an investigation into the thermal behaviour of … › w › images › a › ae › ... · an...

25
AN INVESTIGATION INTO THE THERMAL BEHAVIOUR OF SPACES ENCLOSED BY FABRIC MEMBRANES A thesis submitted to the University of Wales for the degree of Philosophiae Doctor by GREGOR HARVIE BSc(hons) BArch Welsh School of Architecture University of Wales College of Cardiff March 1996

Upload: others

Post on 28-May-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: AN INVESTIGATION INTO THE THERMAL BEHAVIOUR OF … › w › images › a › ae › ... · AN INVESTIGATION INTO THE THERMAL BEHAVIOUR OF SPACES ENCLOSED BY FABRIC MEMBRANES A thesis

AN INVESTIGATION INTO THE

THERMAL BEHAVIOUR

OF SPACES

ENCLOSED BY FABRIC MEMBRANES

A thesis

submitted to the

University of Wales

for the degree of

Philosophiae Doctor

by

GREGOR HARVIE BSc(hons) BArch

Welsh School of Architecture

University of Wales College of Cardiff

March 1996

Page 2: AN INVESTIGATION INTO THE THERMAL BEHAVIOUR OF … › w › images › a › ae › ... · AN INVESTIGATION INTO THE THERMAL BEHAVIOUR OF SPACES ENCLOSED BY FABRIC MEMBRANES A thesis

SUMMARY.

ii

SUMMARY.

This thesis describes a programme of research the aim of which was to investigate the

thermal behaviour of spaces enclosed by fabric membrane envelopes.

Initial analysis of the overall situation suggested that a fabric membrane can affect

conditions within a space enclosed by it as a result of its internal surface temperature and

the amount of thermal radiation it directs into that space. In order to investigate these two

parameters, a test cell was constructed which allowed the thermal behaviour of a range of

fabric membranes to be monitored.

The monitored data revealed that the thermal behaviour of fabric membranes is only

significantly affected by their angular thermal optical properties. These properties were

then measured and a dynamic spread sheet model was developed which was able to

simulate the monitored behaviour fairly accurately.

In order to investigate the thermal behaviour of spaces enclosed by such membranes,

conditions within four existing fabric roofed buildings were monitored. The monitored data

revealed that comfort temperatures could vary significantly from place to place within such

spaces. These variations were produced by both the stratification of internal air

temperatures and differences in internal radiant temperatures.

An attempt was made to simulate the behaviour of the buildings monitored, using a general

applications CFD code in conjunction with information generated by the spread sheet

model. Whilst simple behaviour patterns could be simulated accurately using this approach,

it was apparent that over simplistic boundary specification options left the CFD code

unable to accurately predict strong internal stratification.

It was proposed that improving the reliability of this process would require the

development of a more holistic CFD model which should be able to accurately predict the

thermal behaviour of fabric membranes itself.

Page 3: AN INVESTIGATION INTO THE THERMAL BEHAVIOUR OF … › w › images › a › ae › ... · AN INVESTIGATION INTO THE THERMAL BEHAVIOUR OF SPACES ENCLOSED BY FABRIC MEMBRANES A thesis

CONTENTS.

iii

CONTENTS.

1: INTRODUCTION. .................................................................1

1:1. THE INCREASING FREQUENCY OF NEW FABRIC STRUCTURES...................2

1:2. THE INCREASING SIZE AND COMPLEXITY OF NEW FABRIC

STRUCTURES. .................................................................................................................2

1:3. THE IMBALANCE IN THE EXISTING BODY OF KNOWLEDGE. .......................3

1:4. THE AIMS OF THIS RESEARCH.................................................................................4

1:5 THE SCOPE OF THIS RESEARCH. .............................................................................5

1:6 THE FORMAT OF THIS THESIS. ................................................................................5

2: SUBJECT BACKGROUND..................................................8

2:2. THE ORIGINS OF FABRIC STRUCTURES................................................................9

2:2.1 The Historical Development of Fabric Structures...............................................................9

2:2.2 Some Characteristic Features of Early Fabric Structures....................................................11

2:3. THE HISTORY OF ARCHITECTURAL FABRIC STRUCTURES. .........................12

2:3.1 The Development of Modern Fabric Structures..................................................................12

2:3.2 Some Characteristic Features of Modern Fabric Structures................................................15

2:4. THE MODERN TENSILE MEMBRANE FABRIC......................................................16

2:4.1 The Development of Structural Membranes. ......................................................................16

2:4.2 Some Characteristics Features of Architectural Fabric Membranes...................................19

2:5 CONCLUSION. .................................................................................................................20

Page 4: AN INVESTIGATION INTO THE THERMAL BEHAVIOUR OF … › w › images › a › ae › ... · AN INVESTIGATION INTO THE THERMAL BEHAVIOUR OF SPACES ENCLOSED BY FABRIC MEMBRANES A thesis

CONTENTS.

iv

3: THE EXISTING BODY OF KNOWLEDGE......................23

3:1. INTRODUCTION. ............................................................................................................24

3:2. THE EXISTING BODY OF KNOWLEDGE RELATING TO THE

THERMAL BEHAVIOUR OF FABRIC MEMBRANES.............................................24

3:2.1 Steady State Analysis of the Thermal Behaviour of Fabric Membranes. ...........................24

3:2.2 Evaluation of Steady State Analysis Techniques. ...............................................................28

3:2.3 Dynamic Analysis of the Thermal Behaviour of Fabric Membranes..................................29

3:3. THE EXISTING BODY OF KNOWLEDGE RELATING TO THE

THERMAL BEHAVIOUR OF SPACES ENCLOSED BY FABRIC

MEMBRANES...................................................................................................................31

3:3.1 Early Investigations into the Thermal Performance of Spaces Enclosed by

Fabric Membranes. ..............................................................................................................31

3:3.2 The Observed Thermal Behaviour of Spaces Enclosed by Fabric

Membranes. .........................................................................................................................33

3:3.3 Recent Attempts to Model the Thermal Behaviour of Spaces Enclosed by

Fabric Membranes. ..............................................................................................................34

3:3.4 Evaluation of the Existing Body of Knowledge..................................................................35

3:4. CONCLUSION. .................................................................................................................36

4: METHODOLOGY.................................................................40

4:1. INTRODUCTION. ............................................................................................................41

4:2. THE PILOT STUDIES. ....................................................................................................41

4:2.1 The Purpose of the Pilot Studies. ........................................................................................41

4:2.2 Apparatus used for the Pilot Studies. ..................................................................................42

4:2.3 Method Adopted for the Pilot Studies.................................................................................42

4:2.4 Case Study 1: Landrell Fabric Engineering.........................................................................45

4:2.5 Case Study 2: The Royal International Eisteddfod Pavilion, Main Arena..........................48

4:2.6 Case Study 3: The AELTC Indoor Tennis Centre, Covered Courts. ..................................50

4:2.7 Analysis of the Information Obtained by the Pilot Studies.................................................52

4:3. THE GENERAL APPROACH ADOPTED FOR THE RESEARCH

PRESENTED IN THE REST OF THIS THESIS. .........................................................54

4:3.1 Introduction. ........................................................................................................................54

