an eruptive history of maderas volcano ... thesis, “an eruptive history of maderas volcano using...

133
AN ERUPTIVE HISTORY OF MADERAS VOLCANO USING NEW 40 Ar/ 39 Ar AGES AND GEOCHEMICAL ANALYSES By Lara N. Kapelanczyk A THESIS Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE (Geology) MICHIGAN TECHNOLOGICAL UNIVERSITY 2011 Copyright © 2011 Lara N. Kapelanczyk

Upload: dohanh

Post on 24-May-2018

215 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

AN ERUPTIVE HISTORY OF MADERAS VOLCANO USING NEW 40Ar/39Ar AGES AND GEOCHEMICAL ANALYSES

By

Lara N. Kapelanczyk

A THESIS

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

(Geology)

MICHIGAN TECHNOLOGICAL UNIVERSITY

2011

Copyright © 2011 Lara N. Kapelanczyk

Page 2: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

All rights reserved

INFORMATION TO ALL USERSThe quality of this reproduction is dependent on the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscriptand there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

All rights reserved. This edition of the work is protected againstunauthorized copying under Title 17, United States Code.

ProQuest LLC.789 East Eisenhower Parkway

P.O. Box 1346Ann Arbor, MI 48106 - 1346

UMI 1505870

Copyright 2012 by ProQuest LLC.

UMI Number: 1505870

Page 3: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment
Page 4: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

This thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE IN GEOLOGY.

Department of Geological and Mining Engineering and Sciences

Signatures:

Thesis Advisor ___________________________________________

Dr. William I Rose

Department Chair ___________________________________________ Dr. Wayne D. Pennington

Date ___________________________________________

Page 5: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment
Page 6: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

v

Table of Contents LIST OF FIGURES ................................................................................................................................... vii

LIST OF TABLES .......................................................................................................................................ix

ACKNOWLEDGEMENTS .........................................................................................................................xi

ABSTRACT ............................................................................................................................................... xiii

1. INTRODUCTION ................................................................................................................................. 1

2. GEOLOGIC SETTING ........................................................................................................................ 3 2.1. REGIONAL SETTING: CENTRAL AMERICA ......................................................................................... 3

2.2. REGIONAL SETTING: NICARAGUA .................................................................................................... 3

2.3. LOCAL SETTING: OMETEPE ............................................................................................................... 4

2.4. LOCAL SETTING: MADERAS VOLCANO ............................................................................................. 5

3. METHODOLOGY ................................................................................................................................ 9 3.1. FIELD METHODS ............................................................................................................................... 9 3.2. THIN SECTIONS ................................................................................................................................. 9

3.3. GEOCHEMICAL ANALYSIS METHODS ................................................................................................ 9

3.4. 40AR/39AR METHODS ...................................................................................................................... 10

4. RESULTS ............................................................................................................................................. 13 4.1. PETROGRAPHY ................................................................................................................................ 13

4.1.1. Basalts .................................................................................................................................... 13 4.1.2. Basaltic Andesites .................................................................................................................. 13

4.1.3. Andesites and Dacites ............................................................................................................ 14

4.1.4. Comparison of Phenocryst Mineralogy ................................................................................. 14

4.2. GEOCHEMICAL ANALYSIS RESULTS ............................................................................................... 16

4.2.1. General Characteristics ......................................................................................................... 16 4.2.2. Bulk Composition of Ometepe lavas ...................................................................................... 17

4.2.3. Incompatible Elements ........................................................................................................... 19

4.2.4. Fenner Diagrams ................................................................................................................... 22

4.2.5. Analogy to paired volcanoes of Halsor and Rose (1988) ....................................................... 23

4.3. 40AR/39AR RESULTS ........................................................................................................................ 23

5. DISCUSSION ....................................................................................................................................... 27 5.1. GEOLOGICAL MAP .......................................................................................................................... 27

5.1.1. Dominant structural feature: A cross-cutting graben ............................................................ 27

