analog integrated filters - Πανεπιστήμιο Πατρών · 2018. 6. 8. · 3...

102
1 Analog Integrated Filters C. Psychalinos Assist. Professor UNIVERSITY OF PATRAS DEPARTMENT OF PHYSICS SECTION OF ELECTRONICS & COMPUTERS ELECTRONICS LABORATORY GR-26500, Rio, Patras, GREECE

Upload: others

Post on 05-Feb-2021

7 views

Category:

Documents


0 download

TRANSCRIPT

  • 1

    Analog Integrated Filters

    C. PsychalinosAssist. Professor

    UNIVERSITY OF PATRASDEPARTMENT OF PHYSICS

    SECTION OF ELECTRONICS & COMPUTERSELECTRONICS LABORATORY

    GR-26500, Rio, Patras, GREECE

  • 2

    Part-I: Overview

  • 3

    Classification of filters– Analog filters

    A/Dconverter

    DSP D/Aconverter

    Analogreconstruction

    filterIN OUT

    Analogbandlimiting filter

    – Digital filters

    • Continuous-time

    • Sampled-data

    LC, RC, gm-C, Log-Domain,….

    IN OUT

    S/H SC, SIAnalog

    reconstructionfilter

    IN OUTS/HAnalog

    bandlimiting filter

  • 4

    Digital vs. Analog Implementations

    ☺Programmability.☺Flexibility.☺Short design cycles.☺Good immunity to noise.☺Good immunity to manufacturing process tolerances.

    Their performance is degraded in very high frequency applications.

  • 5

    The analog part provides the I/O interface (amplification, filtering, etc.) to the core of the chip which is digital.

  • 6

    The approximation problem • Frequency response of ideal filters

    Lowpass filter Highpass filter

    Bandpass filter Bandreject filter

    The above responses could not be realized by causal systems.

    Gain

    ω0 ω c

    1

    Gain

    ω0 ω c

    1

    Gain

    ω0 ωc1

    1

    ωc2

    Gain

    ω0 ωc1

    1

    ωc2

  • 7

    • Practical specifications for a LP filter

    • Characteristic transfer functions.

  • 8

    • Chebyshev vs Butterworth responses.

    ☺Higher attenuation in stopband.☺Steeper roll-off near the cut-off frequency.

    More complex filter realizations.Less linear phase characteristics.

    The choice of frequency response that should be implemented, requires trade-off between the above conflicting requirements.

  • 9

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛−

    PB

    SB

    PB

    SB

    A

    A

    N

    ωω

    log

    110110log 1.0

    1.0

    • Determination of the order of a Butterworth filter.

  • 10

    LC ladder filters

    υ

    R

    Rin

    1 3 5S

    LCL

    i i

    LC C1

    2

    2 4

    4

    3 5 out

    o

    o

    υ

    υ υ υ

    ☺A doubly terminated LC ladder has the advantage of low sensitivity to component tolerances.☺LC ladder filters are mainly used in very high frequency

    applications.

    Inductors are heavy and bulky and thus they are difficult to adapt to IC realization.

  • 11

    Active RC filters• Miller integrator

    C

    R

    Uo

    Uin

    RCssUsUsH

    ino 1

    )()()( −==

    RCsH oo

    1 ,)( == ωω

    ω ωo: unity-gain frequency

    Frequency response

  • 12

    • First-order filters

    C

    R1

    Uo

    Uin

    R2

    11

    )()()(

    212

    +−==

    CsRRR

    sUsUsH

    ino

    21

    2

    1

    1)(

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛+

    =

    c

    RRjH

    ωω

    ω

    Gain(dB)

    ω

    0

    ωc=1/RC

    -3Frequency response

    The cutoff frequency is determined by the integrator’s time constant.

  • 13

    • Second-order filters (Biquads)

    They are constructing using two-integrator loop.

    Tow-Thomas Biquad

  • 14

    Design of high-order RC filters• Using second-order sections in cascade connection or

    with multiple-loop feedback.

    • Simulating the corresponding LC ladder prototypes.

    – Functional simulation of LC ladders.– Topological simulation of LC ladders.

  • 15

    • Cascade connection of biquads

    ∏=

    =n

    jj sTsT

    1)()(

    Design procedure for maximizing the Dynamic Range•Pole-zero pairing: each pole is assigned to the closest zero.

    •Section ordering: in the order of increasing values of Q. In addition, LP or BP are employed as first section and HP or BP are

    employed as last section.

    •Gain assignement: the gain constants are computed in such a way that the maxima of output voltages of all sections would be made equal.

    ☺Easy to design and tune.

    Higher sensitivity, in comparison to other filter configurations.

  • 16

    • Functional simulation of LC ladders

    VoC3

    L2

    C1

    Rs

    Vin RL

    V1 V3

    I2

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛−−=

    −−=−

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛−

    −−=−

    2L

    3

    33

    312

    2

    2s

    1in

    11

    IRV

    sC1V

    )VV(sL1I

    IR

    VVsC1V

    LC ladder prototype

    Voltage/current equations

  • 17

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛−−=

    −−=−

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛−−−=−

    RIVRR

    sRC1V

    )VV(R/sL

    1RI

    RIVRRV

    RR

    sRC1V

    23L3

    3

    312

    2

    21s

    ins1

    1

    1

    1sRC

    −RsL /

    12 3

    1sRC

    −LR

    R

    V3=Vo

    1

    1

    1

    1-V1

    sRR

    sRR

    Vin -I2R

    Signal Flow Graph (SFG)

  • 18

    Active RC filter

    Vo

    R7

    R2

    C1a

    rr

    R3

    R4R6

    R5

    C2a

    C3a

    R1Vin

  • 19

    • Topological simulation of LC ladders

    I1 I2

    V1 V2f(s) 21

    21

    I)s(f

    kI

    kVV

    =

    = L1i Z)s(fZ ⋅=

    • General impedance converter-GIC

    s2i Z)s(f1Z =

    s R sR

    Simulation of a grounded inductance

  • 20

    V1

    I1 R2 R3 R4 C5

    V2

    I2

    Antoniou circuit

    RCs)s(f =

  • 21

    C1

    RLL2

    C1

    RL s R

    R2 R3 R4 C5C1

    RL R

    LC prototype

    Equivalent circuit using GIC

    Active RC filter

    Steps of design

  • 22

    MOSFET-C filters

    C

    Uo

    Uin

    Vc

    ☺ Resistors are replaced by MOS transistors operated in linear region. Their values are electronically adjustable by the gate voltage.