Page 5: AN INVESTIGATION INTO THE THERMAL BEHAVIOUR OF … › w › images › a › ae › ... · AN INVESTIGATION INTO THE THERMAL BEHAVIOUR OF SPACES ENCLOSED BY FABRIC MEMBRANES A thesis

CONTENTS.

v

4:3.2 The General Approach Adopted for Investigating the Thermal Behaviour

of Fabric Membranes...........................................................................................................55

4:3.3 The General Approach Adopted for Investigating the Thermal Behaviour

of Spaces Enclosed by Fabric Membranes..........................................................................56

4:4. CONCLUSION. .................................................................................................................57

5: MONITORING THE THERMAL

BEHAVIOUR OF FABRIC MEMBRANES.......................57

5:1. INTRODUCTION. ............................................................................................................58

5:2. A TEST CELL FOR INVESTIGATING THE THERMAL BEHAVIOUR

OF FABRIC MEMBRANES............................................................................................58

5:2.1 The Aim of the Test Cell. ....................................................................................................58

5:2.2 The Thermal Parameters Monitored Using the Test Cell. ..................................................59

5:2.3 The Design and Construction of the Test Cell and Associated

Meteorological Station. .......................................................................................................60

5:3. MEMBRANE BEHAVIOUR RECORDED USING THE TEST CELL. ....................64

5:3.1 Data Collected Using the Test Cell. ....................................................................................64

5:3.2 Intra Surface Conduction.....................................................................................................72

5:3.3 Surface Convection. ............................................................................................................75

5:3.4 Surface Long Wave Infra Red Radiation Exchange............................................................75

5:3.5 Solar Radiation Absorption. ................................................................................................76

5:3.6 Transmitted External Solar Radiation and Reflected Internal Solar

Radiation..............................................................................................................................76

5:4. CONCLUSION. .................................................................................................................78

6: MEASURING THE THERMAL PROPERTIES

OF FABRIC MEMBRANES.................................................80

6:1. INTRODUCTION. ............................................................................................................81

6:2. THE GENERAL APPROACH ADOPTED FOR MEASURING THE

THERMAL OPTICAL PROPERTIES OF FABRIC MEMBRANES. .......................82

6:2.1 The Categorisation of Thermal Optical Properties. ............................................................82

Page 6: AN INVESTIGATION INTO THE THERMAL BEHAVIOUR OF … › w › images › a › ae › ... · AN INVESTIGATION INTO THE THERMAL BEHAVIOUR OF SPACES ENCLOSED BY FABRIC MEMBRANES A thesis

CONTENTS.

vi

6:2.2 The Solar Optical Properties of Fabric Membranes............................................................84

6:2.3 The Long Wave Infra Red Optical Properties of Fabric Membranes. ................................85

6:2.4 The Choice of Membranes to be Examined. .......................................................................86

6:3. THE NEAR NORMAL SOLAR OPTICAL PROPERTIES OF FABRIC

MEMBRANES...................................................................................................................87

6:3.1 The Purpose of Measuring the Near Normal Solar Optical Properties of the

Membrane Samples. ............................................................................................................87

6:3.2 The Apparatus used to Measure the Near Normal Solar Optical Properties

of the Membrane Samples. ..................................................................................................87

6:3.3 The Method used to Determine the Near Normal Solar Optical Properties

of the Membrane Samples. ..................................................................................................89

6:3.4 The Results Obtained Using the Solar Spectrophotometer. ................................................89

6:3.5 Analysis of the Results Obtained Using the Solar Spectrophotometer. ..............................91

6:4. THE ANGULAR SOLAR OPTICAL PROPERTIES OF FABRIC

MEMBRANES...................................................................................................................93

6:4.1 The Purpose of Measuring the Angular Solar Optical Properties of the

Membrane Samples. ............................................................................................................93

6:4.2 The Apparatus Used to Measure the Angular Solar Optical Properties of

the Membrane Samples. ......................................................................................................93

6:4.3 The Method Used to Determine the Angular Solar Optical Properties of the

Membrane Samples . ...........................................................................................................94

6:4:4. The Results Obtained Using the Edwards Type Integrating Sphere. ..................................95

6:4.5 Analysis of the Results Obtained Using the Edwards Type Integrating

Sphere. 96

6:4.6 Assessment of the Investigation into the Solar Optical Properties of Fabric

Membranes. .........................................................................................................................100

6:5. THE LONG WAVE INFRA RED OPTICAL PROPERTIES OF FABRIC

MEMBRANES...................................................................................................................101

6:5.1 The Purpose of Measuring the Long Wave Infra Red Optical Properties of

the Membrane Samples. ......................................................................................................101

6:5.2 The Apparatus Available for Measuring the Long Wave Infra Red Optical

Properties of Fabric Membranes. ........................................................................................101

6:5.3 The Apparatus Used to Measure the Long Wave Infra Red Optical

Properties of the Membrane Samples..................................................................................102

6:5.4 The Method Used to Determine the Angular Solar Optical Properties of the

Membrane Samples. ............................................................................................................103

6:5.5 The Results Obtained Using the Long Wave Infra Red Spectrophotometer.......................104

6:5.6 Analysis of the Results Obtained Using The Long Wave Infra Red

Spectrophotometer...............................................................................................................105

6:6 CONCLUSION. .................................................................................................................108

Page 7: AN INVESTIGATION INTO THE THERMAL BEHAVIOUR OF … › w › images › a › ae › ... · AN INVESTIGATION INTO THE THERMAL BEHAVIOUR OF SPACES ENCLOSED BY FABRIC MEMBRANES A thesis

CONTENTS.

vii

7: MODELLING THE THERMAL BEHAVIOUR

OF FABRIC MEMBRANES.................................................117

7:1. INTRODUCTION. ............................................................................................................117

7:2. GENERAL DESCRIPTION OF A MODEL DEVELOPED IN ORDER TO

PREDICT THE THERMAL BEHAVIOUR OF FABRIC MEMBRANES. ...............117

7:2.1 The Purpose of The Boundary Model. ................................................................................117

7:2.2 Simplifications Made in Order to Predict the Thermal Behaviour of Fabric

Membranes. .........................................................................................................................117

7:2.3 The Format of the Model Developed in Order to Predict the Thermal

Behaviour of Fabric Membranes. ........................................................................................117

7:3. DESCRIPTION OF THE SOLAR MODEL...................................................................120

7:3.1 Introduction. ........................................................................................................................120

7:3.2 Calculation of the Angle of Incidence of Direct Beam Solar Radiation

Incident on the External Surface of the Membrane.............................................................121

7:3.3 Calculation of the Composition of Solar Radiation Incident on the External

Surface of the Membrane. ...................................................................................................123

7:3.4 Calculation of the Intensity of Solar Radiation Incident on the Internal

Surface of the Membrane. ...................................................................................................128

7:4 DESCRIPTION OF THE HEAT TRANSFER MODEL. .............................................130

7:4.1 Introduction. ........................................................................................................................130

7:4.2 The Convergence Procedure................................................................................................130

7:4.3 Calculation of the External Surface Long Wave Infra Red Radiation Heat

Transfer. ..............................................................................................................................132

7:4.4 Calculation of the Internal Surface Long Wave Infra Red Radiation Heat

Transfer. ..............................................................................................................................135

7:4.5 Calculation of the External Surface Convection Heat Transfer..........................................136