5.1.2. Existence of an older cone ..................................................................................................... 29

5.1.3. Alluvial Deposits .................................................................................................................... 29

5.1.4. Lava Flows ............................................................................................................................. 30

Page 7: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

vi

5.1.5. Central Crater and Vents ...................................................................................................... 31

5.2. GEOCHEMICAL DATA ..................................................................................................................... 33

5.3. 40AR/39AR AGE DATES ................................................................................................................... 35 5.3.1. Phases of volcanism .............................................................................................................. 35

5.3.2. Implications of ages for shorelines at Maderas and Concepción .......................................... 35

5.3.3. Comparison of age dates to other Central American volcanoes ........................................... 36

5.4. AN ERUPTIVE HISTORY OF MADERAS ............................................................................................. 38

5.5. IMPLICATIONS FOR GEOLOGIC HAZARDS ........................................................................................ 40

5.5.1. History of geologic hazards................................................................................................... 40 5.5.2. Implications for Future Hazards ........................................................................................... 43

6. FUTURE WORK ................................................................................................................................ 47

7. CONCLUSIONS ................................................................................................................................. 49

8 REFERENCES.................................................................................................................................... 51

9 APPENDICES ..................................................................................................................................... 57 9.1 APPENDIX A: GEOCHEMICAL DATA ............................................................................................... 57 9.2 APPENDIX B: 40AR/39AR RESULTS.................................................................................................. 68

9.2.1 Sample MADERAS-002 ......................................................................................................... 68

9.2.2 Sample MADERAS-003 ......................................................................................................... 78

9.2.3 Sample MADERAS-004 ......................................................................................................... 88

9.2.4 Sample MADERAS-011 ......................................................................................................... 99

9.2.5 Sample MADERAS-013 ....................................................................................................... 109

Page 8: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

vii

List of Figures FIGURE 1.1: MAP OF CENTRAL AMERICA WITH INSET OF LAKE NICARAGUA AND OMETEPE.. ......................... 2 FIGURE 2.1: LOCATIONS OF TOWNS AND COMMUNITIES AROUND MADERAS AND EXTENT OF FORESTATION ON

MADERAS.. ............................................................................................................................................. 6 FIGURE 3.1: 40AR/39AR AND GEOCHEMICAL SAMPLE LOCATIONS BY COLLECTOR AND ROCK TYPE BASED ON

LE BAS ET AL. (1986).. ......................................................................................................................... 12 FIGURE 4.1: PHENOCRYST MINERALOGY OF MADERAS AND CONCEPCIÓN VOLCANOES.. ............................... 16 FIGURE 4.2. TOTAL ALKALIES VS. SILICA FOR OMETEPE ROCKS. .................................................................... 17 FIGURE 4.3. TOTAL ALKALIES VS. SILICA FOR ROCKS FROM CENTRAL AMERICA. .......................................... 17 FIGURE 4.4: SILICA DISTRIBUTION FOR LAVAS FROM MADERAS VOLCANO. ................................................... 18 FIGURE 4.5: SILICA DISTRIBUTION FOR CONCEPCIÓN VOLCANO..................................................................... 18 FIGURE 4.6: SILICA DISTRIBUTION FOR SAMPLES FROM NICARAGUA. ............................................................ 19 FIGURE 4.7. K2O VS. SIO2 FOR CENTRAL AMERICAN VOLCANIC ROCKS. ....................................................... 19 FIGURE 4.8: PLOTS OF INCOMPATIBLE ELEMENTS VS. MGO WITH REGRESSION LINES FOR MADERAS AND

CONCEPCIÓN VOLCANOES. ................................................................................................................... 20 FIGURE 4.9: PLOT OF INCOMPATIBLE TRACE ELEMENTS VS. MGO COMPARING MADERAS AND CONCEPCIÓN