    ☺ The developed active RC design methods can be directly used in MOSFET-C filters.They suffer from the nonlinearities introduced by MOS transistor.Reduced dynamic range in comparison to active RC filters

    MOSFET-C Miller integrator

    Fully balanced structures are used, in order to reduce the distortion introduced by MOS transistor.

    In low-frequency applications (ωc=10krad/sec) in case of active RC filters,a resistor with value 5MΩ is required, in case that C=20pF.

  • 23

    Transconductance-C (Gm-C) filtersThe opamp frequency limitations (finite GBW) degrade the performance of active RC, MOSFET-C and SC filters.

    Basic CMOS transconductance stage

    )( 21 ininmout VVGi −⋅=

    Box

    m ILWCG

    =

    ☺ Gm is electronically adjustable.☺ The stage has simpler structure, in comparison to the op-amp.

  • 24

    Gm

    Vin

    C

    Vo

    • Basic building blocks for functional simulation of LC ladders & biquads

    Lossless integrator

    sCG

    VV m

    in

    o −=

    Gm1

    Vin

    C

    Vo

    Gm2

    Lossy integrator

    1

    1

    22

    1

    +=

    sGm

    CGG

    VV

    m

    m

    in

    o

  • 25

    VinVo

    Gm1 Gm2 Gm3 Gm4 Gm5 Gm6G

    m7Gm8 C2 C3 C4 C5 C6

    5-th order LP Gm-C filter.

    υ υ'

    υ

    υ'

    υ υυ

    -1 -1

    -1 -1

    1

    1 1 1

    1 1in

    2

    3

    4

    5out

    1

    RC s RC sRC s(L R) s1 532 41 111 1

    + +

    + +

    (L R) s-1

    +

    -1

    SFG

    Configuration of filter

  • 26

    • Basic building blocks for topological simulation of LC ladders

    Inductance simulation

    Gm1

    Gm2

    C

    Gm2 Gm1 Gm2

    C

    21 mmeq GG

    CL =

  • 27

    Current-Conveyor (CCII) filters

    ∞→

    ∞→

    =

    =

    z

    x

    y

    xz

    yx

    RR

    R

    ii

    0

    υυDefinitions for CCII

    RCssIsIsH

    io 1

    )()()( ==

    • CCII lossless integrator

  • 28

    Current Amplifier filters

    Mnc3

    Mp1 Mp2 Mp3 Mp5

    Mpc1 Mpc2 Mpc3 Mpc4

    Mn2 Mn4

    iin

    Vb2

    1 1 1: : :

    Mnc2Mnc1

    Mn1

    1

    VDD

    Mnc5

    Mpc6

    Mn5

    iout

    1

    oI

    1

    Mn3

    iout

    Mp6

    VSS

    Vb1

    Mnc4

    Mpc5

    Mp4

    : :

    INOUT+OUT-

    iin iout

    ioutC

    current amplifierIN

    OUT-

    OUT+

    inout iAi ⋅=

    mgRRCs

    sH

    /11

    1)(

    =+

    =

    • Lossy integrator

    ☺ The time-constant of integrator can be electronically adjusted

    om ILWKg 2=

  • 29

    Switched-Capacitor (SC) filtersThe time-constants in active RC circuits could not be accurately implemented on chip.Large resistor values are needed in case of low-frequency applications.

    1

    1/ CT

    VTVC

    i ininav ==

    1CTReq =

    SC integrator

    ☺ The time-constant is:

    ☺ For a resistor value of 10MΩ, and using 100kHz clock, a capacitor 1pF is needed.

    1

    2CCT ⋅=τ

    ☺ The time-constant of integrator is defined by capacitors ration and thus the achieved accuracy is 0.1%.

    ☺ Tuning is achieved using that clock frequency.

  • 30

    )2Tt(C)t(q nin1n1 −= υΔ

    )]Tt()t([C)t(q nono2n2 −−−= υυΔ

    )t(q)t(q nn 21 ΔΔ =

    12/1

    21

    ino

    2/1z1

    zCC

    )z(V)z(V)z(H −

    −−==

    The previous direct replacement of resistors by switched capacitors is valid only in case that the clock frequency is much higher than the signal frequency.The frequency limitations of op-amps degrade the performance of SC filters.

    Setting z=ejω:)2/sin(

    2/j

    C/C)(H 212/1 ωω

    ωω −=

    ☺SC filters were designed using s-z transformations.

  • 31

    The circuit is sensitive to the effect of parasitic capacitances.

    z1z

    CCC

    )z(V)z(V)z(H 1

    2/1

    2

    1p1

    ino

    2/1 −−

    +−==

    ☺ SC integrator insensitive to the effect of parasitic capacitances.

    z11

    CC

    )z(V)z(V)z(H 12

    11/1

    in

    o−−

    −==

  • 32

    • Steps for designing SC filters

    VoC3

    L2

    C1

    Rs

    Vin RL

    V1 V3

    I2LC ladder prototype

    Continuous-time SFG

  • 33

    Discrete-time SFG using s-z transformation

    ⎟⎠⎞

    ⎜⎝⎛=−= −

    2sin

    T2 ,

    zz1

    T1s 2/1

    1 ωΩ

    The above SFG was derived using the LDI transformation

  • 34

    SC filter

  • 35

    Switched-Current (SI) filters

    L2WC

    iJVoxo

    inTGS μυ

    ++=

    Basic memory element

    2/1

    in

    o2/1 Az)z(i

    )z(iH −−==

    •In time-slot 1 the voltage at gate capacitance is equal to:

    •In time-slot 2 transistor M1 sustains its drain current, and thus:

    ☺ Capacitors are not further needed and as a result SI filter are fully compatible with standard digital CMOS process.