7:4.6 Calculation of the Internal Surface Convection Heat Transfer. ..........................................137

7:4.7 Calculation of the Membrane Core Behaviour....................................................................139

7:5. COMPARISON BETWEEN THE MODEL OUTPUT AND MONITORED

DATA..................................................................................................................................141

7:5.1 Introduction. ........................................................................................................................141

7:5.2 Comparison Between the Output of the Solar Model and Monitored Data. .......................141

7:5.3 Comparison Between the Output of the Heat Transfer Model and

Monitored Data....................................................................................................................144

7:5.4 Analysis of the Heat Transfer Model Output. .....................................................................154

7:6. CONCLUSION. .................................................................................................................157

Page 8: AN INVESTIGATION INTO THE THERMAL BEHAVIOUR OF … › w › images › a › ae › ... · AN INVESTIGATION INTO THE THERMAL BEHAVIOUR OF SPACES ENCLOSED BY FABRIC MEMBRANES A thesis

CONTENTS.

viii

8: MONITORING THE THERMAL

BEHAVIOUR OF SPACES ENCLOSED BY

FABRIC MEMBRANES. ......................................................159

8:1. INTRODUCTION. ............................................................................................................160

8:2. THE MONITORING PROGRAMME............................................................................160

8:2.1 The Aims of the Monitoring Programme. ...........................................................................160

8:2.2 The Approach Adopted in Order to Monitor the Thermal Behaviour of the

Enclosed Spaces. .................................................................................................................161

8:2.3 The Approach Adopted in Order to Monitor External Conditions. ....................................163

8:2.4 The Method Adopted for the Monitoring Programme. .......................................................165

8:3. CASE STUDY 1: LANDRELL FABRIC ENGINEERING. .........................................166

8:3.1 Description of the Landrell Fabric Engineering..................................................................166

8:3.2 Information Monitored at Landrell Fabric Engineering......................................................170

8:3.3 Analysis of the Information Monitored at Landrell Fabric Engineering.............................173

8:4. CASE STUDY 2: THE ROYAL INTERNATIONAL EISTEDDFOD

PAVILION, MAIN ARENA.............................................................................................175

8:4.1 Thermal Specification. ........................................................................................................175

8:4.2 Information Monitored at the Eisteddfod Arena. ................................................................178

8:4.3 Analysis of the Information Monitored at the Eisteddfod Arena........................................182

8:5. CASE STUDY 3: THE CHERITON PASSENGER TERMINAL,

ADMINISTRATION AND AMENITY BUILDING......................................................183

8:5.1 Description of the Administration and Amenity Building. .................................................183

8:5.2 Information Monitored at the Administration and Amenity Building. ...............................187

8:5.3 Analysis of the Information Monitored at the Administration and Amenity

Building. ..............................................................................................................................191

8:6. CASE STUDY 4: THE AELTC INDOOR TENNIS CENTRE, COVERED

COURTS.............................................................................................................................193

8:6.1 Description of the AELTC Covered Courts. .......................................................................193

8:6.2 Information Monitored at the AELTC Covered Courts. .....................................................195

8:6.3 Analysis of the Information Monitored at the AELTC Covered Courts. ............................199

8:7. OVERALL ANALYSIS OF THE OBSERVED THERMAL BEHAVIOUR

OF SPACES ENCLOSED BY FABRIC MEMBRANES. .............................................200

8:7.1 Summary of the Observed Behaviour..................................................................................200

8:7.2 Modelling Implications of the Observed Behaviour. ..........................................................201

Page 9: AN INVESTIGATION INTO THE THERMAL BEHAVIOUR OF … › w › images › a › ae › ... · AN INVESTIGATION INTO THE THERMAL BEHAVIOUR OF SPACES ENCLOSED BY FABRIC MEMBRANES A thesis

CONTENTS.

ix

8:8. CONCLUSION. .................................................................................................................202

9: MODELLING THE THERMAL BEHAVIOUR

OF SPACES ENCLOSED BY FABRIC

MEMBRANES........................................................................203

9.1 INTRODUCTION. ............................................................................................................204

9:2. THE MODELLING PROCESS. ......................................................................................204

9:2.1 The Aims of the Modelling Process. ...................................................................................204

9:2.2 The Investigation of Fluid Flow. .........................................................................................205

9:2.3 Computational Fluid Dynamics...........................................................................................206

9:2.4 General Description of Flovent. ..........................................................................................207

9:2.5 The Approach Adopted for the Modelling Process.............................................................210

9:3. MODELLING THE THERMAL BEHAVIOUR OF LANDRELL FABRIC

ENGINEERING. ...............................................................................................................214

9:3.1 Specification of Landrell Fabric Engineering. ....................................................................214

9:3.2 Comparison Between the CFD Model Output and the Data Monitored at

Landrell Fabric Engineering................................................................................................218

9:4. MODELLING THE THERMAL BEHAVIOUR OF THE EISTEDDFOD

ARENA. ..............................................................................................................................219

9:4.1 Specification of the Eisteddfod Arena. ...............................................................................219

9:4.2 Comparison Between the CFD Model Output and the Data Monitored at

the Eisteddfod Arena. ..........................................................................................................223

9:5. MODELLING THE THERMAL BEHAVIOUR OF THE

ADMINISTRATION AND AMENITY BUILDING......................................................224

9:5.1 Specification of the Administration and Amenity Building................................................225

9:5.2 Comparison Between the CFD Model Output and the Data Monitored at

the Administration and Amenity Building. .........................................................................228

9:6. MODELLING THE THERMAL BEHAVIOUR OF THE AELTC

COVERED COURTS........................................................................................................229

9:6.1 Specification of the AELTC Covered Courts......................................................................229

9:6.2 Comparison Between the CFD Model Output and the Data Monitored at

the AELTC Covered Courts. ...............................................................................................232

9:7 SUMMARY OF THE FINDINGS OF THE MODELLING PROCESS......................234

9:7.1 The Overall Accuracy of the CFD Simulations. .................................................................234

Page 10: AN INVESTIGATION INTO THE THERMAL BEHAVIOUR OF … › w › images › a › ae › ... · AN INVESTIGATION INTO THE THERMAL BEHAVIOUR OF SPACES ENCLOSED BY FABRIC MEMBRANES A thesis

CONTENTS.

x

9:7.2 Analysis of the Fluid Flow Model.......................................................................................236

9:8. CONCLUSION. .................................................................................................................239

10: DISCUSSION..........................................................................244

10:1. INTRODUCTION. ............................................................................................................245

10:2. THE THERMAL BEHAVIOUR OF FABRIC MEMBRANES. ..................................245

10:2.1 The Attempts of Previous Researchers to Investigate the Thermal

Behaviour of Fabric Membranes. ........................................................................................245

10:2.2 The Investigation into the Thermal Behaviour of Fabric Membranes

Presented in this Thesis. ......................................................................................................246

10:3. THE THERMAL BEHAVIOUR OF SPACES ENCLOSED BY FABRIC

MEMBRANES...................................................................................................................252

10:3.1 The Attempts of Previous Researchers to Investigate the Thermal

Behaviour of Spaces Enclosed by Fabric Membranes. .......................................................252

10:3.2 The Investigation into the Thermal Behaviour of Spaces Enclosed by

Fabric Membranes Presented in this Thesis. .......................................................................253