TO OTHER CENTRAL AMERICAN VOLCANOES. ...................................................................................... 21 FIGURE 4.10. FENNER DIAGRAMS FOR CENTRAL AMERICAN VOLCANIC ROCKS. ............................................ 22 FIGURE 4.11 AGE PLATEAU DIAGRAM AND INVERSE ISOCHRON DIAGRAM FOR SAMPLE MADERAS-013. .... 24 FIGURE 5.1: GEOLOGIC MAP OF MADERAS VOLCANO. ................................................................................... 28 FIGURE 5.2: A) SUMMIT PROFILE AND CROSS-SECTION OF MADERAS VOLCANO. ........................................... 29 FIGURE 5.3: SLOPE MAP OF MADERAS VOLCANO IN DEGREES. ....................................................................... 30 FIGURE 5.4. PLOT OF VENT HEIGHT VS. WT. % SIO2. ...................................................................................... 34 FIGURE 5.5: PLOT OF WT. % SIO2 VERSUS AGE OF THE LAVA FLOW. .............................................................. 34 FIGURE 5.6: RANGES OF AGE DATES ANALYZED FOR CENTRAL AMERICAN VOLCANOES. .............................. 37 FIGURE 9.1: AGE PLATEAU FOR MADERAS-002 .......................................................................................... 76 FIGURE 9.2: K-CA PLATEAU FOR MADERAS-002 ........................................................................................ 76 FIGURE 9.3: NORMAL ISOCHRON FOR MADERAS-002 ................................................................................. 77 FIGURE 9.4: INVERSE ISOCHRON FOR MADERAS-002 .................................................................................. 77 FIGURE 9.5: AGE PLATEAU FOR MADERAS-003 .......................................................................................... 86 FIGURE 9.6: K-CA PLATEAU FOR MADERAS-003 ........................................................................................ 86 FIGURE 9.7: NORMAL ISOCHRON FOR MADERAS-003 ................................................................................. 87 FIGURE 9.8: INVERSE ISOCHRON FOR MADERAS-003 .................................................................................. 87 FIGURE 9.9: AGE PLATEAU FOR MADERAS-004 .......................................................................................... 97 FIGURE 9.10: K-CA PLATEAU FOR MADERAS-004 ...................................................................................... 97 FIGURE 9.11: NORMAL ISOCHRON FOR MADERAS-004 ............................................................................... 98

Page 9: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

viii

FIGURE 9.12: INVERSE ISOCHRON FOR MADERAS-004 ............................................................................... 98 FIGURE 9.13: AGE PLATEAU FOR MADERAS-011 ...................................................................................... 107 FIGURE 9.14: K-CA PLATEAU FOR MADERAS-011 .................................................................................... 107 FIGURE 9.15: NORMAL ISOCHRON FOR MADERAS-011 ............................................................................. 108 FIGURE 9.16: INVERSE ISOCHRON FOR MADERAS-011 ............................................................................. 108 FIGURE 9.17: AGE PLATEAU FOR MADERAS-013 ...................................................................................... 117 FIGURE 9.18: K-CA PLATEAU FOR MADERAS-013 .................................................................................... 117 FIGURE 9.19: NORMAL ISOCHRON FOR MADERAS-013 ............................................................................. 118 FIGURE 9.20: INVERSE ISOCHRON FOR MADERAS-013 ............................................................................. 118

Page 10: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

ix

List of Tables TABLE 4.1: RESULTS OF THIN SECTION ANALYSIS. ......................................................................................... 15 TABLE 4.2. SUMMARY OF 40AR/39AR EXPERIMENTS ....................................................................................... 25 TABLE 5.1: ARTICLES FEATURING STRUCTURAL MAPS OF MADERAS ............................................................. 27 TABLE 9.1: WHOLE-ROCK CHEMICAL ANALYSIS FOR SAMPLES COLLECTED DURING THIS STUDY. ................. 57 TABLE 9.2: GEOCHEMICAL INFORMATION FROM MADERAS VOLCANO (LINDSAY 2009). ............................... 59 TABLE 9.3: RARE EARTH ELEMENT ANALYSES OF MADERAS VOLCANO FROM LINDSAY (2009). ................... 60 TABLE 9.4: WHOLE ROCK AND TRACE ELEMENT ANALYSES OF MADERAS VOLCANO FROM VAN WYK DE