  • 36

    Dynamic current copier cell

    2/1

    in

    o2/1 z)z(i

    )z(iH −−==

    ☺ This cell is insensitive to the effect of MOS transistor parameters mismatch.

    Scaling of output current is not available.

    Full period delay cell

  • 37

    • SI lossless integrator

    1

    11/1

    1)( −

    −=

    zzAzH

    21/1

    2sin

    2)(ω

    ωω

    ω

    ω

    jj e

    jAeH

    ⎟⎠⎞

    ⎜⎝⎛

    =

    Transfer function

    Frequency response

    ☺ The time-constant of integrator is defined by the MOS transistors aspect ratio.

  • 38

    1

    1

    1/1

    111

    1)(−

    +−

    +=z

    B

    zB

    A

    zH

    BB

    T

    j

    BA

    eH j

    +

    +=

    221

    )(1/1 ωω

    frequency off-cut 2

    2

    gain frequency low

    BB

    T

    BAa

    o

    o

    +=

    =

    ω

    • SI lossy integrator

    Transfer function

    Frequency response

  • 39

    • Effects of non-idealities in SI filters

    MOS transistor parameters mismatch

  • 40

    Finite input-output conductance ratio of MOS transistor.

    ioin

    o

    gg

    zzizizH 21)()()(

    2/11/2

    +−==

    0)(

    2)(

    )()(1)()(1/2

    =

    −=

    −−=

    ωθ

    ω

    ωθω

    ωω

    io

    jij

    ggm

    jmeHeH

    Regulated-cascode structures are used

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛≅

    11

    mds

    ooc gggg

  • 41

    Clock-feedthrough effect in MOS switches.

    •The error that is caused is similar to that of VT mismatch.

  • 42

    RFERENCES

    1. T. Deliyannis, Y. Sun and J. K. Fidler, “Continuous-time active filter design”, CRC Press, 1999.

    2. R. Schaumann and Mc E. Van Valkenburg, “design of active filters”, Oxford University Press, 2001.

    3. M. Ismail, T. Fiez “Analog VLSI-Signal and information processing”, McGraw-Hill 1994.

    4. C. Toumazou, F. J. Lidgey, and D. G. Haigh,”Analog IC design: the current-mode approach”, IEE Circuits and Systems Series 2, 1990.

    5. C. Toumazou, J. B. Hughes and N. C. Battersby,”Switched-currents:an anlogtechnique for digital technology”, IEE Circuits and Systems Series 5, 1993.

    6. M. S. Ghausi and K. R. Laker, “Modern filter design: active RC and switched capacitor”, Englewood Cliffs, NJ:Prentice-Hall Inc., 1981.

    7. R. Gregorian, and G.C. Temes, “Analog MOS integrated circuits for signal Processing”, John Willey & Sons, 1986.

  • 43

    Part-II:Companding

    filters

  • 44

    INTRODUCTION

    ☺ They open the door to elegantly realizing a linear system with inherently non-linear building blocks, and may achieve the advantageous potential of companding (compress-expand) signal processing.

    Log-Domain filter expandercompressor

    in out

  • 45

    •Linear and companding signal processing

  • 46

    20 20.5 21 21.5 22 22.5

    -30

    -20

    -10

    0

    10

    20

    (mV )

    20 20.5 21 21.5 22 22.5

    -15

    -10

    -5

    0

    5

    10

    15

    2 (mV )

    Waveforms at the internal nodes of a typical log-domain system.

    ☺ Companding filters have potential for low-voltage operation, as the signal swings within filter are typically less than 100mV.

  • 47

    Log-Domain Filters

  • 48

    Methods for designingLog-Domain filters

    Using the well-known state-space synthesis approach in linear domain, and an appropriate mapping of the resulted equations.

    Using the well-known Signal Flow Graph (SFG) synthesis approach in linear domain, and a set of complementary operators.

    A large number of equations is needed in case of high order filters.

    ☺This method is more simpler than the ESS.

    By following the concept of Wave Active Filters.

    ☺ The design procedure of high-order filters is quite facilitated.

    ☺Modular filter structures are derived.

  • 49

    Log-Domain filters synthesis using the SFG approach

    Representation of a Log-Domain filter using complementary operators

  • 50

    BJT Translinear principle

    For any closed loop comprising any number of pairs of clockwise and counter-clockwise forward-biased identical junctions, the product of currents for the elements in one direction is equal to the corresponding product in the opposite direction.

    ∏∏ =ccw

    Ccw

    C II

    •As an extension to the above principle, when a voltage source is introduced into the loop, then:

    ∏∏ ⋅=ccw

    CV

    cwC IeI T

  • 51

    Non-linear transconductance

    Io

    Io

    VCC

    iOUT

    VEE

    E+iOUT

    OUTυ̂INυ̂

    INυ̂

    OUTυ̂

    Io

    IoVCC

    iOUT

    VEE

    INυ̂

    OUTυ̂

    E-iOUT

    INυ̂

    OUTυ̂

    Io

    T

    OUTIN

    OUTV

    ˆˆ

    o eIi

    υυ −

    ⋅=

    Positive cell

    Negative cell

  • 52

    Ioi

    IoOUT

    υ̂

    Io

    Io Ioυ̂

    i

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛ +⋅=

    −⋅=

    o

    oT

    oVˆ

    o

    IIilnV)i(LOG

    I e I)ˆ(EXP Tυ

    υ

    Implementation of complementary operators

    LOG

    EXP

  • 53

    Log-Domain integrators

    iCE-

    Io

    E+Io

    INυ̂

    OUTυ̂

    Lossless integrator

    T

    OUT

    T

    OUTINOUT

    CV

    oV

    o eIeIdtd

    Ci

    υυυυ

    ˆˆˆˆ −

    ⋅−⋅=⋅=

    [ ] dt EXPEXPINOUT ∫ ⋅= )ˆ(

    1)ˆ( υτ

    υ

    The time-constant of integrator is:

    o

    TI

    CV=τ

    ☺ Electronic tuneability using a DC current source.

