0.8

~ 0 . 6 ~ / o

0.4 ~o

0.2 ~

0 0 0 50 100 150 200

r(h)

Figure 6-2: (continued) Scattering from a hollow sphere of radius 62.36 h. with a spherical hollow of radius 31.18 in the center A (Re = 50 A); (a) the normal plots, (b) the double logarithmic plots, (c) the Guinier plots where the line represents the initial slope specified by the value R2/3 (eqn. (6-40)), (d) the Kratky plots (q2I(q) vs. q) and (e) the distance distribution function (eqn. (6-9)).

Page 375: Analytical Spectroscopy Library_VOL 7

366

1 . 0 ' 0

o

0 . 8 - ~

0 . 6 -

0 . 4 - o

o

0.2 1 ~176176 0.0 I ~

0.00 0.05

0

-2

-4 o o

- 8

-10

-12 0 10

(a)

10 ~

10 -1

10 -2

10 "3

10 -4

. . . . . J, . . . . . . . . . _1 . . . . . . . . . . 10-5

0.10 0.15 0.20 0.001

q 500

e " C : T ,

0 0

0

(c)

o o

~ o 0 o o o o

~ ~

o o

o

o o

o

o o o

I I I I I I I 1 [ t ! I I I I I 1 [ 2 4 6 8 2 4 6 8

0.01 O.1 q

0 0

0

0 0

I I I

20 30 40x10 3 0.05 q2

400 -

300 -

200 -

1 0 0 - o

o

0 0.00

(e)

1.2

1.0

0.8

(b)

o

o o

I i I ~ I I l l _

2 4 6 8

0 50 100 150 200 r(h)

(d)

o O O o o o o

o o o o o

o o o o o

~ o

I I ~ 1 7 6 . . . . . . 0.10 0.15

q

Figure 6-2: (continued) Scattering from a hollow ellipsoid of three semi- axes 8.97 A, 4.48 A and 4.48 ~ with an ellipsoidal hollow of semi-axes 4.48/~, 2.24 A and 2.24/~ in the center (Re = 50 A); (a) the normal plots, (b) the double 19garithmic plots, (c) the Guinier plots where the line represents the initial slope specified by the value R~/3 (eqn. (6-40)), (d) the Kratky plots (q2I(q) vs. q) and (e) the distance distribution function (eqn. (6-9)).

0.20

Page 376: Analytical Spectroscopy Library_VOL 7

3 6 7

1.0

0 . 8 -

o 0 . 6 -

o o

0 . 4 - o

0 . 2 -

0.0 0.00

0

-2

~---~4

-6

- 8

0 10 2~

1.4 q

(a)

~ 1 7 6 1 7 6 1 7 6 ~

0.05 0.10 0.15 q

~ ~ ~ ~ o o

o o

o o

I I

30

10 ~

10 -1

1.2

1.0

~ 0 . 8 -- ~ x ~ 0 . 6 - o

g 0.4 - g

o o o

0.2 -~ o

o.o~' 0

1 0 .2

? 10 .3

10 .4

10 .5

0.20 0.001

1.0[

(c)

0 . 8 -

~ 0.6 -

1 ~0.4 ~

0 . 2 - o

o

o o . 3 0 . O ~ o

40x10 0.00

oo o o o o o o

_ o o o o

50 100 150 200 r(A)

(e) -5

-6

~ - 7 "d

- 8

- 9 -

-10 0

o

o o O o o o O ~ o o

o

? r

(b)

, , , , , , , , n , , , , , , , , I , , , , , , , ,

2 4 6 8 2 4 6 8 2 4 6 8

0 .01 O.1 1 q

oOOo o ~

o o o o o

o o o o

o o 0

0 0

(d)

o o

o

~ 1 7 6

I ~

0.15

I I O o o o +

0.05 0.10 0.20 q

(f)

o o

o o

o o

o

I I I

10 20 30 2

q

O

O

40x 10 .3

Figure 6-2" (continued) Scattering from a hollow cylinder of cross-sectional radius 16.71 .& and height 167.05 .& with a cylindrical hollow of cross-sectional radius 8.35 A and height 167.05 A (Re - 50 A); (a) the normal plots, (b) the double logarithmic plots, (c) the Guinier plots where the line represents the initial slope specified by the value R~/3 (eqn. (6-40)), (d) the Kratky plots (q2I(q)

vs. q), (e) the distance distribution function (eqn. (6-9)), and (f) the Guinier plots for cross-section where the'line represents the slope specified by the value R2~/2 (Re - 13.20 ~ in eqn. (6-42)).

Page 377: Analytical Spectroscopy Library_VOL 7

368

1 . 0 ~o

o

0 . 8 - ~ o

0 . 6 -

0 . 4 -

0 . 2 -

0.0 0.00

0

-2

-4

~ - 6

-8

-10

-12 0

(a)

o

o

o ~ 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6

i ~~ . . . . . . . ~ . . . . . . . . .

0.05 0.10 0.15 0.20 q

~ 1 7 6 o o

1 10 20

1.2

1.0

0.8 e~

o

~ 0 . 6 s

0.4

m

_

o

o

o

o

50

0.2

10 ~

10 -1

1 0 "2

10 .3 _

10 -4 _

10 .5

0.001

800

~ 1 7 6

~ o

\ %

o

(b)

I i I l i l i l i I i I I l i l i [ I i I I l l i l 2 4 6 8 2 4 6 8 2 4 6 8

0.01 0.1 1 q

o o o

o o

(c)

O O

%

I 0 30 40x10 3 0.00

(e)

. g

i ~ , _ _.1 . . . .

100 150

r(A,)

0 0 0

0 0

0 0

0

6 0 0 -

o

400 - o o o, o o o o

o

2 0 0 - o

o

o I I

0.05 0.10

q

(d)

- 9

-10 -

-11 -

-12 200 0

o

o

o O o o o o

o o

o o

o o

o ~ ~

I

0.15

0.0 I I I 0 10 20 30

q

Figure 6-2: (continued) Scattering from a hollow disk of radius 62.58 and thickness 25.03 A with a hollow of radius 31.29 A and thickness 25.03 ,~ (Re = 50 h); (a) the normal plots, (b) the

double logarithmic plots, (c) the Guinier plots where the line represents the initial slope specified by the value R2a/3 (eqn. (6-40)), (d) the Kratky plots (q2I(q) vs. q), (e) the distance distribution function (eqn. (6-9)), and (f) the Guinier plots for thickness where the line represents the slope specified by the value Rt 2 (R~ - 7.23 ~ in eqn. (6-44)).

0.20

40xlO -3

Page 378: Analytical Spectroscopy Library_VOL 7

369

6.1.4. Molecular Mass Determination

Since the absolute scattering intensity I . ( q ) at the scattering angle 20 is given in terms of the molecular mass M of colloidal particles as [10]

L " A z 2" M . d . N A " c In(q) = a2 �9 ~(q) (6-45)

where I, = 7.9 x 10 -26 [cm 2] is the Thomson factor representing a scattering

intensity from a single electron, q the reduced scattering variable (see eqn. (6-3)),

d [cm] the sample thickness, NA the Avogadro number, c [g/cm 3] the concentration,

a [cm] the distance between the sample and detector, and ~(q) the normalized form factor. Az denotes the number of effective mole-electrons given by

Az = z - ~'Zo (6-46)

with z and zo being the the number of mole-electrons per gram of particles and

per cubic centimetre of solvent, respectively, and ~ the specific partial volume of

a particle. By definition ~(0) = 1, so that the molecular weight is determined from

the scattered intensity at zero angle as

M = I , (0) . a 2 Az 2. d. c" L " NA (6-47)

Eqn. (6-47) can be rewritten in terms of the scattering amplitude b [cm/g] of a

particle (given by the sum of coherent scattering lengths) and the scattering density

P0 [cm -2] of solvent as M = NA a2In(O) (6-48)

c(Ab) 2 d

where the excess scattering amplitude Ab [cm/g] is defined as

Ab = b - ~po, (6-49)

and is related to the number of effective mole-electrons as

I ~ A z 2 = ( A b / N A ) 2 (6-50)

Eqn. (6-48) requires the absolute scattered intensity and the excess scattering

density to be measured with areasonable accuracy in order to evaluate the molecular

mass. Several techniques are proposed for the absolute measurement in X-ray

scattering, although none can be applied satisfactorily to the synchrotron radiation

Page 379: Analytical Spectroscopy Library_VOL 7

370

X-ray source of extremely high intensity. A large error in evaluating the excess

scattering density is involved through the partial specific volume ~, which should be

measured with less than a 1% error to yield the molecular mass with a reasonable

accuracy. Thus, the molecular mass determination by small-angle X-ray scattering

is less practical than other methods such as light scattering, osmotic pressure and

sedimentation.

The mean square fluctuation of electron density (Ap)2 is given by

(Ap)2 = 27r 21 rio ~ a ~ In(q)d " q2 . dq (6-51)

which reduces, in the case of a two-phase system characterized by the scattering

density po and/91, to

(Ap)2 = Vo. V~. (pl - po) 2 (6-52)

Here V0 and V~ represent the volume fractions of the two phases, so that V1 = 1 - V0. Considering the solution of homogeneous particles as a special case of a two-phase

system, we may assume that eqn. (6-52) is valid to a good approximation. Since

the volume fraction is given in terms of concentration and partial specific volume

as

El = c v , (6-53)

Eqns. (6-49) and (6-52) yield

(Ap)2 1 = - . (Ab) 2 - c(Ab) ~ (6-54)

c v

where the scattering density Pl of a particle is substituted by b/~. Thus the initial

slope of the (Ap)2/c vs. c curve is identified with the squared excess scattering

amplitude as

d (Ap)~ _ _ _(Ab)2 (6-55) dc c

In general, the scattered intensity is considered to be composed of two terms

due to single particles and interparticular interferences, P(q) and Q(q), respectively.

I.(q) ~ cP(q) + c2Q(q) (6-56)

The interference term in eqn. (6-56) can be neglected when c << 1 and/or q is

sufficiently high. That is, no interference effect will appear in the scattering profile

when q exceeds a certain finite value qm which may depend on concentration.

Page 380: Analytical Spectroscopy Library_VOL 7

371

To evaluate the mean square fluctuation of electron density, eqn. (6-51) re- quires the value of the scattered intensity I.(q) to be measured over a whole q range from 0 to cr Since no concentration dependence is expected in the observed

I.(q) when q > qm, eqn. (6-51) can be converted as [11]

d (Ap)2 _-- i d fo q"~ a2I.(q) .q2, dq (6-57) dc c 27r 2 dc cd

where the integration limit qm denotes the maximum q value above which no

concentration dependence will be observed in the scattering profile. Combining

eqs. (6.55) and (6.57), the excess scattering density is given by

(Ab) 2 = 27r 21 dcd fo am a2In(q).cd q2. dq, (6-58)

which is inserted in eqn. (6-48) to yield the molecular weight as

a2In(0) d fo qr" a2In(q), q2. dq (6-59) M =--27r2NA cd /-dcc cd

Here the term In(q) appears in the numerator and denominator, so that the term

I,(q) in eqn. (6-59) can be replaced by an scattered intensity I(q) in arbitrary units.

This procedure for molecular mass determination is demonstrated for the syn- chrotron SAXS from lysozyme [12] (taken by the SAXES system installed in the BL-10C of the Photon Factory described in the next section), which yielded I(O)/c = 232,000 in a.u./g.cm -3 and dZ/dc = -10.09 • 1024 in a.u./g 2 from the data

shown in Fig. 6-3. Here Z is defined as

1 fo am I(q) q2.dq, (6-60) Z - -~ 2 c

and the molecular mass is calculated from

I(O)/c (6-61) M~ = - - N A Z

as 13,800, which agrees with the value of 14,000 calculated from its primary

structure.

Page 381: Analytical Spectroscopy Library_VOL 7

372

1200

o o .qr~ "6-" o

b,O , ~,,,,~_ ~

=i6oo :3.~ 0 0.02981g. ~

"7 400 0 0.04161g �9 cm "3

L / A 0.05996g~ cm "s ~ , ~ 2 0 0 1 ~ / [] 0.12407g.cm "3 qm

I ~ r ' 0 ~ I I 0.00 0.05 0.10 0.15

q (A -1 )

6.2

6.0

" o 5.8

5.6

=i 5 . 4 - d

5.2 - N

5 . 0 -

4.8 0.00 0.02 0.04 0.06 0.08 _30.10 0.12

Concentration (g.cm )

0.20

0.14

Figure 6-3: SAXS from lysozyme solutions. (a) Kratky plots (q2I (O) /c

vs. q) of scattered intensities. Concentrations are as indicated in the figure, and qm denotes the upper integration limit, see eqn. (6-59). (b) Z - (27r2) -1 foqm[I(q)/c] �9 q2. dq as a function of concentration, see eqn. (6-60).

6.2. SAXS Instrumentation at the Photon Factory

6.2.1. Basic design of beamlines

Since the general instrumentation of synchrotron radiation has been given al- ready, the present section outlines the special features of two beamlines, BL-10C and BL-15A, at the Photon Factory, Tsukuba, Japan, which are allocated to small-

angle X-ray scattering.

Page 382: Analytical Spectroscopy Library_VOL 7

373

All X-ray beams are extracted from the storage ring through beryllium windows which separate the ring vacuum from the low vacuum or helium gas atmosphere in the down-stream beamline components. The layouts of Beamline 10 and Beamline

15 are schematically shown in Fig. 6-4 [13]. These two beamlines have a similar

construction, where the beamline is branched to three sources with horizontal di-

vergences 4.5 mrad, 2 mrad and 6 mrad, respectively, extracted for A, B and C. The

beam pipes and chambers for optical elements of these beamlines are evacuated by

a turbomolecular pump to 10 -~ Torr.

Figure 6-4: Layout of the beamlines at the Photon Factory, Tsukuba, Japan. (a) BL-10, and (b) BL-15. Each beamline is branched to three sub-beamlines A, B and C.

Page 383: Analytical Spectroscopy Library_VOL 7

374

BL-IOC

The optics are composed of a double crystal monochromator (located 14 rn

from the source) and a doubly-focusing mirror (located 16 m from the source) as

schematically shown in Fig. 6-5. Silicon 111 crystals of approximately 10 cm

in diameter are used for the monochromator placed in the upstream of the fo-

cusing mirror. Three modes of motion of the monochromators are synchronously

controlled to rotate the first and second crystals and shift the second crystal hori-

zontally, using three independent computer-controlled stepping motors, so that the

height of the successively Bragg-reflected beam is always constant. This optical system yields X-rays with energies varying from 4 to 10 KeV.

The focusing mirror has a platimum-coated surface polished cylindrically with

a radius of curvature of 12.4 cm. The mirror is bent in the incident beam direction

to a radius of curvature of 2000 m. The glancing angle of the X-ray beam to the

mirror is set to 8 mrad, which gives a cut-off energy of approximately 10 KeV. An

X-ray beam has a horizontal divergence of approximately 4 mrad, and the mirror

yields one-to-one focusing at a distance of 32 m from the X-ray source. The beam

size at the focus is approximately the same as at the source, i.e., 6 mm (H) x 1 m m (v) .

The resolution of this optical system is better than 2 eV at 9 KeV, as estimated by observing the pre-edge structure from a copper foil. The intensity is estimated to b e 12 -,~ 16 x 1011 photons/sec at 9 KeV with a 2 eV, when the storage ring is operated at 2.5 GeV and 300 mA.

The small-angle X-ray scattering equipment for solutions (SAXES) [13] was

designed for scattering experiments on non-crystalline materials including polymer

solutions, metals and alloys, and was constructed to fit to BL-10C. The SAXES

is composed of a slit assembly made of a tapered 3 mm thick tantalum plate, a

specimen holder, vacuum pipes and a detector holder assembled on 2.5 m double

optical rails as schematically illustrated in Fig. 6-6. Basic requirements in the

SAXES design were specified by the wavelength from 2.4 to 1.24 A (4 to 10

KeV), the small-angle resolution better than dmax "~ 1 ,500 ~k (2sin0/)~ ,,~ 7 x 10 -4

with ~ = 1.5 ~) [13], the angular resolution being 1 mrad, the beam size at the

specimen not exceeding 10 mm, and the range of scattering measurement up to 5

A. The SAXES is placed at the very end of BL-10C which is situated 29.5 m from

the X-ray source, and is all installed in a safety hutch. Three slits are employed

to achieve a high scattering resolution, separated from the X-ray source by 11 m

to limit incident X-rays, at 15 m between the monochromator assembly and the

Page 384: Analytical Spectroscopy Library_VOL 7

375

. . . . . 16m . . . . . . ~ = I 16m ....... ~. .~\ ~~~~__- - / / / / . .~ focal point

OPTICS 02 ~ ~ ( SAXES ) - ~ ~ . _ . . ~ _ . , ~_ 16mrad

SR ,~ ~ . ~.c,. ,- ~ - - / . . . . . . . . .

X-RAY " J O t doubly focusing mirror double-crystal ( bent cylinder )

monochromator

Figure 6-5: Optics of BL-10C, which consists of a double crystal monochro- mator (ups-tream) and a bent-cylindrical mirror (down-stream).

i~bc~:._.:~::.:i1_:ll-. -. i J.-._.i e �9 " ~ ] ~ . . . . . - i

I!i!:!!!::!iiii.iiill iiiii1 t i . . . . . L.. t l

30m 31m 32m

Figure 6-6: Small-angle X-ray scattering equipment for solutions (SAXES) installed on BL-10C: a, the exit window of X-ray beam; b, the third slit assembly; c, specimen holder; d, vacuum pipe; e, detector (PSPC); and f, double optical rails.

SOURCE BENT CRYSTAL 10MM

I./~ MMRAD. h'~SCM SAMPLE

~_.. .~ ~.~. ~.~. ~ , . ~ . .

Figure 6-7: Optics for the muscle diffmctometer. " ~ ~ ~

Page 385: Analytical Spectroscopy Library_VOL 7

376

thickness, respectively) from the helium pass and the monochromator chamber

which is evacuated by a rotary pump. The exit of the monochromator chamber

employs a Kapton window of 0.025 mm in thickness. The beam pipe from the

specimen to the detector has two exit windows made of Kapton at both ends, and

is also evacuated to minimize unwanted scattering.

6.2.2. Data acquisition systems

Two types of data acquisition systems are currently employed at BL-10C and

BL-15A in the Photon Factory.

One dimensional position sensitive detector (PSPC) of size 200 x 20 x 6 mm 3

(an effective length x a window height x a chamber depth) is mostly used at BL-10C, coupled with a CAMAC data acquisition system. The window is made

of beryllium 1 mm thick, and xenon + CO2 or argon + CH4 is used as a counter

gas. The PSPC adopts the position read-out of delay line type, with a fast 400

nsec delay line along the effective length of the probe. The probe has a standard

structure except that if is constituted of six anode wires of 40 ~m in diameter to

minimize the space charge effect of the proportional chamber. Its spatial resolution is approximately 0.3 ram, and the uniformity of sesitivity is within 4 % along the

effective length of the probe.

Figure 6-8: Data acquisition system in BL-10C.

Page 386: Analytical Spectroscopy Library_VOL 7

377

mirror, and at 29.5 m prior to the specimen holder. The beam pipe between the mirror box and the exit window is evacuated to avoid scattering by helium or air.

The SAXES is coupled with a detector (at present a one-dimensional PSPC)

and a CAMAC data acquisition system.

BL-15A

BL-15A is allocated to the Small Angle Scattering (Muscle) working group. A

small-angle resolution of approximately 1000/1, is achieved in the vertical direction

at a wavelength of 1.5 /~ with a demagnifying focusing mirror-monochromator

optical system [14] (see Fig. 6-7). The intensity is 4.5 ~ 6 x 101~ photons/sec at

1.5/~, with the storage ring operating at 2.5 GeV and 300 mA.

The mirror-monochromator optical system is composed of two focusing as-

semblies in vertical and horizontal directions. For focusing in a vertical direction,

seven fused silica mirrors of 20 cm x 6 cm x 1.5 cm in length, width and thick-

ness, respectively, constitute a 1.4 m long reflective surface, where the mirrors are

fixed tightly by mirror clamps onto the highly polished bottom surface of a 1.5

m long steel beam with an H-shaped cross-section. Thus the reflective surface of

the mirrors is expected to bend, following curvature of the bottom surface of the

H-beam which is bent elastically to a radius of a few kilometers. The whole mirror

assembly can be positionaUy adjusted with respect to its inclination and height by

two independent linear motors at each end of a bench on which the H-beam and the bending mechanism are mounted.

Focusing in a horizontal direction is achieved by using a triangular curved crystal (50 mm base x 170 mm in height x 1 mm thick)of silicon with its l 11-

plane inclined at 7.8 ~ with respect to the surface. Here the tip of the triangular

crystal is pressed by an eccentric cam, while the base is tightly fixed.

Three sets of slits are used in the diffractometer. The first set is placed just upstream of the mirror, and limits the size of X-ray beam to suit the specimen size. The second set is located at the exit of the crystal monochromator to reduce

undesirable scattering from the monochromator. The third set is placed immediately in front of the specimen. Two viewing ports are provided upstream, just prior to

the mirror and the monochromator, respectively, in order to monitor the shape and position of X-rays. A TV camera monitors the X-ray beam at the specimen.

The diffractometer is evacuated independently of the storage ring, and a short

helium pass separates two parts. The mirror chamber is evacuated to 10 -5 Torr by

a turbomolecular pump in order to prevent contaminaton and damage to the mirror.

The mirror chamber is isolated by beryllium windows (0.2 mm and 0.07 mm in

Page 387: Analytical Spectroscopy Library_VOL 7

378

Data acquisition is performed as shown in the block diagram (Fig. 6-8). The

main amplifiers and timing circuits are the standard NIM modules. The position

determining system consists of a Le Croy 4202 time-to-digital converter (TDC)

followed by a Le Croy 3588 histogram memory, which cuts the dead time to 1.2

#m at most. A moderately high counting rate can be measured with this short

dead time (probably up to 3 x 105 counts/sec/chamber). The 4202 TDC has a

function for routing, and the time-resolved measurements are easily performed

with a time interval controlled by a Kinetic 3655 timing pulse generator. Since the

3588 histogram memory has a memory size of 16 K words with a depth of 24 bits

in its double width CAMAC module, 64 time frames can be recorded with 512

channels/frame. These CAMAC modules are controlled by a Kinetic 3920 crate

controller which is connected to a DEC MNIC11/23 computer with a Kinetic 2920

Bus adopter for the LSI 11 Bus.

A photo-stimulable phosphor screen (imaging p/ate) is employed at B L-15A

as an area detector for X-ray diffraction and scattering experiments. An imaging

plate (IP) [15-17] has advantages as an area detector over conventional integrating

detectors such as X-ray film or an X-ray TV detector with respect to the dynamic

range and the detection quantum efficiency. For example, the area detector made of

a 250 x 200 mm 2 IP has more than 80 % detection quantum efficiency for 8 ~ 17

KeV X-rays, a dynamic range of 1 �9 105, a spatial resolution better than 0.2 mm

(in terms of FWHM; a full width at half maximum) in two orthogonal directions and no counting limitation. An IP is made of a flexible plastic plate coated with a

150 #m thick layer of suspended polycrystals (crystal size 4-5 #m in diameter) of photo-stimulable phosphor (BaFBr:Eu 2+) in an organic binder. A phosphor layer

surface is coated with a 10 #m thick polyethylene terephthalate sheet. A typical IP has dimensions of 250 mm x 200 mm x 0.5 mm. Here the phosphor layer stores

a fraction of absorbed X-ray energy in the form of quasistable color centers, when

exposed to X-rays. These color centers are stimulated by visible light, and emit

photo-stimulated luminescence (PSL) with an intensity proportional to the number

of absorbed X-ray photons. The phosphor can be stimulated by light of wavelength

approximately 400 nm to 800 nm with two PLS intensity peaks at 540 nm and 600

nm, and the response time of PLS is 0.8 #s. The PLS-radiation spectrum falls within

the range of 300-500 nm with Am~ = 390 rim, which is sufficiently different from

the wavelength of stimulating light (for example, a He-Ne laser beam). The image

stored on the IP lasts for several hours without substantial fading.

An IP with an active area of 251 x 200 mm 2 has 2510 x 2000 pixels, where

Page 388: Analytical Spectroscopy Library_VOL 7

379

the pixel size is 0.1 x 0.1 mm 2. The full width at half maximum (FWHM) was found to be less than 2 pixels (equivalent to 0.2 mm), by exposing to a 20 #m wide line-shaped monochromatic X-ray beam. The linearity and dynamic range of PSL were examined by CuKa (8.9 KeV) and MoK~, (17.4 KeV) X-rays, and the relative intensity of PSL was found linear with the incident X-ray intensity

over a range of 8 to 4 x 104 X-ray photons/pixel, with a relative error less than

0.05. The absorption efficiency is 96 % for 17 KeV X-rays with a 150 #m thick phosphor. The absorption edge is observed at 37.4 KeV due to barium. Defining an ideal detector as having a relative uncertainty equal to that in the incident X-ray intensity, the IP was found nearly ideal in the middle exposure range between 101 and 103 photons/pixel, whereas a highly sensitive Kodak DEF-5 film requires 15 times and 25 times more exposure for CuKa and MoK,~, respectively, than would

be needed by an ideal detector to obtain a 10 % relative accuracy.

6.3. A P P L I C A T I O N S

Small-angle X-ray scattering is suitable for observing particles of dimensions 10-500 A, which covers most colloidal particles including biological or synthetic polymers. Since the high flux of synchrotron radiation enables one to record

scattering data within a matter of seconds, when coupled with a suitable detector system, synchrotron radiation X-ray scattering is thus best applied where a quick measurement is required. The wavelength continuum and low divergence are other prominent features of synchrotron radiation X-rays, which, however, are not yet fully utilized.

This section introduces some work performed at BL-10C and BL-15A in the Photon Factory, Tsukuba, Japan. BL-10C is devoted mainly to small-angle scat- tering from solutions, and BL-15A to that from muscle and alloys in the bulk state.

6.3.1. Wide-angle and small-angle X-ray scattering from films and mem- branes

Time-resolved small-angle X-ray scattering from polyethylene tereph~halate film

The time-resolved small-angle X-ray scattering was observed from poly(ethy-

lene terephthalate) film during isothermal crystallization [18-20], using a double

focusing camera for synchrotron radiation at the storage ring DORIS. Here, a linear

Page 389: Analytical Spectroscopy Library_VOL 7

380

position-sensitive detector was used for the data acquisition system composed of an IN90 (Intertechnique) programmable multichannel analyzer.

Amorphous polyethylene terephthalate films were oriented by stretching at

92~ and crystallized at temperatures ranging from 90~ to ll0~ The small-

angle X-ray scattering was monitored by a vidicon-system during crystallization, and the long period and azimuthal half-width of the diffraction maximum were evaluated from the obtained patterns. Here the long period was found to decrease with time and increasing crystallization temperature, while the azimuthal half-width remained constant, irrespective of crystallization temperature, after a certain time as shown in Fig. 6-9. The result implies that the orientation of the crystal lamellar surfaces improves with time but not the chain orientation itself.

When a polymer is annealed above its crystallization temperature, the crys-

tal lamellae thicken, as observed by an increase of the long period. Amorphous

polyethylene terephthalate films were crystallized at 120~ Then the films were

heated with a rate of 100~ to the temperatures of 230~ 240~ 245~ and 250~ in sequence (below the melting poin0 by cooling down once to 120oC be- tween two successive heating processes with the same rate. The scattering power Q = f I(q)q2dq was observed to increase and decrease simultaneously with heating and cooling, respectively, due to the independent thermal expansion of crystalline and noncrystalline regions which changes the density difference between the re- gions. An additional partial melting and recrystallization was observed at 240~ and 2500C, as shown in Fig. 6-10 which shows the result of the last two heat- ing/cooling cycles.

Time-resolved small-angle and wide-angle X-ray scattering from crystallizing poly- ethylene

The time-resolved small-angle and wide-angle X-ray scattering was observed from polyethylene film under stretching [21]. The two-dimensional pattem of SAXS and WAXS was recorded on imaging plates (126 x 126 mm 2) coupled with an IP rapid exchanger, as a function of time. The film of low density polyethylene LLDPE (Sumitomo Chemical FA101-0) was stretched at a constant rate of 204 mm/min. (for present specimens, 14.75 %/s), while the scattering patterns were

taken at 0 (0 %), 6 (88 %), 12 (177 %) and 18 (265 %) seconds (stretching ratio)

after stretching started, with an exposure time of 1.0 s for SAXS and 0.1 s for

WAXS. Since the wavelength of the incident beam was 0.1507 nm, the q range covers 0.1 to 1.3 nm -1 for SAXS with a camera of ~ 2000 mm in length, and from

2.0 to 22 nm -1 for WAXS with a camera of ~ 100 mm in length.

Page 390: Analytical Spectroscopy Library_VOL 7

381

200

180 i 160 ILo

"< 120 _J

I00

a 8(3 120"

100'

I 80*

60*

\ �9 ~o~'c ~91'c~\~oc

-

108~

1 I I I I I

'~,~ \.~96"c 0~o~'.~...o ~ ' ~ ~ ~ _ ~

L0* I I I 1 I I 0 2 L 6 8 10 12 1L

b t k { mln ) - - - - - - ~

Figure 6-9" Long period L (a) and azimuthal half width A~ (b) of ori- ented polyethylene terephthalate film as a function of time dur- ing isothermal crystallization (the crystallization temperature is indicated in the figure).

Figure 6-10" Change of the small-angle X-ray scattering during stepwise heating/cooling of unoriented polyethylene terephthalate, where Q denotes the scattering power Q = f I(q)q2dq.

Page 391: Analytical Spectroscopy Library_VOL 7

382

Fig. 6-11 shows the SAXS and WAXS patterns from stretching polyethylene film, where the stretching direction is vertical in respective patterns. Polyethylene crystals are seen from the WAXS pattern change to align along the c-axis during stretching, while the rearrangement processes of lamellae are observed from the SAXS patterns.

Figure 6-11: WAXS and SAXS patterns of polyethylene film during stretch- ing. The stretching ratios (and the times after starting stretching) are (a) 0 % (0 sec.), (b) 88 % (6 sec.), (c) 177 % (12 sec.) and (d) 265 % (18 sec.).

Time-resolved small-angle X-ray scattering from systems undergoing phase transition

Many biological membranes are known to undergo phase transitions,which can be observed in real time by synchrotron radiation small-angle X-ray scattering.

Fully hydrated phosphatidylethanolamine, for instance, exhibits a phase tran- sition from gel (L~) to liquid crystalline (L~), while fully hydrated phosphatidyl- choline has a ripple gel phase (Pz,) between gel (Lz,) and liquid crystalline (L~) phases.

Page 392: Analytical Spectroscopy Library_VOL 7

383

DPPE (1,2-dipalmitoyl-sn-glycero-3-phosphorylethanolamine) was dispersed in doubly distilled deionized water to the concentration of 20 wt%. Small-angle X-ray scattering was recorded every 0.5 min. through PSPC at BL-15A in the Photon Factory, while the temperature was reduced at a rate of 0.1~ [22] The scattering profile changes as the temperature decreases from 64~ to 61.5~ where the La ~ L~ transition takes place around 63~ (see Fig. 6-12, where the sample was incubated for 15 min. in the L~ phase prior to the cooling run). The scattering profile has revealed two lamellar spacings corresponding to the L~ and L~ phases, which coexist in the temperature range from 63.5~ to 62.5 ~ No other phase appears in this transition range, although the high-sensitivity differen- tial scanning calorimetry (HSDSC) exhibits a multi-peak thermogram depending on the incubation time in the L~ phase, and suggests that the cooling La ~ L~ transition is not a simple two-state transition. Multiple inflection points observed in the temperature dependence of scattering intensities also confirm the result of HSDSC. Thus the equilibrium state of the L~ phase of hydrated DPPE is a mixture of domains which differ in thermal behavior, but their structural difference is too small to be distinguished by S AXS.

65

.-- .60

z 55 i.-..i

r ' l

50

AA~'A j~AAAA a

�9 a

~A~ A ~a~ a AA

a �9 a

a a

, I i I

63 64 TEMPERATURE ('C)

62 65

<" ~ 6 s 5 c"

o 62 5 ~ ~-'~

62 .$ ~

61.5 65 60 55 50

SPACING (A)

Figure 6-12: L~ --, L~ transition of DPPE in excess water with a cooling rate

of 0.1~ observed by time-resolved SAXS. x denotes the spacing, and A, A the intensity of L~ and L~ phases, respec- tively.

3000 m

z 2000

z

1000 ...<

O

Z ..-_4 (.f3

Page 393: Analytical Spectroscopy Library_VOL 7

384

Dipalmitoylphosphatidylcholine (DPPC) is known to possess three phases in its aqueous dispersion; the non-rippled gel phase La, below Tp (the pre-transition temperature ~ a4~ the rippled gel phase Pa, between Tp and Tm (the main transition temperature .,~ 41.5~ and the liquid crystalline phase L, above Tin. The system exhibits a temperature hysteresis in the Pa, temperature region, and takes over 24 hours to attain the stable Pa, phase from the Pa,(ms0 phase (i.e., the metastable rippled gel phase) when cooled from L, to Pa,.

Time-resolved small-angle X-ray scattering was observed from the system quenched from the stable Pa, phase to the La, phase temperature region [23] with mirror-monochromatic optics coupled with a PSPC at BL-15A in the Photon Fac- tory, where the wavelength of the incident beam was set to 1.5 A and the specimen- to-detector was 1.113 m. The ordering process below Tp is quite fast, and will be

completed within several tens of seconds. Synthetic L-a-dipalmitoylphosphatidyl- choline was dispersed in water to the concentration of 30 wt%. Fig. 6-13 presents the time-resolved SAXS profiles from the DPPC-water system quenched from 37.7~ (the stable Pa, phase region) to 23.3~ (the La, phase region), where each profile was measured for 7 seconds and the temperature was jumped from 37.7~ to 23.3~ after the initial four profiles were taken. The Pa, rippled structure is char- acterized by three Bragg peaks at q =~ 0.05, -.~ 0.11 and ~ 0.15 A-~, and the Pa, repeat distance of the lamella is represented by the Bragg peaks at q =~ 0.09, ,.~ 0.18 and -.~ 0.27 h-1. When the temperature was jumped down to 23.2~ these peaks were soon replaced by the Bragg peaks corresponding to the La, repeat distance of the lamellar structure at q =~ 0.095, ,,~ 0.19 and ,.~ 0.285 .h,-~, which grow gradually. The relaxation process from the Pa, phase to the La, phase was found to be much quicker than that from the Pa,(mst) phase to the Pa,.