VRIES (UNPUBLISHED). ......................................................................................................................... 61 TABLE 9.5: WHOLE ROCK AND TRACE ELEMENT DATA FOR CONCEPCIÓN VOLCANO FROM VAN WYK DE VRIES

(1993). .................................................................................................................................................. 62 TABLE 9.6: RARE EARTH ELEMENTS AT CONCEPCIÓN VOLCANO FROM VAN WYK DE VRIES (1993). ............. 65 TABLE 9.7: WHOLE ROCK AND TRACE ELEMENT ANALYSES FROM CONCEPCIÓN VOLCANO FROM BORGIA AND

VAN WYK DE VRIES (2003) AND FROM CARR AND ROSE (1987). ......................................................... 66 TABLE 9.8: RARE EARTH ELEMENTS AT CONCEPCIÓN VOLCANO FROM CARR AND ROSE (1987). .................. 67 TABLE 9.9: INCREMENTAL HEATING SUMMARY FOR MADERAS-002 ........................................................... 68 TABLE 9.10: NORMAL ISOCHRON TABLE FOR MADERAS-002...................................................................... 69 TABLE 9.11: INVERSE ISOCHRON TABLE FOR MADERAS-002 ...................................................................... 69 TABLE 9.12: RELATIVE ABUNDANCES FOR MADERAS-002 ......................................................................... 70 TABLE 9.13: DEGASSING PATTERNS FOR MADERAS-002 ............................................................................ 71 TABLE 9.14: ADDITIONAL PARAMETERS FOR MADERAS-002 ...................................................................... 72 TABLE 9.15: PROCEDURE BLANKS FOR MADERAS-002 ............................................................................... 73 TABLE 9.16: INTERCEPT VALUES FOR MADERAS-002 ................................................................................. 73 TABLE 9.17: SAMPLE PARAMETERS FOR MADERAS-002 ............................................................................. 74 TABLE 9.18: IRRADIATION CONSTANTS FOR MADERAS-002 ....................................................................... 75 TABLE 9.19: INCREMENTAL HEATING SUMMARY FOR MADERAS-003 ......................................................... 78 TABLE 9.20: NORMAL ISOCHRON TABLE FOR MADERAS-003...................................................................... 79 TABLE 9.21: INVERSE ISOCHRON TABLE FOR MADERAS-003 ...................................................................... 79 TABLE 9.22: RELATIVE ABUNDANCES FOR MADERAS-003 ......................................................................... 80 TABLE 9.23: DEGASSING PATTERNS FOR MADERAS-003 ............................................................................ 81 TABLE 9.24: ADDITIONAL PARAMETERS FOR MADERAS-003 ...................................................................... 82 TABLE 9.25: PROCEDURE BLANKS FOR MADERAS-003 ............................................................................... 83 TABLE 9.26: INTERCEPT VALUES FOR MADERAS-003 ................................................................................. 83 TABLE 9.27: SAMPLE PARAMETERS FOR MADERAS-003 ............................................................................. 84 TABLE 9.28: IRRADIATION CONSTANTS FOR MADERAS-003 ....................................................................... 85