    The time constant is depended from temperature.

    ∫INυ̂ OUTυ̂

  • 54

    Lossless integrator-subractor

    E-

    Io

    E+

    Io

    C

    1INυ̂

    2INυ̂ OUTυ̂

    ∫ OUTυ̂2

    ˆIN

    υ

    +

    INυ

    1

    -1

  • 55

    Lossy integrator

    ∫INυ̂ OUTυ̂+

    -1

    IoE+

    Io

    INυ̂ OUTυ̂

    ☺ Damping is achieved using a DC current source.

    ( )[ ] ( ) ( )OUTINOUT

    ˆEXPˆEXPˆEXPdtd υυυτ −=

  • 56

    High-order Log-Domain filters

    Operational simulation of all-pole LC ladders

    L2

    C1 C3 RL

    RS

    sυ oυ

    LC ladder prototype

    1

    1sRC

    −RsL /

    12 3

    1sRC

    −LR

    R

    V3=Vo

    1

    1

    1

    1-V1

    sRR

    sRR

    Vin -I2R

    Linear domain Signal Flow Graph (SFG)

  • 57

    Transposition to Log-Domain using the following rules:

    •A LOG block is placed at the output of each integrator.

    •An EXP block is placed at each input of integrators (before scaling).

    •A LOG block is placed at the input of the system.

    •An EXP block is placed at the output of the system.

    iS

    LOG

    EXP1

    1sRC RsL /

    12 3

    1sRC

    1

    -1

    -1

    1

    1

    -1 -1

    iout

  • 58

    Implementation using Log-Domain cells

    Iois

    Io

    Io

    Io Io

    iout

    Io

    E+

    Io

    E-

    Io

    E+

    Io

    C1

    E-

    Io

    E+

    Io

    C2

    IoE+

    Io

    C3

  • 59

    Operational simulation LC ladders with finite zeros

    LC ladder prototypeL2

    C2C1 C3 RL

    RS

    i2

    iS iL

    1υ 3υ

    )sRC(sRC

    1322S

    eq,11

    υυυυ +′−′=

    Differentiation is required:

    ☺ Alternative form without differentiation:

    3eq,1

    22S

    eq,11 C

    C)(

    sRC1 υυυυ +′−′=

  • 60

    Log-Domain Signal Flow Graph (SFG)

    eq,1sRC1

    R/sL1

    2

    eq,3sRC1

    1−

    1

    eq,1

    2CC

    eq,3

    2C

    C1

    1−

    LOG

    EXPiS 1

    1 1 iout

    2υ̂ ′

    *3υ̂

    *1υ̂

    1̂υ

    3υ̂

    1−

    1

    1−

  • 61

    Implementation using Log-Domain cells

    INυ OUT

    υ̂

    INυ

    Io

    E-

    KIo

    E+

    KIo

    E+

    Io

    INυ

    INυ

    OUTυ̂

    1:1

    1:K

    Log-Domain summing block

    )ˆ(EXPK)ˆ(EXP)ˆ(EXP21out

    υυυ ⋅+=

  • 62

    Log-Domain elliptic filter

    E-Io

    Iois

    E-Io

    E+Io

    E+Io

    E-Io

    E-

    Io

    E+Io

    Io

    Io Io

    iout

    1̂υ

    *1̂υ

    2υ̂′

    *3υ̂

    3υ̂

    1Ĉ

    2Ĉ

    3Ĉ

    1:11:K

    1:11:K

  • 63

    0E+000 1E+007 2E+007 3E+007 4E+007

    Frequency, (Hz)

    -80

    -70

    -60

    -50

    -40

    -30

    -20

    -10

    0Gain(dB)

    Ideal case

    Realistic model

    Frequency response of the filter @ modulation index factor 0.8

    The frequency response of a Log-Domain filter is evaluated using large-signal transient simulations and FFT analysis.

    The AC analysis of HSPICE is valid only for small modulation index factor !!!

  • 64

    Non-linear analysis

    0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

    Modulation index

    -70

    -65

    -60

    -55

    -50IMD3(dB)

    A two-tone test was performed, in order to measure the third-order intermodulation distortion factor.

    ☺ The IMD3 was -52dB @ modulation index equal to 1.

  • 65

    Noise analysis

    0.01 0.1 1

    Modulation index

    0

    10

    20

    30

    40SNR(dB)

    ☺ The achieved Dynamic Range was 35dB.

