analysis of solar flat-plate collectors -...

150
1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška Faculty of Mechanical Engineering University Centre of Energy Efficient Buildings Czech Technical University in Prague Solar Thermal Collectors, 24.3.2015, Palma de Mallorca

Upload: dodiep

Post on 23-Jul-2018

267 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

1/150

Analysis

of Solar Flat-plate Collectors

Tomáš Matuška

Faculty of Mechanical Engineering

University Centre of Energy Efficient Buildings

Czech Technical University in Prague

Solar Thermal Collectors, 24.3.2015, Palma de Mallorca

Page 2: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

2/150

Content of lectures today

design tool KOLEKTOR for theoretical analysis of flat-plate collectors

introduction into software

downloading, installation, support files, ...

theoretical modelling of collector heat output „step by step“

external energy balance of absorber

internal energy balance of absorber

what influences annual energy yields of collector

examples solved with use of KOLEKTOR and annual simulation in

TRNSYS

Page 3: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

3/150

Design Tool KOLEKTOR 2.2

for Virtual Prototyping

of Solar Flat-plate Collectors

Solar Thermal Collectors, 24.3.2015, Palma de Mallorca

Tomáš Matuška, Vladimír Zmrhal

Faculty of Mechanical Engineering

University Centre of Energy Efficient Buildings

Czech Technical University in Prague

Page 4: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

4/150

Background & Motivation

Lack of software for solar thermal collector modeling:

detailed parameters of solar collector

detailed calculation of heat transfer

user friendly

general use

freely available CoDePro (Madison), TRNSYS Type 103 (CSTB)

wide application range for FP collectors

(evacuated, building integrated, transparent cover structures, HT fluids)

versatile for different heat transfer models (convection, sky radiation)

Page 5: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

5/150

Model inputs and outputs

Inputs:

detailed parameters of individual parts of solar collector

geometry, thermophysical parameters, optical parameters

climatic conditions: ambient temperature, irradiation, wind velocity

operation conditions: input temperature tin, mass flowrate m, slope b

Outputs:

efficiency curve h (based on aperture area Aa)

output temperature from solar collector tout

detailed temperature distribution in collector, heat transfer coefficients

Page 6: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

6/150

Principle of calculation

external balance of absorber

heat flow from absorber surface

to ambient

temperature distribution at main

collector levels (nodes p, z, b)

overall U-value of collector

internal balance of absorber

heat flow from abs.surface to fluid

heat removal factor FR

absorber temperature tabs

heat gain Qu

ainRau ttUGFAQ

Page 7: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

7/150

External balance of absorber

heat transfer coefficients calculation based on temperatures of main nodes

iteration loop for temperature of nodes (starting values based on tabs, U-value

calculation, reverse calculation of temperature distribution)

starting absorber temperature is estimated from input temperature (tabs = tin + 10 K)

Page 8: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

8/150

Internal balance of absorber

heat transfer by fin conduction, bond conduction and forced convection in pipes

iteration loop for mean fluid temperature (starting values based on tin, FR calculation,

reverse calculation of mean fluid temperature), absorber temperature calculation

starting mean fluid temperature is estimated from input temperature (tm = tin + 10 K)

Page 9: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

9/150

Calculation procedure

external and internal balance iteration loops (5 loops enough)

superior iteration loop governing output / inputs

Page 10: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

10/150

Design tool KOLEKTOR 2.2 (2009)

model converted into program based on Visual Basic Studio

concept of “cards” for data inputs

selections in rolling windows

default settings

saving settings of parameters, loading settings

installation pack 400 kB (zipped)

installation for Win XP presume Microsoft.NET Framework installed

new Windows include the Framework environment

Page 11: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

11/150

Features and availability

user-friendly software KOLEKTOR 2.2 is useful for analysis, design

and prototyping

several experimental validations have been performed based on

commercial collectors testing

software tool KOLEKTOR 2.2 is freely available at:

http://users.fs.cvut.cz/tomas.matuska/?page_id=194

mathematical reference handbook as pdf

theoretical background of the tool

downloadable

Page 12: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

12/150

Preparation for installation

local settings in Windows - change to Great Britain settings

e.g. windows 8 – Control Panel – Language

change of datum, time or number format

further settings – using dot in decimal values

do it now ...

Page 13: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

13/150

Download KOLEKTOR and install now ...

http://users.fs.cvut.cz/tomas.matuska/?page_id=194

download kolektor22.zip

unzip it Program files – folder Kolektor will be created

start setup.exe – start installation process

setup also opens the program

for Windows versions higher than XP you don’t need

Microsoft.NET Framework should be included in ...

Page 14: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

14/150

Design tool KOLEKTOR 2.2 (2009)