Structural analysis of biomembranes

Most biomembranes disintegrate within a couple of hours of dissection, and thus require a quick measurement before the disintegration takes place.

The structure of invertebrate rhabdomes was analysed from the X-ray diffrac- tion pattem from unfixed retina, taken by the use of synchrotron radiation and the imaging plate (a storage phosphor screen) [24]. Here the retina was dissected in dim red light from squid rhabdomes (Watasenia scintillans), and consists of hexagonally arranged photoreceptor microvilli accomodating visual pigments as schematically

shown in Fig. 6-14. A 1 mm thick retina was kept in an artificial seawater chamber with Mylar windows at 4~ during the X-ray diffraction measurements.

The X-ray diffraction patterns were recorded on imaging plates attached to mirror-

Page 394: Analytical Spectroscopy Library_VOL 7

385

', , ' ,I -- ~- - lnlensity of 1st Bragg Peak

=

ll"ittl,~ d' / / ' / : ' - ~ " ~ ~ + - - 2 2 8 8 4 ~ 700 .

5 ..... 11 ]I[! I'" i]~ ,'~'. !:''~ ',"-' ''llIilll~ '''' " ~ ~ ~'~'~ . . . . ~------~'- ..6 "--=--~-~ T 172 tlme ._. ~ ~ >" 600 1500 / ' ' 232~ 1 :

'"0~0 . . . . . . 02 ., % ~ -1 . . . . 0'6 . . . . . . . 0'8 400 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 I00 200 300 400 500 600 Q (A) time (sec)

Figure 6-13: Time-resolved SAXS profile and evolution of the first Bragg peak intensity from DPPC/water system, quenched from 37.7~ (the stable P#, phase) to 23.2~ (the L#, phase).

Figure 6-14: Schematic diagram of a vertical slice of squid retina. The retina consists almost entirely of photoreceptor cells sectioned verti- caUy into inner and outer segments. The photo-receptive outer segments are seen in the upper layer and consist of microvilli, which are cylindrical extensions of the cell membrane, packed hexagonally in the rhabdomes. The microvilli are 600 A in

diameter and 1 #m in length.

monochromator optics (Muscle Diffractometer) at BL-15A of the Photon Factory. The wavelength of the incident beam was 1.5 A , and the specimen-to-detector

distance was set to 2276 mm.

Page 395: Analytical Spectroscopy Library_VOL 7

386

Fig. 6-15 shows the X-ray diffraction patterns from outer segments of a live

squid retina in the dark (left) and in light (right). The low angle X-ray diffraction

spots are due to the oblique lattice of microvilli. One observes that the lattice

constants and the X-ray intensity distribution change immediately upon illumination

by the light (~ 500 nm in wavelength) of a 100-W halogen lamp through an

interference filter and a heat filter. The results suggest the increase of the microvilli

diameter and the inter-microvilli distance in response to light stimulation.

The Patterson function was calculated from the observed two-dimensional X-

ray diffraction intensity (Fig. 6-15 left) as Fig. 6-16a. The model was constructed

as shown in Fig. 6-16b, where the microviUar membrane was assumed to have

a bilayer electron density distribution. The membrane junction is represented by

inter-microvillus materials. The Patterson map (B) calculated from the model A

(Fig. 6-16b) reproduces reasonably that calculated from the observed X-ray diffrac-

tion intensity, except for the regions around the lattice comer.

Figure 6-15: The X-ray diffraction patterns from a live squid retina in dark

(left) and light (right). The X-ray diffraction spots are due to the

oblique lattice of microvilli. The lattice constants are a = 60.0

nm, b = 59.0 nm and 7 = 118~ in the dark, and a = 65.5 nm,

b = 64.0 nm and 7 = 118~ in the light. The exposure time was

4 minutes for each pattern with a beam current of 300 mA. The

recording of both patterns was finished within 40 minutes after

decapitation.

Page 396: Analytical Spectroscopy Library_VOL 7

387

b

0

Figure 6-16a: The Patterson map calculated from the observed X-ray diffrac-

tion intensity (see Fig. 6-15). The lattice constants are a - b =

60 nm and 7 = 120~ Negative contours are indicated by broken

lines.

A b B

0 ~ ( ~ ~ ""( ,, " " ' O I

Figure 6-16b: A model microvillar membrane (A) and the Patterson map 03)

calculated from the model A. Each large circle in the model

structure represents the cross-section of photoreceptor microvilli,

which contain a cytoskelton core (filled circle) at the center. The

discrepancy factor is 16 % for this model.

Page 397: Analytical Spectroscopy Library_VOL 7

388

Bacteriorhodopsin (bR) is the sole protein found in the purple membrane of

ttalobacterium halobium. The bR is composed of 248 amino acid residues and

the chromophore retinal, and is folded into seven a-helices spanning the lipid

and additional segments in aqueous regions. The bR forms trimers arranged in

a hexagonal lattice in the purple membrane. The bR undergoes a photo-reaction

cycle on absorbing light with the M-intermediate considered to play a key role in

its proton transport process.

The arginine treatment was found to stabilize the M-intermediate for a consid-

erable period without changing the bR and membrane structure or disturbing the

photo-reaction cycle of the bR [25]. The purple membrane was isolated from a

R1M1 strain of Halobacterium halobium. Its solution was dialysed against Arg-

HC1 solution (pH 10), and then dried on a sheet of Mylar. The X-ray diffraction

profiles were observed from this purple membrane while irradiating yellow light

(A > 530 nm; the M-intermediate state) or purple light (A = 410 nm; the trans state),

with the Muscle Diffractometer coupled with a PSPC detector system at BL-15A

of the Photon Factory. As the results show in Fig. 6-17a, the X-ray diffraction

patterns exhibit small but significant differences between the t rans state and the M- intermediate. The lattice constants of the purple membrane were found to be 62.7

A and 62.8 A, respectively, in the trans state and M-intermediate, indicating that

the chromophore-chromophore interaction between adjacent trimers was weakened

in the M-intermediate. The calculated difference electron density map (Fig. 6-17b) reveals a small structural change in two helices B and G which will tilt toward the

inside of the trimer during formation of the M-intermediate, in accordance with the

fact that the helix G contains amino acid residues responsible for proton-pumping.

The time-resolved measurement was also performed during the conversion of the M-intermediate to the trans state, and no disordering was confirmed during the

conversion.

Muscle contracts rapidly when subjected to a low load: muscle shortening is

complete within 200 msec. The sliding mechanism has been proposed for this

muscle shortening [26], and experimental confirmation is required by following

the structural change of muscles during shortening. A two-dimensional X-ray

diffraction pattern from frog skeletal muscle was recorded on imaging plates during

shortening [27]. Frog sartorius muscle was stimulated electrically for 1 s (20 Hz

stimulation) at 4~ The sarcomere length was adjusted to 2.6 #m in a resting state,

and the tendon end of the specimen was connected to a solenoid using a stainless-

steel thread on which a small LED was fixed. The solenoid was activated to make

Page 398: Analytical Spectroscopy Library_VOL 7

389

. , . . . m

. . , . . .

t . -

c , , . . .

2800

I ~- II ,'=~

~/ mJ mJ

0.02 0.085 O.

S ( = 2:in8/~.) (A-~]

Figure 6-17a: X-ray diffraction profiles from the purple membrane in the t rans

state (solid line) and M-intermediate (dotted line). The exposure time was 300 sec. for each measurement.

-0. 50 O. O0 O. f O

..L . . . . . I , . ,

Figure 6-17b" Difference electron density map. The region where the electron density increases in the M-intermediate is designated by thick lines.

the thread slack at 280 ms after a first stimulus, and then the muscle was allowed

to contract (by about 16 % of its length) until the thread was taut. The length of

the muscle was monitored by the LED. The load including the weight of the thread and LED, was small (about 1 g) in comparison with the tension developed in the specimen (300 ~ 500 g), and the specimen was supposed to contract virtually with

no load with a velocity of about 6 ~m/sarcomere/s. The contraction lasted for about

Page 399: Analytical Spectroscopy Library_VOL 7

390

7 ms. The X-ray diffraction was taken at 5 different phases with 300 ms intervals; (1) in a resting state before contraction, (2) during isometric contraction before shortening, (3) during shortening, (4) during isometric contraction 330 ms after

shortening, and (5) during isometric contraction 630 ms after shortening. A shutter was opened for 30 ms in each phase to take diffraction patterns. The diffraction patterns were accumulated from 20 contraction experiments for each specimen, so that the exposure time amounted to 600 ms on the respective imaging plates. The measurements were repeated four times with flesh muscle specimens, and the diffraction patterns were summed to produce an X-ray diffraction pattern shown in Fig. 6-18.

Figure 6-18: An X-ray diffraction pattern from frog sartorius muscle during unloaded shortening. A total exposure time was 2.4 sec.

The intensity and spacing changed during shortening as follows. (1) The intensity of the (1,1) equatorial reflection decreased during shortening, and that of the (1,0) reflection also showed a slight decrease, making the intensity ratio slightly increase. (2) The 14.3 nm and 7.2 nm meridional reflections decreased in intensity. The reflections moved away from the origin by about 5 % during shortening. (3) The off-meridional part of the myosis layer-lines exhibited no change in intensity. (4) The meridional reflection at 1/21.4 nm -~ increased in intensity during shortening. (5) The intensities of the actin layer-lines at 1/5.9 and 1/5.1 nm -1 decreased during shortening. The results support the sliding mechanism

for muscles.

Page 400: Analytical Spectroscopy Library_VOL 7

391

6.3.2. Time-resolved small-angle X-ray scattering from solutions

Synchrotron radiation affords a powerful source of X-rays for solution small- angle scattering, and its high intensity has opened up the possibility of time- dependent scattering measurement of solutions for the investigation of the kinetics of biologically important transient phenomena [28,29]. This method can be applied to studies of enzymatic reactions, assembly/disassembly of biological systems, de- naturation/renaturation, and phase transitions, which has been studied spectroscop- icaUy so far by techniques such as stopped-flow rapid mixing, temperature-jump, and flash photolysis. The advantage of small-angle X-ray scattering (SAXS) over spectroscopic methods may be that the SAXS reflects directly the structure of a macromolecule itself.

A combination of SAXES and the CAMAC data acquisition system described in 6.2.1 and 6.2.2. is well suited for the purpose of realizing time-dependent mea- surements of SAXS. The data acquisition scheme for stopped-flow and temperature- jump methods is shown in Fig. 6-19. All scattering data were corrected for varia- tion in intensity of the primary beam which is monitored by an ionization chamber in front of the specimen.

mixing

1' '

_ i

g'

.1-

time frame =1 2 3

mixing

;J n- |

time

time

Eu~

/li~ n

(nn~x= 64)

Figure 6-19: Data acquisition scheme in SAXES at BL-10C. The SAXS pro- files of each time frame are recorded during the course of re- action in 512 channels of histogram memories which carry a total of 32 K words with a depth of 24 bits. A total of 64 time frames can be recorded in a single experiment. The shortest interval of reaction time recorded is less than 1 ms.

Page 401: Analytical Spectroscopy Library_VOL 7

392

Stopped-flow study of denaturation and aggregation of bovine serum albumin [30]

Bovine serum albumin (BSA) is a protein of molecular weight 69,000 daltons. It is easily soluble in water and transports fatty acid, bile pigments, drugs, etc. in the blood. Each BSA molecule has 17 disulfide bonds. Cleavage of the disulfide bond by dithiothreitol(DTI') induces denaturation (unfolding) of the protein and aggregation of unfolded BSA. The BSA-DTI" reaction was performed by rapid mixing with a stopped flow apparatus [31]. The scheme for the stopped flow measurement is shown in Fig. 6-20. The SAXS intensities were recorded in each time frame immediately after mixing of the BSA and DTF solutions with intervals of 50 s. The concentration of BSA in the reaction mixture was either 0.5 % (w/v) or 1% (w/v), i.e. either 1% or 2 % BSA solution was mixed with an equal volume

of buffer solution containing DTr.

. J Data Aquisi l ion

l' s2 II - L_l II ~ - - N2 gas

Figure 6-20: Outline of the stopped f low rapid mixing apparatus used with SAXES at the Photon Factory, National Laboratory for High Energy Physics, Tsukuba. R1 and R2 are reservoirs for reactant solutions; S 1 and $2, a pair of syringes; M, the mixing chamber. The chamber between the optics and PSPC (position-sensitive proportional counter) is the specimen chamber. A trigger pulse immediately after mixing initiates the data acquisition system. Actions of valves and syringes are controlled by pressure of N2

gas.

The time-course of the change in the radius of gyration is plotted in Figs. 6-21 and 6-22 for 0.5 and 1% BSA solutions respectively: the initial stage has an Ra value of 29 .~ (the same value as the native BSA), the final equilibrium having an Ra value of about 60 A. As seen in Figs. 6-21 and 6-22, I(0) values increase 4 to

5 times in both cases, where I(0) is proportional to the molecular weight (see eqn. (6.47)). Thus, an increase in the radius of gyration is attributable to the aggregation

of partially or fully reduced BSA monomers, probably as a result of unfolding of

Page 402: Analytical Spectroscopy Library_VOL 7

393

tn I(OI Rg(~) 8 70

60

? 50

z,O

6 30 :':I/t / �9 ~ tn l l (0) l . . ' .

| | i 250 500 750

t i m e ( s e c )

t n l l (o ] Rg (1 )

,o - - d l ~,n,,,o~

20 . ~ t i

0 250 500 750 t i m e ( s e c )

Figure 6-21" Plots of radius of gyration and ln[I(0)] for 0.5% BSA solution, obtained from Guinier plots. The time delays in the initial rise are unclear

Figure 6-22: Plots of radius of gyration and In[I(0)] for 1.0% BSA solution, obtained from the Guinier plots of time resolved measurement of small-angle scattering profiles. The time delay in the initial rise is very obvious in these plots.

the compact form by cleavage of disulfide bonds in the monomers. This reaction can be represented by a number of equilibria as follows:

A ~ A'

Ak + lA' ~ Ak+t (k, l = 1, 2, 3, ...) (6-62)

where A is a monomeric BSA in the native state and A' the monomer with par- tiaUy unfolded structure. The second equation denotes a number of reactions: this equation indicates that a k-meric A particle reacts with l moles of A' resulting in a (k +/)-meric A particle, for example. Certainly, k-meric and/-meric particles react to produce (k +/)-meric A particles. We do not have available parameters such as the equilibrium constants of such reactions in the final stage of the reaction mixture, except for the behavior of the I(0) values. Therefore, the numbers of monomers involved in aggregation are estimated to be at least four for the particles of the 0.5 % BSA-DTI' mixture and five for the 1% BSA-DTI' mixture, assuming that the equilibrium is completely to the right and that the degree of hydration does not change upon aggregation of monomers.

Page 403: Analytical Spectroscopy Library_VOL 7

394

A delay in the initial increase in the radius of gyration and ln[I(0)] for 0.5

% BSA is not clear. On the other hand delay is evident for the 1 % BSA re-

action mixture, and is about 150 s. This delay is attributable to the molar ratio

of [DTr]/[BSA] in the solutions. The disulfide bonds in proteins are classified

into three groups, depending on their relative activity: fully exposed (reactive with

0.5 mM dithioerythritol), partly buried (reactive with 10 mM dithioerythritol), and

buried (unreactive in the native state without denaturing reagents). For complete

reduction, a 50-fold molar exess of DTr over the number of moles of disulfide

bonds in the protein molecule is necessary, in addition to a denaturing reagent such

as urea or guanidine hydrochloride to unfold the polypeptide chain and expose all

the disulfide bonds. Even for limited reduction, about a 60-fold molar excess of

DTr is required over the number of moles of 7a-immunoglobulin, and this amount

is dependent on the nature of proteins. In the present reaction mixture, a 218- or

110-fold molar excess of DTr was added with respect to the number of moles of

disulfide bonds in 0.5 and 1.0 % BSA, without a denaturating reagent. Such an

amount of DTr seems to be about the critical concentration, resulting in a definite

time being necessary in the first reaction of eqn. (6-62) and a delay time occurs in

the 1.0 % BSA solution as compared with that of the 0.5 % BSA solution. There- fore, the SAXS results obtained from 0.5 and 1 % BSA-DTr reaction mixtures

differ from one other in the delay time of the reaction, leaving the rest of the time-

courses of the reactions approximately parallel. A 218-fold molar exess of DTr is certainly sufficient to unfold the polypeptide chain of 0.5 % BSA by reducing fully exposed or partly buffed disulfide bonds, without an appreciable reaction time, and

aggregation starts immediately after mixing of the solutions. On the other hand, a

l l0-fold molar excess of DTr in the 1% BSA solution is probably insufficient to

reduce the minimum number of disulfide bonds to unfold the polypeptide chain and cause aggregation. About 150 s after mixing, DTr reduces a sufficient number of

disulfide bonds to induce aggregation of BSA monomers. After the initial rise in

the reaction, the concentration of BSA(I%) accelerates the aggregation process so

that it tends to proceed a little faster than that in the 0.5% BSA reaction mixture.

Temperature-jump study of the association process of tobacco mosaic virus protein

[32]

Tobacco mosaic virus is a rod shaped virus composed of RNA and coat pro-

teins. The coat protein (TMVP) self-assembles to form a variety of aggregates of

virus-like rods without RNA [33], which depends on the pH, ionic strength, tem-

perature and protein concentration. Fig. 6-23 shows the scheme for the association

Page 404: Analytical Spectroscopy Library_VOL 7

395

K- 2

< , > <-- /~

~ % ~ . > o e e ~C I ~/~-JJ/JJJJJJJ

A B C D I

O 0 �9

Figure 6-23" Scheme for temperature-induced self organization of TMVE The reaction was not sequential but a random association-dis- sociation mechanism. The following assumptions are made for the reaction. (1) Formation of the 20 S disk from A-protein is

very fast, to set up an equilibrium between them; (2) further

association to form the stacked disks (short rods) proceeds by

stacking of the disk or rods with the single velocity constant of k+2, and the velocity of dissociation of the rod to shorter rods

or the disk is k_2. Formation and dissociation of the disk or rods is interconvertible, i.e. 1 double-layer disk and 4-layered rods form a 6-layered rod; one 10-layered rod disassembles into 1 double-layered disk and an 8-layered rod or 4-layered rod and a 6-layered rod, etc.

process of TMVE At low temperature TMVP forms a small aggregate (A-protein, Fig. 6-23 (a)) comprising 4 to 6 monomer subunits. As the association force of TMVP is entropic (hydrophobic) [34], raising the temperature forms tobacco mo- saic virus-like rods (Fig. 6-23 (b) to (i)) via stacking of intermediate double layer disks whose radius of gyration, Ra, is 66.5 /1 [35] (20S disk, Fig. 6-23(b)). A kinetic study of the association process was performed using a temperature-jump

apparatus [36]. The scheme for the temperature-jump measurement is shown in Fig. 6-24. The present purpose is to determine the kinetic parameters of the equi- librium constant K~, the association rate constant of k+2 and dissociation constant

k_2 (see Fig. 6-23). Fig. 6-25 shows a result of the time resolved temperature-jump (5~ to 25~

SAXS experiment of TMVP. Fig. 6-25 (a) shows the Guinier plots with time

interval of 0.8 s for each frame, with 7.5 seconds of accumulated measuring time.

Page 405: Analytical Spectroscopy Library_VOL 7

396

.... I~ ~ [~,_ --r-- NZ GAS--" :~WAT~a ~J~ il Ic'~cU~T'~ ~ ~ EXCHANGER DATA ACvQUISITIONJ"

c'~w~!~ # ~ l c~176 ~ I

Figure 6-24" A schematic diagram for time-resolved temperature-jump mea- surements used with SAXES at the Photon Factory. Sample solution S of temperature T1 is injected by the pressure of N2 gas into the heat exchanger kept at the temperature T2. A trigger pulse opens the electromagnetic valve and initi.~tes the data-acquisition system simultaneously.

110

86 E

6.2 o

-~ 3.8 f--

1.4

Rg,z(Z)

9O

! I I I ;l

a % u ~

I I I I 0 0.8 1.6 2.4 3.2 4.0

Q2 x 10 3 (s

80

70

-~.o 60 0

o

! I ! 8 16 24

T i m e ( s e c ) Figure 6-25" Result of temperature-jump study of TMVP (jump from 5~

to 25~ (a) Guinier plots of the time course of temperature- jump. (b) Least squares fit of the radii of gyration. Solid line: estimated value analysed by the method written in the text. :experimental value obtained from Figure 6-25 (a).

Page 406: Analytical Spectroscopy Library_VOL 7

397

Fig. 6-25 (b) shows the time dependence of the z-average radius of gyration. A kinetic study combined with SAXS cannot be analysed simply by the con-

ventional spectroscopic methods: There, the characteristic absorbance of interme- diates or final products measured by spectroscopic methods is proportional to their concentrations. In contrast, the scattered intensity of each time frame is the sum of the constituent components, because the system is not monodisperse but poly- disperse. The observed intensity I(q) from a transient solution composed of L components is the sum of each component in the solution,

L L

I(q) = ~ Z niJi(q) = a Z niJi(O)exp(-R2aiq2/3) (6-63) i+1 i=1

where ni is the number of each component particle, and Ra~ is the radius of gyration of the ith particle of L components. Thus, the radius of gyration obtained from the Guinier plots corresponds to the z-average and Y(O)/c is proportional to the weight average molecular weight Mw. For analysis of the kinetic SAXS experiment, let us describe the association process of TMVP rod as an example. To obtain the kinetic parameters, K~, k+a and k_2, combine the following equations.

1) Conservation of total monomer concentration. Total monomer concentration CT should be conserved. Thus,

CT = hA" a(t) + nDi y ~ di(t) ( 6 - 6 4 )

i=1

where nA is the number of components of A-protein, no~ the number of components of i stacked rods of 20 S disk: a(t) is the concentration of A-protein at time t, and di(t) the concentration of the i stacked disk with maximum stacked number m.

2) Equilibrium between A-protein and 20 S disk. The transition between A-protein and 20 S disk is very rapid; this process is expressed in terms of an equilibrium of A-protein and 20 S disk, specified by an equilibrium constant Ka:

dl /a" = K1 (6-65)

Here d 1 and a denote the molarities of the 20 S disk and A-protein, respectively. 3) Time dependence of the average radius of gyration. The radius of gyration

at time t obtained from experiment is the z-average of the proteins existing in the solution:

R~ = a(t) . na . R~A + Eim=l di(t) " rtbi . R2GDi (6-66) a(t) " n2A "~- Eim=l di(t) . nDi

Page 407: Analytical Spectroscopy Library_VOL 7

398

w h e r e RGA, RGDi denote the radius of gyration of A-protein and/-stacks of the

20 S disk, respectively.

4) Kinetic equations of association and dissociation of rods. A change in the

concentration of the/-stacks of the 20 S disk, di(t)

m d(di)/dt = k+2

l<_i~_j/2

m m--1

di.dj_l~-k_2 ~ di . ( i - 1).k-2.di-k+2.di ~ di (6-67) 2 j+ i+ l j+ l

By use of least-squares fitting, optimized values of K1, k+2 and k_2 were deter-

mined by solving eqn. (6-67), with the constraint of eqn. (6-64), to yield the

best fit of the mean-square radius of gyration to the observed value for each time-

frame. Fig. 6-25 (b) shows an example of the calculated radius of gyration with

estimated rate constants from eqn. (6-67) and the experimentally estimated value

as a function of time. The kinetic parameters evaluated for the TMVP assembly

process are shown in Table 6-3. In the case of Fig. 6-25 (b), where the buffer

concentration of 100mM at pH 7.2 jumped from 5~ to 25~ estimated values of

Table 6-3" Kinetic parameters for TMVP assembly process obtained by

temperature-jump SAXS measurements at pH 7.2

Protein Buffer At Final conc conc time log K 1

(mg/ml) (mM) (s) (s)

20013 5.0 50 40.0 1200

1' 12.0 50 12.0 360 28.32

5.0 100 5.0 150 32.03 5~ 12.0 100 5.0 150 28.12

250C 5.0 50 4.0 120 31.22

12.0 50 2.5 75 29.09 T

5.0 100 1.2 36 32.89

5"I; 12.0 100 0.8 24 31.82

k+2M-ls -1 k_2 sq (x l0 4) (x l0 -1 )

0.0857 0.1457

0.4984 0.1035

1.2719 0.3914

1.4894 0.3156

0.8423 0.3530

8.8512 0.5361

3.5760 0.5203

the final At denotes the measuring time in each time frame, and

time the total measuring time for 30 time frames.

Page 408: Analytical Spectroscopy Library_VOL 7

399

kinetic parameters a r e K1 -- 663 x 1028, k+2 = 3.58 x 10 - 4 M - 1 s - 1 , k_2 - 0.52 x 10-1s -1. The k+2 value of around 104M-l-S-1 in the present system is lower than that expected for normal diffusion-controlled association reactions [37], and falls in the lowest range of protein-protein interaction systems. This result could suggest that rod elongation of TMVP is due to disk stacking, which would not proceed as rapidly as formation of oligomers comprising only a small number of subunits.

The analytical procedure proposed here is applicable not only to the tempera- ture -jump method but also to other kinetic small-angle scattering experiments, for example those using the stopped-flow technique.

Time-resolved smM1-angle X-ray scattering from gelling system

Polymer gel is specified by the three-dimensional network structure formed by a small amount of interchain (either chemical or physical) links. This network structure can be characterized by the spacial correlation of a scale from 10 to 100,000 .~. The SAXS is expected to reveal the spacial characteristics of gel in some extent [38], and thus is applied to the systems of various gels [39].

An SR X-ray source of extensive intensity has an advantage in measuring the excess scattered intensity of small-angle X-rays from solutions within a minute.

An attempt has been made to observe the network formation in real time by SR SAXS in the system undergoing gelation by end-crosslinking of two-functional and four-functional monomers [40]. The stoichimetric mixture of the 2-functional monomer [ 1,4 bis(1,1,3,3-tetramethyl- 1,3-disilya-2-oxa-4-pentenyl) benzene (VT- M)] and the 4-functional monomer (crosslinker) [tetrakis (dimethyl siloxy) silane (F4-C)] in toluene (20 wt%) yields randomly branched polymers with a broad molecular weight distribution and eventually forms gel by hydrosilylation according to the reaction scheme

CH 3 CH- ~ CH 3 CH 3 I I " ' J ~ I I CH2 = C H - S i - O - S i - " ( \ / )"- S i - O - S - C H = C H , , +

I I ~k~.__.~ I I ': CH 3 CH 3 CH 3 CH 3

VT-M,_3

H

CH3-S~i-CH 3

cH~ o cH~ . -s i -o -s i -o -s i - ,

' d ' CH 3 CH 3

CH3-Si -CH 3 H

F4-C

H2PtCI 66H20

Toluene Gel

where the catalyst H2PtCI6.6H20 is added.

The time-resolved SAXS was observed from the system of VT-M/F4-C toluene solution encapsulated in a glass capillary of r = 2 mm with the SAXES optics (see

Fig. 6-6). The scattering from gel is considered to be caused by the constituent

polymer chains and/or the spatial inhomogeneity due to the statistical fluctuation of

Page 409: Analytical Spectroscopy Library_VOL 7

400

density constrained in the three-dimensional architecture of the gel. The scattering from the constituent chains can be formulated in terms of the Debye equation for non-interacting particles dispersed in the medium:

n 7 1

I(q) = Z ~ fifj sin(qrij_______~) (6-68) i = 1 j = l qri j

with f~ being the scattering length of the ith unit and rij the distance between the ith and jth units. The sum is extended over all pairs of units, and is calculated in the simplest case of f-functional polycondensation as

o o

I(q) c< 1 + ~ f ( f - 1)n-lolnq~ n (6-69) n = l

r = exp(-q2b 2/6) (6-70)

where a is the fraction of reacted functionalities on a monomeric unit, and b 2 corresponds to the mean-square distance between adjacent units. Although the weight-average degree of polymerization diverges at a gel point c~ = 1 / ( f - 1), I(q) remains finite as far as ( f - 1)ar < 1. That is, the scattering will be observed

1.0 r 10000

0.8

0.6

r

0.4

0.2

O

o o

(a)

�9 sol gel

0.0 0.00 0.05 0.10 0.15 0.20

" 0 - (b)

1000 i"

100

10 r

1

0.001

o �9 s o l

% �9 gel

. . . . . . . . I . . . . . . . . I . . . . . . . . 2 4 6 8 2 4 6 8 2 4 6 8

0.01 0.1 1

q (A -1) q (A l)

Figure 6-26: The scattered intensity profile of the 4-functional (f = 4 in eqn. (6-68)) randomly branched polymer system before and after gelation (a = 0.332 and 0.334, respectively, where b is fixed at 5 ~). (a) Kratky plots; (b) double logarithmic plots.

Page 410: Analytical Spectroscopy Library_VOL 7

401

over a whole range of q before gelation, while the scattering intensity diverges to infinity at q satisfying ( f - 1)aq~ = 1 when gel is formed. The scattering behavior from the gelling system is demonstrated in Fig. 6-26, where the sharp upturn of the scattering intensity at q ~ 0 is characteristic of gel formation.

The system of VT-M/F4-C exhibited the upturn of q2I(q) as q ~ 0 due to the gel formation by end-crosslinking. Fig. 6-27 shows the time-course of the SAXS profile in Kratky plots. The gel point lies around 7900 s at 37~ although the exact gel point should be less than 7900 s considering the present resolution of the SAXES equipment. A similar tendency of the divergence in the Kratky

plots was observed in other reaction temperatures, where the gel point was found to become shorter in terms of the gel time as increasing the reaction temperature. The result suggest that the network formation seems to follow the classic scheme of Flory-Stockmayer [41].

Figure 6-27: 3-dimensional Kratky plots of time-resolved SAXS during poly- siloxane network formation at 37~

Page 411: Analytical Spectroscopy Library_VOL 7

402

REFERENCES

0

3. 4.

5.

0

o

8.

9. 10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

L. D. Landau and E. M. Lifshits, Quantum Mechanics, Pergamon, Oxford, 1985.

P. Debye, Ann. Phy. (Leipzig), 28, 809 (1915).

P. Debye and A. M. J. Bueche, J. Appl. Phys., 20, 518 (1949). G. Porod, Kolloid Z., 125, 51 (1951). A. Guinier and G. Fournet, Small-Angle Scattering of X-Rays, Wiley, New York,1955. L. A. Feigin and D. I. Svergun, Structure Analysis by SmMI-Angle X-ray and Neutron Scattering, Plenum, New York, 1987. Y. Hiragi and S. Ihara, Acta Cryst., A37, 378 (1981). P. Debye, J. Phys. Colloid Chem.,51, 18 (1947).

A. Guinier, Ann. phys. (France), 12, 161 (1939); see also Ref. 5 p26. O. Kratky, G. Porod and L. Kahovek, Z. E1ectrochem., B55, 53 (1951).

J. Plegtil, Makromol. Chem. Macromol. Syrup., 15, 185 (1988); J. Ple~til, H. Posp~gil, Yu. M. Ost~evich and G. Degovics, J. Appl. Crys., 24, 659 (1991). M. Mimura, S. Yamanaka, H. Urakawa and K. Kajiwara, Bull. Inst. Chem. Res. Kyoto Univ., 69, 199 (1991). T. Ueki, Y. Hiragi, Y. Izumi, H. Tagawa, M. Kataoka, Y. Muroga, T. Matsushita and Y. Amemiya, Photon Activity Report, 1, V7, V29, V170 (1983). H. Hashizume, K. Wakabayashi, Y. Amemiya, T. Hamanaka, T. Wakabayashi, T. Matsushita, T. Ueki, Y. Hiragi, Y. Izumi and H. Tagawa, Design of Diffrac- tometer for Small-Angle Scattering (The Muscle Diffractometer) at Photon Fac- tory, KEK Internal 81-11, National Laboratory for High Energy Physics, Tsukuba, 1982. M. Sonoda, M. Takano, J. Miyahara and H. Kato, Radiology (Easton, Pa.), 148, 833 (1983). Y. Amemiya, N. Kamiya, Y. Satow, T. Matsushita, K. Wakabayashi, H. Tanaka and J. Miyahara, in A. Bianconi and A. C. Castellano (Editors), Biophysics and

Synchrotron Radiation, p.61, Springer, Berlin, 1987. Y. Amemiya, Y. Satow, T. Matsushita, J. Wakabayashi and J. Miyahara, Topics

in Current Chemistry, 147, 121 (1988). G. Eisner, H. G. Zachmann and J. R. Milch, Makromol. Chem., 182, 657 (1981); G. Eisner, M. H. J. Koch, J. Bordas and H. G. Zachmann, Makromol.

Chem., 182, 1263 (1981). G. Eisner, Ch. Riekel and H. G. Zachmann, Adv. Polymer Sci., 67, 1 (1985).

Page 412: Analytical Spectroscopy Library_VOL 7

403

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

S. R0ber, P. BiSsecke and H. G. Zachmann, Makromol. Chem. Macromol.

Syrup., 15, 295 (1988). T. Kojima, A. Uemura, K. Chikaishi and Y. Amemiya, Photon Factory Activity

Report, 8, 310 (1990). H. Yao, I. Hatta, R. Koynova and B. Tenchov, Photon Factory Activity Report,

9, 251 (1991).

S. Ueno, T. Takeda, S. Komura, H. Seto and Y. Amemiya, Photon Factory

Activity Report, 9, 254 (1991).