  • 66

    Log-Domain Wave filters

    Wave variables

    1A1B

    +

    2A

    2B

    +

    1,2)(k R

    iA kkk =+=υ

    1,2)(k R

    iB kkk =−=υ

    incident wave

    reflected wave

  • 67

    Scattering parameters description

    Passive element Symbol of wave equivalent in the log-domain

    ⎥⎥⎦

    ⎢⎢⎣

    ⎡⋅

    ⎥⎥

    ⎢⎢

    +=

    ⎥⎥⎦

    ⎢⎢⎣

    ⎡ ⋅

    1

    2

    1

    s 1

    1

    2 11 A

    A

    s

    L

    B

    B

    L

    Ls

    τ

    ττ1s

    1

    L+⋅τ1 1

    1 -1

    -1 1

    A1 A2

    B1 B2

    +

    + +

  • 68

    lossy integrator

    1Â 2Â

    2B̂1B̂

    EXP

    LOG1 -1

    1 1

    1-1

    +

    + +

    Transposition of linear domain SFG to the Log-Domain SFG

    1B̂ 2B̂

    1Â 2Â

  • 69

    Io

    E+

    Io

    E-

    Io

    E+

    Io

    C

    1INυ̂

    2INυ̂ OUTυ̂

    1INυ̂

    2INυ̂ OUTυ̂

    1INυ̂

    2INυ̂

    OUTυ̂

    1INυ̂

    2INυ̂ OUTυ̂

    1INυ̂

    2INυ̂

    OUTυ̂

    INυ̂

    OUTυ̂

    INυ̂ OUTυ̂

    Lossy integration

    Subtraction

    Summation

    Inversion

  • 70

    L Lτ

    1B̂ 2B̂

    1Â 2Â

    RL

    L 2=τ

    1B̂ 2B̂

    1Â 2Â

    RCC 2=τ

    C

    Prototype Log-Domain wave equivalent

    2RC

    C =τC

    Cτ1Â

    2Â

    1B̂

    INVERTER

    INVERTER

    2B̂-1

    -1

    RL

    L2

    =τL

    1B̂ 2B̂

    1Â 2Â

    INVERTER

    INVERTER

    Lτ-1

    -1

    Log-domain wave equivalents of 1st-order blocks

  • 71

    Log-domain wave equivalents of 2nd-order blocks

    1B̂ 2B̂

    1Â 2Â

    1B̂ 2B̂

    1Â 2Â

    1Â2Â

    1B̂

    INVERTER

    INVERTER

    2B̂

    1B̂ 2B̂

    1Â 2Â

    INVERTER

    INVERTER

    Prototype Log-Domain wave equivalent

    -1

    -1

    -1

    -1

    LC

    L

    C

    L

    C

    CL

    CL

    RQ

    LC

    21

    10

    =

    LCRQ

    LC

    2

    10

    =

    CL

    RQ

    LC2

    10

    =

    LCRQ

    LC

    2

    10

    =

    ωο Q

    ωο Q

    ωο Q

    ωο Q

  • 72

    Log-Domain wave filter

    c,outi

    EXP

    ini

    LOG

    INVERTER

    INVERTER EXP

    outi

    INVERTER

    INVERTER

    ☺ Modular filter structures are derived.

    2C

    3L1LSR

    LRsυ outυ4C

    5L

    ☺ A quick design procedure is offered.

    The circuit complexity is increased in comparison to the leapfrog filters.

  • 73

    Effects of non-idealities

    Effect of non-zero RE

    INV̂OUTV̂

    OUTi

    0I

    0I

    EEV

    CCV

    ER ER

    The cut-off frequency is shifted, while the filter shape remains unchanged.

    0

    ˆˆ

    0

    IRV

    OUT

    BT

    OUTIN

    eII βυυ

    +

    =

  • 74

    ( ) ( )[ ] ( ) ( ) ( )∫ +−=+ 121100 ˆˆˆˆ

    ˆυυ EXPAEXPAEXPEXP

    dtd

    IVC

    VRIV T

    T

    ET

    • Input-output relationship for a lossy integrator

    ☺ The effect of non-zero RE is compensated by multiplying the value of DC current source by a factor

    ( )T

    ETRE V

    RIVk 0+=

    -60.0

    -50.0

    -40.0

    -30.0

    -20.0

    -10.0

    0.0

    10.0

    0.0E+00 5.0E+05 1.0E+06 1.5E+06 2.0E+06 2.5E+06 3.0E+06 3.5E+06 4.0E+06

    Συχνότητα (Hz)

    Κέρδος

    (dB

    )

    Ω= 0ER

    Ω= 30ER

    Ω= 60ER

  • 75

    Effect of BJT transistor finite beta.

    ( )∫ dtC .1

    1ˆINυ

    2ˆINυ0υ̂

    EXPLOG

    β3k−

    β3k

    βf−−1

    The finite beta introduces a scalar error and an extra feedback path.

    The cut-off frequency and the phase response of the filter are changed.

    ☺ The above imperfections can be electronically removed.

  • 76

    E-

    E+

    E+

    1B̂E-

    E+

    E+

    E-

    E+1Â

    2B̂

    2Â

    E+

    β30 / kI

    1̂υ0Ifβ

    0I

    0I

    β30 / kI

    β30 / kI

    β10 / kI

    β10 / kI

    β10 / kI

    β20 / kI

    β20 / kI

    β20 / kI

    β30 / kI

    Wave equivalent of a floating inductance, with additional circuitry for removing the effect of finite beta.

    -10.0

    -8.0

    -6.0

    -4.0

    -2.0

    0.0

    2.0

    0.0E+00 5.0E+05 1.0E+06 1.5E+06 2.0E+06

    Συχνότητα (Hz)

    Κέρδος

    (dB)

    β=100

    Αντισταθμισμένη

    Ιδανική

  • 77

    Effect of non-zero RB.

    ☺ This deviation is canceled by following the same procedure as in non- zero RE.

    INυ̂

    OUTυ̂

    OUTi

    0I

    0I

    EEV

    CCV

    BR BR

    The cut-off frequency is shifted, while the filter shape remains unchanged.

    -30.0

    -25.0

    -20.0

    -15.0

    -10.0

    -5.0

    0.0

    5.0

    1.0E+05 6.0E+05 1.1E+06 1.6E+06 2.1E+06 2.6E+06

    Συχνότητα (Hz)Κέρδος

    (dB

    )

    0=BR

    KRB 2=

    KRB 5=100=β

    0

    ˆˆ

    0

    IRV

    OUT

    BT

    OUTIN

    eII βυυ

    +

    =

  • 78

    Combined effects

    E-

    E+

    E+

    1B̂E-

    E+

    E+

    E-

    E+1Â

    2B̂

    2Â

    E+

    AVkkkI 3350 / β

    1̂υ50, / kIf AVβ

    50 / kI

    AVkkkI β150 /

    AVkkkI 3350 / β

    AVkkkI 3350 / β

    AVkkkI 3350 / β

    AVkkkI 1150 / β

    50 / kI

    AVkkkI 1150 / β

    AVkkkI 2250 / β

    AVkkkI 2250 / β

    AVkkkI 2250 / β

  • 79

    -50.0

    -40.0

    -30.0

    -20.0

    -10.0

    0.0

    10.0

    1.0E+05 5.0E+05 9.0E+05 1.3E+06 1.7E+06 2.1E+06 2.5E+06 2.9E+06

    Συχνότητα (Hz)

    Κέρδος

    (dB

    )

    Μη ιδανική

    Ιδανική

    Αντισταθμισμένη

    100=β

    Ω= KRB 1Ω= 30ER

    The values of factors are calculated using a fitting algorithm.

