an outlook to biothermodynamics - tu chemnitz · an outlook to biothermodynamics ... thermodynamics...

23
An Outlook to Biothermodynamics 1 JETC 11 Chemnitz 2011 JUK J. U. Keller, Inst. Fluid - and Thermodynamics University of Siegen, 57068 Siegen, Germany [email protected] Biothermodynamics Overview, Historical Remarks 1. Photosynthesis 2. Lipid Membranes : Phase Transition DMPC-EOS (E2) 3. Proteins : Thermal Denaturation 4. Metabolism of Bacteria Kleiber‘s Law(s) Bacteria Escherichia Coli Th. Escherich, 1919

Upload: ngodieu

Post on 05-Jun-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

An Outlook to Biothermodynamics

1JETC 11 Chemnitz 2011 JUK

J. U. Keller, Inst. Fluid - and ThermodynamicsUniversity of Siegen, 57068 Siegen, [email protected]

BiothermodynamicsOverview, Historical Remarks

1. Photosynthesis

2. Lipid Membranes : Phase TransitionDMPC-EOS (E2)

3. Proteins : Thermal Denaturation

4. Metabolism of BacteriaKleiber‘s Law(s)

Bacteria Escherichia ColiTh. Escherich, 1919

Biothermodynamics (BTH):Application of Thermodynamics, i.e.Thermostatics (TST) andThermodynamics of Irreversible Processes (TIP) toBiological and Bioengineering Systems.

Biotechnology (BT): Technology using living systems like cells, bacteria, fungi etc. as chemical reactors.

White BT Industrial sized biocatalytic processes (fermentation)Breweries, Production vitamine B12, steroid hormones etc.;

Green BT Plants and transgene variations for production ofbiofuels etc. in biorefineries;

Red BT Medical applications of substances and processes related toliving organisms, as for example interferones etc. (cancer,viruses)

Yellow BT Pharmaceutical molecules, recombinant proteins,penicilline and other fungi;

Blue BT Seawater based microorganisms as reactors; extremophiles...Extraction noble metals from seawater, production of new molecules

Fields of Research in Biothermodynamics

3rd Int. Symposium on BiothermodynamicsDECHEMA, Bologna, September 2010

Biomolecules Bioreactors

# Protein adsorption on surfaces # Biocalorimetry

# Protein folding, interactions and stability # Thermodynamics ofdownstream processing

Bacteria # Thermodynamics in bio-logical energy conver-

# Active masstransport in biological membranes sion processes

# Thermodynamics of metabolic pathways # Thermodynamic aspectsof Systems Biology

# Intracellular Thermodynamics and Synthetic Biology

Ps

*

Sin

. Sout

.

E. Schrödinger ( 1940)

in out GL

in out

CO H O C H O O

kJS S . n

molK

S S ?

2 2 6 12 6 2

nd

6 6 6

0 24

2 Law:

in out GL

WL V

W GL

kJS S . n

molK

kJ. S H O S H O . n

molK

n . n

2 2

Evaporation of Additional Water:

0 24

2 2 0 11

2 2

L V

CO H O C H O O

. H O . H O

2 2 6 12 6 2

2 2

6 6 6

2 2 2 2

1. Thermodynamics of Photosynthesis

4JETC 11 Chemnitz 2011 JUK

PE 2A

2. Lipid Membranes, Phase Transition Fluid - Gel

T > Tt(p, ...) T < Tt(p, ...)

Lipid bi-layer formed of phosphatidylcholine (Voet & Voet, p. 288)

DMPC – Strukture: Phosphatidylcholine / Lecithine

Glycerine CH2 – CH – CH2/ / /

OH OH OH

Choline

Fatty acids

Temperature and pressure dependence of the specific volume of DMPC*) in water. (R. Winter, JNE 6-22, 2007) *)1,2-dimyristoyl-s,n-glycero-3-phosphatidylcholine

PE 2B

DMPC Thermal Equation of State (EOS)

v( )v.0 v

v.0 b.00 v( ) 1

p T A T( ) B T( )2

D T( )3

C T( )

1

D

v( )v b.0

v.0 b.0

A T( ) A.0 1 a T T.0

D T( ) D.0 1 d T T.0

Aliphatic tails of DMPC-molecules may aggregate/adsorb on each other.