10:4 OVERALL ASSESSMENT OF THE RESEARCH PRESENTED IN THIS

THESIS...............................................................................................................................255

10:4.1 Introduction. ........................................................................................................................255

10:4.2 Fabric Membranes Tend to be Translucent.........................................................................256

10:4.3 Fabric Membranes have Insufficient Mass to Significantly Affect their

Thermal Behaviour. .............................................................................................................256

10:4.4 The Geometry of Fabric Membranes is Doubly Curved. ....................................................258

10:5 FUTURE DEVELOPMENTS. .........................................................................................260

10:5.1 A Holistic Approach for Investigating the Thermal Behaviour of Spaces

Enclosed by Fabric Membranes. .........................................................................................260

10:5.2 The Application of a Practical Tool. ...................................................................................262

10:6. CONCLUSION. .................................................................................................................263

11: CONCLUSIONS.....................................................................266

11.1 INTRODUCTION. ............................................................................................................267

Page 11: AN INVESTIGATION INTO THE THERMAL BEHAVIOUR OF … › w › images › a › ae › ... · AN INVESTIGATION INTO THE THERMAL BEHAVIOUR OF SPACES ENCLOSED BY FABRIC MEMBRANES A thesis

CONTENTS.

xi

11.2 THE INCREASING INADEQUACY OF EXISTING ANALYTICAL

TECHNIQUES...................................................................................................................267

11.3 THE THERMAL BEHAVIOUR OF FABRIC MEMBRANES. ..................................267

11.4 THE THERMAL BEHAVIOUR OF SPACES ENCLOSED BY FABRIC

MEMBRANES...................................................................................................................268

11.5 THE NEED FOR FURTHER RESEARCH....................................................................269

A1: APPENDIX 1, LIST OF PERMANENT

FABRIC STRUCTURES COMPLETED IN

THE UK...................................................................................271

A1:1. STRUCTURES COMPLETED IN 1978. ........................................................................272

A1:2. STRUCTURES COMPLETED IN 1979. ........................................................................272

A1:3. STRUCTURES COMPLETED IN 1981. ........................................................................272

A1:4. STRUCTURES COMPLETED IN 1984. ........................................................................272

A1:5. STRUCTURES COMPLETED IN 1985. ........................................................................272

A1:6. STRUCTURES COMPLETED IN 1987. ........................................................................272

A1:7. STRUCTURES COMPLETED IN 1988. ........................................................................272

A1:8. STRUCTURES COMPLETED IN 1989. ........................................................................272

A1:9. STRUCTURES COMPLETED IN 1990. ........................................................................272

A1:10. STRUCTURES COMPLETED IN 1991. ........................................................................272

A1:11.STRUCTURES COMPLETED IN 1992. .........................................................................273

A1:12. STRUCTURES COMPLETED IN 1993. ........................................................................273

A1:13. STRUCTURES COMPLETED IN 1994. ........................................................................273

Page 12: AN INVESTIGATION INTO THE THERMAL BEHAVIOUR OF … › w › images › a › ae › ... · AN INVESTIGATION INTO THE THERMAL BEHAVIOUR OF SPACES ENCLOSED BY FABRIC MEMBRANES A thesis

CONTENTS.

xii

A2: APPENDIX 2, MEMBRANE MODEL CODE

LISTING. ................................................................................274

A2:1 FABRIC MEMBRANE THERMAL MODEL CONTROL

PROCEDURES..................................................................................................................275

A2:1.1 Input Information.................................................................................................................275

A2.1.2 Convergence Display...........................................................................................................281

A2:1.3 Control Programme. ............................................................................................................282

A2:2. SOLAR MODEL. ..............................................................................................................287

A2:2.1 Calculation of The Angle of Incidence of Direct Beam Solar Radiation

Incident on the External Surface of the Membrane.............................................................287

A2:2.2 Calculation of the Composition of Solar Radiation Incident on the External

Surface of the Membrane. ...................................................................................................288

A2:2.3 Calculation of the Composition of Solar Radiation Incident on the Internal

Surface of the Membrane. ...................................................................................................291

A2:3. HEAT TRANSFER MODEL. ..........................................................................................293

A2:3.1 Calculation of the External Surface Long Wave Infra Red Radiation Heat

Transfer. ..............................................................................................................................293

A2:3.2 Calculation of the Internal Surface Long Wave Infra Red Radiation Heat

Transfer. ..............................................................................................................................295

A2:3.3 Calculation of the External Surface Convection Heat Transfer..........................................295

A2:3.4 Calculation of the Internal Surface Convection Heat Transfer. ..........................................296

A2:3.5 Calculation of the Membrane Core Behaviour....................................................................297

A2:4. MODEL CODE SOURCES..............................................................................................300

A3: BIBLIOGRAPHY...................................................................301

A3:1. BOOKS...............................................................................................................................302

A3:2. JOURNAL PAPERS. ........................................................................................................303

A3:3. CONFERENCE PAPERS.................................................................................................305

A3:4. STANDARDS.....................................................................................................................306

A3:5. UNPUBLISHED WORKS................................................................................................306

Page 13: AN INVESTIGATION INTO THE THERMAL BEHAVIOUR OF … › w › images › a › ae › ... · AN INVESTIGATION INTO THE THERMAL BEHAVIOUR OF SPACES ENCLOSED BY FABRIC MEMBRANES A thesis

LIST OF FIGURES.

xiv

LIST OF FIGURES.

1: INTRODUCTION. .................................................................1

1.1 The Increasing Frequency of Permanent Fabric Structures Completed /

Year in the UK (see Appendix 1 for details).......................................................................2

1:6. Schematic Illustration of the Format of this Thesis. ...........................................................6

2: SUBJECT BACKGROUND..................................................8

2:2.1 A Typical Black Tent. .........................................................................................................10

2:3.1 Denver International Airport. ..............................................................................................14

2:4.1a List of Uncoated Fabrics. ....................................................................................................17

2:4.1b List of Films. .......................................................................................................................18

2:4.1c List of Mesh Reinforced Films............................................................................................18

2:4.1d List of Coated Fabrics. ........................................................................................................18

3: THE EXISTING BODY OF KNOWLEDGE......................23

3:2.1 Schematic Illustration of the Standard Method For Calculating the Heat

Transfer Across Fabric Membrane Building Envelopes. ....................................................28

3:2.2 Diagram to Illustrate the Dynamic Thermal Behaviour of Fabric

Membranes. .........................................................................................................................30

3:3.1 Diagram to Show the Relationship Between Climatic Conditions and the

Annual Energy Consumption Predicted by Hart et al. (artificial lighting

29.1W/m2)...........................................................................................................................33

4: METHODOLOGY.................................................................40

4:2.3a Landrell Fabric Engineering. North Elevation, 1:500. ........................................................43

4:2.3b The Royal International Eisteddfod Pavilion, Main Arena. Section, 1:1000......................43

4:2.3c The AELTC Indoor Tennis Centre, Covered Courts. Perspective Sketch. .........................44

Page 14: AN INVESTIGATION INTO THE THERMAL BEHAVIOUR OF … › w › images › a › ae › ... · AN INVESTIGATION INTO THE THERMAL BEHAVIOUR OF SPACES ENCLOSED BY FABRIC MEMBRANES A thesis

LIST OF FIGURES.