T. Hamanaka, Y. Kito, M. Seidou, K. Wakabayashi and Y. Amemiya, Photon Factory Activity Report, 6, 124 (1988); T. Hamanaka, Y. Kito, M. Seidou, K. Wakabayashi and Y. Amemiya, Photon Factory Activity Report, 8, 296 (1990); T. Hamanaka, Y. Kito, M. Seidou, K. Wakabayashi and Y. Amemiya, Photon

Factory Activity Report, 9, 252 (1991).

M. Nakasako, E Tokunaga, M. Kataoka and Y. Amemiya, Photon Factory

Activity Report, 7, 122 (1989); M. Nakasako, M. Kataoka and E Tokunaga, FEBS Left., 254, 211 (1989); M. Nakasako, M. Kataoka, Y. Amemiya and E Tokunaga, FEBS Left., 292, 73 (1991); F. Tokunaga, M. Nakasako, M. Kataoka and Y. Amemiya, Photon Factory Activity Report, 9, 258 (1991).

Y. Harada, K. Sakurada, T. Aoki, D. D. Thomas and T. Yanagida, J. Mol. Biol.,

216, 49 (1990). N. Yagi, S. Takemori, M. Watanabe and Y. Amemiya, Photon Factory Activity

Report, 9, 265 (1991).

R. S. Goody and K. C. Holmes, in H. B. Stuhrmann (Editor), Use of Synchrotron Radiation in Biology, p.203, Academic Press, London, 1982.

M. H. J. Koch, H. B. Stuhrmann, A. Tardieu and P. Vachette, in H. B. Stuhrmann (Editor), Use of Synchrotron Radiation in Biology, p.223, Academic Press, London, 1982.

T. Ueki, Y. Hiragi, M. Kataoka, Y. Inoko, Y. Amemiya, Y. Izumi, H. Tagawa and Y. Muroga, Biophys. Chem., 23,115-124 (1985).

T. Nagamura, T. Kurita., E. Tokikura and H. Kihara, d. Biochem. Biophys. Methods, 11, 277-286 (1985).

Y. Hiragi, H. Inoue., Y. Sano, K. Kajiwara, T. Ueki and H. Nakatani, 3. Mol. Biol., 213, 495 (1990)

P. J. G. Butler and A. C. H. Durham Adv. Protein Chem. 31, 187 (1977).

M. A. Laufer, Entropy Driven Processes in Biology, Springer, New York, 1975.

Y. Hiragi, H. Inoue, Y. Sano, K. Kajiwara, T. Ueki, M. Kataoka, H. Tagawa,

Page 413: Analytical Spectroscopy Library_VOL 7

404

36.

37. 38.

39.

40.

41.

Y. Izumi, Y. Muroga and Y. Amemiya, J. Mol. Biol., 204, 129 (1989). Y. Hiragi, H. Nakatani, K. Kajiwara, H. Inoue, Y. Sano and M. Kataoka Rev. Sci. Instrum., 59, 64 (1989). R. Koren and G. G. Hammes, Biochemistry, 15, 1165 (1976). K. Kajiwara, S. Kohjiya, M. Shibayama and H. Urakawa, in D. DeRossi, K. Kajiwara, Y. Osada and A. Yamauchi (Editors), Polymer Gels; Fundamentals and Biomedica/Applications, p.3, Plenum, New York, 1991. See, for example, J.-M. Guenet, Thermoreversible Gelation of Polymers and Biopolymers, Academic Press, London, 1992. T. Ando, S. Yamanaka, S. Kohjiya and K. Kajiwara, Poly. Gel. Network., 1, 45 (1993). See, for example, P. J. Flory, Principles of Polymer Chemistry, Comell U.P., Ithaca, 1953.

Page 414: Analytical Spectroscopy Library_VOL 7

Applications of Synchrotron Radiation to Materials Analysis H. Saisho and Y. Gohshi (Editors) �9 1996 Elsevier Science B.V. All rights reserved. 405

CHAPTER 7

THE RIETVELD METHOD AND ITS APPLICATIONS TO SYNCHROTRON X-RAY POWDER DATA

Fujio IZUMI

National Insti tute for Research in Inorganic Mater ials

1-1 Namiki , Tsukuba , Ibaraki 305, Japan

7.1. INTRODUCTION

Since the discovery of superconductivity in the KaNiF4-type oxide (Lal_xBax)2CuO4 in

1986 [ 1 ], numerous papers concerning Rietveld refinements of high-To superconductors and

related compounds have been published, chiefly in the field of physics [2,3]. Information

about the average and defect structures of the superconductors reported in them was indispensable

to searches for new copper oxides and understanding the mechanism of carder doping. Therefore,

they have been noted and cited repeatedly by researchers of superconducting copper oxides. The Rietveld method [4] had been well known, prior to 1986, to some crystallographers,

physicists, chemists, mineralogists, and materials scientists studying metals and inorganic

compounds. However, it became much more popular after superconductivity "fever" spread round the world, and has now been recognized as a fundamental technique of characterization

in solid-state science.

7.1.1. Raison d'etre of the Rietveld method

The Rietveld method is a technique for refining structure and lattice parameters directly

from whole X-ray or neutron powder diffraction patterns without separating peaks contained

in them [4-6]. In contrast with single-crystal diffraction, the projection of the three-dimensional

reciprocal lattice onto the single dimension of a powder-diffraction pattern leads to a serious

loss of structural information. Solving phase problems in compounds with unknown structures

are, therefore, very difficult with powder-diffraction data unless the compounds have fairly

high symmetry and contain few atoms in their asymmetric units. However, once structural

Page 415: Analytical Spectroscopy Library_VOL 7

406

models can be constructed by some means, the Rietveld method is available as a most powerful

procedure for structure refinements. Many scientists, including even crystallographers, still have a preconceived idea that the

Rietveld method should be applied only when single crystals cannot be grown or when twins

are inevitably formed during crystallization processes and phase transitions. Such an idea is

judged to be too superficial from the standpoint of materials science. Most metal and inorganic

materials, e.g., intermetallic compounds, metal hydrides, solid-state ionics, superconductors,

zeolites, catalysts, inorganic ion exchangers, and ceramics, are polycrystals. The crystal

(defect) structures of single crystals may differ to some extent from those of polycrystalline

materials. As described above, the powder method always suffers from the disadvantage that

an appreciable amount of structural information is lost owing to the overlaps of diffraction

peaks. However, it possesses several advantages over the single-crystal method: (i) easy

preparation of polycrystalline samples, (ii) simple procedures for measurements, (iii) the ease

of in situ diffraction experiments in special sample environments (highfiow temperature, high

pressure, etc.), and (iv) negligible secondary-extinction effects.

7.1.2. Amazing ability of the Rietveid method

The Rietveld method substantially contains the following data-processing procedures: (i)

separation of overlapping peaks in diffraction patterns, (ii) separation of K~I and K~2 peaks when using characteristic X-rays, (iii) background subtraction, (iv) refinement of lattice param- eters, (v) refinement of structure parameters (fractional coordinates, occupation factors, and

thermal-displacement parameters), (vi) correction of preferred orientation, (vii) determination of mixing ratios, (viii) identification of impurity peaks, (ix) indexing of reflections, and (x)

determination of integrated intensities, full-widths at half-maximum intensities (FWHM), and peak positions. The Rietveld method, in which these complex calculations are executed simultaneously, is an exquisite technique worthy of being the ultimate method for the analysis

of powder-diffraction data. It owes its dramatic development to the spread and improvement

of computers in recent years. The Rietveld method is widely applicable to metals, inorganic compounds, and organic

compounds of low molecular weights only if they are crystalline. Conventional X-ray powder

diffractometers using characteristic X-rays are changed into high-performance machines with

which both structure and lattice parameters can be refined accurately by the Rietveld method.

The combination of X-ray powder diffraction and Rietveld refinement can provide us with

much more reliable information about average structures than the direct observation of crystal

structures by high-resolution transmission electron microscopy (HRTEM) and analysis of

extended X-ray absorption fine structures (EXAFS). When high-resolution powder-diffraction

data are measured using synchrotron or neutron sources, structure parameters can be obtained

which are comparable in accuracy to those determined by the single-crystal method using

four-circle goniometers.

Page 416: Analytical Spectroscopy Library_VOL 7

407

7.1.3. Applications in analytical science

The starting point of all studies on crystalline materials is to learn their crystal structures

and chemical compositions accurately, and also the relationships between them. Synchrotron

X-ray powder diffraction [7-10] is particularly useful for the analysis of complex structures

because of its extremely high resolution. Rietveld analysis can be regarded as the method for

a kind of state analysis by which the positions, thermal displacements, and occupancies of

atomic sites in crystalline materials are quantitatively determined. The principle of the Rietveld

method can be applied not only to elastic powder diffraction but to other spectroscopic

techniques that produce complex spectra containing overlapping peaks. Furthermore, precise

determination of compositional ratios in mixtures is possible with this method (cf. Section

7.13) [11,12]. The introduction of basic information on the Rietveld method is, therefore,

important for researchers and students of analytical science.

In this chapter, emphasis is placed upon the various calculations involved in Rietveld

analysis. An excellent review article on the Rietveld method was written by Albinati and

Willis [6] in 1982. In addition, a book dealing with all the aspects of this method [13] was

written by invited lecturers at the international workshop on the Rietveld method, held at

Petten where it was invented in 1967. Those who wish for more detailed information about

Rietveld analysis are strongly recommended to read these articles in addition to this chapter.

7.2. ELEMENTARY INFORMATION ON THE RIETVELD METHOD

7.2.1. Principle

Before the Rietveld method was introduced, structure parameters were refined from diffrac-

tion data using integrated intensities of respective reflections obtained by the curve fitting of overlapping peaks. This procedure is effective when dealing with those compounds of high

symmetry and simple structures which display relatively few diffraction peaks. However, it is

no longer available when peaks overlap so heavily that they cannot be separated by curve fitting [ 14].

In the Rietveld method [4], a set of variable parameters, x (Xl, x2, x3 ...... ), that represent

powder-diffraction patterns are refined by fitting the calculated powder pattern to the observed

one by a nonlinear least-squares method (cf. Section 7.9). In other words, the sum of weighted squares of residuals

S(x) : E w i [y i - fi(x)] 2 (7-1) i

is minimized by adjusting x. In this equation, i is the step number, Wi (= 1/yi) is the weighting

based on counting statistics, yi is the observed intensity, and fi(x) - f(Qi; Xl, x2, x3 ...... ) is the

calculated intensity, Q is the magnitude of the scattering vector Q (Q = I Q I = 2x/d = 4xsin0/;L,

Page 417: Analytical Spectroscopy Library_VOL 7

12800

14400 . . . . . . , . . . . .

to t~

0 tJ

11200

9600

8000

6400

4800

3200

1600

I I ! ! I ! 11 I ! 11 I I i l ! 1 1 1 1 D i l l H i l i l l l l l l l l i l l l i l I I I I I I I

408

2'0 ' A ' , 'o ' s'o ' 6'o ' ' 8 o

2 0 / ~

Fig. 7-1. Observed, calculated, and difference patterns of fluorapatite (Cu Ks). The solid

line is calculated intensities, and small crosses superimposed on it are observed

intensities. The difference between the observed and calculated intensities are

shown by points appearing at the bottom. Tick marks below the profile indicate

the positions of all allowed Ko~I and Ko~2 peaks.

d is the lattice-plane spacing, 20 the diffraction angle, and A the X-ray or neutron wavelength).

Either 20 (angle-dispersive method) or energy E (energy-dispersive method) may be the

experimental variable. The sum is over all data points in the powder diffraction data. Figure

7-1 exemplifies the result of a Rietveld refinement for fluorapatite using angle-dispersive

X-ray diffraction data. The model function f/(x) contains structure parameters as a part of the parameter vector x;

details of fi(x) will be described in Section 7.3. Because structure parameters are refined

using the whole diffraction pattern in the least-squares calculation, maximum structural infor-

mation can be directly extracted from the powder pattern without any pre-processing.

7.2.2. Development and spread of the Rietveld method

The above idea is very simple but was a creative achievement that seemed impossible until

it was actually tried and confirmed to be effective by Rietveld [ 14,15] in 1967. He originally

devised it for the analysis of constant-wavelength neutron-powder data (he was a researcher at

Page 418: Analytical Spectroscopy Library_VOL 7

409

a reactor center at Petten in the Netherlands). Since then, many neutron-diffraction data have

been measured using reactor neutron sources and analyzed with a FORTRAN program developed

by Rietveld [4], and its extended version. Up to 1977 the number of crystal and magnetic

structures analyzed by this method reached as high as 172 [5]. In that year, Malmros and

Thomas [ 16] first applied the Rietveld method to the analysis of X-ray diffraction data. Many

researchers made this pioneer work an occasion to start studying Rietveld analysis with X-ray

powder data [6].

The structural information extractable from powder-diffraction data increases markedly as

the resolution is enhanced because the overlapping of peaks is diminished. In any experimental

system with a high intrinsic resolution, it is always possible to trade intensity for resolution.

Synchrotron radiation (SR) facilities [10,17] and pulsed-spallation-neutron sources [18] built

in several countries made it possible to collect high-resolution powder-diffraction data over

relatively short periods, and opened paths to structure refinements as good as those by the

single-crystal method. Structure refinement according to the procedure that Rietveld developed had been referred

to by several different terms such as profile refinement, profile fitting, and pattern-fitting

structure refinement (PFSR). In 1982, the International Union of Crystallography (IUCr)

adopted Rietveld analysis/method/refinement as the formal technical terms [ 19]. These names

should be used when reporting the results obtained by this method.

7.2.3. Estimated standard deviations

The estimated standard deviation, r for the jth parameter, xj, is usually evaluated as

(7-2)

where Mj~ 1 is the diagonal element of the inverse coefficient matrix in the normal equation (cf. Section 7.9), N is the number of independent observations, P is the number of refinable

parameters, and C is the number of constraints applied.

In recent years, much discussion has appeared in the literature about the reliability of crj in

Rietveld refinements [20]. The r calculated in the above manner are correct, provided

there are no unaccounted systematic errors. However, in most Rietveld refinements, systematic

errors result from the preferred orientation, inadequate profile shape and structure models,

poor background fit, inclusion of unknown impurities, etc., which cause serial correlation

among neighboring residuals. If there are no systematic errors unaccounted for, the calculated

r is no longer a valid measure of uncertainty. Under these conditions, o'j's calculated by

Rietveld refinement may be significantly smaller than those obtained by the integrated-intensity

refinement of the same data set.

Scott [21] proposed a method of adjusting crj's in Rietveld analysis to provide comparability

with integrated-intensity refinement:

Page 419: Analytical Spectroscopy Library_VOL 7

410

~ j ~ - { S(x)-N+Pp}II /2

Mjj 1 1 + NB - Pc (7-3)

where Pp is the number of parameters describing the profile (all those parameters in the model

that do not directly affect the integrated intensities), Na is the number of Bragg peaks, and Pc

is the number of structure parameters. Because this equation is based on the assumption that

only the integrated intensities are subject to model errors, it should be applied only to structure

parameters. The adjustments calculated above are only approximations because they assume

that Bragg peaks are completely resolved and that the model for the peak shape is good,

which are both seldom true. Nevertheless, this procedure imposes reasonable restraints on the

uncritical use of trj's generated by Rietveld refinements as measures of the accuracy of the

refined structure parameters.

7.2.4. Agreement indices

Table 7-1 summarizes numerical criteria used to measure the agreement between the

observed and calculated intensities and the progress of Rietveld refinement. RF closely resembles

the R factor (= E I IFo]- [Fell / E IFol; Fo: observed structure factor, Fc: calculated structure

factor) widely used in single-crystal structure analysis. In the definition of RB and RF, the notation "o" has been enclosed in quotation marks

because the Bragg integrated intensities, Ik("o") are not actually observed but are derived from

a parceling out of the observed net intensity, in a given 20 range, in proportion to the

calculated Bragg intensities l~(c) [4]. Consequently, Ik("o") is heavily biased by the structural model, and these two R factors tend to be too optimistic [20]. Nevertheless, they are valuable

indicators because they depend more strongly on the fit of the structure parameters than do the

other agreement indices. The most significant R factor is Rwp because the numerator of Rwp is the quantity that is

actually minimized in the least-squares refinement procedure. Both Rwp and Rp are influenced

mostly by the intensity of the diffraction line as well as the background because the sum of the

observed intensities is used in the denominator of these R factors.

To judge the quality of the fit, the final Rwp value should be compared to the expected Rwp,

Re, which is derived from the statistical error associated with the measured intensities:

Re ,, wiy ll'2 710, l

Thus, the goodness-of-fit indicator, S, equals Rwp/Re. An S value of 1.0 indicates that the

refinement is complete; it can get no better statistically. An S value of 1.3 or less is usually

considered to be quite satisfactory. S includes the number of variables, P, undergoing refinement.

Therefore, it may help in determining whether or not a change in P significantly decreases the

residual error.

Page 420: Analytical Spectroscopy Library_VOL 7

411

Table 7-1. Indices for evaluating the results of Rietveld analysis: cri is the standard deviation of the observed intensity for the ith data point (= q-~), I~("o") and Ik(c) are respectively the estimated and calculated integrated intensities for reflection k, N is the number of data points, and P is the number of refinable parameters.

E wi{Yi--ft" (X)} 2 1/2 i __Rwp= �9

wiy? i

~_~ l Yi - f i (X) l Rp= i

EYi i

R-weighted pattern (7-4)

R-pattern (7-5)

II~ ("o") -Ik(c)l R B = k R-Bragg factor (7-6)

E I~: ("o") k

E ]Vlk("o") - VI~(c) ]

RF = t R-structure factor (7-7) E Vlk ("o") k

S _..

~iwi{Yi_fiN_p (x)}2 .]1/2 Goodness-of-fit indicator (7-8)

~2 [Yi - f i(x) d= i= •i

Yi-1 Gi--fi-ll (X)] 2"

i~lN [Yi -- f i (x) ] Durbin-Watson d-statistic (7-9)

The Durbin-Watson d-statistic, d, is very useful for assessing the reliability of estimated standard deviations in Rietveld analysis, by providing quantitative information about serial correlation in the residuals [22,23]. Moreover, the d statistic is a sensitive measure of the progress of a refinement, and is still discriminating even when other indices fail.

Page 421: Analytical Spectroscopy Library_VOL 7

412

In addition to the above agreement indices, the reliability of the refinement must be

checked on the basis of final structure and lattice parameters. Occupation factors and thermal-

displacement parameters need to be physically meaningful values; interatomic distances and

bond angles should be reasonable from a crystal-chemical point of view.

7.3. MODEL FUNCTION

The observed intensity, Y i, at a particular step, i, is modeled by the calculated intensity,

fi(x), which is the sum of contributions from Bragg reflections plus background correction

Yb(Qi):

fi(x) = ~(Qi)A(Qi)s E mklFkl2EkPkL(Qk)~Qi -Qk) + Yb(Qi) k

(7-11)

where t J b ( a i ) = incident intensity (corrected for the efficiency of counters if necessary), A(Qi) = absorption factor, s = scale factor for the particular phase, k = reflection number, mk = multiplicity, Fk = structure factor, E~ = correction factor for extinction (needed in time-of-flight

neutron diffraction), P~ = correction factor for preferred orientation, L(Qk.) = Lorentz and

polarization factors (the polarization factor is unnecessary in neutron diffraction), Qk = peak

position of reflection k, q)(Qi - Qk) = profile-shape function to approximate the profile of each

peak. The sum in Eq. (7-11) must be carried out over all reflections contributing to the net

intensity at the ith step.

7.3.1. Structure factor

The structure factor consists of the crystal-stracture factor, Fk(cryst.), and the magnetic-structure

factor, Fk(magn.):

IFk i 2 = IFk(cryst.)] 2 + IFk(magn.)l 2 (7-12)

The second term is required in neutron diffraction only when compounds containing magnetic

atoms such as Fe, Co, and Ni exhibit magnetic scattering in addition to nuclear scattering.

Refer to Refs. 4, 24, and 25 for the parameters contained in Fk(magn.).

The crystal-structure factor for reflection hkl is represented as:

Fk(cryst.) = Y' g j f jTjexp[2~i(hxj + kyj + lzj)] J

(7-13)

with

Tj = exp (-Bj/4d 2) = exp [-Bj(sinO~/A, )2] (7-14)

Page 422: Analytical Spectroscopy Library_VOL 7

413

for isotropic thermal motion and

Tj = exp [ - (h2f l l lj + k 2f122j + t2f133j + 2hkfll2j + 2hlfll3j + 2klf123j)] (7-15)

for anisotropic thermal motion. In Eqs. (7-13)-(7-15), j = site number, gj = occupation factor

(occupation probability), j~ = atomic scattering factor, 7) = temperature factor, xj, yj, zj = fractional coordinates, B j= isotropic thermal-displacement parameter, d~ = lattice-plane spacing,

0h = Bragg angle, fll lj, f122j, f133j, fll2j, fll3j, f123j - anisotropic thermal-displacement parameters. In neutron diffraction,j~ must be replaced with the bound coherent scattering length, bcj.

7.3.2. Unit-cell dimensions

Q~ can be calculated from reciprocal lattice parameters, a*, b*, c*, a*, fl*, and 7":

Q~ = 2rr,/dk = 4~sin0~/A =

2~(h2a .2 + k2b .2 + 12c'2 + 2klb*c*cosa* + 2lhc*a*cosfl* + 2hka*b*cosy*) 1/2 (7-16)

Thus, it is not (direct) lattice parameters (a, b, c, a, fl, and y) but a *a, b .2, c .2, b*c*cosa*, c*a*cosfl*, and a'b'cosy* that are actually refined in Rietveld analysis [4]. The metric tensor

for the direct lattice equals the inverse matrix of the metric tensor for the reciprocal lattice:

a 2 abcosy accosfl I

bacosy b 2 bccosa~ =

cacosfl cbcosa c 2 ]

a .2 a'b'cosy* a*c*cosfl* - 1

b'a'cosy* b .2 b*c*cosa*

c*a*cosfl* c*b*cosa* C .2

(7-17)

The elements of the metric tensor for the direct lattice can be easily converted into the direct lattice parameters.

In the Rietveld method, Qt is calculated from lattice parameters, and IF&l 2 from structure

parameters. Therefore, the diffraction pattern does not need to be decomposed into the

respective peaks. Because the whole powder pattern is fitted by the least-squares method,

lattice parameters can be refined more accurately by Rietveld analysis than by conventional

least-squares refinement with only peak positions.

7.3.3. Classification of refinable parameters

The calculated intensity, j~(x), contains the following five kinds of refinable parameters, x

(functions in brackets are those containing each parameter):

1. Parameters to correct for integrated intensities

Page 423: Analytical Spectroscopy Library_VOL 7

Table 7-2.

Comparison of the Rietveld method with the two pattern-decomposition methods

Rietveld method

Individual profile-

fitting method Pawley method

Object of analysis Refine structure parameters

and lattice parameters

Refine peak position and

integrated intensity

Refine lattice parameters

and integrated intensity

Range of refinement Whole powder pattern Parts of whole powder pattern Whole powder pattern

Peak position Function of lattice parameters Assigned to each reflection Function of lattice parameters

Integrated intensity Function of structure parameters Assigned to each reflection Assigned to each reflection

Profile parameters Global and Q-dependent Assigned to each reflection Global and Q-dependent

Page 424: Analytical Spectroscopy Library_VOL 7

415

s, powder extinction coefficient [Ex], and preferred-orientation parameters [Pk].

2. Parameters related to peak positions Lattice parameters [Qt] and zero-point shift of the counter [Qk].

3. Profile-shape parameters

Parameters to approximate FWHM, rate of decay, peak asymmetry, etc. [O(Qi - Qk)].

4. Crystal-structure parameters

Xj, yj, Zj, gj, Bj, fll lj, f122j, f133j, fll2j, fll3j, and f123j [Ft(cryst.)].

5. Magnetic-structure parameters

Parameters to describe the magnetic moments of magnetic atoms [Fk(magn.)].

6. Background parameters

Parameters to describe the background [Yb(Qi)].

The zero-point shift and background parameters are global parameters independent of phases

contained in a sample, and all the other parameters are phase-dependent.

7.4. COMPARISON WITH PATTERN DECOMPOSITION

Pattern decomposition is a technique to decompose overlapping peaks by a method of

nonlinear least squares without refining any structure parameters [19]. This feature makes it

widely applicable to powder data analysis. It is complementary to Rietveld refinement because

no structural model is required. Pattern decomposition is classified into two methods: (i)

individual profile-fitting [26,27] in which overlapping reflections within a relatively narrow Q

range are separated and (ii) Pawley refinement [27,28] where the whole powder pattern is

decomposed in one step. Table 7-2 summarizes the major characteristics of the two methods of pattern decomposition and the Rietveld method.

Individual profile-fitting is position-unconstrained pattern decomposition. It can extract

information about the integrated intensities, peak positions (i.e., lattice parameters), and profile-

shape parameters of individual reflections. Since these parameters are independently assigned

to each reflection, it is difficult to separate a group of peaks overlapping very heavily with

each other. This method has been carried out in a variety of fashions by many researchers.

Pawley refinement is position-constrained pattern decomposition. In this method, only

integrated intensities are assigned to respective reflections; the lattice, profile-shape, and

background parameters are "global" ones common to the whole Q range and refined in a

similar manner to the Rietveld method. The main difference between the two methods is that

the integrated intensities of reflections are refined in the Pawley method whereas structure

parameters contained in structure factors are directly refined in the Rietveld method.

Pawley refinement has the disadvantage that peaks can no longer be separated when they

come closer to each other and pass a certain limit. Because lattice parameters are refined

using the whole powder pattern in the Pawley method, it has a much higher ability for pattern

Page 425: Analytical Spectroscopy Library_VOL 7

416

200000 '

175000"

1500001

125000

100000 "

75000

50000 "

25000 "

. J ~J JJ _J ~ t . . , _ _

" ' I" " " " I 1 . . . . .

10' 20" 30. 40' 50" 60'

2 0 / ~

Fig. 7-2. Pawley analysis of synchrotron X-ray data for cimetidine [29] (by permission of

Oxford University Press). The observed pattern is shown as dashes, and the

calculated pattern as a smooth curve; a difference pattern is also given below.

decomposition than the individual profile-fitting method. Nevertheless, overlapping peaks

often have to be grouped together in high-Q regions where the density of peaks becomes very

high. Information about the structure is then partly lost when structure parameters are refined

using integrated intensities determined by the Pawley method.

If a structural model is available for a compound, the Rietveld method utilizing that

structural information can provide more accurate structure parameters than the Pawley method.

Therefore, integrated intensities determined by the Pawley method are seldom used for structure

refinement. Pawley refinement is often used (i) as a process of ab initio structure analysis

[29] in which unknown crystal structures are solved only from powder-diffraction data (Fig.

7-2), (ii) for making d, 1/11, and hkl tables similar to those in the Powder Diffraction File, and

(iii) as a convenient software tool to refine lattice parameters.

7.5. COLLECTION OF INTENSITY DATA

The precision of the intensity measurement can be improved by increasing the intensities

and/or the number of the steps across the peak. This is, however, only effective up to the

point where the counting variance becomes negligible in comparison with other sources of

Page 426: Analytical Spectroscopy Library_VOL 7

417

error. Hill and Madsen [22,30] indicated that excessively large step intensities/numbers

reduce the derived estimated standard deviations of parameters to physically meaningless values. They recommend a step width 1/4-1/5 as wide as the minimum FWHM and a

maximum step intensity of 5000-10000. When extracting information about the crystal

structure from powder diffraction data, it is desirable to reduce FWHM's and overlapping of

peaks as much as possible. If peak overlapping is too serious, the weighted sum-of-squares,

S(x), does not decrease sharply near the minimum and correlations between parameters become

high, which increases the possibility that refinements converge to one of the local (false)

minima rather than the global minimum (true solution).

The methods of measuring powder-diffraction data for Rietveld analysis fall into four

classes according to the radiation (X-ray or neutron) and the abscissa (20 or energy E) specifying

experimental conditions [6]. Diffraction techniques in which intensities are collected as 20

and E are varied are referred to as angle- and energy-dispersive methods, respectively. In

what follows, the difference between X-ray and neutron diffraction, and the principles and

features of the four diffraction techniques will be explained successively.

7.5.1. Scattering of X-rays and neutrons by atoms

X-Rays are scattered by electrons, and neutrons virtually by atomic nuclei. Such a difference

in the mechanism of elastic scattering leads to the following difference in the scattering ability

for X-rays (atomic scattering factor f) and that for neutrons (coherent scattering length bc):

1. In X-ray diffraction, f decreases monotonously with increasing Q, whereas in neutron

diffraction bc remains constant, regardless of Q.

2. As the number of electrons for an atom is increased, f increases monotonously. On the

other hand, bc changes irregularly and takes positive or negative values, depending on the atomic nucleus [31 ].

The intensities of reflections with large Q are relatively higher in neutron diffraction than in

X-ray diffraction because of the constancy of bc. This is favorable for collecting information

about those atoms with small atomic numbers because they display marked thermal motion and theirf values decrease considerably in high-Q regions.

The second characteristic of neutron diffraction is utilized for the analysis of compounds

with a combination of constituent atoms which is not suitable for X-ray diffraction. Figure

7-3 shows relative scattering amplitudes of nine elements. O (atomic No.: 8, bc = 5.803 fm)

has abc value 70% as large as that of Bi (atomic No.: 83, bc = 8.5307 fm); the bc values of Ti

(be =-3 .30 fm) and Mn (bc =-3.73 fm) are negative; bc changes irregularly with increasing

atomic weight. Evidently, neutron diffraction is very useful for refinement of the structure

parameters for light elements (e.g., D, N, and O) in compounds containing heavy elements as

principal constituents and for distinguishing elements (e.g., Mn and Fe, Ba and La) with

comparable atomic weights. It is also probable that two atoms with bc values close to each

other have considerably differentfvalues, e.g., 0 and Ba.

Page 427: Analytical Spectroscopy Library_VOL 7

418

In neutron diffraction, not only nu-

clear scattering but also magnetic scat-

tering is often observed in compounds

containing magnetic atoms such as Cr,

Mn, and Fe. This is caused by interac-

tion between the magnetic moment of

atoms with unpaired electrons in 3d or

4f orbitals and that of the neutron. In-

tensities of peaks due to magnetic scat-

tering decay rapidly with increasing Q

because of the extreme decrease in mag-

netic form factor (corresponding to bc

in nuclear scattering) with Q. Refer-

ence 32 gives the coefficients in an an-

alytical approximation to the magnetic

form factors for the 3d and 4d transition

series, the 4f electrons of lanthanoid

ions, and the 5f electrons of some act-

inoid ions.

Fig. 7-3. Bound coherent scattering lengths of

nine elements. An atomic number is

attached to each atom. The radii of

the circles are proportional to Ibl, and

atoms with negative b are shaded.

7.5.2. Angle-dispersive X-ray powder diffraction

In this traditional diffraction method, incident beams of characteristic or monochromatic

synchrotron X-rays are scattered by samples, and diffraction intensities are measured by

scanning 20 with a constant step width of 20 (e.g., A20 = 0.03~ The angle-dispersive method

is used almost exclusively for collection of high-resolution intensity data for Rietveld analysis

by means of synchrotron X-ray diffraction, which is one of the major subjects of this chapter.

Therefore, it will be described in detail in Section 7.6.

Measurement techniques using conventional X-ray sources, i.e., characteristic X-rays, are

classified into: (i) the Bragg-Brentano parafocusing method [33], (ii) the position-sensitive-

detector (PSD) method [34], and (iii) the Guinier method (using counters or cameras) [ 16,35,36].

The intensity distribution of incident beams, @(Qi) = ~(20i), is constant over the whole range

of 20. The parafocusing geometry has a merit that A (20i) is 1/2/~ (/1, linear absorption coefficient),

regardless of 20 because plate samples are used which are at the same angle to the incident

and diffracted beams. Placing a crystal monochromator between the sample and counter is

desirable to cut fluorescence and Compton-modified X-rays as much as possible.

Even in this popular and simple diffraction method, the resolution can be enhanced by

using fine-focus X-ray tubes, enlarging the radius of the focusing circle, or reducing the width

Page 428: Analytical Spectroscopy Library_VOL 7

419

of the receiving slit sufficiently. However, peak broadening due to the deviation from ideal

parafocusing conditions (e.g., flat-specimen, specimen-transparency, and focal-size effects)

[33] and overlapping of Koc2 peaks is inevitable. Another serious problem is the presence of

the K~ doublet in the incident radiation. LouSr and Langford [37] recommend a high-resolution

goniometer which uses Ko~I incident radiation monochromatized perfectly by using a Johansson-

type curved-crystal monochromator.

Because intensity data over the whole range of 20 can be collected simultaneously and

promptly by the PSD method, it is suited for studying non-equilibrium systems undergoing

physical and/or chemical changes, i.e., kinetic and structural features of transformations in the

solid state or the structural response of a sample to external perturbations (temperature, pressure,

atmosphere, etc.). It opens up the field of real-time crystallography when combined with the

Rietveld method.

The Guinier method has, in principle, high resolution, and an advantage that K~I radiation

is used which is strictly monochromatized by a Johansson-type crystal monochromator for

incident beams. Both transmission and reflection focusing arrangements can be adopted

which are suitable for collection of intensity data in low and high 20 regions, respectively.

Goniometers fitted with scintillation counters having high linearities of intensity, and wide

dynamic ranges, are now being used in place of cameras.

The Lorentz-polarization factor for X-ray diffraction using characteristic X-rays is a function

of the Bragg angle for the kth reflection, Ok, and the diffraction angle of the monochromator,

20M:

L(Qk) = L(Ok) = (1 + COS220MCOS220k)/sin20ksin Ok (7-18)

7.5.3. Angle-dispersive neutron-powder diffraction

This diffraction method [5,38-40] is very similar to the angle-dispersive X-ray diffraction

method, except for the much larger scale of the diffractometer. White neutron beams from a

nuclear reactor are monochromatized with a crystal monochromator. Since there is no polari- zation factor in neutron diffraction, only the Lorentz factor

L(Qi) = L(Ok) = 1/sin2OksinOk (7-19)

is needed. Samples, usually in cylindrical cans made of vanadium, are irradiated with the

resulting neutrons with a constant wavelength, and diffracted beams are counted with a constant

step width of 20. A high-resolution powder diffractometer, D1A, utilizing the high-flux

reactor at the Institut Laue-Langevin (ILL) is a representative machine [39]. Application examples are described in detail in Refs. 5 and 40.