Degree of aggregation: Free volume

Fluid state Gel state Fractality

EOS:

……………………………….

1

A= -1873 barB=7942D=-8997C=333.34

a=-0.54b=-0.051d=-0.429c=-2.534

Virial expansion ... Adsorption term

00.20.40.60.80

500

10001000

0

pdata

q.40 data T40

q.1 data

q.25 data T25

01 data

40 C

25 C

30 C

Experimental Data*

* R. Winter et al.,JNE 32(2007),p.41

DMPC Thermal Equation of State (EOS)Correlation of Isothermal Data

3. Proteins (Example): Myosin from Chicken Muscle

Secondary Structure Tertiary Structure (X-Ray)

Voet&VoetBiochemistryWiley,N.Y.1995

Protein(P) - Water(W) Interactions (E4)

P: Conformational Changes, Unfolding

W: Adsorption, Intrusion, Coating of (P) > Stabilization

Native State (N):compact, surface area small

Unfolded State (D):expanded, surface area high

Ref.: T. Randolph, U of Colorado, USA

Protein(P) - Water(W) – Sugar(S) Interactions

S: Adsorption, Desorption upon unfolding of protein.

S-W: Coadsorption on surface may stabilize (P).

Ref.: Randolph

Thermal Denaturation of Myoglobine

3

D DDN

N N

DN D0 N0

D

153 Amino acids

Seize: (44x44x25)Å

Molecular Weight 18kD

N ... Native (folded) State

D ... Denaturated (unfolded) State

Equilibrium at T=const, p=const

xG p,T R T ln

x

G

Approx.: N

DN D N

DN D N

1

G 0 x x ...N...stable

G 0 x x ...N...unstable

T/K 270 280 290 300 310 320 330 340

GDN

(kJ/mol)-3.16 5.13 11.8 15 15.8 11.8 5.13

-

3.53

HDN

(kJ/mol)-289. -204 -115 -23 72.2 170 272 376

SDN

(kJ/mol

K)

-1.06-

0.75

-

0.44

-

0.130.18

0.4

90.81 1.12

-5

0

5

10

15

20

T/KGD

N (

kJ

/mo

l)

Experimental Data

(U. von Stockar, EPFL,et al., MV Seminar,2000)

4. Kleiber’s Law of Metabolism in Aerobic Living Systems

Allometry

Metabolic Rate

0a T,T M

a (1 2)mW / g

21

3

3

4

Figure A3Metabolic rate of oxygen consumption based living systems. Mouse-Elephant-curve, B. Ahlborn, 2004. This curve also holds for bacteria (M 10-4 g).B. Ahlborn, Zoological Physics

JETC 11 Chemnitz 2011 JUK 153

: 50.000 :1

: (0,8 1,2)

: 0,8 /

Size

Diameter m

Density g cm

Bacteria Streptococcus Mutans(Caries), Clarke (1924)

Bacteria: Colony Forming Units (CFU)

Staphylococcus aureus

JETC 11 Chemnitz 2011 JUK 16

Creature Mass/kg Metabolic

Rate

J0 / W

Food

Substrate

Heating

Value

MJ/kg

Consump-

tion

kg/day

Bacteria

Staphylococcus

aureus

0,5•10-15 120 nW glucose 15,6 0,665.

10*(-9)

Men 80 kg 94 W various 20 0,40

Lion 120 kg 127 W meat 30 0,37

Elephant 3000 kg 1,418 W grass 10 12,3

Activation factor : J0→(2-5)J0

Basic Metabolic Rate of Living Systems

BC 17

* */* *( , ) .( ). q RTB Ba a T T A T T e

B

*

*

T .... Characteristic temperature

of living system

T ....Environmental temperature

q ....Energy(metabolism, heat transfer)

Enviromental temperaturefor maximum metabolism

*1/ 2

* *

max 1 1 4 /2

B

qT RT q

R

Example : Dogs,hair cut,TB=41 CData : Jeroch et.al.(1999)

Kleiber‘s Constant : Temperature Dependence

Bacteria growth processes, sterilisation.