xv

4:2.4 Landrell Fabric Engineering, Factory Space: Pilot Study. ..................................................45

4:2.5 The Royal International Eistddfod Pavilion, Main Arena: Pilot Study...............................47

4:2.6 The AELTC Indoor Tennis Centre, Covered Courts: Pilot Study. .....................................49

4:4 Schematic Illustration of the Methodology Adopted for the Research

Presented in the Rest of this Thesis.....................................................................................56

5: MONITORING THE THERMAL

BEHAVIOUR OF FABRIC MEMBRANES.......................57

5:2.2a The Thermal Behaviour of Spaces Enclosed by Fabric Membranes. .................................59

5:2.2b The Thermal Behaviour of Fabric Membranes ...................................................................60

5:2.2c Thermal Comfort Within the Enclosed Space.....................................................................60

5:2.2d The Membrane Dependence of Thermal Comfort Within the Enclosed

Space....................................................................................................................................60

5:2.3 Schematic Illustration of the Components of the Test Cell and the

Associated Meteorological Station......................................................................................62

5:3.1a List of The Test Cell Data used for Analysis and Validation Purposes..............................65

5:3.1b Test Cell Data: Type 1 PVC Coated Polyester....................................................................66

5:3.1c Test Cell Data: PTFE coated glass (new)............................................................................67

5:3.1d Test Cell Data: Type 2 PVC Coated Polyester....................................................................68

5:3.1e Test Cell Data: Type 3 PVC Coated Polyester....................................................................69

5:3.1f Test Cell Data: Eisteddfod Arena Membrane (PVC Coated Polyester)..............................70

5:3.1g Test Cell Data: Type 4 PVC Coated Polyester....................................................................71

5:3.2 Diagram to Show the Relationship Between the Difference in

Temperatures Recorded at the Internal and External Surfaces of a Type 4

PVC Coated Polyester Membrane, and the Intensity of Solar Radiation

Incident on its External Surface (03/05/95). .......................................................................74

5:3.6 Diagram to Show the Relationship Between the Angle Incidence of Solar

Radiation Striking the Test Cell, and the Inaccuracy of the Solar Intensity

Recorded by the Internal Solarimeter..................................................................................77

6: MEASURING THE THERMAL PROPERTIES

OF FABRIC MEMBRANES.................................................80

6:2.1 Diagram to Illustrate the Categorisation and Measurement of the Thermal

Wavelengths of the Electromagnetic Spectrum. .................................................................84

6:3.2 Schematic Representation of the Operation of the Integrating Sphere Solar

Spectrophotometer...............................................................................................................89

Page 15: AN INVESTIGATION INTO THE THERMAL BEHAVIOUR OF … › w › images › a › ae › ... · AN INVESTIGATION INTO THE THERMAL BEHAVIOUR OF SPACES ENCLOSED BY FABRIC MEMBRANES A thesis

LIST OF FIGURES.

xvi

6:3.4a Near Normal Solar Optical Properties: Type 1 PVC Coated Polyester. .............................91

6:3.4b Near Normal Solar Optical Properties: Type 2 PVC Coated Polyester. .............................91

6:3.4c Near Normal Solar Optical Properties: Type 3 PVC Coated Polyester. .............................91

6:3.4d Near Normal Solar Optical Properties: Type 4 PVC Coated Polyester. .............................92

6:3.4e Near Normal Solar Optical Properties: Eisteddfod Arena Membrane. ...............................92

6:3.4f Near Normal Solar Optical Properties: Wimbledon Membrane (Outside

Surface)................................................................................................................................92

6:3.4g Near Normal Solar Optical Properties: Wimbledon Membrane (Inside

Surface)................................................................................................................................93

6:3.4h Near Normal Solar Optical Properties: Type 1 PTFE Coated Glass (New). ......................93

6:3.4i Near Normal Solar Optical Properties: Type 1 PTFE Coated Glass

(Weathered). ........................................................................................................................93

6:3.5 Weighted Near Normal Hemispherical Solar Optical Properties (Air Mass

2)..........................................................................................................................................94

6:4.2 Schematic Illustration of the Apparatus Used to Measure the Angular Solar

Optical Properties of the Sample Membranes.....................................................................96

6:4.4a Angular Solar Optical Properties: Type 1 PVC Coated Polyester. .....................................99

6:4.4b Angular Solar Optical Properties: Type 2 PVC Coated Polyester. .....................................99

6:4.4c Angular Solar Optical Properties: Type 3 PVC Coated Polyester. .....................................99

6:4.4d Angular Solar Optical Properties: Type 4 PVC Coated Polyester. .....................................100

6:4.4e Angular Solar Optical Properties: Eisteddfod Arena Membrane........................................100

6:4.4f Angular Solar Optical Properties: Wimbledon Membrane (Outside

Surface)................................................................................................................................100

6:4.4g Angular Solar Optical Properties: Wimbledon Membrane (Inside Surface). .....................101

6:4.4h Angular Solar Optical Properties: Type 1 PTFE Coated Glass (New). ..............................101

6:4.4i Angular Solar Optical Properties: Type 1 PTFE Coated Glass (Weathered). ....................101

6:4.5 The Near Normal and Diffuse Solar Optical Properties of the Membrane

Samples................................................................................................................................103

6:4.6 Comparison Between the Change in the Proportion of Solar Radiation

Transmitted and Absorbed by a Sheet of 3mm Clear Float Glass with

Angle of Incidence and that of a Typical Fabric Membrane...............................................104

6:5.3 Schematic Illustration of the Long Wave Infra Red Spectrophotometer. ...........................107

6:5.5a Near Normal Long Wave Infra Red Optical Properties: Type 1 PVC

Coated Polyester. .................................................................................................................109

6:5.5b Near Normal Long Wave Infra Red Optical Properties: Type 2 PVC

Coated Polyester. .................................................................................................................109

6:5.5c Near Normal Long Wave Infra Red Optical Properties: Type 3 PVC

Coated Polyester. .................................................................................................................109

6:5.5d Near Normal Long Wave Infra Red Optical Properties: Type 4 PVC

Coated Polyester. .................................................................................................................110

6:5.5e Near Normal Long Wave Infra Red Optical Properties: Eisteddfod Arena

Membrane............................................................................................................................110

Page 16: AN INVESTIGATION INTO THE THERMAL BEHAVIOUR OF … › w › images › a › ae › ... · AN INVESTIGATION INTO THE THERMAL BEHAVIOUR OF SPACES ENCLOSED BY FABRIC MEMBRANES A thesis

LIST OF FIGURES.

xvii

6:5.5f Near Normal Long Wave Infra Red Optical Properties: Wimbledon

Membrane (Outside Surface) ..............................................................................................110

6:5.5g Near Normal Long Wave Infra Red Optical Properties: Wimbledon

Membrane (Inside Surface) .................................................................................................111

6:5.5h Near Normal Long Wave Infra Red Optical Properties: Type 1 PTFE

Coated Glass (New).............................................................................................................111

6:5.5i Near Normal Long Wave Infra Red Optical Properties: Type 1 PTFE

Coated Glass (Weathered)...................................................................................................111

6:5.6 Weighted Long Wave Infra Red Optical Properties of the Membrane

Samples................................................................................................................................112