Page 15: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

15/150

Design tool KOLEKTOR 2.2

Page 16: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

16/150

Design tool KOLEKTOR 2.2

Page 17: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

17/150

Design tool KOLEKTOR 2.2

Page 18: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

18/150

Design tool KOLEKTOR 2.2

Page 19: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

19/150

Default example – usual collector

download as default.kol File – Open – default.kol

http://users.fs.cvut.cz/tomas.matuska/?page_id=194 as zip file

main default collector parameters

solar glazing , transmittance 91 %

standard flat-plate collector with selective coating:

e = 5 % = 95 %

cooper absorber 0.2 mm, risers 10/8 mm, distance 112 mm

absorber – glazing gap 20 mm, absorber – insulation gap 5 mm

insulation thickness 30 mm, mineral wool

slope of collector 45°

Page 20: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

20/150

Calculation possibilities in collector

calculation for given tin

analysis of heat transfer at individual parts of collector

you can play with models ... and see the impact

Page 21: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

21/150

Calculation possibilities in collector

efficiency curve calculation

range if tin from 10 °C to 400 °C

to cover also high-temperature collectors

results can be saved to file = text file, columns separated by

semicolon ;

get the efficiency coefficients h0, a1, a2 by use of evaluation.xls

http://users.fs.cvut.cz/tomas.matuska/?page_id=194

important – set the dots for decimals also in Excel settings

run calculation

Page 22: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

22/150

Solar DHW simulation in TRNSYS

download example SDHW – simple solar system, modified for this

Solnet course

climate data Wurzburg (in data folder)

daily load 200 l, cold water 10 °C, hot water 55 °C

collector area 4 m2, storage tank 200 l, no pipes ... simplified

annual energy yields for changed construction of collector

reference case:

annual yields of collector 1887 kWh/a

solar fraction 50 %

Page 23: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

23/150

Analysis

of Solar Flat-plate Collectors – part 1

Tomáš Matuška

Faculty of Mechanical Engineering

University Centre of Energy Efficient Buildings

Czech Technical University in Prague

Solar Thermal Collectors, 24.3.2015, Palma de Mallorca

Page 24: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

24/150

Content

how to calculate thermal output of solar collector on theoretical basis

from detailed data on construction

at given operation conditions

with use of different alternative models of heat transfer phenomena

to predict the influence of

change in construction of the collector

operation conditions

on efficiency curve

on annual energy yields of the collector

Page 25: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

25/150

Solar thermal flat-plate collector

Header to drawthe heat off

Riser pipes with

heat transfer fluid

Transparent cover

Absorber

Insulation

Collector frame

thermal insulationcover glazing

frame

back frame

header riser

full plate absorber

Page 26: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

26/150

Solar collector energy balance

Heat loss through glazing

Reflection from absorber

Reflection from cover

Solar irradiation

Heat loss through edge and

back sides of collector frame

Useful heat removal

Page 27: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

27/150

Solar collector energy balance

External energy balance of absorber

heat flow from absorber surface to ambient environment

heat losses of the collector

quality of solar collector envelope

Internal energy balance of absorber

heat flow from absorber surface into heat transfer fluid

ability to transfer heat and remove it from collector

quality of absorber construction

Page 28: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

28/150

External energy flows balance of absorber

u

.

tl,

.

ol,

.

s

.

d

dQQQQ

t

Q general description

tl,

.

ol,

.

s

.

u

.

QQQQ steady state dQ/dt = 0

Qs solar energy input [W] Qs = G.Ac

Ql,o optical losses [W] Ql,o = Qs - Qs()ef

Ql,t thermal losses [W] Ql,t = U.Ac (tabs – ta)

Qu useful heat removed from collector [W] Q = Mc(tout – tin)

Page 29: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

29/150

External energy balance: efficiency

)( aabscefcu

.

ttUAGAQ

cGA

Q

Q

Q u

s

u

h

G

ttU

)( aabsef

h

efficiency:

useful heat output:

c

c

GA

ttUAGA aabscef

Page 30: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

30/150

Efficiency formulas

G

ttU

)( aabsef

h

G

ttUF

)(' am

efh

G

ttUFR

)( ainefh

external balance, losses

+ internal balance

influence of absorber design

European standards

+ influence of flowrate,

specific heat of fluid

US standards

Page 31: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

31/150

Solar collector efficiency (based on tabs)

optical losses

thermal losses

efficiency

G

ttU

)( aabsef

h

Page 32: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

32/150

Reference area for calculations

gross area: AG maximum area = HG.LG

edge side area: Ab (2HG + 2LG).B

aperture area: Aa area of glazing = Ha.La

Page 33: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

33/150

Reference area - comparison

Collector testing standards relates collector efficiency to:

aperture area Aa

absorber area AA

gross area AG

aperture area: for comparison of collector properties or design

gross area: for decision on roof production potential

for comparison of collector with different active areas

EN ISO 9806

EN 12975-2

Page 34: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

34/150

Reference area - comparison

Page 35: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

35/150

External energy balance: detailed

Up

Ub

Uz

)()()( aabsbbaabsGzaabsGpefau

.

ttAUttAUttAUGAQ

Up = front U-value

Uz = back U-value

Ub = side U-value

Page 36: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

36/150

Scheme of external balance

Page 37: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

37/150

Wind convection

Wind induced convection heat transfer from cover to ambient:

mix of natural and forced covection

turbulent environment

very dependent on location, terrain morphology, barriers, etc.

Number of models existing for number of boundary conditions

wind tunnel measurements (low turbulence)

outdoor experiments (on roof, on ground, urban, countryside)

Most of wind convection models

empirical linear function wbah w

Page 38: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

38/150

Wind convection

0

5

10

15

20

25

0 1 2 3 4 5 6

w [m/s]

hw

[W

/m2K

]

Theory

Sparrow

Johnson

Watmuff

Sharples

Test

McAdamsfor list of models

see Reference handbook on web

wind

tunnels

more

realistic

how the largest difference in models

influence the calculation

Page 39: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

39/150

Wind convection for w = 3 m/s

how can the model influence calculated output temperature?

run KOLEKTOR programme

open default.kol

Design parameters wind velocity w = 3 m/s

Calculation card select Calculation for given tin

select McAdams ... Calculate

select Watmuff ... Calculate

McAdam’s correlation

hw = 16.1 W/m2K

tout = 55.6 °C

Watmuff correlation

hw = 11.3 W/m2K

tout = 55.7 °C

Page 40: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

40/150

Wind convection for w = 3 m/s

how can the model selection influence the efficiency curve?