0 20 400

200

400

600507

0

J0data

a x( )

5010 Tdata x

BC 18

0

0

J h M

J aM

1 1

0 0

0

( )

aM M

h

aM t M t t

h

1

max 0 0

0

0

M

ht t M

a

Living period: Example : Staph. AureusM0=0,5 pg; Δh=18 MJ/kg;

maxt 4h

M-α+1(t)

t0

t

tmax

M-α+1

0

tg α ≈ Δh / a

α

Autometabolism of Bacteria and CFUs

Lack of substrate: Living period ? Heat production ?

4c. Bacterial Metabolism for Stationary States

Net metabolic reaction:

Energy balance

Entropy balance

0 1N

k kk

C ( )

0 2N

i ii

H h n Q ( )

0 3N

i i Si

QS s n P ( )

T

Entropy production

Metabolic rate

TIP

Kleiber‘s Law

2 Organisms with same metabolism:

4i idn d ( )

0N

S i ii

(1 - 4) P

5N

i ii

L ( )

6ma M ( )

1

2

1

2

L M(5, 6):

L M

Q

1 1 8 0 5 0 2. . .C H O N

i i

i i

C , J

h , s

j j

j j

C , J

h , s

4d. Bacterial Metabolism – External Stability Limits

: Thermodynamic system:Stability of Accompanying equilibrium state

T const, p const

0 7N

i ii

d dn ( )

1

4

i i N

N

i i kk

i i

T,p,x ...x

x n n

dn d ( )

7 0 8ii k

ki,k T,p

( ) ( )n

1

4 7 0 8

8 0

ii k

kik T,p

N

( , ) ( )n

( ) (T,p,x ...x )

8( )

P

T

Stability

Instability

0

References (Selection 1)

1. PLANCK M. : Vorlesung über Thermodynamik, 11. Aufl.,1964, W. de Gruyter, Berlin – New York.

2. ADAM G., LÄUGER P., STARK G.: Physikalische Chemie undBiophysik, 4. Aufl., 2003, Springer, Berlin etc.

3. VOET D & VOET J G: Biochemistry, J.Wiley&Sons,2nd Ed. 1995,New York

4. VON STOCKAR U., VAN DER WIELEN L.A.M.,Back to Basics: Thermodynamics in Biochemical Engineering,Adv. in Biochemical Engng. / Biotechnology, 80 (2003), p. 1-17.

1. HAINIE D.T. : Biological Thermodynamics, CambridgeUniversity Press, Cambridge, UK, 2001.

2. RAFFA R.B. : Editor: Drug – Receptor Thermodyn., Introduction& Applications, J. Wiley & Sons, 2001, New York etc.

References (Selection 2)

Journal of Non-Equilibrium Thermodynamics, Review Articles, W.de Gruyter, Berlin – New York, since 1976 :

1.WINTER R., LOPES D., GRUZIELANEK ST., VOGTT K.Towards an Understanding of the Temperature / Pressure Configurational andFree-Energy Landscape of Biomolecules, 32(2007),p. 41 - 97.

2.HUBBUCH J., KULA M.-R.Isolation and Purification of Biotechnological Products, 32(2007), p.99 - 127.

3.RUBI J.M., NASPREDA M., KJELSTRUP S., BEDEAUX D.Energy Transduction in Biological Systems: A MesoscopicNon-Equilibrium Thermodynamics Approach, 32(2007), p. 351-...

4.JENNISSEN H.P. et al.Protein Adsorption Hysteresis, in preparation, 33(2008)

5.KELLER J.U. et al.An Outlook on Biothermodynamics I,II

JNE 33(2008) 297 - 389, 34(2009) 1-34

KISS

MORENE

Ötztaler Alpen, 5-9-2007 Similaunhütte, 3012m, (T= -10C / -30C)

Keep it smart and simple.

More research needed.