7: MODELLING THE THERMAL BEHAVIOUR

OF FABRIC MEMBRANES.................................................117

7:2.3 Schematic Illustration of the Model Format........................................................................120

7:3.1 Diagram to Illustrate the Parameters Predicted by Solar Model. ........................................124

7:3.2 Diagram to Illustrate Solar Azimuth and Altitude. .............................................................125

7:3.3 Diagram to Illustrate the External Hemispherical View Factors. .......................................130

7:4.1 The Heat Transfer Model Representation of the Thermal Behaviour of

Fabric Membranes. ..............................................................................................................133

7:4.2 Schematic Illustration of the Convergence Procedure. .......................................................135

7:4.3 Table to Illustrate the Extreme Differences Between the External air

Temperature and the Surface Temperatures of a Range of Commonly

Occurring Materials.............................................................................................................137

7:5.2a Solar Model Simulation: 16/9/94. .......................................................................................145

7:5.2b Solar Model Simulation: 20/0/94. .......................................................................................145

7:5.2c Solar Model Simulation: 10/10/94. .....................................................................................146

7:5.2d Diagram to Show the Relationship Between Predicted and Monitored Solar

Radiation Incident upon Surfaces of Inclination from 55 to 70o. .......................................146

7:5.2e Table to Summarise the Predicted Errors Associated with the Solar Model. .....................147

7:5.3a Thermal Simulation: Type 1 PVC Coated Polyester...........................................................148

7:5.3b Thermal Simulation: PTFE Coated Glass (New). ...............................................................148

7:5.3c Thermal Simulation: Type 2 PVC Coated Polyester...........................................................149

7:5.3d Thermal Simulation: Type 3 PVC Coated Polyester...........................................................149

7:5.3e Thermal Simulation: Eisteddfod Arena Membrane. ...........................................................150

7:5.3f Thermal Simulation: Type 4 PVC Coated Polyester...........................................................150

7:5.3g Table to Summarise the Differences Between Predicted and Recorded

Membrane Internal Surface Temperatures. .........................................................................151

7:5.3h The Relationship Between the Monitored Internal Surface Temperature

and the Temperature Predicted Using The Dynamic Boundary Model. .............................151

Page 17: AN INVESTIGATION INTO THE THERMAL BEHAVIOUR OF … › w › images › a › ae › ... · AN INVESTIGATION INTO THE THERMAL BEHAVIOUR OF SPACES ENCLOSED BY FABRIC MEMBRANES A thesis

LIST OF FIGURES.

xviii

7:5.4a Table to Summarise the Significance of the Various Modes of Heat

Transfers Calculated by The Thermal Boundary Model.....................................................153

7:5.4b Graph to Illustrate the Significance of the Various Modes of Heat

Transfers Calculated by The Thermal Boundary Model.....................................................154

7:6. Table to Summarise the Overall Errors Associated with the Boundary

Model...................................................................................................................................155

8: MONITORING THE THERMAL

BEHAVIOUR OF SPACES ENCLOSED BY

FABRIC MEMBRANES. ......................................................159

8:2.2 Comparison Between the Temperatures Recorded by Three Different

Types of Sensor Under the Same Conditions (11:00 11/7/94 to 19:00

12/7/94)................................................................................................................................163

8:3.1a Landrell Fabric Engineering, Section A-A (1:500). ............................................................169

8:3.1b Landrell Fabric Engineering, Floor Plan (1:500). ...............................................................169

8:3.2a Landrell Fabric Engineering. 12/03/94 ...............................................................................171

8:3.2b Landrell Fabric Engineering. 01/10/94. ..............................................................................172

8:3.3a Diagram to Illustrate the Range of Resultant Temperatures Monitored

Within Landrell Fabric Engineering 12/3/94. .....................................................................173

8:3.3b Diagram to Illustrate the Progressive Moderating Effect of the Landrell

Fabric Engineering Roof Cavity and Factory Space (1/10/94). ..........................................174

8:4.1a Royal International Eisteddfod Pavilion, Main Arena, Section B-B.(1:500)......................177

8:4.1b Royal International Eisteddfod Pavilion, Main Arena, Floor Plan (1:500) ........................177

8:4.2a Royal International Eisteddfod Pavilion, Main Arena. 24/08/94........................................179

8:4.2b Royal International Eisteddfod Pavilion, Main Arena. 25/08/94........................................180

8:4.3a Diagram to Show the Affect of Changing Environmental Conditions on the

Range of Resultant Temperatures Monitored Within the Eisteddfod Arena

(25/4/94). .............................................................................................................................181

8:4.3b Diagram to Show the Relationship Between the Intensity of Horizontal

Global Solar Radiation and the Stratification of Resultant Temperatures

Monitored Within the Eisteddfod Arena (25/8/94). ............................................................182

8:5.1a The Administration and Amenity Building, Section C-C (1:1000). ...................................185

8:5.1b The Administration and Amenity Building, Ground Floor Plan (1:1000). .........................185

8:5.2a The Administration and Amenity Building. 17/04/94.........................................................187

8:5.2b The Administration and Amenity Building. 11/06/94.........................................................188

8:5.3a Diagram to Show the Relationship Between External Conditions and the

Range of Resultant Temperatures Monitored in the Administration and

Amenity Building (17/4/94). ...............................................................................................189

Page 18: AN INVESTIGATION INTO THE THERMAL BEHAVIOUR OF … › w › images › a › ae › ... · AN INVESTIGATION INTO THE THERMAL BEHAVIOUR OF SPACES ENCLOSED BY FABRIC MEMBRANES A thesis

LIST OF FIGURES.

xix

8:5.3b Diagram to Show the Relationship Between External Conditions and the

Range of Resultant Temperatures Monitored in the Administration and

Amenity Building (11/6/94) ................................................................................................189

8:5.3c Diagram to Show the Average Stratification of Resultant Temperatures

Recorded Within the Administration and Amenity Building (17/4/94)..............................191

8:6.1a The AELTC Covered Courts, South East Elevation (1:500). .............................................193

8:6.1b The AELTC Covered Courts, Floor Plan (1:500). ..............................................................193

8:6.2a The AELTC Covered Courts. 24/03/94...............................................................................195

8:6.2b The AELTC Covered Courts. 27/07/94...............................................................................196

8:6.3a Diagram to Show how the Range of Resultant Temperature Monitored

Within the AELTC Covered Courts Varied in Response to Changes in

Environmental Conditions (27/7/94)...................................................................................197

8:6.3b Diagram to Illustrate the Difference Between the Maximum Stratification

Recorded Within the AELTC Covered Courts (27/7/94 13:00) and the

Maximum Stratification Recorded Within the Administration and Amenity

Building (11/6/94 15:08). ....................................................................................................198

9: MODELLING THE THERMAL BEHAVIOUR

OF SPACES ENCLOSED BY FABRIC

MEMBRANES........................................................................203

9:2.4 Schematic Illustration of the Computational Process used by Flovent. ..............................208

9:2.5 Table to Summarise the Properties Used to Predict the Thermal State of the

Fabric Membrane Boundaries. ............................................................................................212

9:3.1a Model Representation of Landrell Fabric Engineering.......................................................215

9:3.1b Landrell Fabric Engineering, Factory Space: Thermal Simulation. 01:00

01/10/94...............................................................................................................................216

9:3.1c Landrell Fabric Engineering, Factory Space: Thermal Simulation. 13:30

01/10/94...............................................................................................................................217

9:3.2 Graph to Illustrate the Relationship Between the Monitored and Predicted

Resultant Temperatures Within Landrell Fabric Engineering. ...........................................218

9:4.1a Royal International Eisteddfod Pavilion, Main Arena: Model

Representation. ....................................................................................................................220

9:4.1b Royal International Eisteddfod Pavilion, Main Arena: Thermal Simulation.