Calculation card select Efficiency curve calculation

select McAdams Calculate, Results export to file

select Watmuff Calculate, Results export to file

open Evaluation.xls

make copies of the sheets

open res files in excel, mind the semicolons as separators

compare the efficiency curves based on (tm – te)/G

Page 41: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

41/150

Wind convection for w = 3 m/s

Page 42: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

42/150

Wind convection for w = 3 m/s

how can the model selection influence the annual energy yields?

McAdams h0 = 0.789 a1 = 4.857 a2 = 0.006

Watmuff h0 = 0.791 a1 = 4.664 a2 = 0.006

open studio SDHW-SOLNET in TRNSYS

make a change of coefficients in KOLEKTOR type

results of collector yield find under Totals.txt

compare the annual sums for both alternatives

Page 43: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

43/150

Wind convection for w = 3 m/s

McAdams: 1887 kWh/a

Watmuff: 1911 kWh/a

1.2 %

Page 44: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

44/150

Wind convection for w = 3 m/s

selection of the wind convection models

minor influence even if two models with largest difference selected

valid for usual quality flat-plate collectors (as our reference is)

negligible difference for high quality flat-plate collectors

very critical for unglazed collectors modelling

less critical for PV modules modelling

reduced influence on electric yields via temperature coefficients

Page 45: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

45/150

High wind velocity as test condition

testing standard: air velocity during the testing procedure w > 3 m/s

use of artifical wind needed!

w

Page 46: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

46/150

Sky radiation

)( 4o

4p11pop1 TTq e

ap1

4o

4p1

p1ap1s,TT

TTh

e

4ao

4o TT e

Radiation heat exchange

Sky temperature, sky emittance

Sky radiation heat transfer coefficient related to ambient temperature

[W/m2K]

[K]

[W/m2]

Page 47: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

47/150

Sky temperature models

ao TT ambient temperature Ta

dew point temperature Tdp

water vapour pressure pd

sky clearness index Ko

clear sky conditions

cloudy sky conditions

5.1ao 0552.0 TT

Number of models for sky temperature To calculation based on:

for more see

Reference handbook on web

(Swinbank, 1963)

cloudy sky clear sky

Page 48: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

48/150

Sky temperature models

ao TT 5.1ao 0552.0 TT

Sky temperature calculation based on:

ep1 = 0.85, tp1 = 40 °C, ta = 20 °C to = 3.9 °C

hs,p1-a = 5.38 W/m2K hs,p1-a = 8.97 W/m2K

ep1 = 0.10, tp1 = 40 °C, ta = 20 °C

hs,p1-a = 0.63 W/m2K hs,p1-a = 1.06 W/m2K

considerable decrease of heat transfer coefficient if low-e coating

does it mean also improvement of collector performance?

Page 49: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

49/150

Coupling sky radiation + wind convection

w

[m/s]

hs

[W/m2K]

hp

[W/m2K]

hs + hp

[W/m2K]

0 5.1 / 0.6 5.3 10.4 / 5.9

2 5.0 / 0.6 12.5 17.5 / 13.1

4 5.0 / 0.6 19.7 24.7 / 20.3

6 5.0 / 0.6 26.2 31.2 / 26.8

heat transfer from glazing exterior surface: proportions

q = qs (sky radiation) + qp (wind convection)

convection heat transfer is dominant (if wind is present ...)

Page 50: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

50/150

Influence of sky radiation reduction

Dh = 1 %

not considered reduction of

solar transmittance !!!

Page 51: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

51/150

Influence of sky radiation reduction

Page 52: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

52/150

Conduction through cover glazing

gl

glp2p1v,gl

Lhh

heat conductance

single glazing: glass: gl = 0.8 W/mK, Lgl = 4 mm

hgl = 200 W/m2K

PC: gl = 0.2 W/mK, Lgl = 4 mm

hgl = 50 W/m2K

practicaly negligible

[W/m2K]

Page 53: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

53/150

Conduction through cover glazing

transparent insulation structures

channel structures: hgl = 2 to 8 W/m2K

honeycombs: hgl = 1 to 2 W/m2K

aerogels: hgl = less than 1 W/m2K

function of mean

temperature

Page 54: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

54/150

Conduction through cover glazing

Page 55: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

55/150

Radiation between absorber and cover

111

pabs,p2

4p2

4abs

-p2abss,

ee

TT

q

Radiation heat exchange

ep2 eabs,p

tp2 tabs

[W/m2]

Page 56: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

56/150

Radiation between absorber and cover

tabs 40 °C

tp2 20 °C

eabs,p 0.85 0.10 0.05

ep2 0.85 0.85 0.85

hs,p1-a 4.7 W/m2K 0.6 W/m2K 0.3 W/m2K

8x

14x

influence of absorber emissivity

Page 57: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

57/150

Spectrally selective absorber

how can the absorber emissivity influence the thermal

performance of the solar collector?

influence on efficiency curve

influence on the yields

are low-emittance coating for absorbers needed?