A high-resolution powder diffractometer, HRPD, was installed in 1990 at the 1G beam

hole of the new JRR-3M reactor at the Japan Atomic Energy Research Institute (JAERI). In

Page 429: Analytical Spectroscopy Library_VOL 7

420

this machine, a monochromator is used in which eleven pieces of Cu or Ge crystals are united,

and neutron beams are collimated through three collimators (6'/12'-20'/40'-6'). To collect

intensities efficiently over a 20 range of 160 ~ a set of 64 3He counters arranged at an interval

of 2.5 ~ is rotated within a 20 range of 2.5 ~ The highest resolution, A d / d (Ad: FWHM),

attained with this machine is as high as 2.2x10 -3.

The principal advantage of this method is that correction of physical quantities dependent

on wavelength is unnecessary because samples are irradiated with neutron beams of a constant

wavelength. Furthermore, it is favorable for the analysis of magnetic structures [4,5,24,25]

and refinement of the occupation factor that the intensities of low-Q reflections can be measured

with satisfactory counting rates. However, if the wavelength is set a high value, the Q range

in which intensity data can be collected becomes narrow; the resolution must counterbalance

the Q range appropriately.

A preferred orientation mainly occurs near the surface of a sample. Neutron beams can

penetrate in most cases, because the neutrons are scarcely absorbed. Particles of the sample

hardly orient along the wall of the cylindrical container. Therefore, preferred orientation is

much less marked in neutron diffraction than in X-ray diffraction using flat samples.

7.5.4. TOF neutron-powder diffraction

The angle-dispersive diffraction methods described in Sub-Sections 7.5.2 and 7.5.3 use

X-ray and neutron beams incident upon samples successively without any intervals. On the

other hand, energy-dispersive-type neutron diffraction utilizes pulsed-neutron beams generated

at definite time intervals [ 18,41-44]. Injection of pulsed proton beams activated by an accelerator into a target made of W, U,

etc. brings about spallation of nuclei. The resulting fast neutrons are slowed down by passage

through a moderator containing a hydrocarbon such as methane, or water or hydrogen, and

converted into pulsed white beams of neutrons, which are used as incident beams for neutron-

powder diffraction. Counters are fixed at constant 20 positions, and neutrons diffracted by the

sample are counted with multi-channel time analyzers as a function of the elapsed time

(time-of-flight: TOF), t, after the target has been hit by the pulsed proton beams. The time

required to travel from the target to the counter is proportional to the wavelength of the

neutron; thus, diffraction patterns in a wide Q range can be recorded simultaneously. Since

intensities are collected using the time analyzers, the abscissa of the diffraction pattern is

plotted with t or Q not & (Fig. 7-4). ~(t i) has to be included in fi(x) to take into account the

intensity distribution.

The TOF, t, can be converted into d by combining the Bragg condition, & = 2d/sin 0, and

the equation of de Broglie, ;L = h/mv = ht/mL (h, Planck constant; m, neutron mass; v, neutron

velocity; L, flight path from the target to the counter):

d = ht /2mLsinO (7-20)

Page 430: Analytical Spectroscopy Library_VOL 7

7200

8 1 0 0 , �9 , �9 , �9 , �9 , �9 , ' , ' , �9 . . . . .

6 3 0 0

5400

4500

0 3600 u

2700

1800

9 0 0

l I t I I I I I l l I I I I I I I I I I I I I I I I IH I I I I I I I I I I I l l l t l I I I l a l l iH I I l l |H IH I I I I I l g l l l iH i l l l l l | l l i l i l i l lm l lH

421

2'o " 3'o ' ' s'o ' 6'o ' ,'o ' .'o ' 9'o 'i;o'iio'i -o Q/nm -I

Fig. 7-4. Rietveld refinement patterns for TOF neutron diffraction data of superconducting

Lal.82Cal.~8Cu206+8 [45]. The scattering vector is plotted as abscissa and the

net intensity as ordinate. Background was fitted as part of the refinement but has

been subtracted before plotting.

For TOF neutron diffraction, the Lorentz factor is

L(Q~) = L(tk) = d4sin0/c (7-21)

Most high resolution is obtained in back-scattering configurations using long flight paths, in particular in a "slowing-down" high-Q region. The TOF neutron-powder diffractometer,

HRPD, installed at the Rutherford Appleton Laboratory [44], achieves an ultra-high resolution

as high as A d / d ~ 4xl 0 -4 in back scattering (170 ~ < 2 0 < 178 ~ where geometrical contributions

are negligible. Structures of many organic compounds displaying fairly complex diffraction

patterns are now being refined routinely with HRPD.

Reflections with dk = 0.03 nm can be observed by TOF neutron diffraction because the

dimensions of Ewald's sphere are no longer limited by the ~ value and the resolution is sur-

prisingly high in a high-Q region. The ability to probe such low lattice-plane spacings offers

significant advantages; properties with different )~ dependences such as occupation factors,

thermal-displacement parameters, crystallite size, and strain may be readily de-correlated from

one another. However, the wide wavelength range requires a sophisticated treatment of the

formalization of profile shape and wavelength-dependent phenomena such as absorption, ex-

Page 431: Analytical Spectroscopy Library_VOL 7

422

tinction, thermal-diffuse scattering (TDS), and multiple scattering. At the present stage, much

of this work is under development.

7.5.5. Energy-dispersive synchrotron X-ray powder diffraction

This is a white-beam technique. Diffraction patterns are recorded at fixed scattering

angles by measuring scattered X-rays with the combined use of solid-state detectors (SSD)

and multi-channel analyzers. If the reciprocal relationship between energy, E, and wavelength

is noted, Bragg's law can be recast as

Ed = hc/2sinO (7-22)

where h is the Planck constant, and c is the velocity of light. This equation means that a

complete range of the d space can be scanned at once if we have a powder sample and a

detector capable of energy discrimination using the SR source containing a broad spectrum of

energies. In contrast with TOF neutron-powder diffraction, this method has seldom been applied

routinely to Rietveld analysis [46--48] because of the limited energy resolution of the SSD.

The best apparatus has an FWHM of the order of 140 eV (1 eV = 8065.541 cm -1) at a photon

energy of 7 keV. The width increases as E 1/2, and reaches 300 eV at 30 keV. For a scattering

angle of 12 ~ the resolution, Ad/d, is as large as 10 -2, which is nearly two orders of magnitude

worse than an angle-dispersive diffractometer on the same beam line [17]. However, the

fixed-20 geometry makes it possible to record intensity data in a wide Q range simultaneously and rapidly. This method is, therefore, very suitable for in situ diffraction experiments at high

temperature and/or high pressure. The improvement of the SSD is urgently needed.

Bourdillon et al. [49] and Parrish and Hart [8,50] carried out energy-dispersive analysis

using scanning incident-beam monochromators. In the high-resolution energy-dispersive method

developed by Parrish and Hart [8,50], the wavelength is varied by step-scanning two parallel

monochromators for incident beams and measuring scattered X-rays with a scintillation counter

at a fixed 20 position. Extra measuring times are required because intensities for the whole Q

range cannot be measured by this method. The resolution is, however, two orders of magnitude

better than conventional energy-dispersive diffraction (Fig. 7-5), and applications to Rietveld

analysis may be possible with this method.

The energy-dispersive method has been successfully applied to high-pressure studies. A

multi-anvil type X-ray system (MAX 80) employing a cubic anvil was installed at the Photon

Factory of the National Laboratory for High Energy Physics (KEK) [51,52]. Remarkable

advances in in situ observation of crystal structures and phase transformations under high

pressure and high temperature were achieved using this apparatus. Major experiments carried

out with MAX 80 include (i) precise determination of phase boundaries, (ii) precise determination

of compressibilities, (iii) dynamic observation of phase transformations, (iv) EXAFS, (v)

Page 432: Analytical Spectroscopy Library_VOL 7

423

d range 1 I. 7--*3. I A ~ d range 2.7--*0.71A

10" m 45 ~

d range . 4 ~ 0 . 4 A d range I . ! - +0 .3A r i . . . . , . . . . . . . . * . . . .

i 2.04 . . . . . . . . . ().55 2.04 . . . . . . . . " . . . . . . . 0 . 5 5

z/h

Fig. 7-5. High-resolution energy-dispersive diffraction patterns of quartz using 0.55-2.04

A incident X-rays [8]. The d range recorded depends on the 20 setting (upper

left comer) of the detector.

measurement of viscosities, and (vi) determination of thermal-displacement parameters.

7.6. ANGLE-DISPERSIVE SYNCHROTRON X-RAY POWDER DIFFRACTION

7.6.1. Advantages of synchrotron X-ray diffraction

Synchrotron X-ray powder diffraction [7-10,17] is rapidly evolving as a powerful technique for structural studies. The use of SR sources that provide extremely parallel and intense X-ray beams makes it possible to measure diffraction data of much higher resolution within practical times. The profile shape is very sharp and nearly Gaussian (decaying rapidly at tails), which is very favorable for high-precision Rietveld analysis.

The high resolution and peak-to-background intensity ratios, and the high accuracy with

Page 433: Analytical Spectroscopy Library_VOL 7

424

which the low-angle peak positions can be determined, are very suitable for the application of

automatic indexing methods, to subsequent solution of the phase problem by ab initio techniques

[29], and finally to the refinement of structure parameters by the Rietveld method.

As the wavelength, ~, approaches the absorption edge, A,e, of an atom, the atomic scattering

factor, f, changes with ~ because of the interaction between the incident beam and the atom.

This phenomenon is referred to as anomalous dispersion, and coherent scattering under conditions

where anomalous dispersion takes place is called anomalous scattering. The atomic scattering

factor, f, in this case is

f = f0 + f,(A) + f,,(A) (7-23)

Near the absorption edge, the real term, f ' , changes like a very steep valley, and the imaginary

term, f ' ; stepwise. Thus, atomic scattering factors can be considerably changed by the

anomalous dispersion effect if the wavelength is set near an absorption edge in contrast with

conventional sources.

7.6.2. Apparatus

The most pronounced difference between X-ray powder diffraction experiments in the

laboratory and at a SR facility is that, at the latter, the source is situated 10-20 m from the

sample, and the beam divergence is 2-3 orders of magnitude less [ 10]. Incident beams are

strictly monochromatized by two fiat crystal monochromators parallel to each other. For example, a channel-cut, double-crystal Si(111) monochromator scattering in the vertical plane is used in an instrument optimized for high-resolution powder data installed at the NSLS (National Synchrotron Light Source) beam line X7A [17]. The instrument resolution is

substantially increased for a modest loss in intensity owing to a reduction in the energy

bandwidth of the primary beam at the sample. Since the synchrotron beam is fully polarized

in the orbital (horizontal) plane, no polarization factor is need; the Lorentz factor has the same

form as that in angle-dispersive neutron diffraction. The intensity of the incident X-rays,

~(Qi) decreases gradually in diffraction experiments using SR; therefore, it must be always

monitored by measuring diffracted and fluorescent X-rays from some materials.

To enhance the resolution as much as possible, (i) a receiving slit [53], (ii) Soller slits [8],

or (iii) a perfect crystal analyzer [7,9] are placed between a sample and a counter. The

diffracted beam is usually measured with a counter, but the measurement time can be dramatically

reduced by using an Imaging Plate [54].

Diffractometers with parallel-beam optics

Figure 7-6 schematically illustrates four different types of sample-detector geometry used

for synchrotron X-ray powder diffraction in the vertical scattering plane [ 10].

Page 434: Analytical Spectroscopy Library_VOL 7

425

(c) D (a) D

IS I I o

s---~ i ~

IS I b I

D (b) CA (d)

IS I I o

S I S - ' ~ I Io !

Fig. 7-6. Four different types of sample-detector geometry used for synchrotron X-ray

powder diffraction experiments in the vertical scattering plane [ 10]. I0 denotes a

monochromatic beam from the source (typically 20 m distant), IS the incident

beam slits, S the sample, and D the detector. (a) Flat-plate geometry with single

receiving slit RS. (b) Capillary geometry with single receiving slit RS. (c) Flat-

plate geometry with Soller slits SS. (d) Hat-plate geometry with crystal ana-

lyzer CA.

Figure 7-6(a) shows the flat-plate geometry with a narrow receiving slit. The powder

diffractometer (PFPD) at the Photon Factory consists of an incident slit, a monochromator, a Soller slit, a vertical-type goniometer, a monitor, a receiving slit, a Soller slit, and a scintillation counter [53]. The monochromator consists of a special type of monolithic Si crystals for a fixed-exit beam position with the (111) plane. The angle resolution of diffraction lines is

comparable to that obtained by Parrish et al. [8] at the Stanford Synchrotron Radiation Laboratory (SSRL).

In the capillary (Debye-Scherrer) geometry [55,56] illustrated in Fig. 7-6(b), samples are

contained in capillary glass tubes turning on the extension axis. For a 1 mm capillary, there would be no loss of resolution compared with the fiat-plate situation. However, this arrangement is unsuitable for strongly absorbing samples.

Parrish and coworkers [8] adopted the flat-plate geometry with Soller collimator for diffracted

beam, as shown Fig. 7-6(c). This type of arrangement is used extensively in angle-dispersive

neutron-powder diffraction [38], making it possible to use a much wider incident beam and,

therefore, a much larger sample area, with a corresponding gain in the integrated intensity of

diffracted peaks [10]. In a powder diffractometer at the SSRL [8], the diffracted beam is

defined by vertical parallel slits (VPS) to limit the axial divergence to 1.8 ~ and 365 mm-long

Page 435: Analytical Spectroscopy Library_VOL 7

426

horizontal parallel slits (HPS) with 0.05 ~ aperture. The former greatly reduces the asymmetry

in peak shape caused by axial divergence. The HPS determine the resolution and shape of the

profiles. The long distance between specimen and detector (59.1 cm) reduces the fluorescence

background without the loss of intensity caused by a diffracted-beam monochromator. The

geometry permits uncoupling the 0-20 sample-detector relationship without changing the

profile shape, and makes possible new applications such as grazing-angle incidence depth

analysis of thin films.

The final approach is the crystal-analyzer geometry given in Fig. 7-6(d). A perfect Si or

Ge crystal is mounted in the diffracted beam to obtain high resolution [7,9,10]. This can be

regarded as a very narrow "angular" receiving slit capable of providing very high resolution

(0.01~176 over a wide range of 20. The bandpass of the beam diffracted by the perfect

crystal is a few eV, which serves to reject any unwanted fluorescence radiation and attains

very high peak-to-background counting ratios. In common with the Soller-slit geometry,

displacement-type effects are eliminated with a crystal analyzer.

Guinier Diffractometer

Arnord [57] proposed a new type of powder diffractometer that can be operated in a

Guinier mode, as well as the Debye-Scherrer and Bragg-Brentano modes, without changing

the equipment. The counter arm is rotated around the center of the sample by the angle 20,

and the entrance slit of the counter is shifted on the counter arm so that it coincides with the

focal circle.

Weissenberg camera

Honda et al. [54] collected synchrotron X-ray data of 5-aminovaleric acid with a large-

radius (28.65 cm) Weissenberg camera equipped with an Imaging Plate, which is an area

detector for X-rays using a photostimulate phosphor screen. The sample was sealed in a glass

capillary, and it took only 6 min to measure its powder pattern by the Debye-Scherrer method.

The angle resolution was fairly high (FWHM = 0.06 ~ at 20 = 19.13 ~ owing to the use of the

large-radius camera, and ambiguous index assignments could be achieved with these well-

resolved data. The structure of this compound was successfully solved from these data by

combination of Patterson synthesis and a trial and error method, followed by Rietveld analysis.

7.6.3. Sample preparation

The low divergence and intrinsic collimation of synchrotron radiation causes two major

problems. First, the effect of preferred orientation on the integrated intensity becomes more

and more marked. Second, crystallites situated at positions needed to satisfy Bragg conditions

are fewer than those in conventional sources. The intensities of some reflections may become

extraordinarily high because of the diffraction from coarse grains. These effects lead to a poor

Page 436: Analytical Spectroscopy Library_VOL 7

427

reproducibility and an inferior precision of the diffraction pattern. Spinning (rotation) of

samples is essential in synchrotron X-ray powder diffraction to reduce the second effect.

If the crystallite size is below 3 l.tm, fiat sample holders may be used because preferred

orientation is negligible in such a fine powder. However, the preferred-orientation effects are

usually encountered for fiat-plate X-ray samples in synchrotron powder diffraction. The

capillary geometry shown in Fig. 7-6(b) should be preferred to the flat-plate geometry when

preferred orientation is serious. When the sample is very absorbing, the effective absorption

coefficient can be reduced by diluting the sample with a non-absorbing powder (e.g., submicron

diamond) that has a simple, highly symmetric structure [17]. In addition to reducing the

absorption, the diluent helps to reduce preferred orientation in the mount.

7.7. PROFILE-SHAPE FUNCTIONS

7.7.1. Angle-dispersive powder diffraction

Symmetric profile-shape functions

The line shapes of individual Bragg peaks need to be approximated by appropriate profile-

shape functions [58,59]. Table 7-3 lists profile-shape functions which have been used to

approximate the profile shape of reflections observed in angle-dispersive powder diffraction.

All the functions are normalized in such a way that integrals from -oo to oo are equal to 1.

Simple Lorentz (7-24) or Gauss (7-25) functions do not satisfactorily fit to peak shapes, even

though the peaks are symmetric except at low scattering angles. Poor fitting of profiles

strongly affects occupation factors and thermal parameters, but fractional coordinates are not

significantly influenced by the choice of profile-shape functions [59].

Profile-shape functions which are implemented in most Rietveld-refinement programs for angle-dispersive X-ray and neutron diffraction as well as energy-dispersive X-ray diffraction

are the pseudo-Voigt function (7-28) [55,60] and the Pearson VII function [61]. The Gauss

and Lorentz functions are the two extremes of these two profile-shape functions as regards the

degree of decay from peak tops to tails. In X-ray powder diffraction, the Gauss function is

usually too broad near the peak and too narrow at the tails, whereas the Lorentz function is

unsatisfactory in the opposite way. Both the pseudo-Voigt and Pearson VII functions can be

varied from Gaussian (7/= 0 or m = ~o) to Lorentzian (77 = 1 or m = 1) by changing the mixing

parameter, 1/(Fig. 7-7), and the exponent m. Diffraction peaks in angle-dispersive neutron

diffraction can be approximated fairly satisfactorily by the Gauss function [4]. The dependences

of 77, m, and Hk on 20, which are required in Rietveld analysis, are investigated in detail

experimentally and theoretically.

The Voigt function (7-30), which is the convolution of the Gauss and Lorentz functions, is

also implemented in some computer programs [62,63].

Thompson et al. [55] gave a series expansion relating 7/in the pseudo-Voigt function to Hk

and the FWHM's of the Lorentzian component, HkL, for the Voigt function as:

Page 437: Analytical Spectroscopy Library_VOL 7

428

Table 7-3. Symmetric profile-shape functions for angle-dispersive powder diffraction. A20 = 2 0 i - 20k, 20i is the diffraction angle at step i, Oh is the Bragg angle of reflection k, Hk is the FWHM of the profile-shape function, eL is Lorentzian, ~6 is Gaussian, F is the F function, fig and flL are respectively the integral-breadths of Gaussian and Lorentzian components, Re is the real part of the function, and to is the complex error function.

2 Lorentz r = _-77-, ~t-/k

1 + 4 (A20/2] -1 Ilk I] (7-24)

Gauss O(A20) = 2r [ 41n2 IA20/21 q-x-Hk exp - ~--~! j (7-25/

Modified Lorentz

Intermediate Lorentz

O(A20) = 4~]2 l /z - 1 zn~

/A2012] -2 1 + 4(~t2 - 1 ) ~ - - ~ / J

O(A20) = ~ 2 2 /3- 1

H, 1 + 4(22/3- 111A201_|-1.5, ~2]

(7-26)

(7-27)

Pseudo-Voigt O(A20) = r/q~L(A20) + (1 - r/)~G(A20) (7-28)

Pearson VII $(A20) = :l- '(m)~/:l/m- 1 Vi 1 + 4(21/m _ 1)/A20//-m[/2-] (7-29) " ~ F ( m - 0.5)Hk / ~ Hk ] J

[o3/q -~-A20 + i ilL(:;) 1 (7-30) Voigt r = ~-Re ~ fiG ~/-~-fl

r I = 1.36603(HkL/Hk) - 0.47719(H~L/Hk) 2 + O. 11116(HkL/Hk) 3 (7-31)

They also used a set of numerically convoluted profiles to obtain the series approximation for

the Hk of the pseudo-Voigt profile:

3 2 2 3 Hk = (HSG + 2.69269H2aHkL + 2.42843HkGHkL + 4.47163HkGHkL +

0.07842HkGH4L + H5L) 0"2 (7-32)

where the Gaussian FWHM, HkG, for the Voigt function is related to the variance of the

Page 438: Analytical Spectroscopy Library_VOL 7

429

r , t ]

0 0

i i

i i

a i

a: 77=0.0 b: 77=0.5 c: r/-- 1.0

a

20

Fig. 7-7. Pseudo-Voigt-type profiles with an

equal integrated intensity (area sur-

rounded by the profile and the ab-

scissa) and an equal FWHM. (a) 77

= 0 (Gaussian), (b) r / - 0.5, and (c)

r/= 1 (Lorentzian).

Gaussian component cr by the relation

H~G = ~ 8cr21n2 (7-33)

Dependence of the FWHM on the diffraction angle

Separate refinement of H ~ and HkL is preferred when they are used to account for the strain and crystallite-size effects, respectively, on peak broadening. Strain broadening is Gaussian in shape whereas size broadening is Lorentzian. Convolution of these two with the

profile-shape functions of well-crystallized samples of adequate crystallite sizes affords profiles for actual samples displaying strain and size broadening. Thermal-displacement parameters

and occupation factors are strongly influenced by crystallite size and strain [59], which must

therefore be included in the profile-shape function.

Here, expressions adopted by Larson and Von Dreele [64] in their GSAS program will be

introduced instead of simpler ones given by Cox and coworkers [10,55] because they enable

one to model anisotropic broadening. The variance of the Gaussian component, ~2, varies

with 0h as

o "2 = HZG/81n2 = Utan20k + Vtan0~ + W + Psec20~ (7-34)

The angular dependence of cr is thus a function of the three parameters U, V, and W and the

Scherrer coefficient, P, for Gaussian broadening. HkL varies with Ok as

Page 439: Analytical Spectroscopy Library_VOL 7

430

HkL - - (X + XeCOStpk)sec0k + (Y + Yecostp~)tan0~ (7-35)

where Xe and Ye are anisotropy coefficients, and tp~ is the angle between the scattering vector

and a broadening axis. The first term is the Lorentzian Scherrer broadening, and the second

term is the strain broadening. Thus, there is a direct relationship between the parameters and a

physical model in the Larson-Von Dreele formulation, which is therefore appealing in terms

of its soundness based on physics motivation.

Peak asymmetry

A variety of instrumental and sample effects, such as axial divergence of the X-ray beam

and sample transparency, cause marked asymmetry in the observed profile shape, especially at

low diffraction angles. The symmetric profile-shape functions listed in Table 7-3 are usually

modified for peak asymmetry by multiplying O(A20)and an asymmetric function containing

the asymmetry parameter, A [4]:

a(A20) = 1 - AcotO~A201A201 (7-36)

Peak asymmetry can be alternatively corrected [64] by employing the multi-term Simpson's

rule integration described by Howard [65]:

1 ~ gidp(A20") ~p'(A20) = 3 ( n - 1)i= 1

(7-37)

The 2 0 difference modified for peak asymmetry, As, and specimen shift, Ss, is

A20 ' = A20 +fiAscot20~ + Sscos0k (7-38)

The sums in Eq. (7-37) have 3, 5, or 7 terms, depending on the size of As. The corresponding

Simpson's coefficients, gi and f , are:

n = 3: gl =g3 = 1,g2 = 4

n = 5: gl = g5 = 1,g2 =g4 = 4, g3 = 2

n = 7: gl = g7 = 1, g2 = g4 = g6 = 4, g3 = g5 = 2

f /= [(i - 1)/(n - 1)]2 (7-39)

Page 440: Analytical Spectroscopy Library_VOL 7

431

Although this method of describing asymmetric peaks gives a better fit to X-ray and neutron

profiles than that using the asymmetric function (7-36), it fails to fit strongly asymmetric peaks at very low scattering angles [64]. In fact, the Simpson's rule integration can break up

into multiple peaks for very strong asymmetry. The profile-shape function in which the pseudo-Voigt function is combined with the Simp-

son's rule integration contains ten refinable parameters: U, V, W, P, X, Xe, Y, Ye, As, and Ss.

Interpretations of these coefficients are described in Ref. 64.

Asymmetric peaks can also be approximated by a split profile-shape function where two

independent sets of profile-shape parameters are assigned to the left and right sides of peaks

[66]. The main problem with the split function is the difficulty in assigning a physical

meaning to the functional form.

Profile-shape functions for synchrotron X-ray diffraction

The extremely parallel beam and the use of incident-beam monochromators in synchrotron

X-ray diffraction eliminate many of the geometrical aberrations inevitable in conventional

sources, giving nearly Gaussian and more symmetric line shapes. The pseudo-Voigt function

was applied to synchrotron X-ray powder data taken using the capillary geometry [55] and the

flat-plate geometry with crystal analyzer (Fig. 7-8) [10]. Will et al. [67] tested the Gauss,

Lorentz, Pearson VII, and pseudo-Voigt functions as profile-shape functions and, in agreement

with Thompson et al. [55], found that the pseudo-Voigt function yielded the best fit. Lehmann

et al. [68] successfully used the Voigt function. Will et al. [69] also reported that the profile

shape could be approximated by superimposing two Gaussian functions with a common peak position and a ratio of 2:1 for the FWHM and the peak height. Will et al. [70] later reported

another better profile-shape function in which 20k of the Lorentz function was shifted 0.03 ~ to

the low 20 side to match the asymmetry of the experimental profiles and added to the Gauss function. The profiles measured by the Weissenberg camera equipped with the Imaging Plate (cf. Sub-Section 7.6.2) could be satisfactorily approximated by the Gauss function; surprisingly, no peak asymmetry needed to be corrected [54].

7.7.2. TOF neutron-powder diffraction

Neutron production at a pulsed-spallation-neutron source involves two complex physical

processes, "slowing-down" and thermalization which dominates at epithermal (A, < 0.1 nm)

and thermal (A, < 0.1 nm) energies, respectively [18]. Consequently, the characteristic peak

shape and incident neutron flux are rather complicated, depending on wavelength (cf. Fig.

7-4). Reflections in the epithermal region are very sharp and nearly symmetric, while those in

the thermal region are broad with very long tails on low-Q sides. Because profile shapes

depends on the materials, temperatures, and shapes of moderators and instrument features,

they have to be optimized for different diffractometers. Examples are the convolution of

arising and falling exponential with a Gaussian for the GPPD and SEPD diffractometers at the

Page 441: Analytical Spectroscopy Library_VOL 7

432

1000 - . . . . . . . . . . . . . . . . . . . S~ (220) 1.5216A

.... 8OO

(z) o ) 600

w 400

-~ 200

I

,oo F . . . . . . . . . . . . . . . . . . . . . . t

-100 . . . . . . . . . : " . . . . . . . . 46.5 46.7 46.9

2 0 / ~

3 0 0 . . . . . . . . . . . . . . . . . . . . . . Si ($:51) 1.5216A

"G 240 E o o

~ ~BO

l -

8 120

e , -

~ 60

0 ' ' - . . . . . . " - A A

f ..... t 2 0 / ~

Fig. 7-8. Least-squares fits to observed 220 and 331 peak profiles from Si with an Si(111)

channel-cut monochromator and an Si(400) crystal analyzer [10]. The data

points from a step-scan at 0.0025 ~ intervals are shown by the dots, the solid line

is a fit to a pseudo-Voigt function, and the difference plot is indicated below.

IPNS [44], and the summation of two functions based on a Gaussian leading edge and a

second Gaussian trailing edge with an exponential tail 172] for the HRP diffractometer at the

KENS [73].

Because these two profile-shape functions are not convoluted with the Lorentz function in

the present forms, fits between observed and calculated patterns are often not very satisfactory

for samples with small crystallite sizes. David [44] developed another TOF profile-shape

function adopting the moderator pulse shape of Ikeda and Carpenter [74]. The Ikeda-Carpenter

function is a convolution of the slowing-down spectrum from the moderator

S(~') = ct3"r 2 exp ( -a ' r ) /2 (7-40)

and a mixing of a &-function and an exponential decay

R(~:) = (1 -R)6('r) + Rexp(-/3~:) (7-41)

These two describe the leakage of fast and slow neutrons from the moderator and respectively

contains 'fast' and 'slow' decay constants, ~x and j3, which are related to the material and

Page 442: Analytical Spectroscopy Library_VOL 7

433

dimensions of the moderator. The mixing coefficient, R, is related to the moderator temperature.

The Ikeda-Carpenter function must further be convoluted with the Gauss and Lorentz functions

to give the full profile shape function. This function is most complex mathematically but

excels at including physically meaningful parameters.

7.8. VARIOUS CORRECTION FACTORS

7.8.1. Absorption

No absorption factor is required in Bragg-Brentano-type X-ray powder diffraction using

fiat-plate samples; it is constant regardless of 20. On the other hand, absorption correction is

necessary for the Debye-Scherrer geometry. Rouse et al. [75] gave analytical approximations

of the absorption factor, A(Qi), for cylindrical and spherical samples with the linear absorption coefficient,/z, and radius, r:

A(Qi) : exp[-(a 1 + a2sin20)lzr - (a 3 + a4sin20)(gr) 2] (7-42)

with

al a2 a3 a4

Cylinder 1.7133 -0.0368 -0.0927 -0.3750

Sphere 1.5108 -0.0315 -0.0951 -0.2898

(note that there is a printing error for a4 in the original paper [75]). In the case of TOF

neutron diffraction,/.t is dependent on wavelength because the absorption cross section increases with increasing wavelength.

7.8.2. Extinction

The extinction in powder diffraction is a primary extinction effect within each perfect

crystal block. Extinction is dependent on both wavelength and scattering angle. It may be

neglected in X-ray diffraction but must be included in Rietveld analysis of TOF neutron-

powder-diffraction data because of the wide range of wavelengths used in TOF experiments.

The extinction correction, Ek, can be calculated according to a formalism developed by Sabine

[76] and Sabine et al. [77]. E~ has Bragg and Laue components

Ek = Essin20k + ELCOSZ0k (7-43)

Page 443: Analytical Spectroscopy Library_VOL 7

434

where

EB = (1 + x) -1/2 (7-44)

and

EL = 1 - x / 2 + x2 /4 - 5x3/48 + 7x4/192 for x < 1 (7-45)

EL = (2/~c)1/2(1 - 1/8x- 3/128x 2 - 15/1024x 3) for x > 1 (7-46)

with

X = Ex(l],F k ]V) 2 (7-47)

Ex is the powder extinction coefficient which is a direct measure of the block size in a powder sample, Fk is the structure factor, and V is the unit-cell volume.

7.8.3. Preferred orientation

Dollase [78] tested several preferred-orientation functions listed in Table 7-4 and selected

a special case from the more general description by March [79] as the best preferred-orientation correction:

mk

ek = E (r2c~ + r-lsin2otJ )-3/2/mk j= l

(7-48)

where aj is the angle between the preferred-orientation direction and the jth member of the

symmetry-equivalent set of mt diffraction planes. The sum is over all the equivalent reflections.

The refinable parameter, r, represents the effective sample compression or extension due to

preferred orientation. The March-Dollase formulation is applicable to both plate- and needle-

shaped crystals and independent of the diffraction geometry.

Ahtee et al. [63] proposed another very effective preferred-orientation function, in which

the preferred-orientation effect is modeled by expanding the orientation distribution in spherical

harmonics. They implemented the model in their Rietveld-refinement program where the

Voigt function was used as the profile-shape function. In tests using samples with textures

known from pole-figure measurements, they found that the corrections obtained from the

refinement agreed very closely with the measured values. If satisfactory results could not be

obtained with the March-Dollase approach, this more complex but, in principle, more powerful

approach is worth trying.

Page 444: Analytical Spectroscopy Library_VOL 7

435

Table 7-4.

Functions to correct for preferred orientation. Notes: a is the angle between

the direction of preferred orientation and the scattering vector, Qk; G, b,

and r are variable parameters which are related to the degree of preferred

orientation. Two functions which are maximum at a = 0 ~ and minimum

at a = 0 ~ should be selected according to the method of packing samples

(plate or cylindrical sample) and crystal habit (plate- or needle-like).

No. Maximum at a = 0 ~ Minimum at a = 0 ~

1 exp (-G a 2) exp[-G (~/2 - a ) 2 ]

2 exp[G (71;/2 - or) 2] exp(Ga 2)

3 exp(-G sin2a) exp (-G cos2a)

4 exp[-G (1 - cosaa)] exp[-G(1 - sin3a)]

5 b + ( 1 - b) exp ( - G a 2) b+(1-b)exp[-G(rc/2-ot) 2 ]

r2cos2a + r_lsin2a)-3/2

7.8.4. Background

The background, Yb(Qi), results from several factors, such as fluorescence from the sample, detector noise, TDS from the sample, disordered or amorphous phases in the sample, incoherent scattering, air scattering of X-rays or neutrons, diffractometer slits, and sample holder.

In the original Rietveld refinement program [4], the background was subtracted from the

observed intensity data. However, background parametel:s need to be included as variables for complex diffraction patterns. In a Rietveld-refinement program RIETAN [80], a background

function which is linear in six refinable background parameters bo-b5 is used for the angle- dispersive diffraction method:

5 Yb(Qi) = yb(20i) = E bj[(20i- Omax- Omin)/(Omax- Omin)] j

j=O (7-49)

where 0max and 0min are respectively maximum and minimum Oi's. Therefore, 20i is normalized between-1 and 1 to reduce the correlations between bo-b5.