21:43 24/08/94.....................................................................................................................221

9:4.1c Royal International Eisteddfod Pavilion, Main Arena: Thermal Simulation.

13:39 25/08/94.....................................................................................................................222

9:4.2a Graph to Illustrate the Relationship Between the Monitored and Predicted

Resultant Temperatures Within the Eisteddfod Arena........................................................223

9:4.2b Diagram to Illustrate the Radiant and Air Temperature Components of the

Resultant Stratification Predicted by Flovent (13:39 25/08/94). ........................................224

9:5.1a The Administration and Amenity Building: Model Representation. ..................................226

Page 19: AN INVESTIGATION INTO THE THERMAL BEHAVIOUR OF … › w › images › a › ae › ... · AN INVESTIGATION INTO THE THERMAL BEHAVIOUR OF SPACES ENCLOSED BY FABRIC MEMBRANES A thesis

LIST OF FIGURES.

xx

9:5.1b The Administration and Amenity Building: Thermal Simulation. 14:00

17/04/94...............................................................................................................................227

9:5.1c The Administration and Amenity Building: Thermal Simulation. 10:30

11/06/94...............................................................................................................................228

9:5.2 Graph to Illustrate the Relationship Between the Monitored and Predicted

Resultant Temperatures Within the Administration and Amenity Building.......................229

9:6.1a The AELTC Covered Courts: Model Representation. ........................................................231

9:6.1b The AELTC Covered Courts: Thermal Simulation. 06:30 24/03/94. .................................232

9:6.1c The AELTC Covered Courts: Thermal Simulation. 12:00 27/07/94. .................................233

9:6.2 Graph to Illustrate the Relationship Between the Monitored and Predicted

Resultant Temperatures Within the AELTC Covered Courts.............................................234

9:7.1a Graph to Illustrate the Relationship Between the CFD Simulations and the

Monitored Data....................................................................................................................236

9:7.1b Diagram to Show the Relationship Between the Extent f Monitored

Internal Stratification and the Accuracy of the Internal Resultant

Temperatures Predicted by Flovent.....................................................................................237

9:7.1c Diagram to Show the Relationship Between the Monitored stratification of

Internal Resultant Temperatures, and the Various Thermal Gradients

Predicted by Flovent............................................................................................................238

9:7.2a Diagram to Illustrate the Grid Refinement Necessary in Order to Allow

Fast Moving Air Streams at Cold Window Surfaces to be Predicted. ................................241

9:7.2b Diagram to Illustrate the Grid and Surface Refinement Necessary in Order

to Allow Fast Moving Air Streams at Curved Surfaces to be Predicted. ............................241

10: DISCUSSION..........................................................................244

10:2.2a Table to Summarise the Overall Errors Associated with the Boundary

Model Described in Chapter 7.............................................................................................249

10:2.2b Diagrams to Illustrate the Difference Between the Conventional Model of

the Thermal Behaviour of Fabric Membranes, and the Model Considered

Necessary for the Purposes of this Research.......................................................................250

10:2.2c Diagram to show the Relative Significance of the Membrane Heat

Transfers Predicted Using the Thermal Model Described in Chapter 7. ............................251

10:3.2 Diagram to Illustrate the Characteristic Thermal Behaviour of Unheated

Spaces Enclosed by Fabric Membranes. .............................................................................253

10:4.4a Diagram to Show the Affect of Reducing the Grid Spacing Used by

Flovent on the Air Temperatures Predicted Within a Small Box........................................259

10:4.4b Diagram to illustrate the Surface Refinement Possible with a Body Fitted

Co-ordinate Grid..................................................................................................................260

10:5.1 A Dynamic Tool for Predicting the Thermal Behaviour of Spaces Enclosed

by Fabric Membranes. .........................................................................................................262

Page 20: AN INVESTIGATION INTO THE THERMAL BEHAVIOUR OF … › w › images › a › ae › ... · AN INVESTIGATION INTO THE THERMAL BEHAVIOUR OF SPACES ENCLOSED BY FABRIC MEMBRANES A thesis

ACKNOWLEDGEMENTS

xxi

ACKNOWLEDGEMENTS.

Roger Ambrose, The All England Lawn Tennis an Croquet Club.

Mike Barnes, City University.

Carolyn Brindle, Royal International Eisteddfod Pavilion,

Anne Frith, Imagination Ltd.

Paul Gibbins, Building Design Partnership,

Chris Harding, Eurotunnel.

Ian King, Ian King Architects.

Professor Phil Jones, UWCC.

Dr Peter Lewis, UWCC.

Peter Moseley, Buro Happold.

James Newman Jr, Birdair Inc.

Eric Newton, John Heathcoat & Co.

Monotobu Nohmura, Taiyo Koygo Corporation.

Professor Derek Poole, UWCC.

Norman Robson-Smith, UWCC.

Lance Rowell, Landrell Fabric Engineering.

Dr Chris Williams, University of Bath.

Page 21: AN INVESTIGATION INTO THE THERMAL BEHAVIOUR OF … › w › images › a › ae › ... · AN INVESTIGATION INTO THE THERMAL BEHAVIOUR OF SPACES ENCLOSED BY FABRIC MEMBRANES A thesis

DECLARATION AND STATEMENT.

xxii

DECLARATION AND STATEMENT.

Declaration.

This work has not previously been accepted in substance for any degree and is not being

concurrently submitted in candidature for any degree.

Statement 1.

This thesis is the result of my own investigations, except where otherwise stated.

Other sources are acknowledged by footnotes giving explicit references. A bibliography is

appended.

Statement 2.

I hereby give consent for my thesis, if accepted, to be available for photocopying and for

inter-library loan, and for the title and summary to be made available to outside

organisations.

Signed ........................................................................................................ (Candidate)

Date ........................................................................................................

Signed ........................................................................................................ (Supervisor)

Date ........................................................................................................

Page 22: AN INVESTIGATION INTO THE THERMAL BEHAVIOUR OF … › w › images › a › ae › ... · AN INVESTIGATION INTO THE THERMAL BEHAVIOUR OF SPACES ENCLOSED BY FABRIC MEMBRANES A thesis

LIST OF SYMBOLS.

xxiii

LIST OF SYMBOLS.