compare eabs = 0.85 eabs = 0.10 eabs = 0.05

Page 58: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

58/150

Spectrally selective absorber

run KOLEKTOR programme, open default.kol

Absorber card change Front surface emissivity

Calculation card select Efficiency curve calculation

Calculate, Export results

open Evaluation.xls

make copies of the sheets for three alternatives

open res files in excel, mind the semicolons as separators

compare the efficiency curves based on (tm – te)/G

Page 59: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

59/150

Spectrally selective absorber

Page 60: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

60/150

Spectrally selective absorber

how can the absorber emissivity influence the annual energy

yields of collector?

eabs = 0.05 h0 = 0.789 a1 = 4.857 a2 = 0.006

eabs = 0.10 h0 = 0.785 a1 = 5.006 a2 = 0.008

eabs = 0.85 h0 = 0.744 a1 = 6.773 a2 = 0.020

open studio SDHW-SOLNET in TRNSYS

make a change of coefficients in KOLEKTOR type

results of collector yield find under Totals.txt

compare the annual sums for both alternatives

Page 61: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

61/150

Spectrally selective absorber

eabs = 0.05: 1887 kWh/a

eabs = 0.10: 1858 kWh/a

eabs = 0.85: 1590 kWh/a

-1.5 %

-16 %

Page 62: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

62/150

Spectrally selective absorber

new cermet coatings with extremely low-emittance are about 1.5 %

better than old-fashioned galvanic coatings

there could be no fear about nonuniformity of coating emittance at the

whole absorber area

it does not matter for annual effectivity

facts above valid for domestic hot water systems

significant difference for high emittance coatings

very critical for high temperature operation – much higher impact on

the annual yields

Page 63: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

63/150

Natural convection in the air gap

Lh

gLvp Nu

coupled convection and conduction heat transfer in closed gas layer

Characteristic dimension:

thickness of gas layer L

Nusselt number:

characterization of conduction heat transfer → g/L

enhancement by fluid convection (driven by buoyancy) → NuL

definition: ratio of the total heat transfer to conductive heat transfer

[W/m2K]

Page 64: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

64/150

Prandtl number:

express conformity of velocity and temperature fields,

ratio of momentum diffusivity (kinematic viscosity) to thermal diffusivity

Convection in the air gap - criteria

Nusselt number: NuL = f (GrL, Pr)

c

aPr

2ch

3

2

3

L

)(2Gr

b

ttLg

TT

tLg

ch

DGrashof number:

ratio of the buoyancy to viscous force acting on a fluid

Page 65: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

65/150

Convection in the air gap - criteria

Rayleigh number:

ratio of buoyancy forces to thermal and momentum diffusivities of fluid

a

ttβgL

ch

3 -PrGr Ra

for standard conditions

400 < Gr < 60 000

0.72 < Pr < 0.73

300 < Ra < 44 000

Page 66: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

66/150

Structure of the convection models

1

5830

cosRa

cosRa

1708)8.1(sin1

cosRa

1708144.11Nu

3/16.1

L

LLLHollands:

cosRa

17081446.11Nu

LLBuchberg:

285.0cosRa157.0Nu LL

29.02 )45(cosRa118.0Nu LLRandall:

n

m

L

KL

L

Ra

)Ra(1NuNiemann:

for more see

Reference handbook on web

Page 67: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

67/150

Convection in the air gap – optimum L

application

region

impractical

region

slope 45°, absorber 60 °C, glass 20 °C

Page 68: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

68/150

Slope dependence

Hollands

applicable range 0 to 60°

absorber 60 °C, glass 20 °C

Page 69: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

69/150

Slope dependence 0°

absorber 60 °C, glass 20 °C

Page 70: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

70/150

Slope dependence 45°

absorber 60 °C, glass 20 °C

Page 71: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

71/150

Slope dependence 90°

absorber 60 °C, glass 20 °C

Page 72: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

72/150

Convection in inclined air layer

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70 80 90

slope [°]

NuL

Schinkel

Randall

Hollands

Buchberg

A1-correlation

RaL = 104

RaL = 105

RaL = 106

Page 73: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

73/150

Slope impact on collector efficiency

increase of slope angle

decrease of front heat loss

increase in efficiency

Page 74: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

74/150

Slope impact on collector efficiency

results from testing at cca 1000 W/m2

Page 75: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

75/150

Convection in the back air gap

in the range 90 < < 180°

sin]1)90(Nu[1Nu LL

Th

Th

Tc

Tc

Arnold (1975)

Page 76: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

76/150

Convection vs. slope

Nu = 1

Page 77: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

77/150

Radiation between absorber and frame

111

zabs,z2

4z2

4abs

z2-abss,

ee

TT

q

Radiation heat exchangeeabs,z ez2

tabs tz2

treatment of insulations:

aluminium foil

applied to mineral wool

ez2 = 0.1 is it needed?