Alternatively, the GSAS program [64] provides a cosine Fourier series with up to 12

Page 445: Analytical Spectroscopy Library_VOL 7

436

refinable parameters including a leading constant term:

12

Yb(Qi) = bl + E bjcosPj_l j = 2

(7-50)

P is 20i in degrees in the case of constant-wavelength data. For TOF data, the tfs are scaled

by 180//max, where/max is the maximum TOF allowed by the incident spectrum.

7.9. NONLINEAR LEAST-SQUARES METHODS

Almost all computer programs for Rietveld refinement employ some form of the Gauss-

Newton algorithm to find parameters which minimize S(x) apart from XRS-84 [81] and

MINREF [82] adopting a variable metric method. However, when applied to Rietveld analysis,

the Gauss-Newton method suffers a disadvantage that the range of convergence is rather

narrow [59], and the refinements often converge to local minima rather than the global minimum

[83]. Since none of algorithms has proved to be so superior that it can be classified as a

panacea for nonlinear least-squares solutions, it is advantageous to have more than one method

available on call. In RIETAN [73,80], three different techniques for nonlinear least-squares

fitting are adopted: the Gauss-Newton method [84], a modified Marquardt method [85], and

the conjugate-direction method [86]. All of them are designed to give stable convergence.

RIETAN also has the very convenient features of incremental and combined refinements. The

algorithms implemented in RIETAN will be introduced shortly.

7.9.1. Gauss-Newton method

In this algorithm, changes in n variable parameters at each iterative step, Ax, are calculated by

setting up a normal equation:

MAx = N (7-51)

where M is the coefficient matrix with n rows and n columns, and both Ax and N are nxl

column matrixes.

Although Ax is evaluated from M-1N in most structure-refinement programs, there is little

to recommend such an old-fashioned technique because of the long computation time and low

precision. In RIETAN, only a lower triangle of the positive-definite symmetric matrix M is

kept in a one-dimensional array to save storage, and the Choleski decomposition of M and

forward- and back-substitutions for the solution of consistent sets of linear equations are

carried out [87].

A new set of x and x' , is readily obtained by

Page 446: Analytical Spectroscopy Library_VOL 7

437

x" = x + dAx (7-52)

with

d = 2 -m (m = 0, 1, 2, 3, 4) (7-53)

The variable damping factor, d, is initially set at 1 (m = 0). If S(x') > S(x), d is decreased,

and x' is calculated again with Eq. (7-52). The value of d is adjusted appropriately, according

to the rule adopted in SALS [84].

7.9.2. Modified Marquardt method

This method also calculates M and N but adds &.diag(M) (A,, Marquardt parameter; diag,

diagonal matrix) to M to stabilize the convergence to the minimum:

M + A.diag(M)Ax = N (7-54)

Then, Ax tends towards the steepest descent direction as ~ becomes larger, while the Gauss-

Newton solution is obtained when A, becomes negligible. Even if M is not positive definite, it

can be made computationally positive definite by choosing ~ to be large enough. The value of

A, is automatically adjusted during a series of iterations using a most efficient method developed

by Fletcher [85]. The motivation for his strategy is that if the ratio of (actual reduction in

S(x))/(predicted reduction in S(x)) is near 1, then A, ought to be reduced, and if the ratio is near

to or less than 0, then A, ought to be increased. Fletcher's algorithm improves the performance

of the Marquardt method in certain circumstances, yet requires negligible extra computer time

and storage. The modified Marquardt method is very effective for dealing with highly nonlinear

model functions, fi(x), or problems in which starting values for refinable parameters differ markedly from the true ones.

7.9.3. Conjugate-direction method

The conjugate-direction method [86] is one of the most efficient algorithms for minimizing

objective functions without calculating derivatives. The minimum of S(x) of a quadratic

function with H > 0 (H: hessian matrix of S(x)) is located by successive unidimensional

searches from an initial point along a set of conjugate directions generated by effective

algorithms. In RIETAN, a combination of Davies-Swann-Campey and Powell algorithms

[88] is adopted as a method of unidimensional minimization. Estimated standard deviations

of refinable parameters are obtained by calculating M and inverting it (cf. Sub-Section 7.2.3)

after convergence to the solution.

Since the directions for minimization are determined solely from successive evaluations of

Page 447: Analytical Spectroscopy Library_VOL 7

438

the objective function, S(x), this procedure is much slower than the two least-squares methods

with derivatives It is, however, capable of solving ill-conditioned problems in which very

high correlations exist between parameters. Because the conjugate-direction method is very

fast in any nearly quadratic region near a minimum, it is mainly used in the late stages of

refinement to test the prospect of a local minimum being the global minimum or to escape

from a local minimum by using sufficiently large step sizes in line searches. On the other

hand, someone using the Gauss-Newton and Marquardt algorithms can check the convergence

to the global minimum simply by using different starting vectors.

7.9.4. Auxiliary techniques for stable convergence

We usually proceeds in steps in Rietveld analysis, first refining only one or two parameters

and then gradually letting more and more of the parameters be adjusted in the successive

least-squares refinement cycles [20]. RIETAN requires only a single input to refine parameters

incrementally; that is, variable parameters in each cycle can be pre-designated by the user or

selected appropriately by the program when using the Gauss-Newton and modified Marquardt

methods (incremental refinements). Repetition of batch jobs is, therefore, unnecessary in

most Rietveld refinements. For example, linear parameters (background parameters and a

scale factor) are refined in the first cycle, lattice parameters in the second cycle, profile-shape

parameters in the third cycle, and subsequently all the parameters simultaneously. Even if

initial parameters are far from the true solution, incremental refinements coupled with the

appropriate adjustment of d (Gauss-Newton method) or A, (modified Marquardt method), enable

very stable convergence to an optimum solution in most cases. Combined refinements are also possible in which the parameters obtained by the incremental

refinements described above are further adjusted by the conjugate-direction method to ensure

that there are no lower minima in the vicinity of the one found by the initial refinement.

7.10. INTRODUCING ADDITIONAL INFORMATION TO RIETVELD ANALYSIS

Although high-resolution synchrotron X-ray and neutron powder data can be measured

almost routinely at present, the amount of information in these data is still limited in comparison

with that in corresponding single-crystal data. Rietveld refinements generally converge more

slowly, and it is not possible to refine all parameters together from the start. It is essential to

have a good initial structural model and to proceed with Rietveld refinements slowly and

carefully. The chances of finding false minima increase particularly if the lattice parameters

are not initially well known. Parameters cannot be refined with small estimated standard deviations, particularly when

dealing with compounds showing complex diffraction patterns or severe line broadening. In

such cases, peaks overlap heavily with each other, the sum-of squares S(x) does not decrease

sharply near the minimum ("flat" minimum), and there can be quite a number of false minima

around the global minimum [83]. When the positions of sites for light elements are poorly

Page 448: Analytical Spectroscopy Library_VOL 7

439

defined because of the coexistence of heavy and light elements, the calculated interatomic

distances and bond angles often deviate from crystal-chemically reasonable values. Occupation

factors are strongly correlated with thermal-displacement parameters, and their simultaneous

refinement leads to extremely large crj's.

7.10.1. Restraints

Introduction of a priori geometric and chemical relationships into Rietveld analysis is

often very effective for overcoming the above problems, and needs only the addition of the

relationships and their estimated uncertainties to the observed intensity data [89]. These

"pseudo-observations", referred to as restraints (soft/slack constraints), include expected struc-

tural features such as interatomic distances [80,90], bond angles, relationships between thermal-

displacement parameters, and those between occupation factors. Mathematically, there is no

difference between the pseudo-observations and the X-ray or neutron diffraction data. The

weighted sum-of-squares, S(x), can be calculated in a similar fashion:

S(x) = E wi[Yi - j~(x)] 2 + E IzJ - gj(x)]2/tTfj i j

(7-55)

where zj and gj(x) are respectively observed and calculated relationships between parameters,

and trj is the estimated error for zj. Thus, the restraints supplement the diffraction data,

increasing the substantial number of observations significantly. Rietveld analysis under restraints

leads to a prompt and sure convergence, makes it possible to refine more structural parameters

than conventional analysis, and reduces the possibility of trapping into a false minimum.

7.10.2. Hard constraints

Hard constraints are used to reduce the number of independent parameters by defining

geometric and chemical relationships which have to be satisfied by variable parameters in

Rietveld analysis. For example, if we regard an atomic group as a rigid body (group refinement),

the number of fractional coordinates can be limited to 6: the coordinates for the center of the

rigid body (x0, y0, and z0) and the rotation angle with its center as an origin ((/91, (/92, and tp3)

[91 ]. Such an approximation does not hold strictly in the actual compound; the actual interatomic

distances, bond angles, etc., more or less violate the assumed constraints. Hard constraints are

therefore not so flexible or versatile as restraints.

7.10.3. Use of information from other experimental methods

As described above, powder diffraction is often not powerful enough to show a definite

conclusion as to structural details. Initial structural models should be constructed by taking

into account not only crystallo-chemical information described in the literature but also results

Page 449: Analytical Spectroscopy Library_VOL 7

440

I Selected-area ~ __~Powderdiffraction~ diffraction patternsJ patterns J

~r I r

Determination of I

Refinement of lattice F parameters I

I~HRTEM images 1 [Composition3

~Structure model

C stal c,emistry)

-I Simulation I

Fourier/D I ._1 Rietveld L synthesis L ik(,,o,,)I refinemen t I~1_

1 ] Constraint Calculation of I

distances & angles

Fig. 7-9. A flow chart of Rietveld analysis. Squares with shadows are data analysis or

calculations, and frames with rounded comers are some kinds of data.

Page 450: Analytical Spectroscopy Library_VOL 7

441

obtained by some experimental means (e.g., HRTEM, chemical composition determined by

quantitative analysis, spectroscopic measurements) other than powder diffraction.

For example, when the structure parameters of Ba2YCu3OT_ 8 (0 < ~ < 1) [92] are refined,

determinations of ~ values by chemical analysis such as iodometry make it possible to impose

a linear equality constraint between the occupation factors (g) of two oxygen sites, O(1) and

O(5), in a z = 0 plane: g(O(1)) + g(O(5)) = 1 - ~. In particular, contributions of oxygen atoms

to diffraction intensities are so subtle that the ~ values are essential in the X-ray Rietveld

analysis of this copper oxide. In the case of aluminosilicates, where (Si,AI)-O bond lengths

can be estimated fairly reliably from A1/(AI+Si) ratios [93], restraints can be imposed on the

(Si,AI)-O bond lengths. If the oxidation state of a metal is determined by X-ray photoelectron

spectroscopy (XPS) [94] or X-ray absorption near edge structure (XANES), partition of the

metal between two different sites can often be estimated without ambiguity. It is very dangerous

to rely upon powder diffraction data alone when estimating the space group and lattice parameters

of an unknown structure; selected-area electron diffraction should also be used [95]. Determi-

nation of the space group by convergent-beam electron diffraction is also very helpful when

some possible space groups afford comparable R factors [96].

7.11. REFINEMENT STRATEGIES

When applying the Rietveld method to actual samples, one usually proceeds in the following

way (Fig. 7-9):

1. Index peaks in powder-diffraction patterns and/or reflection spots in selected-area electron

diffraction patterns, and determine possible space groups on the basis of conditions limiting

possible reflections.

2. After determining peak positions of reflections, refine lattice parameters by a linear least-

squares method. For this purpose, use a refinement program such as that developed by

Appleman and Evans [97]. Rietveld analysis often does not converge to the global minimum

unless the initial values of the lattice parameters are fairly close to the true values. Therefore,

it is safe to refine the lattice parameters prior to Rietveld analysis.

3. Roughly infer atomic configurations through structural data described in the literature, a

search for an isomorphous compound or a compound with a similar structure, or direct

observation of the crystal-structure image by HRTEM.

4. Simulate a powder diffraction pattern on the basis of the structural model. If the calculated

diffraction pattern is not similar to the powder pattern actually measured, return to step 3

and assemble another structure model.

5. Perform Rietveld refinement. The lattice parameters determined in step 2 are used as

initial values. Use profile-shape parameters for standard samples such as Si (e.g., NIST

Standard Reference Material 640b) as initial ones unless broadening of diffraction lines

due to strain and particle size is not very marked.

Page 451: Analytical Spectroscopy Library_VOL 7

442

6. Modify the structural model and return to step 5 if R factors are not decreased to sufficiently

low values. Fourier or D synthesis based on lk("o") is often useful in this process [5,20].

7. If the Bj value of a site is extraordinarily large or small, return to step 5 after checking the

validity of the Wyckoff-position assignment and occupation model for the site.

8. Calculate interatomic distances and bond angles from structure and lattice parameters

obtained by the Rietveld analysis. Some values of them may be unreasonable in view of

crystal data reported in the literature [98], effective ionic radii [99], bond-valence sums

[ 100], etc. In such a case, return to step 5 after correcting the structure model or imposing

appropriate constraints on the interatomic distances and/or bond angles.

9. Check the coordination numbers of atoms and/or calculate electrostatic (Madelung) energies

from the lattice and structure parameters. If unreasonable results are obtained, modify the

structure model and return to step 5.

Reactor TOF X-ray SR neutron neutron

In1 12 1

I

In2 12 1

I

2

I

3

Structure model I

Rietveld refinement I

1 Structure and lattice 1

parameters

Fig. 7-10. Rietveld refinement with combined neutron and X-ray diffraction data.

Page 452: Analytical Spectroscopy Library_VOL 7

443

100

80

4.1 60

m

O 40

H

20

100

80

4-) 60 ,,.4 m

40

H

20

�9 ' i . . I . I . I .

~o ; o ' ' ~'o ' ' I i i

I I . i

Neutron

I I I

' 6 " 0 " " "

i

S R

I a I I I I I I �9 " - - . . . . l , , i l l l i i l i i i

30 40 50 6O

2 0 / ~

Fig. 7-11. Simulated neutron and synchrotron X-ray powder diffraction patterns for the

spinel-type oxide MgTi204 for ~ = 0.15418 nm radiation.

7.12. SIMULTANEOUS RIETVELD REFINEMENT OF X-RAY AND NEUTRON DIF-

RACTION DATA

A new technique of Rietveld analysis, where two or more sets of intensity data measured

by different diffraction methods (or under different experimental conditions) using the same

sample are combined and refined simultaneously [101,102], are now being used more and

more widely (Fig. 7-10). In such refinements, the profile and background parameters are

refined separately for the respective sets of intensity data, and the structure and lattice parameters

are refined as parameters common to the all the data sets.

As exemplified in Fig. 7-11, X-ray and neutron diffraction are complementary in the sense

Page 453: Analytical Spectroscopy Library_VOL 7

444

that they afford different structure factors, i.e., different diffraction patterns, for the same

sample. Simultaneous refinement of X-ray and neutron diffraction data, therefore, leads to a

pronounced increase in the amount of structural information. This technique is particularly

useful for determining the distribution of elements between two or more sites and reducing

correlations between refinable parameters.

Even if X-ray and neutron diffraction data are not combined, separate Rietveld refinements

using them may be useful for reinforcing one of the two intensity data sets. Kanke et al. [ 103]

refined the crystal structure of NaFe3V9019 by Rietveld refinements of both neutron and X-ray

powder diffraction data. Some structure parameters for V(Fe) sites were fixed at those refined

using X-ray data in the Rietveld analysis of the neutron data because the coherent scattering

length of V is negligibly small: bc = -0.3824 fm [31 ].

Complementary use of single-crystal and powder-diffraction data is also very effective.

Iyi et al. [ 104] proposed a new model of defect structures in Lil_sxNbl+xO 3 using the results

of single-crystal X-ray analysis. According to their Li-site vacancy model, the chemical

formula of the nonstoichiometric oxide can be represented as (Lil_sxNbxI--14x)NbO3. Further,

they obtained conclusive evidence for their model by Rietveld analysis of TOF neutron-

powder-diffraction data.

It is also very effective to combine diffraction data taken using two or more X-ray (neutron)

diffraction methods or the same diffraction method under different conditions of measurement.

For example, a technique is useful in which two or more sets of synchrotron X-ray diffraction

data taken by changing X-ray wavelengths appropriately are combined and refined simulta-

neously. In particular, the tunability of SR to wavelengths near absorption edges can dramatically

vary the X-ray scattering factor and enables the distinction of two elements with similar

atomic numbers (cf. Sub-Section 7.6.1). In TOF neutron diffraction, measuring two sets of

diffraction data with counters placed at different 20 positions makes it possible to cover a

wide range of Q. Various diffraction methods show different dependences of the FWHM and diffraction

intensity on Q. For example, peaks in a high Q region, which are grouped together in

angle-dispersive neutron diffraction, can often be separated by using TOF neutron-powder

diffraction, although there is the drawback that peaks in this region are weak. Their combined

use evidently increases the amount of structural information.

Combination of synchrotron and characteristic X-ray and neutron diffraction data not only

increases the amount of information extracted from powder data but also reduces correlations

between structure parameters. Accordingly, the problems of flat minima in sums-of-squares,

and of false minima are at least partially solved, which increases the possibility of obtaining a

more reliable solution.

The structure parameters of orthorhombic Ba2YCu3OT_ S [105] and BaPbO3 [106] were

refined by combining X-ray and neutron diffraction data. The structure of LaSrCu0.sCo0.504-~

was also refined by the combined analysis of angle-dispersive synchrotron, X-ray Guinier, and

neutron diffraction data [ 107].

Page 454: Analytical Spectroscopy Library_VOL 7

445

Table 7-5.

Quantitative X-ray determination for mixtures of Cr203 and A1203

[12]: C, Cr203; A, A1203.

System

Weight

percentage

C A

Observed Observed

percentage* percentaget

C A C A

CA28 20.0 80.0 20.5 79.5 21.2 82.3

CA46 40.0 60.0 39.3 60.7 40.3 58.2

CA64 60.0 40.0 59.2 40.8 57.9 37.4

CA82 80.0 20.0 79.6 20.4 78.0 20.4

* Values determined by Rietveld refinement without an Si internal

standard, totals constrained to 100%.

~- Values determined by Rietveld refinement using an Si internal

intensity standard, totals not constrained to 100%.

7.13. APPLICATION TO QUANTITATIVE ANALYSIS

Most Rietveld-refinement programs have a feature for dealing with mixtures of two or

more phases. Weight fractions of phases j can be easily calculated from scale factors, sj,

obtained by using this multi-phase capability [ 11,12]:

I~ = sj(Zmg)j / E si (ZMV)i (7-56) i

where the summation is carried out over all the phases contained in the mixture, Z is the

number of a formula unit contained in the unit cell, M is the mass for the formula unit, and V

is the unit-cell volume. Table 7-5 lists an example of quantitative analysis by Rietveld

refinements of X-ray diffraction data with and without an Si internal intensity standard. The

March-Dollase function, Eq. (7-48), for correction of preferred orientation displays the best

overall performance for structural studies. In addition, this function has the advantage that it

conserves scattering matter, allowing its use in quantitative phase determination.

This method does not require any working curves and affords more reliable results than the

conventional method using only a limited number of reflections. Because structure and lattice

parameters are refined at the same time, it is useful as a versatile data-processing method for

powder diffraction. In addition, the content of an amorphous substance can be determined by adding an internal standard [ 12].

Page 455: Analytical Spectroscopy Library_VOL 7

446

7.14. RIETVELD ANALYSIS OF MODULATED STRUCTURES

The Rietveld method may be applied to sophisticated analysis which has hitherto been

regarded as almost impossible. Yamamoto [108] developed a computer program PREMOS

which can refine incommensurate structures as well as superstructures by the Rietveld method.

It also makes possible joint refinement of X-ray and neutron diffraction data under nonlinear

constraints. The algorithms adopted in REMOS for the analysis of single-crystal intensity data

[108] have been combined with the Rietveld method. Elsenhans [82] independently developed

a MINREF program for Rietveld analysis of incommensurate nuclear and magnetic structures

with neutron-powder data, but neither fractional coordinates nor occupation factors are refinable

in the present version.

Peak positions and structure factors for (one-dimensional) incommensurate structures are

calculated in more complicated ways than for commensurate ones. Four integers, hklm, are

needed to index main and satellite peaks systematically. The reciprocal-lattice vector, q, can

be written in vector notation

q = ha* + kb* +lc* + m k (7-57)

with

k = k la* + k2b* + k3c*, (7-58)

where k is the wave vector of the modulation wave, and a*, b*, and c* are reciprocal unit-cell

vectors for the subcell. Then the lattice-plane spacing, d, can be obtained by

d=lql -~. (7-59)

For example, d is expressed simply as

d =[(h + mkl)2a .2 + (k + mk2)2b .2 + (l + mk3)2c'2] -1/2 (7-60)

in cubic, tetragonal, and orthorhombic forms.

Additional parameters are necessary to calculate structure factors for incommensurate

structures. For example, the atomic position, r, is calculated by adding cosine and sine waves

to the average position, ~:

r = ~ + uccos(27~t) + ussin(2~t), (7-61)

where uc and Us are respectively the amplitudes of the cosine and sine waves, and t (= k-~) is

the phase of wave. The occupation factor and isotropic thermal-displacement parameter can

Page 456: Analytical Spectroscopy Library_VOL 7

447

be expressed by similar equations.

Superconducting oxides with the ideal compositions Bi2Sr2Can_lCu,,O2n+6 (n = 1-3) have modular layer structure containing CuO2 sheets typical of all the high-Tc superconductors and

double BiO sheets [2,3]. Yamamoto et al. [109] refined the complex incommensurate structure

of Biz(Srl_xCax)3Cu208+ 8 (n = 2) using PREMOS and proposed a possible model for config-

urations of Bi and O atoms, including interstitial oxygen, on BiO sheets. This technique has

not yet been applied to SR data but must be very effective because of the excellent resolution

and high S/N ratio in synchrotron X-ray diffraction.

Walker and Que [ 110] indicated that the modulated crystals of Bi-containing superconducting

oxides can be described as composite crystals which consist of two substructures with average

periods incommensurate to each other. On the basis of this idea, Yamamoto et al. [111]

analyzed the crystal structure of the superconductor Bie+xSrz_xCuO6+ S (n = 1) by the Rietveld

method with the combined use of X-ray and TOF neutron diffraction data. This compound

consists of two interpenetrating one-dimensionally modulated substructures: O atoms on BiO

sheets and all the other atoms. The analysis revealed large atomic displacements from average

positions in BiO, SrO, and CuO2 sheets. Oxygen arrangements in BiO sheets proved to be

similar to those in Biz(Srl_xCax)3Cu208+ 8 [ 109].

7.15. CONCLUDING REMARKS

Refinable parameters and their estimated standard deviations will have considerable errors

if the model function, fi(x), is not calculated strictly. In recent years, attempts have been made to take into account preferred orientation [63,78], primary extinction [76,77], multiple

scattering, TDS, peak broadening due to the strain and crystallite size effects [112-114], etc.

A Fourier-filter method was developed which removes the contribution of an amorphous

substance from the diffraction pattern [115,116]. Because the model function is being refined more extensively, "problems under the carpet" that remain unsolved will disappear gradually.

The technique of ab initio structure determination from powder diffraction is now being

developed actively [29]. Rietveld analysis is used as the last step of this method of solving unknown structures. The HRTEM images correspond to Fourier maps in single-crystal X-ray

analysis and help one to construct initial structural models easily without complex data processing

to solve the phase problem. Thus, HRTEM is an excellent complement to Rietveld analysis.

Crystal analysis with the combined use of HRTEM and Rietveld analysis will hereafter be performed more frequently.

Third-generation synchrotron sources are now being built in the U.S.A., Europe, and

Japan, i.e., the Advanced Photon Source (APS) at Argonne National Laboratory, the European

Synchrotron Radiation Facility (ESRF), and SPring-8 (Super Photon ring-8 GeV) at Japan

Synchrotron Radiation Research Institute. High-resolution powder diffractometers are planned

to be installed at these synchrotron sources. The Rietveld method will be applied more widely

to synchrotron X-ray diffraction data and will contribute greatly to advances in structural

studies of various metals, inorganic and organic compounds.

Page 457: Analytical Spectroscopy Library_VOL 7

448

REFERENCES

1. J.G. Bednorz and K.A. MUller, Z. Phys. B: Condens. Matter, 64, 189 (1986).

2. K. Yvon and M. Francois, Z. Phys. B: Condens. Matter, 76, 413 (1989).

3. R.M. Hazen, in D.M. Ginsberg (Editor), Physical Properties of High Temperature Super- conductors II, World Scientific, Singapore, 1990, p. 121.

4. H.M. Rietveld, J. Appl. Crystallogr., 2, 65 (1969). 5. A.K. Cheetham and J.C. Taylor, J. Solid State Chem., 21, 253 (1977). 6. A. Albinati and B.T.M. Willis, J. Appl. Crystallogr., 15, 361 (1982).

7. J.B. Hastings, W. Thomlinson and D.E. Cox, J. Appl. Crystallogr., 17, 85 (1984).

8. W. Parrish, Aust. J. Phys., 41, 101 (1988). 9. D.E. Cox, B.H. Toby and M.M. Eddy, Aust. J. Phys., 41, 117 (1988).

10. D.E. Cox, in P. Coppens, Synchrotron Radiation Crystallography, Academic Press,

London, 1992, ch. 9. 11. R.J. Hill and C.J. Howard, J. Appl. Crystallogr., 20, 467 (1987).

12. D.L. Bish and S.A. Howard, J. Appl~ Crystallogr., 21, 86 (1988).

13. R.A. Young (Editor), The Rietveld Method, Oxford University Press, Oxford, 1993. 14. H.M. Rietveld, Aust. J. Phys., 41, 113 (1988). 15. H.M. Rietveld, Acta Crystallogr., 22, 151 (1967). 16. G. Malmros and J.O. Thomas, J. Appl. Crystallogr., 10, 7 (1977). 17. L.W. Finger, in D.L. Bish and J.E. Post (Editors), Reviews in Mineralogy, Vol. 20:

Modern Powder Diffraction, Mineralogical Society of America, Washington, DC, 1989,

ch. 10. 18. C.G. Windsor, Pulsed Neutron Scattering, Taylor & Francis, London, 1981. 19. R.A. Young, E. Prince and R.A. Sparks, J. Appl. Crystallogr., 15, 357 (1982). 20. J.E. Post and D.L. Bish, in D.L. Bish and J.E. Post (Editors), Reviews in Mineralogy,

Vol. 20: Modern Powder Diffraction, Mineralogical Society of America, Washington,

DC, 1989, ch. 9. 21. H.G. Scott, J. Appl. Crystallogr., 16, 159 (1983). 22. R.J. Hill and I.C. Madsen, J. Appl. Crystallogr., 19, 10 (1986).

23. R.J. Hill and H.D. Flack, J. Appl. Crystallogr., 20, 356 (1987).

24. G. Shirane, Acta Crystallogr., 12, 282 (1959). 25. G.E. Bacon, Neutron Diffraction, Clarendon Press, Oxford, 3rd ed., 1975, ch. 8.

26. G. Will, W. Parrish and T.C. Huang, J. Appl. Crystallogr., 16, 611 (1983).

27. H. Toraya, in R.A. Young (Editor), The Rietveld Method, Oxford University Press,

Oxford, 1993, ch. 14. 28. G.S. Pawley, J. Appl. Crystallogr., 14, 357 (1981). 29. A.K. Cheetham, in R.A. Young (Editor), The Rietveld Method, Oxford University Press,

Oxford, 1993, ch. 15. 30. R.J. Hill and I.C. Madsen, Powder Diffr., 1, 146 (1987). 31. V.F. Sears, in A.J.C. Wilson (Editor), International Tables for Crystallography, Vol. C,

Page 458: Analytical Spectroscopy Library_VOL 7

449

Kluwer Academic Publishers, Dordrecht, 1992, p. 383. 32. P.J. Brown, in A.J.C. Wilson (Editor), International Tables for Crystallography, Vol. C,

Kluwer Academic Publishers, Dordrecht, 1992, p. 391.

33. H.P. Klug and L.E. Alexander, X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials, John Wiley, New York, 2nd ed., 1974, ch. 5.

34. S. Shishiguchi, I. Minato and H. Hashizume, J. Appl. Crystallogr., 19, 420 (1986).

35. J. Ihringer, J. Appl. Crystallogr., 15, 1 (1982).

36. J.O. Thomas, Chem. Scr., 26A, 7 (1986). 37. D. Lou~r and J.I. Langford, J. Appl. Crystallogr., 21,430 (1988).

38. A.W. Hewat, NBS Special Publication 567: Accuracy in Powder Diffraction, National

Bureau of Standards, Washington, DC, 1980, p. 111.

39. A.W. Hewat, Mater. Sci. Forum, 9, 69 (1986).

40. A.W. Hewat, Chem. Scr., 26A, 119 (1986).

41. J.D. Jorgensen and F.J. Rotella, J. Appl. Crystallogr., 15, 27 (1982).

42. N. Watanabe, H. Asano, H. Iwasa, S. Satoh, H. Murata, H. Karahashi, S. Tomiyoshi, F.

Izumi and K. Inoue, Jpn. J. Appl. Phys., Part 1, 26, 1164 (1987).

43. J.D. Jorgensen, J. Faber, Jr., J.M. Carpenter, R.K. Crawford, J.R. Haumann, R.L. Hitterman,

R. Kleb, G.E. Ostrowski, F.J. Rotella and T.G. Worlton, J. Appl. Crystallogr., 15, 321

(1989). 44. W.I.F. David and J.D. Jorgensen, in R.A. Young (Editor), The Rietveld Method, Oxford

University Press, Oxford, 1993, ch. 11. 45. K. Kinoshita, F. Izumi, T. Yamada and H. Asano, Phys. Rev. B: Condens. Matter, 45,

5558 (1992). 46. A.M. Glazer, M. Hidaka and J. Bordas, J. Appl. Crystallogr., 11, 165 (1978).

47. B. Buras and L. Gerward, Prog. Cryst. Growth Charact., 18, 93 (1989).

48. T. Yamanaka and K. Ogata, J. Appl. Crystallogr., 24, 111 (1991). 49. A. Bourdillon, A.M. Glazer, M. Hidaka and J. Buras, J. Appl. Crystallogr., 11, 684

(1978). 50. W. Parrish and M. Hart, Trans. Am. Crystallogr. Ass., 21, 51 (1985). 51. O. Shimomura, Physica B (Amsterdam), 139/140, 292 (1986). 52. T. Kikegawa, O. Shimomura, H. Iwasaki, S. Sato, A. Mikuni, A. Iida and N. Kamiya,

Rev. Sci. Instrum., 60, 1527 (1989). 53. H. Ozawa, R. Uno, T. Yamanaka, H. Morikawa, M. Ando, K. Ohsumi, A. Nukui, K.

Yukino and T. Kawasaki, Rev. Sci. Instrum., 60, 2382 (1989).

54. K. Honda, M. Goto and M. Kurahashi, Chem. Lett., 1990, 13.

55. P. Thompson, D.E. Cox and J.B. Hastings, J. Appl. Crystallogr., 20, 79 (1987).

56. I. Nakai, K. Imai, T. Kawashima, K. Ohsumi, F. Izumi and I. Tomita, Anal. Sci., 6, 689

(1990).

57. H. Amord, Mater. Sci. Forum, 9, 47 (1986).

58. R.A. Young and D.B. Wiles, J. Appl. Crystallogr., 15, 430 (1982).

59. S.A. Howard and K.D. Preston, in D.L. Bish and J.E. Post (Editors), Reviews in Mineralogy,

Page 459: Analytical Spectroscopy Library_VOL 7

450

Vol. 20: Modern Powder Diffraction, Mineralogical Society of America, Washington,

DC, 1989, ch. 8.

60. G.K. Wertheim, M.A. Butler, K.W. West and D.N.E. Buchanan, Rev. Sci. lnstrum., 45,

1369 (1974).

61. M.M. Hall, Jr., V.G. Veeraraghavan, H. Rubin and P.G. Winchell, J. Appl. Crystallogr., 10, 66 (1977).

62. W.I.F. David and J.C. Matthewman, J. Appl. Crystallogr., 18, 461 (1985).

63. M. Ahtee, M. Nurmela, P. Suortti and M. J~ivinen, J. Appl. Crystallogr., 22, 261 (1989).

64. A.C. Larson and R.B. Von Dreele, Report No. LAUE 86-748: GSAS - Generalized Structure Analysis System, Los Alamos National Laboratory, 1990.

65. C.J. Howard, J. Appl. Crystallogr., 15, 615 (1982).

66. H. Toraya, J. Appl. Crystallogr., 19, 440 (1986).

67. G. Will, M. Bellotto, W. Parrish and M. Hart, J. Appl. Crystallogr., 21, 182 (1988).

68. M.S. Lehmann, A. Christensen, A. Norlund, H. Fjellvag, H. Feidenhans'l and M. Nielsen,

J. Appl. Crystallogr., 20, 123 (1987).

69. G. Will, N. Masciocchi, W. Parrish and M. Hart, J. Appl. Crystallogr., 20, 394 (1987).

70. G. Will, N. Masciocchi, W. Parrish and H.D. Lutz, Z. Kristallogr., 190, 277 (1990). 71. R.B. Von Dreele, J.D. Jorgensen and C.G. Windsor, J. Appl. Crystallogr., 15, 581

(1982). 72. I. Cole and C.G. Windsor, Nucl. lnstrum. Methods, 171, 107 (1980). 73. F. Izumi, H. Asano, H. Murata and N. Watanabe, J. Appl. Crystallogr., 20, 411 (1987).

74. S. Ikeda and J.M. Carpenter, Nucl. lnstrum. Methods Phys. Res., Sect. A, 239, 536

(1985). 75. K.D. Rouse, M.J. Cooper, E.J. York and A. Chakera, Acta Crystallogr., Sect. A, 26, 682

(1970). 76. T.M. Sabine, Aust. J. Phys., 38, 507 (1985). 77. T.M. Sabine, R.B. Von Dreele and J.-E. J~rgensen, Acta Crystallogr., Sect. A: Found.