Symbol Description Units

A Area m2

As Solar altitude o

Az Solar azimuth o

Aw Azimuth of surface normal o

b Shadowband ring width mm

Ccore Core conductivity W/m2oc

Ccore1 External membrane core conductivity W/m2oc

Ccore2 Internal membrane core conductivity W/m2oc

Cf Robinson's shadowband correction factor ratio

D Cloudy sky horizontal diffuse solar radiation W/m2

d Solar declination o

Eot Equation of time ratio

F Solar heat gain coefficient ratio

Fε Emissivity factor ratio

G Theoretical clear sky horizontal global solar radiation W/m2

g Gauge m

g1 External membrane gauge m

g2 Internal membrane gauge m

H Horizontal global solar radiation W/m2

Ha Incident clear sky long wave infra red radiation W/m2

Hac Horizontal clear sky long wave infra red radiation W/m2

h Elevation km

hci Inside surface convection heat transfer coefficient W/m2oc

hci(i) Inclined surface convection heat transfer coefficient W/m2oc

hco Outside surface convection heat transfer coefficient W/m2oc

hi Inside surface thermal resistance W/m2oc

ho Outside surface thermal resistance W/m2oc

hri Inside surface radiant heat transfer coefficient W/m2oc

hro Outside surface radiant heat transfer coefficient W/m2oc

I Incident solar radiation W/m2

Id Incident direct beam solar radiation W/m2

Idhl Theoretical clear sky direct horizontal solar radiation W/m2

Idn Direct normal solar radiation W/m2

Idnl Theoretical clear sky direct normal solar radiation W/m2

Iet Normal extraterrestrial solar radiation W/m2

If Incident diffuse solar radiation W/m2

Comment [J1]: Page: 23

Page 23: AN INVESTIGATION INTO THE THERMAL BEHAVIOUR OF … › w › images › a › ae › ... · AN INVESTIGATION INTO THE THERMAL BEHAVIOUR OF SPACES ENCLOSED BY FABRIC MEMBRANES A thesis

LIST OF SYMBOLS.

xxiv

Ifhl Theoretical clear sky diffuse horizontal solar radiation W/m2

Isc Solar constant W/m2

Isc1 Corrected solar constant W/m2

Isf Incident sky diffuse solar radiation W/m2

Iδ(ext) Remaining external incident solar radiation at depth δ W/m2

Iδ(int) Remaining internal incident solar radiation at depth δ W/m2

i Angle of incidence o

Kext External incident radiation extinction coefficient W/g

Kint Internal incident radiation extinction coefficient W/g

Kλ Extinction coefficient at wavelength λ W/g

Kt Clearness index ratio

L Characteristic length m

m Air mass ratio

N Cloudiness index ratio

Pλ power distribution of a full radiator at 283oK W/λ

Qsol Solar heat gain W/m2

Qmem Boundary heat transfer W/m2

q Net power exchange W

qcondi Net internal surface conductive heat transfer W/m2

qcondo Net external surface conductive heat transfer W/m2

qcvi Net internal surface convection exchange W/m2

qcvo Net external surface convection exchange W/m2

qi Net internal surface heat transfer W/m2

qlwi Net internal surface long wave infra red radiation exchange W/m2

qlwo Net external surface long wave infra red radiation exchange W/m2

qo Net external surface heat transfer W/m2

qρi Reflected direct beam solar radiation W/m2

qρf Reflected diffuse solar radiation W/m2

qρ(ext) Reflected external incident solar radiation W/m2

qρ(int) Reflected internal incident solar radiation W/m2

qτ Solar radiation directed into an enclosure W/m2

qτi Transmitted direct beam solar radiation W/m2

qτf Transmitted diffuse solar radiation W/m2

qτ(ext) Transmitted external incident solar radiation W/m2

qτ(int) Transmitted internal incident solar radiation W/m2

qα Absorbed solar radiation. W/m2

qαi Absorbed direct beam solar radiation W/m2

qαf Absorbed diffuse solar radiation W/m2

qα(int) Absorbed internal incident solar radiation W/m2

qα(ext) Absorbed external incident solar radiation W/m2

Page 24: AN INVESTIGATION INTO THE THERMAL BEHAVIOUR OF … › w › images › a › ae › ... · AN INVESTIGATION INTO THE THERMAL BEHAVIOUR OF SPACES ENCLOSED BY FABRIC MEMBRANES A thesis

LIST OF SYMBOLS.

xxv

R Thermal resistance m2oc/W

Rc Core thermal resistance m2oc/W

Rs Air gap thermal resistance m2oc/W

Rsi Inside surface thermal resistance m2oc/W

Rso Outside surface thermal resistance m2oc/W

r Shadowband ring radius mm

SC Shading Coefficient ratio

SHGF Solar Heat Gain Factor W/m2

St Solar time ratio

T Surface temperature oc

Tc Turbidity coefficient ratio

Te External hemisphere black body surface temperature oc

Tgrd Ground temperature oc Ti

Internal surface temperature oc

TL Atmospheric turbidity unitless

TL(As) Solar altitude corrected turbidity unitless

Tmax Maximum observed surface temperature oc

Tmin Minimum observed surface temperature oc

To External surface temperature oc

Tobs Obstruction temperature oc Tsky Equivalent black body sky temperature oc

ti Inside air temperature oc

tis Enclosure surface temperature oc

to Outside air temperature oc

tq Equivalent enclosure surface temperature oc

tr Radiant temperature oc

tres Resultant temperature oc

U Thermal conductivity ( U value) W/m2oc

V Local surface velocity m/s

Vf Free stream wind speed m/s

Vgrd Ground view factor ratio

Vi Internal air velocity m/s

Vobs Obstruction view factor ratio

Vp Parallel flow velocity m/s

Vsky Sky view factor ratio

v(0) Voltage at near normal angle of incidence v

v(i) Voltage at angle of incidence i v

W Precipitable water content mm

Y Day number (1 - 365)

Page 25: AN INVESTIGATION INTO THE THERMAL BEHAVIOUR OF … › w › images › a › ae › ... · AN INVESTIGATION INTO THE THERMAL BEHAVIOUR OF SPACES ENCLOSED BY FABRIC MEMBRANES A thesis

LIST OF SYMBOLS.

xxvi

Symbol Description Units

α Absorptance ratio

α(0) Near normal solar absorptance ratio

α(ext) Solar Radiation absorbed by internal half of membrane W/m2

α(int) Solar Radiation absorbed by external half of membrane W/m2

α(i) Hemispherical solar absorptance at angle of incidence i ratio

α(f) Diffuse solar absorptance ratio

αlw Long wave infra red absorptance ratio

β Inclination of surface from horizontal o

δ depth mm

εac Horizontal clear sky apparent emittance ratio

εam Horizontal cloudy sky apparent emittance ratio

εeq Equivalent emissivity ratio

εh Hemispherical emissivity ratio

εi Membrane internal surface emissivity ratio

εint Enclosed space emissivity ratio

εn Near normal emissivity ratio

εo Membrane external surface emissivity ratio

φ Latitude o

∅ Time lag seconds

λ Wavelength nm (µm)

θy Day angle o

θh Hour angle o

ρ Reflectance ratio

ρ(0) Near normal solar reflectance ratio

ρ(f) Diffuse solar reflectance ratio

ρ(i) Hemispherical solar reflectance at angle of incidence i ratio

ρlw Long wave infra red reflectance ratio

ρλ Reflectance at wavelength λ ratio

σ Steffan- Boltzmann constant 5.6697 * 10-8 W/m2K4

τ Transmittance ratio

τav Average solar transmittance of membrane. ratio

τ(0) Near normal solar transmittance ratio

τ(f) Diffuse solar transmittance ratio

τ(i) Hemispherical solar transmittance at angle of incidence i ratio

τlw Long wave infra red transmittance ratio

τλ Transmittance at wavelength λ ratio