Page 78: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

78/150

Radiation between absorber and frame

example: internal frame insulation surface emittance ez2

tabs = 60 °C, ta = 20 °C, back insulation 30 mm, air gap dz2

case 1: dz2 = 20 mm

ez2 = 0.5 Uz = 1.10 W/m2K

ez2 = 0.1 Uz = 0.96 W/m2K

case 2: dz2 = 5 mm

ez2 = 0.5 Uz = 1.22 W/m2K

ez2 = 0.1 Uz = 1.17 W/m2K

15 %

4 %

Page 79: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

79/150

Radiation between absorber and frame

back air gap 20 mm back air gap 5 mm

ez2 = 0.1ez2 = 0.5 ez2 = 0.1ez2 = 0.5

it has almost no

impact if there is

aluminium foil or not

Page 80: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

80/150

Heat conduction through frame insulation

0,03

0,04

0,05

0,06

0,07

20 40 60 80 100

t m [°C]

[

W/m

K]

2210ins tt

ins

insz2z1v,ins

Lhh

heat conductance of insulation layer

insulation – thermal conductivity:

mineral wool: = 0.045 W/mK

PUR foam: = 0.035 W/mK

polystyren: weak resistance

to thermal load

[W/m2K] t0025.010ins

thermal conductivity = f (t)

Page 81: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

81/150

Thermal conductivity of mineral wool

polynomic function

Page 82: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

82/150

Insulation thickness in collector

how can the thickness of insulation influence the thermal

performance of the solar collector?

influence on efficiency curve

influence on the yields

what insulation thickness is reasonable?

compare 20 mm 30 mm 50 mm

Page 83: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

83/150

Insulation thickness in collector

run KOLEKTOR programme, open default.kol

Glazind & insulation card change Insulation thickness

Calculation card select Efficiency curve calculation

Calculate, Export results

open Evaluation.xls

make copies of the sheets for three alternatives

open res files in excel, mind the semicolons as separators

compare the efficiency curves based on (tm – te)/G

Page 84: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

84/150

Insulation thickness in collector

Page 85: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

85/150

Insulation thickness in collector

how can the absorber emissivity influence the annual energy

yields of collector?

20 mm h0 = 0.782 a1 = 5.272 a2 = 0.007

30 mm h0 = 0.789 a1 = 4.857 a2 = 0.006

50 mm h0 = 0.796 a1 = 4.451 a2 = 0.006

open studio SDHW-SOLNET in TRNSYS

make a change of coefficients in KOLEKTOR type

results of collector yield find under Totals.txt

compare the annual sums for both alternatives

Page 86: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

86/150

Insulation thickness in collector

20 mm: 1887 kWh/a

30 mm: 1858 kWh/a

50 mm: 1950 kWh/a

-3 %

+3 %

Page 87: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

87/150

Insulation thickness in collector

compared to 30 mm of mineral wool double thickness of insulation

brings only several percents

80 to 90 % of the collector heat loss is the front side (top) loss

increase of insulation on the back side cannot proportionally help

change of thermal conductivity by tens of percents due degradation

will not significantly change the energy yields (by percents)

it does not matter for annual effectivity

facts above valid for domestic hot water systems

Page 88: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

88/150

Radiation between frame and adj. surface

111

asz1

4as

4z1

as-z1s,

ee

TT

q

Radiation heat exchange between frame of collector and roof

ez1 eas

tz1 tas= ta

any treatment of external frame

surface is useless

wind convection

frame insulationsupress any influence

[W/m2]

Page 89: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

89/150

Collector heat loss coefficient: U-value

p2absp,p2abss,p2p1v,ap1p,ap1s,

p 111

1

hhhhh

U

z2absp,z2abss,z2z1v,az1p,az1s,

z 111

1

hhhhh

U

qp qz

Page 90: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

90/150

Collector heat loss coefficient: U-value

aabbGzGpGG AUAUAUAUAU

a

G

G

bzzpa

A

A

A

AUUUU

aabsaa

aabsGG

ttAUQ

ttAUQ

tl,

tl,

for calculations:

U-value related to

aperture area Aa

Page 91: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

91/150

Iterations for temperatures

calculation of heat transfer coefficients:

temperatures tabs, tp1, tp2, tz1, tz2, (tb1, tb2) are required

but not available at the start of calculation

example of iterative determination for front heat flow:

1. estimate: tabs = tin + Dt

2. estimate: tp1, tp2

3. calculation of heat transfer coefficients h

4. calculation of overall heat flow rate qp

5. reverse calculation of temperatures and then repeat from (3.)

3aabs

absp2

tttt

3aabs

ap1

tttt

Page 92: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

92/150

Iterations for temperatures

qp

aabspp ttUq

p1absp1absp,p1abss,p tthhq

p2p1p2p1v,p tthq

ap2ap2p,ap2s,p tthhq

temperature difference is

proportional to heat resistance

Page 93: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

93/150

1. estimation of temperatures

Page 94: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

94/150

Last iteration

Page 95: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

95/150

Convergence of calculations

absorber temperature 35 °C

ambient temperature 25 °C

Page 96: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

96/150

Results of external balance

U-value of solar collector dependent on:

temperature of absorber

ambient temperature, wind velocity, sky temperature

geometry of solar collector

detailed properties of collector elements, used material (conductivity),

surface emittance

adjacent structure properties (emittance, envelope thermal

resistance)

Page 97: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

97/150

Analysis

of Solar Flat-plate Collectors – part 2

Tomáš Matuška

Faculty of Mechanical Engineering

University Centre of Energy Efficient Buildings

Czech Technical University in Prague

Solar Thermal Collectors, 24.3.2015, Palma de Mallorca

Page 98: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

98/150

Solar collector energy balance

External energy balance of absorber

heat flow from absorber surface to ambient environment

heat losses

quality of solar collector envelope

Internal energy balance of absorber

heat flow from absorber surface into heat transfer fluid

ability to transfer heat and remove it from collector

quality of absorber construction

Page 99: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

99/150

Internal energy balance

absorber

temperature

Page 100: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

100/150

Energy balance of absorber fin

width W = distance

between riser pipes

De = 2a = 2 · bond width

fin heat transfer Lfin

bond heat transfer Lb

pipe-fluid heat transfer hi p Di

TfinT0 Tw

bond temperature tb = tw (wall temperature)