Crystallogr., 44, 374 (1988). 78. W.A. Dollase, J. Appl. Crystallogr., 19, 267 (1986). 79. A. March, Z. Kristallogr., 81, 285 (1932). 80. F. Izumi, in R.A. Young (Editor), The Rietveld Method, Oxford University Press, Oxford,

1993, ch. 13. 81. Ch. Baerlocher, Acta Crystallogr., Sect. A: Found. Crystallogr., 40, C-368 (1984).

82. O. Elsenhans, J. Appl. Crystallogr., 23, 73 (1990).

83. E. Prince, in R.A. Young (Editor), The Rietveld Method, Oxford University Press, Oxford,

1993, ch. 3. 84. T. Nakagawa and Y. Oyanagi, in K. Matusita (Editor), Recent Developments in Statistical

Inference and Data Analysis, North-Holland, Amsterdam, 1980, p. 221.

85. R. Fletcher, Report No. AERE-R6799: A Modified Marquardt Subroutine for Non-linear

Least Squares, AERE Harwell, 1971.

86. M.J.D. Powell, Computer J., 7, 155 (1964).

Page 460: Analytical Spectroscopy Library_VOL 7

451

87. J.C. Nash, Compact Numerical Methods for Computers: Linear Algebra and Function Minimisation, Adam Hilger, Bristol, 1979, p. 72.

88. D.M. Himmelblau, Applied Nonlinear Programming, McGraw-Hill, New York, 1972, p.

72.

89. Ch. Baerlocher, in R.A. Young (Editor), The Rietveld Method, Oxford University Press,

Oxford, 1993, ch. 10.

90. J. Waser, Acta Crystallogr., 16, 1091 (1963).

91. C. Scheringer, Acta Crystallogr., 16, 546 (1963).

92. J.D. Jorgensen, B.W. Veal, A.P. Paulikas, L.J. Nowicki, G.W. Crabtree, H. Claus and

W.K. Kwok, Phys. Rev. B: Condens. Matter, 41, 1863 (1990).

93. J.B. Jones, Acta Crystallogr., Sect. B, 24, 355 (1968).

94. F. Izumi, E. Takayama-Muromachi, A. Fujimori, T. Kamiyama, H. Asano, J. Akimitsu

and H. Sawa, Physica C (Amsterdam), 158, 440 (1989).

95. F. Izumi, H. Asano, T. Ishigaki, E. Takayama-Muromachi, Y. Matsui and Y. Uchida,

Jpn. J. Appl. Phys., Part 2, 26, L 1153 (1987).

96. K. Yamada, E. Kudo, Y. Endoh, K. Tsuda, M. Tanaka, K. Kokusho, H. Asano, F. Izumi,

M. Oda, Y. Hidaka, M. Suzuki and T. Murakami, Jpn. J. Appl. Phys., Part 1, 27, 1132 (1988).

97. D.E. Appleman and H.T. Evans, Jr., Report No. PB-216 188: Indexing and Least-Squares

Refinement of Powder Diffraction Data, U.S. Geological Survey, 1973. 98. For example, A.J.C. Wilson (Editor), International Tables for Crystallography, Vol. C,

Kluwer Academic Publishers, Dordrecht, 1992, pp. 681-713. 99. R.D. Shannon, Acta Crystallogr., Sect. A, 32, 751 (1976).

100. I.D. Brown and D. Altermatt, Acta Crystallogr., Sect. B: Struct. Sci., 41, 244 (1985).

101. J.K. Maichle, J. Ihringer and W. Prandl, J. Appl. Crystallogr., 21, 22 (1988).

102. R.B. Von Dreele, in R.A. Young (Editor), The Rietveld Method, Oxford University Press, Oxford, 1993, ch. 12.

103. Y. Kanke, F. Izumi, Y. Morii, S. Funahashi and K. Kato, J. Solid State Chem., 104, 319 (1993).

104. N. Iyi, K. Kitamura, F. Izumi, J.K. Yamamoto, T. Hayashi, H. Asano and S. Kimura, J. Solid State Chem., 101, 340 (1992).

105. A. Williams, G.H. Kwei, R.B. Von Dreele, A.C. Larson, I.D. Raistrick and D.L. Bish, Phys. Rev. B: Condens. Matter, 37, 7960 (1988).

106. H. Ritter, J. Ihringer, J.K. Maichle, W. Prandl, A. Hoser and A.W. Hewat, Z. Phys. B: Condens. Matter, 75, 297 (1989).

107. D. Hohlwein, A. Hoser, J. Ihringer, A. Ktister, J.K. Maichle, W. Prandl, H. Ritter, S.

Kemmler-Sack, R. Kiemel, W. Schiller, A.W. Hewat and T. Wroblewski, Z. Phys. B: Condens. Matter, 75, 439 (1989).

108. A. Yamamoto, in J.M. Perez-Mato, F.J. Zuniga and G. Madariaga (Editors), Methods of Structural Analysis of Modulated Structures and Quasicrystals, World Scientific, Sin- gapore, 1991, p. 249.

Page 461: Analytical Spectroscopy Library_VOL 7

452

109. A. Yamamoto, M. Onoda, E. Takayama-Muromachi, F. Izumi, T. Ishigaki and H. Asano,

Phys. Rev. B: Condens. Matter, 42, 4228 (1990). 110. M.B. Walker and W. Que, Phys. Rev. B: Condens. Matter, 45, 14 (1992).

111. A. Yamamoto, E. Takayama-Muromachi, F. Izumi, T. Ishigaki and H. Asano, Physica C (Amsterdam), 201, 137 (1992).

112. C. Greaves, J. Appl. Crystallogr., 18, 48 (1985). 113. P. Thompson, J.J. Reilly and J.M. Hastings, J. Less-Common Met., 129, 105 (1987). 114. P. Thompson, J.J. Reilly and J.M. Hastings, J. Appl. Crystallogr., 22, 256 (1989). 115. J.W. Richardson, Jr. and J. Faber, Jr.,Adv. X-Ray Anal., 29, 143 (1986). 116. P.E. Hiism/iki, H.O. P6yry and J.I. Rantanen, Physica B (Amsterdam), 156/157, 571

(1989).

Page 462: Analytical Spectroscopy Library_VOL 7

Applications of Synchrotron Radiation to Materials Analysis H. Saisho and Y. Gohshi (Editors) �9 1996 Elsevier Science B.V. All rights reserved. 453

CHAPTER 8

X-RAY M I C R O T O M O G R A P H Y

Katsuhisa US AMI and Tatsumi HIRANO

Hitachi Research Labora tory , Hitachi Ltd.

Omika-cho 7-1-1, Hitachi-shi , Ibaraki 319-12, Japan

8.1. INTRODUCTION

X-Ray computerized tomography (CT) is a well known method for imaging the internal

structure of an object. 1he CT image is reconstructed by a computer from a large number of X-

ray projection images of the object and is obtained as the two-dimensional distribution of X-

ray attenuation coefficients. Since Hounsfield presented a practical CT imaging scanner [1 ],

much development work has been done for medical diagnostic devices.

As internal structures are obtained nondestructively, many CT scanners for nondestructive

testing and evaluation of industrial materials have also been developed [2-4]. In most of these

CT scanners, a continuous or broad-band spectrum X-ray beam from high voltage X-ray tubes

is used as a source and a xenon gas-chamber or a scintillator is often used as an array detector (spatial resolution < 0.2 mm). Therefore, elemental analysis is difficult and the spatial

resolution is inadequate for nondestructive inspection for small defects in industrial materials.

Although a quasi-monochromatic X-ray CT scanner, which uses a conventional CT scanner

and an image reconstruction method which takes account of the incident energy spectra have

been proposed [5,6], the quantitative treatment of the attenuation coefficients is not simple.

Some attempts have been made to improve the spatial resolution [7-9] using conventional X-

ray generators. For example, 10 pm resolution was achieved using microfocus X-ray tubes,

by improving the effective spatial resolution of the array detectors with geometrical

magnification of projection images.

Synchrotron radiation (SR) is a better X-ray source for CT scanners used to characterize

industrial materials because it provides a highly collimated, high intensity, and tunable

monochromatic X-ray beam. In the SR-CT (CT using SR as a source), an energy tunable

monochromatic X-ray CT can be realized, having the following expected advantages.

1) Imaging of a specific element in a material on the basis of the difference between two CT

images just above and below the absorption edge.

Page 463: Analytical Spectroscopy Library_VOL 7

454

2) Improved quantitative treatment of X-ray attenuation coefficients due to absence of beam

hardening effects.

3) High spatial resolution because of high SR collimation.

4) CT measurements with optimum absorption contrast by selecting the proper X-ray energy.

From the above it can be expected that SR-CT will be developed into a spectroscopic CT by

means of which elemental distribution analysis and chemical state imaging with high spatial

resolution will be possible.

The application of SR to X-ray CT has been studied theoretically [10,11], and the

dependence of its spatial resolution/sensitivity on the photon energy was reported, as well as

the estimated sensitivities for several samples. The experimental feasibility of SR-CT has been

demonstrated [12] in a system using an Si(Li) detector of 30 elements and a combined

scanning method of sample translation/rotation to produce CT images of a pig heart. The

subtracted CT image of the iodine distribution from the difference just above and below the

iodine K absorption edge was also obtained. Another study has described the development of

an SR-CT scanner using a pencil beam and a photo-multiplier with an NaI scintillator as a

detector [13]. However, all these studies were intended for medical diagnostic applications and

the spatial resolution, 0.1 m m - 1 mm, was not so high.

An SR-CT developed for high spatial resolution and elemental analysis of industrial

materials, i.e. microtomography, has been reported by Flannery et al. [14,15]. This was followed by similar CT scanners [16-23], so that at present an SR-CT of 10 ~tm spatial

resolution has been realized. In the following sections, the basic principle of CT is outlined, an

experimental set-up and results of SR-CT are shown, and future prospects are described.

8.2. BACKGROUND OF COMPUTERIZED TOMOGRAPHY

8.2.1. Principle of CT

CT is a method of reconstructing a two-dimensional (2-D) image from a large number of

one-dimensional (I-D) projections. In general, it is demonstrated by Radon transform that an

n-dimensional image is reconstructed from an infinite set of (n-1)-dimensional projections.

Presently, several CT scanners such as X-ray CT, NMR-CT, and positron CT have been put

to practical use in medical diagnostic fields.

X-Ray CT provides a distribution image of the X-ray attenuation coefficient/z in a

material. In a sample X-ray shadow such as that shown in Fig. 8-1, the X-ray intensity

It(x',O) transmitted through the sample is given by

It(x',O) = I S(E) e~ u(x,y,e) dy' dE (8-1 )

Page 464: Analytical Spectroscopy Library_VOL 7

455

J / I X - r a y s !

~'p(x,y) X

P(x;O) c. ~'- X'

Fig. 8-1. The principle of computerized tomography.

where S(E) is the energy spectrum of incident X-rays and #(x,y,E) is the energy dependent

attenuation coefficient. Coordinates (x,y) are fixed at the sample, coordinates (x',y') are fixed

in space, and 0 is the angle between these two coordinate pairs. If the incident X-rays are

monochromatic with photon energy EO, S(E) can be approximated by S(E)=Io(Eo)~E-Eo) and Eq. (8-1) is represented as

I t (x ' ,O) = Io e- I U(x'y'E~ dy' (8-2)

where I0 is the X-ray intensity incident on the sample. When the incident X-rays are

monochromatic, the projection data P, defined as ln(Io/It), can be regarded as the line integral

of lU(x,y,Eo) and is simply expressed as

P(x',O)=ln(~t)= f l.t(x,y,Eo) dy' (8-3)

A C T image is obtained by numerically solving Eq. (8-3) for/1, using many projections

P(x',O) measured as a function of sample rotation 0.

8.2.2. Reconstruction algorithm

There are several approaches to the reconstruction algorithm for obtaining a CT image

[24]. Among them, analytical methods are generally used. In this section, we review two

analytical methods briefly, i.e., two-dimensional Fourier transform, and filtered back projection.

Page 465: Analytical Spectroscopy Library_VOL 7

456

Two-dimensional Fourier transform method (2D-FT)

Two-dimensional FT is the simplest method for obtaining a strict solution of Eq. (8-3) in

order to reconstruct a CT image from many projections. In order to solve Eq. (8-3), the

Fourier transform P(~o,O) of P(x',O) is taken with respect to x'.

A P(r = P(x',O) exp(-icox') dx' (8-4)

Since the coordinate transform between (x',y') and (x,y) is

X !

y' /cos0 sin~ )Cx

-sin 0 cos 0 Y (8-5)

A

P(to, O) is rewritten by substituting Eqs. (8-3) and (8-5) for Eq. (8-4) as

P( oo, O) = la(x,y) exp(-ioaxcosO--io~sinO) dxdy (8-6)

where E0 in 12(x,y,Eo) is omitted for simplicity. On the other hand, the two-dimensional A

Fourier transform 12(r a~) of l.t(x,y) is expressed as

12( Ogx, COy) = bt(x,y) exp(-i COxX-i ogyy) dxdy (8-7)

Since COx and COy are written as

COx = 09 cos 0, axe = co sin 0 (8-8)

Eqs. (8-6) and (8-7) are equivalent.

A A

/.t(COx, COy) = P(w,0) (8-9)

A

Consequently, la(x,y) can be obtained from the inverse Fourier transform of/2(r a~y) as

Page 466: Analytical Spectroscopy Library_VOL 7

457

1 oo .,,.

la(x,y) = P( to, O) exp(it_OxX+i~yy) dtOxda~ . . . . . o o

(8-10)

A

Since the coordinate (to, 0) expressing P differs from the coordinate (Obc, a~y), it is necessary to

interpolate the transform between two coordinates in calculating la(x,y) from Eq. (8-10). Also,

a FFT (Fast Fourier Transform) algorithm is useful for quick calculation of the Fourier

transform.

Filtered back projection method (FBP)

FBP gives a strict solution of Eq. (8-3) similar to that obtained by 2D-FT. Expressing l.t(x,y) of Eq. (8-10) in polar coordinates instead of rectangular coordinates gives

la(x,y) --~2j 0 P(to, o) exp(imx') 1r daxi0 (8-11)

where I~ is derived from the Jacobian of the transformation into polar coordinates. Equation

(8-11) can be rewritten as

= 1 f2~ bt(x'Y) 2-~Jo P'(x',O) dO (8-12)

where

P'(x',O) = l~-~I._ ~ P(to,0) exp(ioax') g(to) dto (8-13)

and g(r --I~1

Eqs. (8-12) and (8-13) show that la(x,y) can be obtained by the back projection of P'(x',O) with respect to 0, after calculating P', which is the inverse Fourier transform of P multiplied

by Ir as a filter function in the frequency space. Although the filter function g(w) is

theoretically equal to la~, la~ is not suitable for the numerical calculation of Eq. (8-13) for the

following reasons: 1) noise in the projection data; 2) discontinuous sampling of the projection data for x; and 3) a finite number of projection data for 0. Therefore, the following filter

functions are used in general,

Page 467: Analytical Spectroscopy Library_VOL 7

458

g(o)) = ~a sin a2-~ I ~/sinacO/2(ac~ (Shepp-Logan Type) (8-14)

where a is a sampling interval of P(x',O) and the region in which the filter functions are

applied is I~1 < ~/a. The Shepp-Logan type filter function [25] decreases high frequency

components and improves the signal/noise ratio in calculating/.t.

Since the coordinates used in the left- and right-hand sides of Eq. (8-12) differ,

interpolation between them is necessary. On the other hand, two-dimensional interpolation

with respect to COx and COy is necessary for 2D-FT. In general, the higher the order of

interpolation, the lower the accuracy in calculating the interpolation, so FBP is superior to 2D-

FT.

8.2.3. CT measurement methods

The scanning time during CT measurements depends on both the sample scanning method

and the detector which measures the projection data. A position-sensitive detector which has

many channels makes it possible to collect many data simultaneously, so scanning methods

using multi-channel detectors can shorten the scanning time. Some scanning methods for CT

measurements are described next and position-sensitive detectors are described in Section

8.3.4.

Figure 8-2 shows three scanning methods to measure a CT image which consists of M x

M pixels. Scanning method (a) is a first generation X-ray CT and is the basis of later X-ray CT

scanners. An X-ray detector with one channel is located on the opposite side of an X-ray

source which generates the collimated X-ray beam. Projection data P(x',O) composed of M

data points are measured by translating a sample point by point. Next, the sample is rotated by

a certain small angle 60, and P(x',O+60) is measured again. These measurements are repeated

X-rays

.~_..1 ~ a m p l e

!~ Detector (a) 1 st generation

X-rays X-rays

I I

Detector Detector liiii':':iiiiiiiiiii':i':':i':l

(b) 2nd generation (c) 3rd generation

Fig. 8-2. Scanning methods for X-ray CT imaging. (a) uses a detector with 1 channel. (b) and

(c) use a position-sensitive detector with a few tens up to several hundreds channels,

respectively.

Page 468: Analytical Spectroscopy Library_VOL 7

459

by a number of sample rotations, N. Position resolution of a CT image in this scanning

method is determined by the width of the collimated X-ray beam. The measurement time for

this scanning method is M • N times the exposure time to measure one point.

Scanning method (b) uses a position-sensitive detector with a few tens of channels ( a

channels). Since projection data corresponding to the a channels of the detector are measured

at the same time, the translation number of the sample is M/a. Therefore, the total

measurement time in this scanning method is a times shorter than that in method (a). The third

generation method, (c), uses an M channel position-sensitive detector and no translation of the

sample is needed because the projection data which consist of M data points are simultaneously

measured at a certain angle 0. Therefore, the scanning time in this method is much shorter than

in scanning methods (a) or (b). This is one reason why method (c) is used frequently.

Moreover, the method needs only sample rotation so that its mechanical reliability is very high,

and the efficiency of use of the incident X-rays is very good.

8.2.4. Quality of CT images

The quality of CT images is evaluated by sensitivity, 5p/p, and spatial resolution, 5x. High sensitivity is required to distinguish between tissues in which X-ray attenuation

coefficients are close to each other. Spatial resolution indicates the power to resolve fine

tissues in a sample. When the total number of X-rays incident on the sample is constant, the

relation between the sensitivity and the spatial resolution is a trade-off; improvement of one

degrades the other. In this section, the sensitivity and spatial resolution are described.

Numbers for sampling and projection

A CT image is discretely reconstructed from a large number of projection data P(x',O) because the measured P(x',O) consists of finite sampling data with respect to x' and 0. So,

there is an optimum relationship between the sampling points M of P(x',O) for the x' direction,

and projection number N for the 0 direction, in order to reduce noise in the arithmetic

reconstruction of the CT image. When two intervals in the radial and angular directions at maximum frequency fmax in the frequency space are equal, the optimum value Nop of N is

given as

Nov = 2/rRfmax (8-15)

where R is the maximum outward extent of the sample from the center of rotation. On the other

hand, the sampling interval Ax is equal to 1/(2-fmax) according to the Nyquist theorem, so that

M is written as

Page 469: Analytical Spectroscopy Library_VOL 7

460

M = 2__R__R = 4Rfmax (8-16) Ax

Substituting Eq. (8-16) for Eq. (8-15), we get Nop as

Nop -- ~ M (8-17)

Noise generated in the calculation to reconstruct the CT image depends on N, if M is given.

When N > Nop, the noise decreases because the projection data are averaged, while the

condition of N < Nop increases the calculated error. In particular, the latter condition causes

the generation of a tangent-like artifact from the spot at which p changes suddenly.

Sensitivity/resolution

The relationship between sensitivity dJ#//.t and point resolution t~x, which was studied by

Grodzins [10,11], is described below on the basis of his results. We consider the first

generation scanning method of CT, shown in Fig. 8-3a, for simplicity in the following

discussion. The section to be reconstructed is a disc-shaped slice of diameter D and thickness h

from a long homogeneous cylinder. When the X-ray beam width is Ax, the sampling number

is M(=D/Ax), and the projection number is also M, the CT image of the section is composed of

ffM2/4 pixels, each of the size dx x ix. The spatial resolution of the CT image is nearly equal

to At. The transmitted X-ray intensity lout along the diameter is written as

lou t = I 0 e-UD = I0 e -2;m ax, (8-18)

where I0 is the incident X-ray intensity and 12 i is the X-ray attenuation coefficient in pixel i.

When I' is the total number of photons traversing one pixel during the scan of one section,

then Q-", the statistical uncertainty of I', gives a measure of the minimum observable change in

bt. Since the change of the number of photons absorbed in the pixel due to the change in #t is

given as zlx6/z/'

4-iv= AX tSl.tl' =I' (l.tAr,)(~-~) (8-19)

From Eq. (8-19),/tot, the total number of incident X-ray photons to the section for the scan, is

expressed approximately as

/tot-- D__D__ eP D Ax (#z~)2(~) 2

(8-20)

Page 470: Analytical Spectroscopy Library_VOL 7

461

Fig. 8-3. (a) Schematic drawing of first generation scanning method of measuring a disc- shaped section of diameter D and thickness h in a long cylinder. The collimated beam

area is At h. The cylindrical sample is translated and rotated. (b) Schematic drawing

showing the section containing ~r pixels. The raster scan of the sample consists of

M rotational increments for each translational increment [10].

where epD is an absorption correction. The factor D/zix comes from the fact that each of the

M 2 independent transmission measurements involves the traversal of M pixels. When/tot is

constant, Eq. (8-20) means that the higher the spatial resolution is, the lower the sensitivity.

Moreover, if the spatial resolution is constant then an increase of/tot is necessary for better

sensitivity.

Next, the optimum condition is obtained to minimize/tot. This condition can be met by the

proper choice of the incident X-ray energy. The value of/.t depends on the composition of

material and the X-ray energy E. In the low energy region (E < 40 keV) where the photoelectric absorption is dominant, /.t varies approximately as E -3. When a tunable,

essentially monochromatic X-ray beam can be used,/1 is a variable in Eq. (8-20). If dItot/dl.t--O and 5/~//l=constant, then

= 2 (8 -21 ) u

This is the optimum condition to obtain a CT image at a given sensitivity from the minimum

number of photons. In other words, when the optical depth "r (=/zD) of the sample is equal to 2

through proper choice of the X-ray energy, the number of photons sufficient to provide the CT

image at a given sensitivity is optimized. Substituting Eq. (8-21) for Eq. (8-20), this minimum

/tot to take one CT image is expressed as

/tot = 2M31 (t~/,//,/./) 2 (8-22)

Page 471: Analytical Spectroscopy Library_VOL 7

462

From this equation,/tot needed to obtain a spatial resolution of 1% of the diameter and a

sensitivity of 1% of the X-ray attenuation coefficient in a scan of one disc-like section is 2 x

1010 photons. The X-ray brilliance, B0, from the normal bending magnet at the Photon

Factory in the National Laboratory for High Energy Physics is

B0 -- 1011 photons/(s mm 2 mrad 2 0.01% b.w. 250mA) at an energy, E, of 20 keV.

This means that an exposure time of 300 s is needed to measure the CT image of a disc-like

section with diameter of 5 mm and thickness of 0.5 mm at 26 m from the source, when the

source size is 1 mm • 1 mm, the storage ring current is 250 mA and the monochromator band

width is 0.01%.

Beam hardening effects

When an incident X-ray beam has a continuous spectrum, the CT value for the inside of a

homogeneous material is less than that at the outside. This is caused by the spectral change in

transmitted X-rays. This spectral change is known as a beam hardening effect. Since the X-ray

attenuation coefficient in the low energy region is larger than that in the high energy region, the

spectrum of the X-rays reaching the inside of the specimen is harder than that of the incident

X-rays and depends on the specimen thickness. When a continuous X-ray beam is used, the

projection data P(x',O) cannot be simply expressed as in Eq. (8-3). In this case, the mean

attenuation coefficient It(E), averaging It(E) with respect to the transmitted X-ray spectrum, is

expressed as

It(E) S(E) e-u(E)x dE

I S(E) e-U(e) x dE

(8-23)

From this it is clear that It(E) depends on the specimen thickness x. On the other hand, if the

incident X-ray beam is monochromatic with photon energy E0 then S(E), the energy spectrum m

of incident X-rays, can be approximated by a delta function and/z=it(E0). Therefore,/z is

independent of x. Then the calibration of the CT value to/~ is easy and very reliable.

8.2.5. Elemental mapping

One advantage of SR-CT is that the incident X-ray beam is monochromatic and tunable.

Therefore, elemental distributions in a material can be obtained nondestructively from a

subtraction method using an absorption edge of a specific element. Furthermore, the CT value,

the brightness intensity in a CT image, has a very good correlation with the X-ray attenuation

coefficient It, if a monochromatic X-ray beam is used, so the CT value can be treated

Page 472: Analytical Spectroscopy Library_VOL 7

463

quantitatively. In this section, we discuss a method of taking a specific elemental image using

monochromatic X-rays.

The X-ray attenuation coefficient, /,t(E), of a material which is composed of many

elements, is written as

,L/,(E) ='O~"ci(~~---)i i =~i{~)i p i . (8-24)

where p is the density of the material; (t,t/P)i is the mass absorption coefficient of the element i

at the energy E; Pi is the density of the element i in the material; and ci is the concentration of

element i. Figure 8-4 shows the energy dependence of/ t for water, silicon and iron [26]. For

iron,/,t changes sharply at about a photon energy of 7 keV, due to the K-absorption edge. The

absorption edge of an element is intrinsic so its energy differs for each element. The

reconstructed CT image is obtained as a two-dimensional shading image and the CT value is

proportional to/,t.

Two methods of obtaining an elemental mapping will now be explained. In one, the

reconstructed CT image can be approximated to an image of a specific element. This

approximation can be used if the attenuation coefficient/,tA of a specific element A is much

larger than that of other composite elements. In this case, Eq. (8-24) is approximated as

~. lO s

�9 ~ ]0 2

8 lo'

~ 10 ~

10 -1

- F e

10 100 Photon Energy / keY

Fig. 8-4. Mass absorption coefficient as a function of energy for water, silicon and iron.

Page 473: Analytical Spectroscopy Library_VOL 7

464

,/2=/9 CA(p)A (8-25)

so that # is proportional to CA. Since/z and (/z/p)A can be estimated from the CT value and a

numerical table of mass absorption coefficients, respectively, the density distribution of the

specific element can be obtained.

The second method is a subtraction method using the intrinsic absorption edge of the

element. The difference t~/.t between two attenuation coefficients at X-ray energies just above

and below the element's absorption edge is expressed as

(8-26)

where ~la/p) is the difference in mass absorption coefficient between two energies. The

subscripts A and B denote the specific element A and matrix B, respectively. Since the change

of the mass absorption coefficient of the matrix is minimal in the two energies, ~/,t/p)B is

negligible. Therefore, t~/z can be approximated as

d/,t-- ~p)APA (8-27)

The expression means that the subtracted CT image shows the specific elemental distribution.

As a result, PA can be obtained from Sjt as it is estimated from the differential CT value in the

subtracted CT image. The CT image of an arbitrary element can be obtained by this subtraction

method because the absorption edge energy of each element is different.

8.3. EXPERIMENTAL

In this section, the SR-CT is outlined based on the scanner we have developed. The

functions of the main parts of the CT scanner are reported. A method of magnifying the

projection image is also explained which compensates for the relatively poor resolution of the

detector, and improves the overall resolution of the system.

8.3.1. SR-CT system

Figure 8-5 is a schematic illustration of the SR-CT. The third generation scanning method

is used to shorten the scanning time. The SR-CT is installed at an experimental station in a

branch beam line from a storage ring. The SR passes through the beryllium windows and

enters the scanner. It is collimated by slit 1 and monochromated through the crystal

monochromator. Diffracted X-rays with a desired photon energy are selected by slit 2. The

radiation passing through the specimen is measured with a one- or two-dimensional position-

Page 474: Analytical Spectroscopy Library_VOL 7

465

Ar ray De tec to r

Sample " - Crystal Sl i t 2 I Monochromator ~ _~ . . . . .~

Slit 1 i Photo-Diode Array

Detect:or (POA)

Pickup Tube Synchrolron _ _ _j Rad ia t i on . . . . l

itnterface j 1

Fig. 8-5. Schematic diagram of SR-CT.

sensitive detector. Detector types are discussed in Section 8.3.4. The amount of charge stored

in each detector channel is proportional to the incident X-ray intensity. After measuring one set

of projection data, the charges at each channel are read out and amplified. The output signals

are stored in a computer memory, after being digitized through an analog/digital converter.

Next, the specimen is rotated at a fixed small angle and projection data are measured again.

These measurements are repeated until the rotation angle of the specimen is 180 ~

The output signal from the detector includes not only signals proportional to the X-ray

intensity, but also background signals caused by dark current and preamplifier offset. Moreover, it must be normalized by the intensity of the incident X-ray beam, and the SR

intensity decreases with time. Therefore, corrections for these effects are necessary. In our

system, the dark current intensity, the offset value and the incident X-ray intensity are

measured before and after a series of the projection data measurements. The correction values

of incident beam intensity, dark current intensity and offset during projection data

measurement are then calculated by linear interpolation.

8 .3 .2 . M o n o c h r o m a t o r

There are many methods of monochromating SR. Since a continuous energy scan is not

necessary in CT measurements, a channel-cut crystal is widely used for the monochromator.

Adjustment of the channel-cut monochromator is easy and it has long-time reliability. On the

other hand, a narrow energy bandpass (rE/E<I 0-4) and harmonic suppression are needed to

measure the CT image giving chemical state distributions in a material. An asymmetrically cut

Page 475: Analytical Spectroscopy Library_VOL 7

466

E E

E

c o 10 o

cD c r

. m

3 l 10 0

~ Si(111 ) Double Crystal "

1 / ~ % ~ ~ Si(111) Channel'cut ~"

_9. i (400). C. h ,an.nel-

_, I . , I . i I , "It, 10 20 30 40

X-ray Energy /keV

Fig. 8-6. Intensity of the monochromatic output beam measured by an ionization chamber.

Typical ring current is 300 mA.

Si(511)-Si(333) combination of crystals in a double-crystal configuration, for example, is used

for this purpose [ 17]. Furthermore, the heat load from SR requires cooling of the first crystal

in order to maintain good crystal properties. The crystal monochromator with a (+,-)

configuration allows easy adjustment of an optical system positioned downstream because the

monochromated X-ray beam is parallel to the incident X-ray beam.

Examples of measured monochromator output beam intensities which were obtained with

an ionization chamber are shown in Fig. 8-6. The crystal monochromators of the Si(111)

double crystal, Si(111), Si(220) or Si(400) channel-cut were used. An X-ray beam with a

narrow energy bandpass (SE/E<IO -3) can be obtained in an X-ray energy range from 5 to 40

keV (0.18-0.03 nm). From Eq. (8-22), a total photon number of 2 • 1010 photons is needed

to obtain the CT image of one disc-like section with a spatial resolution of 1% of the diameter

and a sensitivity of 1% of the X-ray attenuation coefficient. To measure the CT image of a

disc-like section with the diameter of 5 mm and thickness of 0.5 mm at a storage ring current

of 300 mA, a total exposure time of 600 s is necessary at an X-ray energy of 20 keV (using the

Si(111) channel-cut), while it is 4 h at 30 keV (using the Si(400) channel-cut). This suggests

that a higher intensity X-ray source is necessary to get a high resolution CT image.

8.3.3. Sample stage

The sample stage consists of a horizontal translation stage (Y-stage), a horizontal rotation

table (O-turntable) and a vertical translation stage (Z-stage). The Y-stage is used to adjust the

Page 476: Analytical Spectroscopy Library_VOL 7

467

center of the 0-turntable to the midpoint of the position-sensitive detector with a high accuracy.

The accuracy should be at least one-fifth of the width of one detector channel. The 0-turntable,

mounted on the Y-stage, rotates the sample with high precision. The Z-stage on the 0-turntable

is used to select the slice position of the sample. Sample mounting on the Z-stage is done

through a suitable attachment. Each mechanical stage is driven by a computer controlled

stepping-motor.

8.3.4. Detectors

The spatial resolution of a CT image is mainly determined by both the detector resolution

and the SR source size. The SR angular divergence (<10 -3 rad) and electron beam size in a

storage ring (N1 mm) are not negligible so that the spatial resolution is degraded by penumbral

blurting by several microns. Then the spatial resolution of the image up to several microns is

limited by the detector's spatial resolution. Moreover, the image quality is affected by the

detector's dynamic range and linearity. The following are required of the detector: 1) high

spatial resolution; 2) wide dynamic range; 3) good linearity; and 4) low noise. At present, X-

ray photodiode arrays, X-ray pickup tubes or CCDs (Charge Coupled Devices) with a

scintillator screen are usually used as the detector of the SR-CT scanner.

X-ray photodiode array detector (X-PDA)

The X-PDA is a one-dimensional photodiode array with an optical-fiber-coupled X-ray

scintillator layer. The scintillator layer converts incident X-rays into visible light which is

detected with the photodiode array (PDA) through the optical fiber. The PDA consists of 100-

1000 P-I-N type silicon photodiodes in a one-dimensional array on a silicon substrate. The

element width is a few tens of microns. The diode is usually loaded with an inverse bias

voltage. Visible light converted from incident X-rays produces electron-hole pairs in the silicon

active layer due to excitation of electrons in the valence band. The electrons and the holes are

collected towards each electrode and are detected as an inverse current. During exposure, the

PDA usually accumulates the inverse current as charges in the condenser found on every

diode, and then the integrated charges are successively read out using a digital shift register.

We used a Reticon RL-1024 SFX, 1024-elements self-scanning photodiode array. Each

element is 25 l.tm wide and 2.5 mm high and its maximum charge is 1.4 x 10 -11 coulombs.

The PDA was cooled to-30~ to reduce the diode dark current, which at room temperature is

high, e.g. 2 pA. Cooling reduced the dark current to 1/100. The dynamic range and the energy

dependence of the sensitivity are shown in Figs. 8-7 and 8-8, respectively. The dynamic range

of the X-PDA has a magnitude of about 3, and the saturation photon numbers per element at

energies of 20 and 30 keV are 3 x 105 and 2 x 105 photons, respectively. The spatial

resolution of the X-PDA is about 125 ~tm, as estimated from a rectangular pattern X-ray test

chart (see Section 8.4.1).