  • 80

    Square-Root-Domain filters

  • 81

    Representation of a Square-Root-Domain filter using complementary operators

    A method for designingSquare-Root-Domain filters

    IN1in

    111

    2 n22 INin

    OUT out

    OUT out

    υi

    i

    i

    υ i

    O

    O

    O

    O

    ^

    ^

    ^

    ^

    SQ SQ

    SQ SQ

    Linearoperation

    SQRTSQRT

    SQRTSQRT

    . .. ... .. . ...

    Linear system

    x - domain cellυ

    υ

  • 82

    • Definition of operators

    oi

    υ=

    I

    K

    O

    O

    O

    .

    ^

    VDD

    VSSSQRT(i)

    o

    DD

    SS

    i=SQ( )

    υ

    υI

    V

    KO

    O

    O

    ^

    ^

    V

    .

    ( ) oT IVKSQ −−= 2ˆ2

    )ˆ( υυ TO VKIiiSQRT ++= )(2)(

    SQ[SQRT(i)]=i

  • 83

    Square-Root-Domain integrators

    O

    O

    IN

    IN

    C

    OUT

    IN a

    o

    X

    Y

    Y

    Z

    XZ1

    Wi

    i

    i

    υ

    υI

    I

    .C

    OUT

    OUT

    o

    aIN

    i

    i

    IIi

    1:1

    K

    K

    MULTIPLIER / DIVIDER # 1

    GEOMETRIC-MEAN

    ^

    ^

    a

    X

    Y

    Z

    W

    I

    MULTIPLIER / DIVIDER # 2

    OUTo

    ao

    iIII

    IN

    OUT

    VDD

    V

    V

    SS

    SS

    Mc

    oI

    OUTo iI

    OUTo iI

    Z2

    Z

    YXW i

    iii =.

    X Yi i= .

    Zni

    Z

    YXW i

    iii.

    .

    .

    .

    .

    .

    .

    =

    VDD

    1:1

    IN OUTυ υOO^ ^SQ SQRT

    ∫Lossless integrator

    OUTOUT

    OUT

    iIII

    iIIi

    dtd

    Cio

    ao

    o

    aINc −==

    υ̂

    ( )∫ ⋅= dt ˆSQ1)ˆ(SQ INOUT υτυ

    a

    o

    IKIC

    2=τ

    The time-constant of integrator is:

    ☺ Electronic tuneability using a DC current source.

  • 84

    Lossless integrator-subtractor

    IN1

    IN2

    OUT

    υ

    υ

    ++

    -υO

    O

    O

    ^

    ^

    ^

    SQ

    SQ

    SQRT

    O

    O

    IN1

    IN1

    C

    OUT

    IN1 a

    o

    X

    Y

    Y

    Z

    XZ1

    Wi

    i

    i

    υ

    υI

    I

    .C

    OUTi

    1:1

    K

    K

    MULTIPLIER / DIVIDER # 1

    GEOMETRIC-MEAN

    ^

    ^

    X

    Y

    Z

    W

    MULTIPLIER / DIVIDER # 2

    IN1

    OUT

    VDD

    V

    V

    SS

    SS

    Mc

    Z2

    Z

    YXW i

    iii =.

    X Yi i= .

    Zni

    Z

    YXW i

    iii.

    =

    VDD

    1:1

    O

    IN2

    IN2

    IN2 a

    ii

    υI

    1:1

    K^

    IN2

    VDD

    VSS

  • 85

    Lossy integrator

    IN OUTυ ++

    -υOO^ ^

    SQ

    SQ

    SQRT

    dampF

    O

    O

    IN

    IN

    C

    OUT

    INa

    o

    X

    Y

    Y

    Z

    XZ1

    Wi

    i

    i

    υ

    υI

    I

    .C

    OUTi

    K

    K

    MULTIPLIER / DIVIDER # 1

    GEOMETRIC-MEAN

    ^

    ^

    IN

    OUT

    VDD

    V

    V

    SS

    SS

    Mc

    Z2

    Z

    YXW i

    iii =.

    X Yi i.Zni =

    VSSMF1 MF2

    1:1

    DD

    1:1

    V

    1: aIIo

    ( )[ ] ( ) ( )OUTINOUT

    SQFSQSQdtd

    damp υυυτ ˆˆˆ −=

    ☺ Damping is achieved using a current mirror.

  • 86

    Complete system of current integrator

    INOUT

    υυ

    outin ii . .^

    ^

    SQ SQSQRTSQRT

    x - domain cell

    ININ

    C

    OUT

    IN a

    o

    X

    Y

    Y

    Z

    XZ1

    Yii

    i

    υ

    υ I

    I

    .C

    OUTi

    K

    K

    MULTIPLIER / DIVIDER # 1

    GEOMETRIC-MEAN

    ^

    ^

    a

    X

    Y

    Z

    W

    I

    MULTIPLIER / DIVIDER # 2

    V

    V

    SS

    SS

    Mc

    oI

    Z2

    K

    VSS

    VDDI O

    ini

    K

    VSS

    VDDIO

    outi

    x - domain cell

    Mout

    Min

    Z

    XW i

    iii =

    .W

    Y

    Z

    XW i

    iii =

    .

    XZn Yii i= .

    VDD DDV

  • 87

    IN

    C

    OUT

    a

    o

    X

    Y

    Y

    Z

    XZ1

    Y

    i

    i

    υ

    I

    I

    .C

    OUTi

    K

    MULTIPLIER / DIVIDER # 1

    GEOMETRIC-MEAN

    ^

    a

    X

    Y

    Z

    W

    I

    MULTIPLIER / DIVIDER # 2

    VSS

    Mc

    oI

    Z2

    +IO

    K

    VSS

    VDDIO

    outi

    Mout

    Z

    XW i

    iii =

    .W

    Y

    Z

    XW i

    iii =

    .

    XZn Yii i= .

    DDV

    Simplification of circuit:

  • 88

    MOS Translinear principle

    ∑∑ =ccw

    D

    cw

    DLW

    ILW

    I//

    In the closed loop, the gate-source voltages are in series, with equal number of transistors arranged clockwise and counter-clockwise.