Page 101: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

101/150

Energy balance of absorber fin

solar irradiation

case of standard fin efficiency concept but with solar irradiation

known from air-water heat exchangers theory

Ta

U

Page 102: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

102/150

Energy balance of absorber fin element

x

absabsx

Td

d

d

xGD

derivation of temperature distribution between tubes (in absorber fin)

0d

d

d

d

DD

D xx

absabs

x

absabsax

Td

x

TdTTxUxG

U

STT

d

U

dx

Tda

absabs2

2yields in solution of differential

equation of 2nd order

aTTxU D

xx

absabsx

Td

D

d

d

Page 103: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

103/150

Fin efficiency F

standard fin efficiency

(rectangular profile) 2/)(

]2/)(tanh[

e

e

DWm

DWmF

(W - De)/2 or (W - 2a)/2... active fin length

soldering ultrasonic welding

Page 104: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

104/150

Fin efficiency F

standard fin efficiency

(rectangular profile) 2/)(

]2/)(tanh[

e

e

DWm

DWmF

absabsd

Um

U ... collector heat loss considered from absorber surface to ambient

(result from external balance)

significant influence of thermal conductivity and thickness of absorber

conductivity and thickness of absorber are improportional

higher fin efficiency = higher heat removal from absorber

Page 105: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

105/150

Fin efficiency F

reference case: fin efficiency 0.96

copper absorber (390 W/mK), dabs = 0.2 mm, fin W* = W - 2a = 100 mm

heat loss coefficient U = 4 W/m2K

aluminium (240 W/mK)

dabs = 0.20 mm, W* = 79 mm

dabs = 0.32 mm, W* = 100 mm

steel (80 W/mK)

dabs = 0.2 mm, W* = 45 mm

dabs = 1.0 mm, W* = 100 mm

EPDM (0.14 W/mK) dabs = 2.0 mm, W* = 6 mm

Page 106: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

106/150

Plastic absorbers

Page 107: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

107/150

Best absorbers – fully wetted metal sheet

F’ = 1.0

Page 108: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

108/150

Influence of material and geometry

0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.05 0.10 0.15 0.20

(t m - t e)/G [m2.K/W]

h [

-]

copper (Cu) 390 W/(m.K)

aluminium (Al) 250 W/(m.K)

steel (Fe) 100 W/(m.K)

0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.05 0.10 0.15 0.20

(t m - t e)/G [m2.K/W]

h [

-]

W = 50 mm

W = 125 mm

W = 200 mm

Page 109: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

109/150

Efficiency factor F’

how efficient is heat transfer from absorber surface to heat transfer fluid ?

lossambienttoeabs.surfac

lossambienttoliquido U

UF '

U Uo

heat resistances:

conduction through fin

conduction through bond

convection inside pipe

mabsc

absc

ttq

tqF

'or

Page 110: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

110/150

Collector performance based on tm

G

ttUF amh '

G

tta

G

tta amam

2

210

hh

useful heat gain from collector

)]([' amu

.

ttUGFAQ

collector efficiency

analogy to experimentally obtained efficiency curve reported by testing

institutes

2outin

m

ttt

Page 111: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

111/150

Efficiency factor F’

ifib

11

22

1

1

DhCFaWaUW

UF

p])([

/' function of fin efficiency F

Page 112: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

112/150

Efficiency factor – absorber designs

ifib

11

22

1

1

DhCFaWaUW

UF

p])([

/'

ifi

1

22

1

1

DhFaWaUW

UF

p])([

/'

FaW

W

C

WUW

aDh

WUF

2

12

1

1

b

ifi

p

'

Page 113: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

113/150

Bond conductance

b

aC b

b

bond conductance – estimated from geometry and quality of contact

good metal-to-metal contact needed (welding, soldering, pressing)

no clamping of absorber to pipes !

bond conductance > 30 W/mK needed

Page 114: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

114/150

Bond conductance

0,0

0,2

0,4

0,6

0,8

1,0

0,00 0,05 0,10 0,15 0,20

(t m - t a)/G [m2.K/W]

h [

-]

300 W/m.K

30 W/m.K

3 W/m.K

practically no difference

between high and

middle quality bonds

for Cb < 30 W/mK significant reduction of collector performance

brazed contact

ultrasonic welded contact

Page 115: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

115/150

Bond conductance: testing

0,0

0,2

0,4

0,6

0,8

1,0

0,00 0,05 0,10 0,15 0,20

(t m - t a)/G [m2.K/W]

h [

-]

clamped absorber

touching absorber

welded absorber

touched by press

clamped bond

Page 116: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

116/150

forced convection heat transfer in pipes is given by:

heat transfer fluid type

collector flow rate

concept of collector hydraulic

(parallel, serial-parallel, serpentine)

number of risers (flow rate distribution)

diameter of risers

temperature

Convection heat transfer inside pipes

Page 117: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

117/150

Convection heat transfer inside pipes

Nusselt number as criterion, number of models are available for

laminar flow (mostly present in collector), turbulent flow

constant heat flux case (uniformly irradiated absorber condition)

constant temperature (heat transfer with phase change)

fully developed profile, entry region with developing profile of velocity

and temperature

i

fDfi Nu

Dh

Page 118: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

118/150

Nusselt number in circular pipes

laminar flow, fully developed velocity and temperature profile,

constant heat flux

(Shah)364.411

48NuD

laminar flow, entry region of length L, developing profile, constant

heat flux

03.0**

0722.0364.4

03.0**953.1

Nu

3/1

DL

L

LL(Shah)