Page 477: Analytical Spectroscopy Library_VOL 7

10

r �9 .Q 1 IE 10 0

i

0 0

10 i i

t - O'J

. i i

r -1

:o 10

0 . . . . . . . . I . . . . . . . . I . . . . I I I I

10 20 30 40 50

X-ray Energy / keY

3 4 5 10 10 10

-1 X-ray Intensity / photons s

Fig. 8-7. Dynamic range of X-PDA.

i

0 1 , 0

x v

"i" r o 0.8 0 t-'

..Q 0,6 E 0

o 0,4 0

0,2 >

�9 0,0

468

Fig. 8-8. Dependence of X-PDA sensitivity on

X-ray energy.

X-ray-sensing pickup tube (X-SPT)

The X-SPT, which is a kind of X-ray TV camera, is similar to a light-sensing pickup tube. Its spatial resolution is high because X-rays are sensed directly. The X-SPT was

developed to observe real-time topography [27,28]. The structures of the tube and faceplate of

the X-SPT (HS 501X, Hitachi Denshi Ltd.) we used [29] are shown in Figs. 8-9 and 8-10,

respectively. A narrow electron beam from the diode electron gun is focused onto the photoconductive layer by magnetic focusing and the beam is scanned on the layer two-

dimensionally by magnetic deflection. The faceplate consists of a 500 l-tm beryllium plate, a

5 l.tm epoxy layer, 25 lxm glass plate, 800/~ transparent electrode, 160 A cerium oxide layer,

and a 20 ~tm photoconductive layer. The beryllium plate mainly supports the force from the

atmospheric pressure. The glass plate on which the photoconductive layer is deposited is used

o suppress white defects appearing in the image due to the ber3rllium surface roughness. An

amorphous Se/As alloy is used as the photoconductive layer.

X-Rays absorbed in the photoconductive layer produce electron-hole pairs. While the

electron beam scans on the photoconductive layer two-dimensionally, the holes at a point

irradiated by the electron beam move to the irradiated surface and are discharged by the

electron beam. On the other hand, since the transparent electrode is kept at a positive potential,

charges equivalent to the amount of the discharges become the output signal, passing through

the electrode and charge-sensitive preamplifier. The spatial resolution of the X-SPT depends

Page 478: Analytical Spectroscopy Library_VOL 7

469

Beryllium //,-Scanning Electron Beam Window/--target ,, ~[_ "x ~ ~ ~ " ~ i ~ I n

' I cusing and Deflection Secl ion

145mm , . .

i " , q

Fig. 8-9. X-SPT structure.

~V~-~~A Dm m

X'RaY > Jtl I Photoconduc~~-

Fig. 8-10. Faceplate structure.

on the electron beam size. The spatial resolution is improved by decreasing the electron beam

size, but this decreases sensitivity. Present technology gives the X-SPT a spatial resolution of

6-8 ~tm [29].

We use a standard scanning area of 12.7 x 9.5 mm 2. The electron beam scan is controlled

by a TV camera and consisted of 1024 pixels x 960 scanning lines, which are non-interlaced.

Scanning is done at 7.5 frames/s. Frame blanking (FBL), an intermittent beam scan, is used to

accumulate weak signals. The dynamic ranges of the X-SPT at FBL of 1.07 and 0.27 s are

shown in Fig. 8-11. The dynamic range is larger than 102. It is limited by the electron beam

current and the signal/noise ratio of 57 db in the video amplifier. Thus, the dynamic range of

the photoconductive layer alone is larger. The energy dependence of the sensitivity is shown in

Fig. 8-12. The step-like variation around 13 keV is caused by the Se K-absorption edge

(12.65 keV). The sensitivity is a maximum at a photon energy of 20 keV and a minimum at 40

keV. The limiting resolution of the X-SPT is about 8 ILtm, as estimated from a radial pattern X-

ray test chart (see Section 8.4.2).

Page 479: Analytical Spectroscopy Library_VOL 7

470

.%./

(D x 2 ~ . ]0

c- :D O tO 1

. i .

0 ,-, ]0 r~

O -1

]0 5 6 7

10 10 10

X-ray Intensity / photons s 4 mm -2

o l0 x

v

'T t- 8 o

- i i . - ,

O t -

6 .Q E O 5 4 O o

2 . i

. i .

r 0

I I I Si(111

Si(400) r

Se edge

I I I I 0 10 20 30 40 50

X r a y Energy / keV

Fig. 8-11. Dynamic range of X-SPT. Fig. 8-12. Dependence of X-SPT sensitivity

on X-ray energy.

Charge coupled device (CCD)

SR-CT scanners with a CCD have been reported [14,16]. A schematic illustration of a

CCD with a scintillator screen (X-CCD) is shown in Fig. 8-13. X-Rays pass through the

sample and are converted into visible light on the high resolution scintillator screen. The image

thus formed is projected onto the CCD chip with a bi-convex lens. The spatial resolution of CT

images depends on the resolution of the scintillator screen and the element size of the CCD.

A single crystal of CdWO4 [30] or segments of CsI crystals [31] of size of the order of

microns are used for the scintillator screen. In order to reduce blurring on the screen due to

fluorescence refraction, the former has an anti-reflective coating and the latter very small

optically-isolated pieces. The CCD is an MOS (metal Oxide silicon) device which consists of

many picture elements in a two-dimensional array. The light detection method for the CCD is

similar to that for the PDA. However, stored charges are read out in digital format by

transferring the charges from the elements to an analog shift-register. The element size is 10-

20 l.tm and the maximum accumulated charge per element is about 10-14 coulombs [ 16]. The

dynamic range of the cooled CCD array is 103-104 [ 16].

The blurring of the image on the scintillator reduces X-CCD resolution. The factors in the

blurring of the image are re-absorption of the fluorescent X-ray and diffusion of

photoelectrons. These effects limit the resolution of the scintillator screen to about 5 ~tm [30].

The spatial resolution of a CT image measured by the SR-CT scanner with the X-CCD array is

then a little better than 10 l.tm [30].

Page 480: Analytical Spectroscopy Library_VOL 7

471

X-rays

~ ~ ~ .Scintillator Screen /

....... ;~ ....... -.'~[ Visi/bleLight I

"\ . '..~.. CCD1 --._2

Optical Mirror

Fig. 8-13. Schematic drawing of a two dimensional position-sensitive X-ray detector using a

CCD. The scintillator screen converts X-rays to visible light. The image formed on

the screen is projected onto the CCD with a biconvex lens.

8.3.5. Asymmetric Bragg magnifier

Magnification of a transmitted X-ray beam by X-ray optical elements allows CT images of

higher spatial resolution to be obtained, without the limit of detector resolution. Asymmetric

Bragg diffraction is used for magnification of the transmitted X-ray beam in the hard X-ray

region. This magnification method compensates for the relatively poor resolution of the

detector, and improves the overall resolution of the system. The principle of asymmetric Bragg diffraction is illustrated in Fig. 8-14. A perfect single crystal surface is inclined to a lattice

plane at angle a. Then, the incident X-ray beam of width din is expanded to the diffracted X-

ray beam of width dout because the reflection angle 0out to the crystal surface is 2a larger than

the incident angle 0in. The magnification factor Mf of the X-ray beam width is expressed as

Mf = dout = sin 0out = sin (0B+a)

din sin 0in sin (0B-a) (8-28)

where 0B is the Bragg angle. The asymmetric Bragg magnifier is suitable for CT imaging,

because it works only for one-dimensional expansion optics and positional linearity is retained.

The Bragg angle 0t3 depends on the X-ray energy so that preparing several asymmetric crystals

of different a is necessary to magnify the X-ray beam with the desired Mf. Figure 8-15 shows

the energy dependence of Mf and/gin for two asymmetric crystals (Si(220)) with a=4.1 ~ and

a=6.2 ~ Both angles give Mf of about 5 at X-ray energies of 20 and 30 keV, respectively. In

order to avoid magnified image distortion, an optically flat surface of perfect Si or Ge crystals

is used for image magnification. Although fluorescent X-rays generated by incident X-rays

may degrade the contrast of the CT image, this effect can be suppressed by using the

asymmetric magnifier.

Page 481: Analytical Spectroscopy Library_VOL 7

472

an

. - - . ' . ; . . . . . . . "_.. . . . . . . ":::--. a t ......

i.:i---}--}-{{{!{{{!:::!!:.:.:..::::::---.

dout

0out

. ~

Bragg Plane

Fig. 8-14. The principle of asymmetric Bragg diffraction.

, I i I ~ I 2 5 "- / // [ '~

15--a u_ 8

6 io~

o- a=6.~ --..~, ~ o I I I ' I I I 10 20 30 40

X-ray Energy /keY

Fig. 8-15. Dependence of the magnification factor Mfor incident angle 0in to the crystal

surface on X-ray photon energy. The Si(220) crystal is used for the asymmetric

Bragg magnifier in the calculation: a is the angle between the crystal surface and

the lattice net plane.

8.3.6. Computer system

A high speed micro-computer with an image processor is used for both data acquisition and image reconstruction. The image processor is used for the Fourier transform calculations

and makes high speed CT imaging possible. We used the HD-68000 with an image processor (Hitachi Medical Corporation), which is designed for CT imaging. High speed image

Page 482: Analytical Spectroscopy Library_VOL 7

473

reconstruction is achieved by the special pipe-line processor. The CT image is reconstructed by

a filtered back projection (FBP) method with a Shepp-Logan type filter. Under typical measurement conditions of a 1024 pixel one-dimensional projection with 180 projections in

1.0 degree steps, image reconstruction with the FBP takes only half a minute per slice. The

reconstructed CT image is displayed as a gray-scale image on a 512 x 512 pixel video display.

8.4. EXPERIMENTAL RESULTS

Results on the spatial resolution of detectors and CT images of biological samples are

described next. Elemental analysis using the SR-CT scanner and other results are also

presented.

8.4.1. Spatial resolution of detectors

Evaluation of the spatial resolution of detectors is important in investigating the spatial

resolution in measured CT images. The spatial resolution of detectors is estimated by a

modulation transfer function (MTF) as shown in Fig. 8-16. The projection image of uniformly

spaced lead slits (X-ray test chart) is measured with a position-sensitive detector and the MTF

value is defined as the modulation amplitude divided by the average modulation. The

modulation depends on the lead slit interval. The pair number of lines and spaces per mm

X-ray Test Chart IX-raYl,,, , .

/m YA oeteo, , to

MTF Value - b- a

_c (b)

Fig. 8-16. (a) Schematic drawing showing evaluation method for detector resolution using

uniformly spaced lead slits (X-ray test chart). The projection image of the X-ray test

chart is measured with a pos ition-sensitive detector. (b) Schematic diagram of

output signal intensity of the detector as a function of position.

Page 483: Analytical Spectroscopy Library_VOL 7

474

c- O Q.

n-

100 I I I

80

60

40

20

0 0 10 20

I I

------.e....._ I I I

30 40 50 60

Spat ia l F requency / I p mm -1

Fig. 8-17. Measured square-wave MTFs of the detectors. Filled circles are MTF of the X-PDA

without magnification at E=15 keV. Squares are that of the X-PDA with

magnification (M=4.9) at E =20 keV. Open circles are that of the X-SPT

without magnification at E =20 keV.

(lp/mm) is used for the spatial frequency. For instance, 10 lp/mm corresponds to the 50 l.tm

line-and-space width. The spatial frequency at MTF = 5% is usually adopted as the limiting

resolution. The square-wave MTFs measured with detectors are shown in Fig. 8-17. The

limiting resolution of the X-PDA is estimated to be about 125 ~tm, in spite of the fine array

pitch (25 l.tm). This spatial resolution degradation is attributed to visible light diffusion in the

scintillator layer. Then, the transmitted image of the X-ray test chart was magnified by

asymmetric Bragg diffraction and measured with the X-PDA. When the magnification is 4.9

and the X-ray energy is 20 keV, MTF = 23% is obtained at the spatial frequency of 10 lp/mm.

The limiting resolution is estimated to be about 30 ~m from extrapolation of the MTF curve.

Therefore, magnification by asymmetric Bragg diffraction is very effective.

Since the spatial resolution of the X-SPT is much higher than that of the X-PDA, an X-ray

test chart with high spatial frequency is necessary for evaluation of the X-SPT resolution. It is,

however, very difficult to fabricate fine lead slit patterns of under 10 l.tm. Therefore, the

transmitted image of the original X-ray test chart was reduced using asymmetric Bragg

diffraction and measured with the X-SPT. This corresponds to the situation in which the X-ray

beam shown in Fig. 8-14 enters the asymmetric crystal from the opposite side. The MTF value

of the X-SPT is 9% at 10 l.tm line-and-space width, and the limiting resolution is estimated to

be about 8 l.tm by extrapolation of the MTF curve. Moreover, the transmitted image of a radial

pattern X-ray test chart was also reduced to one fifth by asymmetric Bragg diffraction and

measured with the X-SPT. The results are shown in Fig. 8-18. The finest pattern in the image

is about a 6 ~m line-and-space width, and fine patterns up to about 8 l.tm are visible.

Page 484: Analytical Spectroscopy Library_VOL 7

475

Fig. 8-18. Measured image of a radial pattern X-ray test chart, which is reduced to 20% by

asymmetric Bragg diffraction. The finest pattern in the picture is about a 6 l.tm line

and space width. X-ray energy is 20 keV. Exposure time is 4.3 s. Limiting

resolution is about 8 lam.

8.4.2. Photon energy dependence of contrast

It is important to select the proper photon energy for good contrast in CT images. The

dependence of contrast on photon energy was examined using a meat sample. The sample was

prepared as shown in Fig. 8-19a by filling a 13 mm diameter plastic vessel with muscle and

fat. The slice width was 0.5 mm and the X-PDA was used as a detector. The contrast was

examined in the photon energy region of 15 to 35 keV. Figures 8-19b and 8-19c are the CT

images at photon energies of 25 and 15 keV. The bright area in the CT images corresponds to

a high X-ray attenuation coefficient. The contrast of muscle to fat changes with photon energy.

Figure 8-20 shows the dependence of contrast on photon energy quantitatively. The

contrast was calculated from the mean CT values of 21 x 21 pixels for muscle and fat

according to the definition shown in the Figure. The contrast becomes better for lower photon

energy. Figure 8-21 shows the dependence of X-ray attenuation coefficients on photon energy

for muscle and fat. These were calculated from the experimentally obtained CT values of water

and acrylic resin for which X-ray attenuation coefficients can be calculated. A lower photon

energy gives better contrast, and X-ray absorption coefficients can be obtained quantitatively.

Page 485: Analytical Spectroscopy Library_VOL 7

476

Fig. 8-19. (a) Schematic of test sample. The plastic vessel was filled with muscle and fat. The

CT image of the sample was measured with X-PDA. Slice width was 0.5 mm. (b)

CT image at 25 keV. (c) CT image at 15 keV.

06

r I

Q . E lt l OOO4

0

ffl

~ 0 2 e-. o 0 O1

O0 10

' I ' I '

- , - i

, - - i

i u

- Contrast - Muscle - Fat Muscle

, I i I i 20 30

Energy / keY

40

200

150 i , , , ,

> I - 0 I00 O)

~. 5o

I

' i ' i '

�9 ' = c . -

I ! t I ,

0 20 30 40

E n e r g y / k e Y

1.5 E O

s

. . . .

O . i .

10 ~ �9 ~

0 0

0

0.5 ~ c

0.0

Fig. 8-20. Dependence of contrast on

energy for meat sample.

Fig. 8-21. Dependence of X-ray attenuation

coefficients on energy for different

samples.

Page 486: Analytical Spectroscopy Library_VOL 7

477

8.4.3. Elemental analysis

One of advantages of SR-CT is that elemental and density distributions in a material can be

obtained nondestructively. The results of CT imaging of a specific element taken by the X-

PDA are shown in Fig. 8-22. The test sample consists of five teflon tubes. One was filled with

a 10 wt% Mo solution, a second was filled with 4 wt% Cu solution, and the other three tubes

were empty. Elemental mapping of Mo can be obtained by the subtraction method using the

Mo K-absorption edge (20.0 keV). The high-energy image at 20.6 keV and the low-energy

image at 19.6 keV are shown in Figs. 8-22b and 8-22c, respectively. The differential CT

image obtained by simple subtraction of the low energy CT image from the high energy one is

shown in Fig. 8-22d, where the pixel brightness corresponds to the difference in absorption

Fig. 8-22. Monochromatic X-ray CT images of a test sample at X-ray energies below and

above the Mo K-absorption edge (20.0 keV). (a) Cross sectional drawing of a test

sample. (b) CT image at 20.6 keV. (c) CT image at 19.6 keV. (d) Differential CT image obtained by subtraction, image (b) - image (c).

Page 487: Analytical Spectroscopy Library_VOL 7

478

coefficients. Only the pixels corresponding to the tube containing Mo are brighter than their

surroundings in Fig. 8-22d. This result means that the spatial distribution of specific elements

can be observed nondestructively.

Next, quantitative elemental analysis was investigated [32]. A schematic cross-section of

the.test sample is illustrated in Fig. 8-23a. One of the seven teflon tubes was filled with a 4.5%

Mo solution, which was prepared by diluting a concentrated Mo stock solution. This was

prepared by mixing ammonium molybdate ((NH4)6Mo7024o4H20, 20 g), ammonia solution (25 wt%, 11 ml) and pure water (100 ml). Five tubes were filled with diluted Mo solutions of

2.8, 1.0, 0.5, 0.3, 0.1 wt%, prepared from the stock solution and the last was filled with pure

water. Two CT images of the test sample, taken with the X-PDA at 20.1 and 19.9 keV, are

shown in Figs. 8-23b and 8-23c, where a brighter pixel corresponds to a higher X-ray

attenuation. Areas with higher Mo concentration are brighter than those of lower Mo

concentration. The differential CT image obtained by subtracting the low energy CT image

from the high energy one is shown in Fig. 8-23d. The brightness of the parts containing Mo is

Fig. 8-23. Monochromatic X-ray CT images of a test sample taken at X-ray energies below and above the Mo K-absorption edge (20.0 keV). (a) Cross-sectional drawing of a

test sample. Seven Teflon tubes are filled with Mo solution and pure water.

Numbers represent Mo concentrations in wt%. (b) CT image at 20.1 keV. (c) CT

image at 19.9 keV. (d) Differential CT image obtained by subtraction, image (b ) -

image (c).

Page 488: Analytical Spectroscopy Library_VOL 7

479

related to their Mo concentrations. The subtraction method provides not only the spatial

distribution of a specific element, but also its density distribution.

In Fig. 8-24, the relation between the Mo concentration and the differential CT value in the

image shown in Fig. 8-23d is plotted. The data have good linearity so the Mo concentration

can easily be estimated from the differential CT value. Consequently, the density of a specific

element can be obtained by the subtraction method. However, a weakness of this method is

that the X-ray energy to be used is determined by the element. Thus, it is difficult to apply this

method to a sample which absorbs almost all the X-ray photons at that energy.

In Fig. 8-25, the average CT values for the six Mo solutions and pure water in the two CT

images shown in Figs. 8-23b and 8-23c are plotted against the X-ray attenuation coefficient ~t.

The value of ~t is calculated from the compositions of the Mo solutions and water at each

energy. The linearity between the CT value and/.t is very good and shows an advantage of SR-

CT because monochromatic X-ray CT allows quantitative treatment of X-ray attenuation

coefficients due to absence of the beam hardening effect. When the subtraction method is not

applied to a sample due to high attenuation, the X-ray energy is set so as to obtain a sufficient

transmitted X-ray intensity and the X-ray attenuation coefficient of the sample can be estimated

from the CT value measured at that energy, using the calibration curve as shown in Fig. 8-25.

10

cD

~ 10 > i-- o o . i i , l i

I , i @ 10 o i a

10 old, ..... J Lu, ........ 1

0.1 1 10

Concentrat ion, c / wt%

> F- 0

1000

100

I I I I

z z I I I I I I

1 2 3 4 5 6 -1

/~ / c m

Fig. 8-24. Differential CT value versus

Mo concentration, c. The CT

value measured at 20.1 keV

minus that measured at 19.9

keV CT value.

Fig. 8-25. CT value versus X-ray attenuation

coefficient, ~t. The CT value measured

at X-ray energies of 19.9keV and

20.1 keV are denoted by is the

differential open circle and filled circle,

respectively.

Page 489: Analytical Spectroscopy Library_VOL 7

480

If composite elements or compounds in the sample are known, the estimated attenuation

coefficients allow a relationship to be obtained between the elements/compounds and regions in the CT image.

8.4.4. High resolution CT images

Because of the high SR collimation, a SR-CT scanner provides high spatial resolution CT

images, which need a high spatial resolution detector. We confirmed that the asymmetric

Bragg magnification method was effective in improving detector resolution [22]. A cross-

section of a standard sample used is illustrated in Fig. 8-26a. The sample was a 4 mm diameter

half cylinder made of optical glass (BK-7), with many grooves cut along the axis. The grooves

were 50, 100, and 200 l.tm wide. The CT image measured by the X-PDA with a magnification

factor of 4.9 (E = 20 keV) is shown in Fig. 8-26b. The 50 l.tm width grooves can be clearly

discerned in the CT image, and the spatial resolution is higher than 50 l.tm. The magnification

method is confirmed to be very effective in improving the spatial resolution of CT images.

Next, a SiC fiber-reinforced Si3N4 ceramic sample was examined. Its structure is

illustrated in Fig. 8-27a. The 140 lam-diameter SiC fiber consists of a 30 l.tm-diameter carbon

core and a SiC layer. The SiC layer was deposited around the carbon core by chemical vapor

Fig. 8-26. (a) Cross-sectional drawing of a 4 mm diameter half cylinder made of optical glass (BK-7) with many grooves. (b) CT image of the sample obtained by the

magnification method (4.9-fo!d); E =20.0 keV. Slice width was 1.0 mm. Exposure

time per projection was 10 s.

Page 490: Analytical Spectroscopy Library_VOL 7

481

deposition. The sample was cut into a prism with the slice plane perpendicular to the fiber. The

CT image in Fig. 8-27b was taken unmagnified by X-PDA. Although individual SiC fibers are

visible, the carbon core is not. The image in Fig. 8-27c was taken by X-PDA with a

magnification factor of 9.0 ( E-24 keV). The carbon core is visible, but the fiber-matrix

boundary and the core boundary are not clear. The last image, in Fig. 8-27d, was taken

unmagnified by the X-SPT and the 30 I.tm-diameter carbon core can be clearly observed.

In order to estimate the spatial resolution of the CT image measured with X-SPT we used

the CT value, which numerically expresses the brightness in the CT image [23]. The CT

values around the SiC fiber (denoted by an arrow in Fig. 8-27d) are plotted against the

distance from the center of the carbon fiber core in Fig. 8-28. Since the boundaries between

the carbon core, the SiC layer, and matrix are very sharp, the components can be clearly

distinguished from each other. The slight spread of the boundaries is caused by both the

reconstruction of the CT image and the spatial resolution of X-SPT. When the boundary

Fig. 8-27. (a) Illustration of the SiC fiber-reinforced Si3Ni4 ceramics. (b) CT image taken by

X-PDA without magnification at 32.9 keV. Slice width was 0.8 mm. Exposure time

per projection was 10 s. (c) CT image taken by X-PDA with magnification (9-fold)

at 24 keV. Slice width was 1.0 mm. Exposure time per projection was 30 s. (d) CT

image taken by X-SPT without magnification at 24 keV. Slice width was 110 l.tm. Exposure time per projection was 7.5 s.

Page 491: Analytical Spectroscopy Library_VOL 7

482

400

(D 200 >

0

Carbon fiber core SiC l SiC Matrix

,, 551Jm ~m

I

1 I , 'i ' '

I I i I I

' I I I I I I

100 0 100

! 55pm:

- ~ ~ - F ' - 14%

I 10 lum

Distance / I~m

"7, E O

8 O

6 O O r -

4 o

=9

Fig. 8-28. CT value around a SiC fiber versus the distance from the center of the carbon core.

On the right hand ordinate, the X-ray absorption coefficient ~t (cm -1) calculated

from the CT value is shown.

spread due to these effects is expressed by a Gaussian distribution, the distribution of the CT

value around the boundary is represented by the convolution of a step function and the

Gaussian distribution. We adopted twice the standard deviation (6) of the Gaussian

distribution for the spatial resolution of the CT image. The distance between the transition

levels from 14% to 86% in the boundaD, corresponds to 2~ of the Gaussian distribution. From

the CT value in the boundary between the SiC layer and the matrix, the resolution of this CT

image was estimated to be 10 ~tm.

8.5. A P P L I C A T I O N S

8.5.1. CT images of biological samples

Some CT images of biological samples were taken. The main constituent elements of the

sample were hydrogen, carbon, nitrogen and oxygen, and their X-ray mass absorption

coefficients are very small. Therefore, it is better to use low energy X-rays for high contrast

CT images. A photon energy of 15 keV was selected in consideration of the results in Section

8.4.2. The CT images of two vegetables, okra and green bean, are shown in Figs. 8-29a and

8-29b, while that of salami is given in 8-29c obtained by X-PDA. The complex cross sectional

structure of okra is clearly observed. The outer pentagon is the okra pericarp and seeds are

Page 492: Analytical Spectroscopy Library_VOL 7

483

Fig. 8-29. CT images of (a) okra, (b) green bean and (c) salami sausage.

located at five sites within the pod. The fine structures of the pericarp are also observed. The

green bean is mostly watery tissues, but the seed and seed coat are observed distinctly since a

low photon energy was used.

8.5.2. Observation of cracks and defects in composite materials

Ceramic composite

In order to observe cracks in a ceramic composite, a cavity was formed by indenting with

a Vickers hardness tester on the surface of the SiC fiber reinforced Si3N4 ceramic described in

Section 8.4.4. Its CT image is shown again in Fig. 8-30. The induced flaw is indicated by

arrow A. A black line (B) from one fiber to another, and some dark regions (C) between the

matrix and SiC fiber, are observed in the CT image. The former can be considered as a crack

produced by the external force and the latter as debonding produced by the external force or by

some steps in the manufacturing process of the composite. Moreover, three very bright spots,

which strongly attenuate X-rays, can be observed in the middle of the CT image. Their X-ray

attenuation coefficients are about 20 cm -1. The matrix consists of Si3N4, A1203 and Y203

whose attenuation coefficients at 24 keV are 5.6, 5.6 and 171 cm -1, respectively. From these

values, the concentration of Y203 at three bright.~ots is estimated at about 8.7 wt%.

As mentioned above, cracks and defects in a ceramic can be clearly observed, but their

spatial spread is not obvious. This indicates that multi slice observation is necessary.

Page 493: Analytical Spectroscopy Library_VOL 7

484

Fig. 8-30. Monochromatic X-ray CT image of the SiC fiber-reinforced Si3N4 ceramic

composite ta&en at 24.0 keV. Slice width was 110 lxm. Exposure time per

projection was 7.5 s.

Metal matrix composites

Metal matrix composites axe becoming very useful structural materials. They are fabricated

by combining two or more different materials. In the development of these new materials, it is

important to examine their fundamental properties. Nondestructive inspections seem to be

especially necessary for detecting defects such as debonding, cracks and voids. Three-

dimensional microtomography is a very useful method for these purposes, and internal

structures of aluminum based composites have been observed [33,34].

Figure 8-31 shows three slice CT images of a SiC fiber reinforced aluminum based

composite. The 140 l.tm diameter SiC fiber consists of a 30 p.m diameter carbon core and a SiC

layer. A photon energy of 21 keV was selected, based on X-ray attenuation through the

sample. The slice width was 82 ~tm and the exposure time 13.5 s/projection. The X-ray

attenuation coefficients of A1 and SiC are 8.02 and 8.71 cm -1, respectively. Both can be

observed distinctly in spite of there being only a 9% difference in coefficients. The dark region

around the fiber, indicated by arrow A, can be considered as showing debonding of the matrix

and fiber produced in the manufacturing process: it ca.n be seen in all three CT images. This

indicates that debonding spreads over a large region.

Page 494: Analytical Spectroscopy Library_VOL 7

485

Fig. 8-31. Cross section and three consecutive CT images of SiC fiber/A1 composite. The slice

planes were perpendicular to SiC fibers.

Fig. 8-32. Six consecutive CT images of SiC fiber/Al composite. The slice planes were nearly parallel to the SiC fiber.

Page 495: Analytical Spectroscopy Library_VOL 7

486

Figure 8-32 has images showing fiber damage produced by indenting with a Vickers

hardness tester on a surface of a sample similar to that described above. The slice planes are

parallel to the longitudinal direction of the fibers. The slice width was 35 l.tm and the slice

interval was 52 ~m. The dark striped regions are carbon cores and the brighter ones around

them are SiC fibers. The black square in the middle of the first slice CT image is the cavity

produced by indenting. A crack in the SiC fiber just below it is clearly observed.

From these results, observations of the plane perpendicular to the fibers are suitable for

determining debonding of the interfaces, while studies on damage to the fiber itself can be

made using parallel plane observations.

The final example showing observations of internal damage of a metal matrix composite is

shown in Fig. 8-33. The sample was prepared by pressing aluminum with 60 l.tm mean

diameter SiC particles dispersed in it. The test piece was fractured by repeated loading. The CT

sample was cut from around the fractured region. In the CT images, white spots (A) are SiC

particles and the dark regions (B) are defects caused by repeated loading. The defects are

concentrated near the SiC particles. It seems that the fracture occurs at the interface between the

matrix and the SiC particles in this sample.

Fig. 8-33. CT images of SiC particle dispersed AI matrix composite. The sample was cut from

around the region fractured by repeated loading. The bright spots (A) are SiC

particles and the dark spots (B) axe defects induced by the load.

Page 496: Analytical Spectroscopy Library_VOL 7

487

8.5.3. Applications to other materials

As mentioned above, three-dimensional SR-CT is useful for nondestructive inspection of

industrial materials. Besides these, it is applicable to such samples as archaeological artifacts,

ore minerals, and fossils. As an example of these objects, internal fine structures of the

Allende meteorite were observed [35]. The spatial distributions of fine structures and chemical

compositions in meteorites have usually been analyzed by cutting and polishing the sample

repeatedly. This takes a long time in sample preparation, and defects and partial collapse

sometimes occur in the process. In three dimensional SR-CT, these problem can be avoided.

Figure 8-34 shows six consecutive CT images of Allende meteorites in 20 slice planes,

taken at 30 keV photon energy. The slice thickness was 37 l.tm and the slice planes were

spaced at 110 l.tm intervals. The exposure time was 28.1 s/projection. The metallic minerals

(bright region), matrix (silicate including iron) and chondrules, which were confirmed by

comparison of the CT image and elemental mapping with X-ray microanalysis, can be clearly

Fig. 8-34. Consecutive CT images of Allende meteorite measured at 30 keV with twenty slice

planes. The slice thickness was 37 l.tm and the slice planes were spaced at 110 lxm

intervals. The exposure time per projection and the total exposure time were 28.1 s and 5120 s, respectively.

Page 497: Analytical Spectroscopy Library_VOL 7

488

observed. The 20 observed CT images indicate that the metallic minerals surround some

chondrules, and the largest chondrule has two humps and well crystallized olivine in its center.

These observations suggest that three dimensional SR-CT is a useful method for identification

of the intemal structure of stony meteorites.

8.6. FUTURE PROSPECTS OF MICROTOMOGRAPHY USING SR

8.6.1. Spatial resolution

The present spatial resolution of the SR-CT is about 10 lxm, and efforts to improve the

resolution are now underway. In this section the possibility of achieving micron resolution

SR-CT is discussed [36].

The spatial resolution is determined by both the detector resolution and SR source size.

The SR cannot be considered to be completely parallel for micro-resolution CT imaging. The

SR angular divergency (<10 -3 rad) and electron beam source size (~1 mm) are not negligible,

and the spatial resolution is degraded by penumbral blurring. The distance between the sample

and detector is relatively long in CT, because of the sample rotation mechanics. When the

source to sample distance is 20 m, and sample to detector distance is 50 mm, a source size of 2

mm results in 5 lxm resolution. However, the problem of source size and parallelism can be

overcome by placing an asymmetric diffraction collimator in front of the sample. The problem

of detector resolution can be solved by using asymmetric Bragg diffraction for magnification.

Although small angle scattering and fluorescent X-rays may reduce the contrast and spatial

resolution, these effects can also be suppressed using asymmetric diffraction for collimation behind the sample. A SR-CT with nominal micron-resolution can be achieved by using these

techniques.

8.6.2. Future directions

Microtomography based on SR has experienced the greatest progress in improved spatial

resolution. Therefore, objects for which the microtomographic scanners are applicable are

limited to relatively small and high transmissive samples, with the main constituents being light

elements. On the other hand, there is a strong need for nondestructive inspections of larger

samples, including heavier elements, in the fields of industrial products, metal engineering,

archaeology, and biology. From this requirement, the techniques of microtomography are expected to progress in

two ways: the development of techniques for larger samples with the present spatial resolution;

and the search for more functional microtomography, with better spatial resolution of sub-l.tm

levels and chemical bonding state imaging. For the former, an X-ray source with higher

photon energy and intensity is required. Recently, the use of a 50-100 keV photon energy

using the wiggler line of SR has been reported [37]. Moreover, large scale SR facilities are

now being constructed, and microtomography with monochromatic X-ray above 100 keV will

Page 498: Analytical Spectroscopy Library_VOL 7

489

be developed in the near future. A new reconstruction algorithm for sparse data sets using the

maximum entropy method has also been reported [38] and techniques for image reconstruction

of only the region of interest are under development. CT measurements of 0.5 meter sized samples will become possible by combination of the above techniques. For the second

requirement, the following techniques need to be developed:

1) To micronize the X-ray source.

2) To improve the energy resolution. 3) To improve the detector's spatial resolution. 4) To develop magnification techniques for projection images, with no reduction of spatial

resolution.

5) To reduce scattering of X-rays by samples.