  • 89

    Stacked topology

    Suffers from a strong influence of the body effect.

    ☺ Offers simple circuits.

  • 90

    Up-down topology

    Requires some extra circuitry, in comparison with the stacked configuration.

    ☺ The body effect is much smaller than that in case of stacked topology.

  • 91

    Electronically simulated loop topology

    ☺ The body effect is completely eliminated.

    The achieved bandwidth is limited by the speed of additional circuitry.

    A relative large number of elements is required in same cases.

    The average of the gate-source voltages of transistors M1 and M2 is forced equal to the average of the gate-source voltages of transistors M3 and M4.

  • 92

    Basic SQRD blocksCurrent geometric-mean circuit

    M

    MM

    M M M M

    M MM M

    .

    .

    .

    .

    V

    V

    I I

    I

    X' Y

    DD

    SS

    X1 Y Y1XY

    c c

    c

    p p p p

    K K4K

    K K K K

    1:1

    K

    X XZ

    XY

    XY

    Y

    YY i ii

    i

    i

    i

    ii

    =2

    X'Y

    X Z1Y

    υ

    υ

    υ P2 P3 P4P1

    3 4

    MZ

    XZ1 Yii i=

    M X

    K .

    MMVDD

    1:11 2

    Xi

    Z1

    X'

    MMVDD

    1:1o o1

    Z

    Xi Z1i.

    Zn

    XZn Yii i=

    Mon

    . .

    .

    1:1

    2:1

    Z1

    Y

    i

    Y

    X Z1

    GEOMETRIC-MEAN

    i

    i X

    XZn Yii i=Zn

    Zni

    YXXY iii +=

    YX ii2iz ⋅=

    •The voltage averaging subcircuit produces a gate voltage υX’Y , which is forcedto be equal with the average of the gate voltages of MX, and MY.

    MOS translinear principle:

    Output current:

  • 93

    Current multiplier topology

    .

    .

    .

    ..

    .

    ...

    V

    1:1 1:1

    II II

    I

    DD

    c c c c

    c

    pp pp pp pp

    K KK KK 4K4K

    KK KK KK KK

    KK

    X

    X XY ZW

    XY

    Y

    Y

    W

    W+

    Z

    Zi

    i i i

    ii

    i

    i

    i

    i

    i

    i

    X Y W

    2A

    M M M MM MMM MX Z1 W W1XY ZWYX1 Y1

    Z

    YXW i

    iii =

    .

    .K

    Zi

    Z

    MZ

    VSS

    . .

    .

    I cVSS

    It is constructed by two properly connected geometric-mean circuits.

    X

    Z

    Y

    i

    i

    i ZYX

    W iiii =

    X

    YZ

    WWi

    MULTIPLIER / DIVIDER

    .

  • 94

    Performance of the proposed multiplier.

    Time, (ms)

    Error,(μΑ)

    0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

    -0.5

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5New[11]

    •Comparison with a multiplier based on up-down topology.

    TH D, (dB)

    Amp litude,(μΑ)0 10 20 30 40 50

    -76

    -72

    -68

    -64

    -60

    -56

    -52

    ☺The minimum supply voltage requirement for both proposed circuits is:

    GSSATDSVVVDD += ,2min

    .

    ☺ A reduction of about 50% for the required transistor area is achieved in the proposed circuit.

  • 95

    High-order Square-Root-Domain filters

    Operational simulation of all-pole LC ladders

    LC ladder prototype

    Linear domain Signal Flow Graph (SFG)

    υ

    R

    Rin

    1 3 5S

    LCL

    i i

    LC C1

    2

    2 4

    4

    3 5 out

    o

    o

    υ

    υ υ υ

    υ υ'

    υ

    υ'

    υ υυ

    -1 -1

    -1 -1

    1

    1 1 1

    1 1in

    2

    3

    4

    5out

    1

    RC s+1 RC s+1RC s(L R) s1 532 41 111 1

    + +

    + +

    (L R) s

  • 96

    Transposition to Square-Root Domain using the following rules:

    •A SQRT block is placed at the output of each integrator.

    •A SQ block is placed at each input of integrators (before scaling).

    •A SQRT block is placed at the input of the system.

    •A SQ block is placed at the output of the system.

    i υ'̂ ^

    ^^υ̂ υ υ

    υ'

    i

    -1 -1

    -1 -1

    1

    1 1

    1 1in 2

    1 3 5

    4

    out

    RC s+1 RC s+1RC s(L R)s1 5321 111

    + +

    + +

    SQ

    SQRT

    (L R)s41

  • 97

    Implementation using Square-Root-Domain cells

    o

    o

    iout

    iin

    I

    I

    K

    K

    O

    O .

    OUT

    OUT

    OUT

    IN2

    IN2

    IN2

    IN1

    IN1

    IN1

    integrator

    integrator

    integrator

    subtractor#1

    #2

    #3subtractor

    subtractor

    OUT

    IN2

    IN1

    integratordamped

    subtractor

    OUTINdampedintegrator

    V

    VDD

    DD

    V

    V

    SS

    SS

    .

    .

    ..

    .

  • 98

    Frequency response of the filter @ modulation index factor 0.8

    The frequency response of a Square-Root-Domain filter is evaluated using large-signal transient simulations and FFT analysis.

    The AC analysis of HSPICE is valid only for small modulation index factor !!!

    Gain, ( dB)

    Frequency, (Hz)

    Level 1

    Level 3

    0 25000 50000 75000 100000

    -60

    -50

    -40

    -30

    -20

    -10

    0

    Gain, (dB)

    Frequency, (Hz)

    Level 1Level 3

    0 10000 20000 30000 40000 50000

    -7.4

    -7.2

    -7.0

    -6.8

    -6.6

    -6.4

    -6.2

    -6.0

  • 99

    0 25000 50000 75000 100000

    -80

    -70

    -60

    -50

    -40

    -30

    -20

    -10

    0Gain, (dB)

    Frequency, (Hz)

    Iα=6μΑ

    Iα=10μΑ

    Iα=12μΑ

    Electronic tuneability of Square-Root-Domain filters.