PrRe

/Gz*

D

i1

DL

L Gz ... Graetz number

Page 119: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

119/150

Nusselt number in circular pipes

turbulent flow

(Dittus-Boelter, Colburn, Sieder-Tate)nmA PrReNu DD

(Gnielinski)

1Pr8/7.121

Pr1000Re8/Nu

3/22/1D

D

f

f

2D 64.1Reln79.0

fwhere for smooth pipes

for more models see Reference handbook to KOLEKTOR

Page 120: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

120/150

Convection heat transfer inside pipes

high heat transfer require

high velocity

higher flow rate

low dimension

low viscosity

high conductivity of liquid

high Reynolds number

high Nusselt number

Page 121: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

121/150

Convection heat transfer inside pipes

0

200

400

600

800

1000

1200

4x0,5 6x0,5 8x0,8 10x1 12x1 15x1 18x1 22x1 28x1

risers size [mm]

hfi

[W

/m2.K

]

water (high-flow)

water (low-flow)

PPG (high-flow)

PPG (low-flow)

high flow: 0.025 kg/s.m2

low flow: 0.005 kg/s.m2

hfi = 200 to 400 W/m2K

Page 122: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

122/150

Influence of riser pipe diameter

ifib

11

22

1

1

DhCFaWaUW

UF

p])([

/'

ppp fif

i

ifi D

D

Dh Nu

11

Nu

1

V

L

V

D

D

L

DuD

LL i

iii 44

2

2

pp

.

.*

is independent of D in laminar flow

laminar flow

364.4)constant(NuD f

*)(NuD Lf

termDhip

1

term is dependent directly on Nu

thermal diffusivity

Page 123: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

123/150

Analysis of efficiency factor F’

])([

1

FDWDU ee spojC

1

ii Dh p

1

U = 4 W/m2.K 2,6 0,004 0,099

length L = 2 m, fin width W = 100 mm, absorber thickness d = 0.2 mm,

copper = 350 W/m.K, pipe De/Di = 10/8 mm

bond conductance Cb = 250 W/K

hi = 400 W/m2K

heat transfer coefficient: minor influence to F’ if hi > 200 W/m2K

bond conductance: minor influence to F’ if Cb > 30 W/mK

geometry is principal property of absorber if low heat loss collector

Page 124: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

124/150

Do we need for turbulators in pipes?

ii Dh p

1 F’

U = 4 W/m2K

hi = 400 W/m2.K 0.099 0.919

hi = 600 W/m2.K 0.066 0.931

length L = 2 m, fin width W = 110 mm, absorber thickness d = 0.2 mm,

copper = 350 W/m.K, pipe De/Di = 10/8 mm

bond conductance Cb = 200 W/K

U = 4 W/m2K

enhancement of heat transfer inside pipe by 50 %

minor influence to F’ change by 1.3 %

Page 125: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

125/150

Fully wetted absorber vs. fin&tube

how can the geometry of the absorber influence the thermal

performance of the solar collector?

influence on efficiency curve

influence on the yields

fully wetted absorber from steel

type of bond middle, pipes De/Di = 6/5 mm, bond a/b = 3/1 mm

material steel, thickness 0.5 mm

bond conductivity 100 W/mK

number of channels 145 pcs (not 150 pcs) ... W = 6.01 mm > De

Page 126: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

126/150

Fully wetted absorber vs. fin&tube

run KOLEKTOR programme, open default.kol

Absorber card make the changes Material, Type of bond

change Geometry, dimensions

Calculation card select Efficiency curve calculation

Calculate, Export results

open Evaluation.xls

make a copy for the wetted alternative

open res file in excel, mind the semicolons as separators

compare the efficiency curves based on (tm – te)/G

Page 127: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

127/150

Fully wetted absorber vs. fin&tube

Page 128: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

128/150

Fully wetted absorber vs. fin&tube

how can the absorber geometry influence the annual energy

yields of collector?

fin&tube h0 = 0.789 a1 = 4.857 a2 = 0.006

fully wetted h0 = 0.877 a1 = 5.371 a2 = 0.007

open studio SDHW-SOLNET in TRNSYS

make a change of coefficients in KOLEKTOR type

results of collector yield find under Totals.txt

compare the annual sums for both alternatives

Page 129: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

129/150

Fully wetted absorber vs. fin&tube

fin & tube 1887 kWh/a

fully wetted: 1999 kWh/a +6 %

Page 130: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

130/150

Fully wetted absorber vs. fin&tube

fully wetted absorber could improve the annual energy performance

by more than 5 % while steel could be cheaper material than copper

Page 131: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

131/150

Fully wetted absorber vs. fin&tube

did we make a mistake in calculation? can geometry influence losses?

fin&tube

h0 = 0.789

a1 = 4.857

a2 = 0.006

fully wetted

h0 = 0.877

a1 = 5.371

a2 = 0.007 both collectors have same losses!

both collectors have same U-value!

a1+a2(tm-te) = F’U

F’=0.996

F’=0.901

U=5.39 W/m2K

for given DT

coefficients h0, a1, a2 are one complex and cannot be separated

Page 132: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

132/150

Single glass vacuum tube / flat absorber

direct flow

concentric direct flow

heat pipe

Vacuum tube collectors x efficiency factor

firm metal contact absorber-pipe provides high F’

Page 133: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

133/150

Vacuum tube collectors x efficiency factor

all glass concentric tube (Dewar)

cylindric absorber (internal) glass

tube

cover (external) glass tube

vacuum in space between

absorber coating applied on exterior

surface of internal glass tube

conductive heat transfer fin in contact

with interior surface

Double-glass (Sydney) vacuum tube

problematic contact absorber-pipe ...