The use of SR with high brilliance and low emittance is considered to be essential. As a result,

it is expected that microtomography with subfftm resolution and chemical bonding state

imaging can be realized.

ACKNOWLEDGMENTS

We would like to thank the staff of the KEK Photon Factory for their helpful advice and

for use of the synchrotron facilities. We also thank Y. Suzuki for his help for a great part of

this work, K. Hayakawa for his encouragement throughout the work, and K. Sakamoto, H.

Kohno and H. Shiono for their help in the scanner development. This work has been performed under the approval of the Photon Factory Advisory

Council (proposal No. 86-Y014, No. 86-Y018).

R E F E R E N C E S

1. G.N. Hounsfield, Br. J. Radiol., 46, 1016 (1973). 2. M. Onoe, J. W. Tsao, H. Yamada, H. Nakamura, J. Kogure, H. Kawamura and M.

Yoshimatu, Nucl. hTstrum. Methods, 221, 213 (1984).

3. F.F. Hopkins, I. L. Morgan, H. D. Ellinger, R. V. Klinksiek, G. A. Meyer and J. N. Thompson, IEEE Trans. Nucl. Sci., 28, 1717 (1981).

4. R.A. Armistead and R. N. Yancy, Mater. Eval., 47, 487 (1989).

5. R.E. Alvarez and A. Macovski, Phys. Med. Biol., 21,733 (1976).

6. A. Macovski, R. E. Alvarez, J. L. H. Chan, J. P. Stonestrom and L. M. Zatz,

Comput. Biol. Med., 6, 325 (1976).

7. J.C. Elliot and S. D. Dover, J. Microsc., 126, 211 (1982).

8. S. Aoki, M. Oshiba and Y. Kagoshima, Jpn. J. Appl. Phys., 27, 1784 (1988). 9. B. London, R. N. Yancey and J. A. Smith, Mater. Eval., 48, 604 (1990).

10. L. Grodzins, Nucl. Instrt~.m. Methods, 206, 541 (1983).

Page 499: Analytical Spectroscopy Library_VOL 7

490

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23. 24.

25.

26.

27.

28.

29.

30.

31.

32.

L. Grodzins, Nucl. Instrum. Methods, 206, 547 (1983).

A. C. Thompson, J. Llacer, L. Campbell Finman, E. B. Hughes, J. N. Otis, S.

Wilson and H. D. Zeman, Nucl. Instrum. Methods, 222, 319 (1984).

Yu. I. Borodin, E. N. Dementyev, G. N. Dragun, G. N. Kulipanov, N. A.

Mezentsev, V. F. Pindyurin, M. A. Sheromov, A. N. Skrinsky, A. S. Sokolov and

V. A. Ushakov, Nucl. Instrum. Methods, A246, 649 (1986).

B. P. Flannery, H. W. Deckman, W. G. Roberge and K. L. D'Amico, Science [Washington, D.C.], 237, 1439 (1987).

K. L. D'Amico, H. W. Deckman, J. H. Dunsmuir, B. P. Flannery and W. G.

Roberge, Rev. Sci. Instrum., 60, 1524 (1989).

J. H. Kinney, Q. C. Johnson, U. Bonse, M. C. Nichols, R. A. Saroyan, R.

Nusshardt, R. Pahl and J. M. Brase, MRS. Bull., 13, 13 (1988).

J. H. Kinney, Q. C. Johnson, R. A. Saroyan, M. C. Nichols, U. Bonse, R.

Nusshardt, and R. Pahl, Rev. Sci. Instrum., 59, 196 (1988).

J. H. Kinney, Q. C. Johnson, M. C. Nichols, U. Bonse, R. A. Saroyan, R. Nusshardt and R. Pahl, Rev. Sci. Instrum., 60, 2471 (1989). U. Bonse, R. Nusshardt, F. Busch, R. Pahl, Q. C. Johnson, J. H. Kinney, R. A.

Saroyan and M. C. Nichols, Rev. Sci. Instrum., 60, 2478 (1989). K. Engelke, M. Lohmann, W. R. Dix and W. Graeff, Rev. Sci. Instrum., 60, 2486

(1989).

Y. Suzuki, K. Usami, K. Sakamoto, H. Kozaka, T. Hiarano, H. Shiono and H.

Kohno, Jpn. J. Appl. Phys., 27, L461 (1988).

K. Sakamoto, Y. Suzuki, T. Hirano and K. Usa_re_i, Jpn. J. Appl. Phys., 27, 127 (1988). T. Hiarano and K. Usami, Jpn. J. Appl. Phys., 28, 263 (1989). E. L. Hall, "Computer Image Processing and Recognition", Academic Press, New

York, 1979. A. Shepp and B. T. Logan, IEEE Trans. Nucl. Sci., NS21, 21 (1974).

E. Storm and H. I. Israel, Nucl. Data Tables, A7, 565 (1970).

J. Chikawa and S. Shirai, J. Cryst. Growth, 39, 328 (1977).

J. Chikawa, F. Sato, T. Kawamura, T. Kuriyama, T. Yamashita and N. Goto, "X-

Ray Instrumentation for the Photon Factory; Dynamic Analysis of Micro Structure in

Matter 145", KTK Scientific Publishers, Tokyo, 1986. Y. Suzuki, K. Hayakawa, K. Usami, T. Hirano, T. Endoh and Y. Okamura, Jpn. J.

Appl. Phys., 27, 420 (1988). J. H. Kinney, M. C. Nichols, U. Bonse, S. R. Stock, T. M. Breunig, A. Guvenilir

and R. A. Saroyan, in Advanced Tomographic Imaging Methods for the Analysis of

Materials, Pittsburgh: Mater. Res. Soc., 1991. H. W. Deckman, K. L. D'Amico, J. H. Dunsuir, B. P. Flannery and S. M. Gruner,

Adv. X-ray Anal., 32, 641 (1989). T, Hirano, S. Eguchi and K. Usami, Jpn. J. Appl. Phys., 28, 135 (1989).

Page 500: Analytical Spectroscopy Library_VOL 7

491

33.

34.

35.

36.

37.

38.

J. H. Kinney, S. R. Stock, M. C. Nichols, U. Bonse, T. M. Breunig, R. A. Saroyan, R. Nusshardt, Q. C. Johnson, F. Busch and S. D. Antolovich, J. Mater.

Res., 5, 1123 (1990). C. Masuda, Y. Tanaka, K. Usami, T. Hirano, Y. Imai, I. Shiota, E. Fukubayashi and H. Iwasaki, Nondestr. Test. Eval., 7, 779 (1992). T. Hirano, M. Funaki, T. Nagata, I. Taguchi, H. Hamada, K. Usami and K. Hayakawa, Proc. Natl. Inst. Polar Res. Symp. Antarctic Meteorites, 3 (1990) 270, National Institute of Polar Research, Tokyo, 1990. Y. Suzuki, T. Hirano and K. Usami, "X-Ray Microscopy in Biology and Medicine",

ed. K. Shinohara, K. Yada, H. Kihara, T. Saito, Japan Sci. Soc. Press, Tokyo/Springer-Verlag, Berlin, 1990, p.179.

Y. Nagata, H. Yamaji, K. Hayashi, K. Kawashima, K. Hyodo, H. Kawata and M.

Ando, Rev. Sci. Instrum., 63, 615 (1992). R. T. Smith, C. K. Zoltani, G. J. Klem and M. W. Coleman, Appl. Opt., 30, 573

(1991).

Page 501: Analytical Spectroscopy Library_VOL 7

This Page Intentionally Left Blank

Page 502: Analytical Spectroscopy Library_VOL 7

493

SUBJECT INDEX

A-protein 395, 397 ab initio structure analysis 416 ab initio structure determination 447 ab initio technique 424 Abbe's sine theorem 178 absolute method 166 absorber 84, 88, 115 absorption 100, 101,421,427, 432 absorption coefficient 101, 131,214, 222, 427 absorption correction 433 absorption cross section 433 absorption edge 97, 101, 120, 424, 444 absorption factor 412, 433 acceptance 181 acoustic delay line (ADL) 61 actinoid 165 adsorption geometry 319 AES 308 Ag/Si(lll) (v~ x x/~)R30 ~ 332 agreement index 410 AI 484 A1203 483 AlxGal_xAs 274 angle-dispersive diffraction 420, 435 angle-disperswe method 408, 417, 418 angle-disperswe neutron diffraction 424, 427, 444 angle-dispersive neutron-powder diffraction 419, 425 angle-disperswe powder diffraction 427, 428 angle-dispersive synchrotron diffraction 444 angle-dispersive synchrotron X-ray powder diffraction

423 angle-dispersive X-ray diffraction 408, 419, 427 angle-dispersive X-ray powder diffraction 418 angular width 86 anisotropic broadening 429 anisotropic thermal motion 413 anomalous dispersion 424 anomalous scattering 210, 424 APS 291,447 ARPEFS 342 ARUPS 308 AsF 5 246, 248 AsH 3 238 asymmetric Bragg magnifier 97, 471 asymmetric function 430, 431 asymmetry parameter 430 atomic layer epitaxy (ALE) 238 atomic scattering factor 82, 105, 413,417, 424

Auger electron 101, 212, 213 Auger electron yield 310 Auger yield 227 axial divergence 426, 430

back scattering 421 back-scattering amplitude 216, 242, 243 background 97, 99, 104, 105, 120, 406, 409, 410,

412, 415, 421,435 background function 435 background parameter 415, 435, 438, 443 bacteriorhodopsin 388 beam hardening effect 462 beam lifetime 45 beamline 59, 81, 93 Beamline 4A (BL-4A) 93, 127, 140, 145 bending magnet, see also dipole magnet 29, 209 bent crystal monochromator 73 beryllium window 63, 65, 81, 93 betatron function 42 betatron oscillation 23, 41 binding energy 212 biomembrane 384 Bi2Sr2CaCu208 265, 267 BL-15A 372, 376, 383, 384, 388 BL- 10C 372, 374, 376 Bloch theorem 221 bond angle 439, 442 bond-valence sum 442 bovine serum albumin (BSA) 392, 394 Br2 246, 248, 249, 251,252 Br 3 250

Br 5 250 Bragg angle 85, 86, 214, 222, 413, 419, 428 Bragg reflection width 87 Bragg-Brentano mode 426 Bragg-Brentano parafocusing method 418 Bragg-Brentano-type X-ray powder diffraction 433 Bragg-Fresnel lens 183 Bragg's law 85 branch beamline 61 bremsstrahlung 45, 105, 122, 211 brightness 21 brilliance 21 bunch 23, 44 bunch length 44

Page 503: Analytical Spectroscopy Library_VOL 7

494

CaLaBaCu30y 253 calibration 117 CAMAC 377, 378, 391 Cambridge Electron Accelerator 80 capillary 425, 426 capillary geometry 425, 427, 431 capillary tube 203 central orbit 41 ceramic composite 483 channel-cut crystal 87 channel-cut monochromator 432 channeltron 75 characteristic X-ray diffraction 444 characteristic X-rays 213,406, 418, 419 charge coupled device 470 Chasman-Green lattice 47 (CHBry)x 248, 249, 251,252 chemical relationship 439 chemical speciation 187 CHESS 80, 110, 116 chromaticity 34 chromophore retinal 388 circular polarization 19 C1/Ni(100) c(2x2) 339 CI/Ni(lll) (x/~ x x/~)R30 ~ 341,345 closed orbital distortion (COD) 34 CO/Na/Pt(111) 318 CO/Pt(111) 318 coarse grain 426 coefficient matrix 409, 436 coherent scattering 104 coherent scattering length 413, 417, 418, 444 collimation 79 collimator 420 combined refinement 436, 438 composite crystal 447 compositional ratio 407 Compton-modified X-ray 418 Compton scattering 105, 121 computerized tomography 454 concave mirror 175 conjugate-direction method 436-438 constraint 409, 440 continuum radiation 79, 119 convergent-beam electron diffraction 441 coordination number 442 core excitation 212 correlation function 355 cosine Fourier series 435 criteria of Currie 108, 110 critical angle 81, 82, 122, 143, 145 critical angular frequency 9 critical (characteristic) energy 9

critical wavelength 9, 82, 88 cross field undulator 53 cross-sectional radius of gyration 359, 360 crystal analyzer 424-426, 431 - geometry 426 crystal chemistry 440 crystal diffraction 71 crystal monochromator 85, 96, 116, 183, 187, 191,

418, 419, 424 (2 + 2) crystal monochromator 295 crystal-structure factor 412 crystal-structure parameter 415 crystallite size 421,429, 432, 447 crystallography 210 CT value 462 cubic anvil 422 cumulant expansion 245 curve fit analysis 243 curved wave 216, 243 cylinder 358, 363 cylindrical sample 435 cytoskeleton 387

D synthesis 440, 442 damping factor 437 Darwin width 223 Debye equation for non-interacting particles 400 Debye model 219, 245 Debye-Scherrer geometry 425, 433 Debye-Scherrer method 426 Debye-Scherrer mode 426 Debye-Waller 219 deflection (K) parameter 25, 50 demagnifying focusing mirror-monochromator 377 deoxy-Hb 271 deoxy-Mb 271 deoxyhemoglobin 269 depth profile 136, 143, 166 detection limit 97, 100, 107, 122, 127 determination limit 108 differential scanning calorimetry 383 diffraction grating 173 diffractive optics 173, 183 L-c~-dipalmitoylphosphatidylcholine 384 dipole magnet 23 dipole radiation 4 dipole transition 210 disk 364, 395 dispersion 42 dispersion-free straight section 34 dispersion function 42 dispersive XAFS 229 distance distribution function 355, 361-368

Page 504: Analytical Spectroscopy Library_VOL 7

dithiothreitol (DTT) 392, 394 DORIS 80, 117, 379 double-crystal monochromator 72, 87, 94, 223, 235,

374 double logarithmic plot 361-368 doubly-focusing mirror 374 DPPC 384 DPPE 383 Durbin-Watson d-statistic 411 dynamical theory of diffraction 86

EELS 308 effective coordination number 319 effective ionic radius 442 Einstein model 219, 245 Einstein temperature 326 electrical field vector 214 electron density distribution 354 electrostatic energy 442 elemental mapping 462, 477 ellipsoid 357, 358, 362 ellipsoidal mirror 171, 174, 177-184, 202 elliptical cylinder 357 elliptical mirror 175, 182 emittance 21, 42, 43, 46 energy-dispersive diffraction 422, 423 energy-dispersive methods 93, 104, 107, 408, 417,

422 energy-dispersive synchrotron X-ray powder diffraction

422 energy-dispersive X-ray diffraction 427 energy resolution 86-88, 191,202 enzyme 269 ESD 308 ESRF 291,447 estimated standard deviation 409, 417, 437, 438, 447 EXAFS, s e e extended X-ray absorption fine structure excess scattering amplitude 369, 370 excess scattering density 369-371 excitation effeciency 99-101, 103 EXELFS 308 extended X-ray absorption fine structure (EXAFS)

189, 196, 208, 212, 220, 226, 239, 246, 250, 309, 406, 422

- temperature dependent 325 extinction 412, 421,433

f-functional polycondensation 400 false minimum 417, 438, 439, 444 FeCI 3 248 filtered back projection method 457 flat minimum 438, 444 fiat-plate geometry 425, 427, 431

495

flat-plate sample 433 flat-plate X-ray sample 427 flat sample 420 flat-specimen effect 419 Fletcher's algorithm 437 fluorescence 435 fluorescence detection 226 fluorescence radiation 426 fluorescence X-ray 212, 227, 228, 418 fluorescence XAFS 226 fluorescence yield 101, 103, 227, 310 focal-size effect 419 Fourier filter method 447 Fourier synthesis 440, 442 Fourier transform 8, 207, 242, 251,255, 259, 280,

355, 456 fractional coordinate 406, 413,427, 439, 446 free electron laser (FEL) 48, 54 Fresnel's formula 123, 137, 147 fringes of equal inclination 143, 144 frog sartorius muscle 388, 390 full-energy injection 23, 35 fundamental parameters method 118 FWHM 406, 415, 417, 420, 422, 426-429, 431,444

GaAs 218, 244, 246, 274, 281 GaAs/Si(001) 278 GaAsxPl -x 274 GaP 218,246 GaSb 218, 246 Gauss function 427, 428, 431 Gauss-Newton method 436, 438 Gaussian 423, 429, 431 Gaussian broadening 429 Gaussian chain 359 Gaussian FWHM 428 gel 382, 384, 399, 400 gel point 400 GeO 2 211,220, 241-243, 274 geometric relationship 439 Ge4Si 4 283 GeSi superlattice 281 glancing angle 81, 82, 122, 135, 142, 147 global minimum 417, 438 global parameter 415 goodness-of-fit 410, 411 grazing exit detection 201,203 grazing incidence 142, 158, 173-175, 177 grazing-incidence geometry 233 group refinement 439 GSAS 429, 435 Guinier approximation 359, 360 Guinier diffraction data 444

Page 505: Analytical Spectroscopy Library_VOL 7

496

Guinier diffractometer 426 Guinier method 418, 419 Guinier plot 361-368, 393, 396 - for cross-section 363, 367 - for thickness 364, 368

Halobacterium halobium 388 hard constraint 439 hard X-ray 81 harmonic number 23, 43 harmonic oscillator 219 heat damage 195 helical undulator 53 heme-ion 269 high-pass filter 81, 84 high-T e superconductivity (HTSC) 252 high-T e superconductor 221,252, 405, 447 higher harmonics 226 hollow cylinder 367 hollow disk 368 hollow ellipsoid 366 hollow sphere 358, 365 HRTEM 406, 441,447 HRTEM image 440 hydrated phosphatidylcholine 382 hydrated phosphatidylethanolamine 382 hydrosilylation 399

12 246 13 247

15 247 IEXR 308 Ikeda-Carpenter function 432 ILL 419 imaging plate 378-380, 384, 424, 426, 431 impurity analysis 199 in situ diffraction experiment 406, 422 in vivo 210

InAs 238 InAsP alloy 238 incident-beam monochromator 431 incident intensity 412 incident X-rays 423 incoherent scattering 104, 105, 435 incommensurate structure 446 incremental refinement 436, 438 indexing 424, 440 individual profile-fitting 414, 415 Inductively-coupled plasma (ICP) 274 rejector 35 InP 274, 278 INS 308

InSb(lll) (2x2) 331 insertion device 48, 208, 235 integral reflecting power 86, 87 integrated intensity 406, 407, 409-411,413-416,

425, 426, 429 intensity gain 173, 181 mteratomic distance 439, 442 Intermediate Lorentz function 428 internal intensity standard 445 internal standard 129 mterparticular interference 370 mtramolecular bond distance 317 mvariant 356 InxGa l_xAs 274, 277 ion-trapping effect 44 ionization chamber 74, 75, 91-93, 225, 226 IPES 308 IPNS 432 IRAS 308 isosceles triangular prism 357 isotropic thermal-displacement parameter 446 isotropic thermal motion 413

JAERI 419 Jahn-Teller-type distortion 275 Johann-type monochromator 73 Johansson-type monochromator 73, 419 joint refinement 446

K absorption edge 101,463 K parameter, see deflection parameter k-space 212, 242, 255 Keating's potential 278 KEK 422 KENS 432 Kiessig structure 143 Kiessig's method 144 kinematical diffraction theory 86 kinetic equation of association and dissociation 398 Kirkpatrick and Baez mirror 176, 183, 201 Klein-Nishina's formula 105 klystron 38 Kratky plot 361-368, 401

La2CuO4 221,222, 254-256 Lamor formula 11 lanthanoid 165 Larson-Von Dreele formulation 430 lattice 42, 46 lattice anomaly 264, 268 lattice parameter 405, 406, 412-416, 438, 440-443,

445 lattice-plane spacing 408, 421,446

Page 506: Analytical Spectroscopy Library_VOL 7

La2_xMxCuO4_y (M=Ba, Sr) 254 layered structure 142 least-squares method 413 least-squares refinement 410 LEED, see low energy electron diffraction linear absorption coefficient 82, 418, 433 linear accelerator 23, 37 linear equality constraint 441 linear parameter 438 linear photodiode array 229 linear polarization 18, 79, 81, 93, 95, 97, 105, 123 liquid crystal 382, 384 liquid encapsulated Czochralski (LEC) 274 liquid-phase epitaxy (LPE) 274 lithium drifted silicon detector, see Si(Li) detector local minimum 417, 436, 438 long-range order 210 Lorentz factor 412, 419, 421,424 Lorentz function 427, 428, 431,432 Lorentz polarization 248 Lorentz transformation 6 Lorentzian 429 Lorentzian Scherrer broadening 430 low emittance 35, 46, 235 low energy electron diffraction (LEED) 217, 221,

308 low-pass filter 66, 81, 82 lysozyme 371

M-intermediate 388, 389 Madelung energy 259, 442 magnetic atoms 412, 415, 418 magnetic form factor 418 magnetic moment 415, 418 magnetic scattering 412, 418 magnetic structure 420, 446 magnetic-structure factor 412 magnetic-structure parameter 415 main beamline 59 many-body effect 220 March-Dollase formulation 434 March-Dollase function 445 Marquardt method 436-438 Marquardt parameter 437 mass absorption coefficeint 463 matrix effect 128 matrix treatment 151 Maxwell's equation 157 Mb(II)CO 272 Mb(II)O2 272 Mb(III)CN- 272 Mb(III)OH- 270 McPherson monochromator 68

497

MDL 195 mean free path 215 mean-square displacement (MSD) 219, 245 mean-square relative displacement (MSRD) 215,

219, 245 MEIS 308 meridional plane 174 metal matrix composite 484 metalloprotein 269 meteorite 487 method of nonlinear least squares 415 metric tensor 413 microchannel plate 75 microfocus X-ray tube 453 microtomography 454 microtron 36, 39 microvilli 386, 387 MINREF 436, 446 mirror 66, 83 mirror formula 174 Mo 477 model function 408, 412, 437, 447 moderator 420, 431-433 modified Bessel function of the second kind 12 modified Lorentz function 428 modified Wadsworth monochromator 68 modulated structure 446 modulation transfer function 473 molecular adsorption 323 molecular beam epitaxy (MBE) 238, 278, 287 molecular mass 369-371 molecular orientation 314 Moller scattering 45 monochromatic beam 81, 85 monochromatic excitation 96, 97, 103, 110, 122,

130, 165 monochromator 222, 225, 226, 374, 377, 385, 419,

420, 422, 424-426, 465 monolayer (ML) 238 mosaic crystal 86, 88 muffin-tin potential 214, 242 multilayer 173, 185 multiphase capability 445 multiple scattering 217, 221,246, 422, 447 multiplicity 412 multipole wiggler 31, 49, 235 multiwire proportional counter 75 Mylar film 85 myoglobin 236, 270

N/Cu(100) c(2x2) 326 N2/Ni (110) 315 N/Ni(100) p4g(2x2) 322

Page 507: Analytical Spectroscopy Library_VOL 7

498

natural emittance 43 Ndl.4Ce0.2 Sr0.4CuO4 _ 6 257 Nd2_xCexCuO4_/~ 253, 258 near-edge X-ray absorption fine structure (NEXAFS)

210, 309 needle-shaped crystal 434 network 399 neutron diffraction 210, 219, 412, 413, 417, 418, 444 neutron powder data 438 neutron powder diffraction 420 non-monochromatic beam 81, 115 non-monochromatic excitation 96 nonlinear least-squares method 407, 436 normal equation 409, 436 NSLS (National Synchrotron Light Source) 26, 80,

107, 424 nuclear emulsion 74 nuclear scattering 412 nuclear structure 446 Nyquist theorem 459

O2/Ag (ll0) 318 O2/Cu(100) 318 O/Cu(100) "c(2 x 2)" 326 O/Cu(100) (x/2x2x/2)R45 ~ 326 O2/Pt (111) 318 occupation factor 406, 412, 413, 420, 427, 429, 439,

441,446 optical klystron 58 optical path difference 144, 145 optical potential 219 organometallic vapor phase epitaxy (OMVPE) 238

P polarization 153 pair correlation function 245 pair distribution 219 parafocusing geometry 418 parallel-beam optics 424 Parratt's method 146 partial electron yield 311 particle scattering 356 particle scattering factor 358 pattern decomposition 415 Patterson function 386 Patterson map 387 Pawley method 414 Pawley refinement 415 peak asymmetry 415, 430, 431 peak broadening 419, 429 Pearson VII function 427, 428, 431 penetration depth 123 penumbral blurring 488 phase factor 355

phase shift 215, 242 phase stability 43 phase transition 382 photo-stimulable phosphor screen s e e imaging plate photo-stimulated luminescence (PSL) 378 photoelectric absorption 100, 106 photoelectric effect 100, 105 photoelectron 105, 202, 212, 213, 215 photoelectron multiplier 74 photographic film 75 Photon Factory (PF) 29, 80, 92, 93, 110, 115, 116,

122, 127, 136, 145, 158, 166, 223, 235, 236, 372, 376, 383, 384, 388, 392, 396, 422, 425, 462

photon flux 181 photoreceptor 387 PIXE 110, 118 plane grating monochromator 69 plane undulator 52 plane wave approximation 214 plate sample 418, 435 plate-shaped crystal 434 polarization 10, 18, 207, 209 polarization factor 412, 419, 424 polyacetylene 246 polyethylene 380, 382 polyethylene terephthalate 379, 380 polymer blends 198 polymer gel 399 porphyrin 269 position-constrained pattern decomposition 415 position-sensitive detector (PSPC) 75, 376, 388, 392,

418 position-unconstrained pattern decomposition 415 positron 39 powder extinction coefficient 415, 434 Poynting vector 157 preferred orientation 406, 409, 412, 415, 420, 426,

427, 434, 435, 447 preferred-orientation function 434 PREMOS 446, 447 primary extinction 433, 447 profile parameter 414 profile-shape function 412, 427-429, 431-434 profile-shape parameter 415, 431,438, 441 proportional counter 74 proton excitation 110 proximal histidine 269 PSD 418, 419 pseudo-observation 439 pseudo-Voigt function 427-429, 431,432 PSPC 191 pulsed-neutron beam 420 pulsed-spallation-neutron source 409, 431

Page 508: Analytical Spectroscopy Library_VOL 7

purple membrane 388 pyridine/Ag(111) 316 pyrolytic graphite 88

Q-scan I, II 294 quadrupole magnet 23 quantitative analysis 441,445 quantum lifetime 34 quaternary alloy 277

R factor 410, 441,442 radial distribution function 210 radiation damage 118 radiation damping 42 radiofrequency (r0 cavity 23, 36 radius of gyration 359, 393 Radon transform 454 Rayleigh scattering 104, 121 RBS 308 reactor neutron source 409 receiving slit 419, 424-426 reciprocal lattice parameter 413 reconstruction algorithm 455 rectangular prism 357 reflection coefficient 149, 150 reflection curve 80, 82, 140, 142-145 reflection high energy electron diffraction (RHEED)

282, 308 reflection width 86 reflective optics 173, 182 reflectivity 66, 123, 125, 147, 149, 150, 152, 156 refractive index 81, 123, 144, 149 regular polygonal prism 357 resolution 409, 420-423,426, 447 resonant Raman scattering 120, 121 resonating valence bond (RVB) 268 restraint 439, 441 rf bucket 43 RHEED, s e e reflection high energy electron diffraction RIETAN 435-438 Rietveld analysis 409, 411,413,417, 418, 422, 423,

427, 433,438, 439, 441-444, 446, 447 Rietveld method 405, 407-409, 413-416, 419, 424,

441,446, 447 Rietveld refinement 409, 410, 415, 438, 440-442,

444, 445 rigid body 439 rocking curve 212 rod-like molecule 359 roughness 83, 125, 142, 143, 149 Rowland circle 176 Rowland-type monochromator 69

499

S/B ratio 97, 118, 122, 127 S/Ni(lll) (5V~• 321 S/Ni(100) c(2• 319, 326, 345 S/Ni(110~ ~2• 326, 347 S polallzation 152, 154 sagittal bending 235, 238 sagittal focusing 88 sagittal plane 174 sample transparency 430 satellite 193 SAXES 374 SAXS, s e e small-angle X-ray scattering scale factor 412, 438, 445 scanning incident-beam monochromator 422 scattered intensity 354 scattered radiation 93, 96, 104 scattering amplitude 214 scattering power 380 scattering vector 354, 407, 421,430, 435 scintillation counter 75, 93 second-generation storage ring 210 secondary excitation 128 secondary extinction 406 selected-area electron diffraction 440, 441 selective excitation 100, 123 self absorption effects 189 self doping 263 separatrix 43 SEXAFS 309 Seya-Namioka monochromator 68 shape resonance 221 short-range order 207, 210 SiC fiber 480, 484 SiC mirror 84 Si(Li) detector 75, 107 Simpson's rule integration 430 simulation 440 simultaneous refinement 444 simultaneous Rietveld refinement 443 Si3N 4 480, 483 single-crystal monochromator 115 single scattering 214, 217, 244 size broadening 429 slack constraint 439 small-angle X-ray scattering 353, 370 Snell's law 82 (SN)x 248 soap film 84 soft constraint 439 soft X-ray 81, 91, 93, 165 solid-state detector (SSD) 75, 93, 228, 233,422 Soller collimator 425 Soller slit 424, 425

Page 509: Analytical Spectroscopy Library_VOL 7

500

Soller-slit geometry 426 space group 440, 441 SPEAR 109, 110 specimen-transparency effect 419 sphere 358, 361 spherical aberration 176 spherical wave expansion 214 spin-equilibrium 269 spin gap 268 split profile-shape function 431 SPring-8 (Super Photon Ring) 32, 291,447 squid rhabdomes 384 SRS 80, 110, 116 SSD, see solid-state detector SSRL 80, 109, 121, 136, 425 standing wave 123, 166 step intensity 417 step width 417 stopped-flow 231,392 storage ring 23, 41,208 strain 421,429, 441,447 strain broadening 429, 430 strained-layer superlattice (SLS) 281 strip dinode 74 structural model 410, 415, 416, 439, 441,442, 447 structural parameter 439 structure factor 412, 415, 434, 446 structure model 409, 440-442 structure parameter 405-408, 410, 412-4 17, 424,

441-445 subtraction method 464 sum-of-squares 438 sum of weighted squares 407 superstructure 446 surface reconstruction 321 surface relaxation 341 surface-sensitive XAFS 232, 233 surface X-ray diffraction 327 symmetric profile-shape function 427, 428, 430 synchrotron 23, 36 synchrotron oscillation 43 synchrotron powder diffraction 427 synchrotron radiation 1, 79, 207, 248 synchrotron X-ray diffraction 418, 423, 431,444,

447 synchrotron X-ray powder data 438 synchrotron X-ray powder diffraction 407, 423,424,

427 synthetic diamond 200 synthetic multilayer 91, 166

T-type compound 259 T~-type structure 261

T*-type structure 261 t - J model 268 T-R transition 273 takeoff angle 189 TDS 422, 447 temperature factor 413 temperature jump 394 thermal-diffuse scattering 422 thermal-displacement parameter 406, 412, 413, 421,

423, 429, 439 thermal expansion coefficient 326 thermal motion 407 thermal parameter 427 thermal stability 83 thickness radius of gyration 359, 360 thiophenol/Ni(100) 323 Thomson factor 369 Thomson scattering 104 threshold spectroscopy 193 time-resolved SAXS 380, 382 time-resolved WAXS 380 T12Ba2CaCuO8 264 tobacco mosaic virus coat protein (TMVP) 394, 395,

399 TOF (time-of-flight) 420 TOF (time-of-flight) neutron diffraction 412, 421,

433, 444, 447 TOF (time-of-flight) neutron-powder diffraction 420,

431,433, 444 - data 444 top-seeded solution growth (TSSG) 254 total reflection 80, 82, 232 total reflection method 79, 122, 127 total reflection mirror 81, 84, 87, 88, 115 trace element analysis 79, 100, 133 trans-(CH)x 248, 251 transition layer 142, 148, 149, 161 transmission mirror 84, 88, 115 triaxial body 356, 358, 360 triple bend achromat 48 two-phase system 370 TXRF method 122, 135

undulator 24, 49, 166, 190, 193, 291,292 unpolarized X-ray 104, 105 UPS 308

variable metric method 436 VEPP-4 165 Victoreen's function 240 virtual crystal approximation (VCA) 274 Voigt function 427, 428, 431,434 voltage-to-frequency (VF) converter 225 VUV monochromator 68

Page 510: Analytical Spectroscopy Library_VOL 7

wave vector 213 wavelength-dispersive method 93, 107 wavelength-dispersive spectrometer 191 wavelength scanning X-ray diffraction 332 wavelength shifter 49 weight-average degree of polymerization 400 weight fraction 445 weighted sum-of-squares 417 weighting 407 Weissenberg camera 426, 431 white line 220 wide band-pass monochromator 88, 91, 93, 96, 115,

116 wiggler 24, 79, 93, 108 Wolter mirror 177, 178, 202

X-ray absorption fine structure (XAFS) 186, 187, 189, 207, 210, 225, 226, 237, 253, 308

X-ray absorption near edge structure (XANES) 189, 197, 198, 201,207, 208, 210, 220, 221,237, 251, 252, 254, 255, 257

X-ray absorption spectroscopy (XAS) 207-209, 230 X-ray attenuation coefficient 454, 463 X-ray CT 454 X-ray diffraction 210, 417 X-ray filter 228

501

X-ray fluorescence analysis (XRF) 79 X-ray fluorescence profile 138, 142, 143, 158, 162 X-ray monochromator 71 X-ray optical elements 173 X-ray photodiode array 467 X-ray-sensing pickup tube 468 X-ray test chart 473 X-ray tube excitation 130 XAFS, s e e X-ray absorption fine structure XANES 441 XANES, s e e X-ray absorption near edge structure XAS, s e e X-ray absorption spectroscopy XMA 308 XPS 308, 441 XRD 201,308 X R F , s e e X-ray fluorescence analysis XRS-84 436 XSW 334

YBa2Cu3Oy 253 Y203 483

z-average radius of gyration 397 zero-point shift 415 zone plate 173, 183, 185

Page 511: Analytical Spectroscopy Library_VOL 7

This Page Intentionally Left Blank