  • 100

    Non-linear analysis

    A two-tone test was performed, in order to measure the third-order intermodulation distortion factor.☺ The IMD3 was -42dB @ modulation index factor equal to 1.

    5 10 15 20 25 30 35 40 45 50

    -65

    -60

    -55

    -50

    -45

    -40THD, (dB)

    Amplitude, (μΑ)

  • 101

    Noise analysis

    ☺ The achieved Dynamic Range was 49.7dB.

    0.1 1.0 10.0

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    50

    55

    60SN R, (dB)

    Amplitude, (μΑ)

  • 102

    [1] E. Seevinck and R. Wiegerink, ‘Generalized translinear circuit

    principle’, IEEE J. Solid-State Circuits, vol.26, pp.1098-1102, Aug.

    1991.

    [2] M. Eskiyerli, A. Payne: ‘Square-root domain filter design and

    performance’, Analog Integrated Circuits and Signal Processing,

    vol.22, pp.231-243, Mar. 2000.

    [3] J. Mulder, A.C. Van der Woerd, W. A. Serdjin, A. H. M. Van

    Roermud: ‘Current-mode companding x – domain integrator’,

    Electron. Lett., vol. 32, pp.198-199, Feb. 1996.

    [4] A. J. Lopez-Martin and A. Carlosena, ‘Geometric-mean based

    current-mode multiplier/divider’, in Proc. IEEE Int. Symp. Circuits

    Syst. (ISCAS), 1999, pp. 342-345.

    [5] A. J. Lopez-Martin and A. Carlosena, ‘A 3.3V tunable current-mode

    square-root domain biquad’, in Proc. IEEE Int. Symp.Circuits Syst.

    (ISCAS), 2000, pp. 5-8.

    [6] A. J. Lopez-Martin and A. Carlosena, ‘A systematic approach to the

    synthesis of square-root domain systems’, in Proc. IEEE Int. Symp

    Circuits Syst.(ISCAS), 1999, pp. 306-309.

    [7] R. Wiegerink, ‘Analysis and synthesis of MOS translinear circuits’,

    Dordrecht, The Netherlands: Kluwer Academic Publishers Group,

    1993.

    [1] B. Gilbert: “Translinear circuits: An historical overview”, Analog Integrated

    Circuits and Signal Processing’, vol.9, no.2, pp.95-118, Mar. 1996.

    [2] D. R. Frey: “Log-domain filtering: an approach to current-mode filtering”, IEE

    Proc., Part-G, vol.140, no.6, pp. 406-416, Dec. 1993.

    [3] D. R. Frey: “Exponential state-space filters: a generic current mode design

    strategy”, IEEE Trans. Circ. Systems-I, vol.43, no.1, pp.290-305, Jan. 1996.

    [4] E. M. Drakakis, A. J. Payne and C. Toumazou: “Log-domain state space: a

    systematic transistor level approach for log-domain filtering”, IEEE Trans.

    Circ. Systems- II, vol.46, no.3, pp.290-305, Mar. 1999.

    [5] D. Perry and G. W. Roberts: “The design of log-domain filters based on the

    operational simulation of LC ladders”, IEEE Trans. Circuits Syst. II,vol. 43,

    no.11, pp.763-774, Nov.1996.

    [6] V. W Leung and G. W. Roberts: “Effects of transistor nonidealities on high

    order log-domain ladder filter frequency responses”, IEEE Trans. Circuits Syst.

    II, vol.47, no.5, pp.373-387, May 2000.

    [7] D. R. Frey: “LOG-domain filtering for RF applications”, IEEE J. Solid-State

    Circuits, vol.31, no.10, pp.1468-1475, Oct. 1996.

    REFERENCES

    Log-Domain Square-RootDomain

    /ColorImageDict > /JPEG2000ColorACSImageDict > /JPEG2000ColorImageDict > /AntiAliasGrayImages false /CropGrayImages true /GrayImageMinResolution 300 /GrayImageMinResolutionPolicy /OK /DownsampleGrayImages true /GrayImageDownsampleType /Bicubic /GrayImageResolution 300 /GrayImageDepth -1 /GrayImageMinDownsampleDepth 2 /GrayImageDownsampleThreshold 1.50000 /EncodeGrayImages true /GrayImageFilter /DCTEncode /AutoFilterGrayImages true /GrayImageAutoFilterStrategy /JPEG /GrayACSImageDict > /GrayImageDict > /JPEG2000GrayACSImageDict > /JPEG2000GrayImageDict > /AntiAliasMonoImages false /CropMonoImages true /MonoImageMinResolution 1200 /MonoImageMinResolutionPolicy /OK /DownsampleMonoImages true /MonoImageDownsampleType /Bicubic /MonoImageResolution 1200 /MonoImageDepth -1 /MonoImageDownsampleThreshold 1.50000 /EncodeMonoImages true /MonoImageFilter /CCITTFaxEncode /MonoImageDict > /AllowPSXObjects false /CheckCompliance [ /None ] /PDFX1aCheck false /PDFX3Check false /PDFXCompliantPDFOnly false /PDFXNoTrimBoxError true /PDFXTrimBoxToMediaBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXSetBleedBoxToMediaBox true /PDFXBleedBoxToTrimBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXOutputIntentProfile () /PDFXOutputConditionIdentifier () /PDFXOutputCondition () /PDFXRegistryName () /PDFXTrapped /False

    /Description > /Namespace [ (Adobe) (Common) (1.0) ] /OtherNamespaces [ > /FormElements false /GenerateStructure true /IncludeBookmarks false /IncludeHyperlinks false /IncludeInteractive false /IncludeLayers false /IncludeProfiles true /MultimediaHandling /UseObjectSettings /Namespace [ (Adobe) (CreativeSuite) (2.0) ] /PDFXOutputIntentProfileSelector /NA /PreserveEditing true /UntaggedCMYKHandling /LeaveUntagged /UntaggedRGBHandling /LeaveUntagged /UseDocumentBleed false >> ]>> setdistillerparams> setpagedevice