Page 134: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

134/150

Sydney vacuum tube collectors

Page 135: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

135/150

Thermal analysis of direct flow VTC

contact fin: short (W), conductive (), thick (d)

bond-contact: conductive; absorber tube-fin, fin-pipes

heat removal: laminar / turbulent flow in pipes

G

ttUF amh '

given by Sydney tubetube collector scheme of heat

transfer

Page 136: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

136/150

Influence of contact fin

contact fin is a

principle element in

Sydney collector

Sydney vacuum tube collectors with

direct flow U-pipe register

G > 700 W/m2

Page 137: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

137/150

Contact resistance in heat pipe VTC

Heat pipe (phase change of working liquid, high heat transfer coefficients)

evaporator (in contact with fin transfering the heat from inner glass tube)

condenser (placed into manifold box)

Page 138: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

138/150

Contact resistance in heat pipe VTC

15-20 %

Page 139: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

139/150

Temperature distribution in flow direction

derivation of temperature distribution between tubes (in absorber fin)

0/ D

D uyyfyf yqTcn

MTc

n

M

yields in solution of differential equation of 1rst order

DYY

(M/n)cTfY+DY

(M/n)cTfY

qu DY

fluid flow

Page 140: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

140/150

Heat removal factor FR

cM

UFA

UA

cMF

'exp1 c

cR

mathematical derivation of temperature profile: see Duffie, Beckman (2006)

definition: relates the actual collector gain to gain if absorber surface at

fluid inlet temperature

ainc

inout

ttUGA

ttcMF

R

equivalent to effectiveness of heat exchanger, ratio of actual heat

transfer to maximum possible heat transfer

Page 141: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

141/150

Heat removal factor FR

heat removal factor is dependent on:

efficiency factor F’ (geometry, quality of absorber, fin efficiency F, ...)

collector U-value (heat losses)

specific heat of fluid c (type of fluid)

specific mass flow through collector M / Ac (thermal capacity of flow)

Page 142: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

142/150

Water vs. propylene glycol

how can the heat transfer fluid influence the thermal

performance of the solar collector?

influence on efficiency curve – collectors are tested with water, does

anything change when filled with glycol?

propylene glycol / water

mixture 50 % / 50 % for freezing point -32 °C

8x viscous at 20 °C, high influence of temperature, only 2x at 80 °C

lower specific heat by cca 25 %

worse heat transfer

Page 143: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

143/150

Water vs. propylene glycol

run KOLEKTOR programme, open default.kol

Absorber card make the change of fluid

Calculation card select Efficiency curve calculation

Calculate, Export results

open Evaluation.xls

make a copy for glycol alternative

open res file in excel, mind the semicolons as separators

compare the efficiency curves based on (tm – te)/G

Page 144: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

144/150

Water vs. propylene glycol

Page 145: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

145/150

Efficiency curve

0,0

0,2

0,4

0,6

0,8

1,0

0,00 0,02 0,04 0,06 0,08 0,10

(t - t a )/G [m2K/W]

h

h = f (tin)

h = f (tm)

h = f (tabs)

Page 146: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

146/150

Useful heat output of solar collector

aabscu ttUGAQ

amcu ttUGAFQ '

aincu ttUGAFQ R

based on absorber temperature, external balance of absorber

based on mean fluid temperature, experimental work

based on fluid inlet temperature, simulation tools

Page 147: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

147/150

Solar collector temperatures

mean absorber temperature

mean fluid temperature

)1(/

RR

cu

.

inabs FUF

AQtt

)'

1(/ R

R

cu

.

inmF

F

UF

AQtt

inmout 2 ttt

fluid output temperature

based on

fluid inlet temperature

Page 148: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

148/150

Solar collector efficiency

G

ttU aabs

h

G

ttUF amh '

G

ttUF ainh R

based on absorber temperature

based on mean fluid temperature

based on fluid inlet temperature

Page 149: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

149/150

Solar collector performance calculation

calculation model

operation

parameters

climatic data optical properties

material properties geometry

Qu

h

tout

Page 150: Analysis of Solar Flat-plate Collectors - cvut.czusers.fs.cvut.cz/.../uploads/2015/02/matuska_solnet_collectors.pdf · 1/150 Analysis of Solar Flat-plate Collectors Tomáš Matuška

150/150

Conclusions of the day

KOLEKTOR is a design tool for virtual prototyping

to perform calculations of designs without need for fabrication

prototypes

to optimize construction and design of collector

KOLEKTOR is not perfect, but relevant TRNSYS type is on the way

for modelling solar thermal collectors (Slava Shemelin)

extension for glazed PVT collectors (Nikola Pokorny)

efforts for extremely high performing solar thermal collectors could

be sometimes useless if target is annual performance and not

marketing