Page 11: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

x

TABLE 9.29: INCREMENTAL HEATING SUMMARY FOR MADERAS-004 ........................................................ 88 TABLE 9.30: NORMAL ISOCHRON TABLE FOR MADERAS-004 ..................................................................... 89 TABLE 9.31: INVERSE ISOCHRON TABLE FOR MADERAS-004 ..................................................................... 89 TABLE 9.32: RELATIVE ABUNDANCES FOR MADERAS-004 ......................................................................... 90 TABLE 9.33: DEGASSING PATTERNS FOR MADERAS-004 ............................................................................ 91 TABLE 9.34: ADDITIONAL PARAMETERS FOR MADERAS-004 ..................................................................... 92 TABLE 9.35: PROCEDURE BLANKS FOR MADERAS-004 .............................................................................. 93 TABLE 9.36: INTERCEPT VALUES FOR MADERAS-004 ................................................................................ 94 TABLE 9.37: SAMPLE PARAMETERS FOR MADERAS-004 ............................................................................ 95 TABLE 9.38: IRRADIATION CONSTANTS FOR MADERAS-004 ...................................................................... 96 TABLE 9.39: INCREMENTAL HEATING SUMMARY FOR MADERAS-011 ........................................................ 99 TABLE 9.40: NORMAL ISOCHRON TABLE FOR MADERAS-011 .................................................................. 100 TABLE 9.41: INVERSE ISOCHRON TABLE FOR MADERAS-011 ................................................................... 100 TABLE 9.42: RELATIVE ABUNDANCES FOR MADERAS-011 ....................................................................... 101 TABLE 9.43: DEGASSING PATTERNS FOR MADERAS-011 .......................................................................... 102 TABLE 9.44: ADDITIONAL PARAMETERS FOR MADERAS-011 ................................................................... 103 TABLE 9.45: PROCEDURE BLANKS FOR MADERAS-011 ............................................................................ 104 TABLE 9.46: INTERCEPT VALUES FOR MADERAS-011 .............................................................................. 104 TABLE 9.47: SAMPLE PARAMETERS FOR MADERAS-011 .......................................................................... 105 TABLE 9.48: IRRADIATION CONSTANTS FOR MADERAS-011 ..................................................................... 106 TABLE 9.49: INCREMENTAL HEATING SUMMARY FOR MADERAS-013 ...................................................... 109 TABLE 9.50: NORMAL ISOCHRON TABLE FOR MADERAS-013 ................................................................... 110 TABLE 9.51: INVERSE ISOCHRON TABLE FOR MADERAS-013 ................................................................... 110 TABLE 9.52: RELATIVE ABUNDANCES FOR MADERAS-013 ....................................................................... 111 TABLE 9.53: DEGASSING PATTERNS FOR MADERAS-013 .......................................................................... 112 TABLE 9.54: ADDITIONAL PARAMETERS FOR MADERAS-013 ................................................................... 113 TABLE 9.55: PROCEDURE BLANKS FOR MADERAS-013 ............................................................................ 114 TABLE 9.56: INTERCEPT VALUES FOR MADERAS-013 .............................................................................. 114 TABLE 9.57: SAMPLE PARAMETERS FOR MADERAS-013 .......................................................................... 115 TABLE 9.58: IRRADIATION CONSTANTS FOR MADERAS-013 ..................................................................... 116

Page 12: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

xi

Acknowledgements First and foremost I’d like to thank my advisor Dr. Bill Rose for all of his support throughout this project both while I was in Nicaragua and at Michigan Tech. His help has been essential to this project. I would also like to thank my other committee members Benjamin van Wyk de Vries and Greg Waite for their time and expertise. I would like to thank my Nicaraguan guides for their help and company while in the field: Javier, Manuel, Norlan, Luis, and Francisco. Thanks to my family and friends in Mérida for their kindness and acceptance of me into their community. Thanks to Maria Antonia Mallona and Lisette Carranza at the Peace Corps office who were generous with their help and always very supportive in allowing me time for my master’s research. Many thanks to the other staff members of Peace Corps Nicaragua and NICA 48 for countless other acts of kindness. Thanks to the many people at Michigan Tech who helped me along the way: Bob Barron, John Gierke, Amie Ledgerwood, Kelly McLean, Rudiger Escobar-Wolf, and numerous other graduate students, faculty and staff. It takes a whole department to write a thesis. Thanks to Brian Jicha at the University of Wisconsin-Madison who dated my samples. Thanks to Heather Cunningham for helping me prepare the samples, teaching me about the process, and allowing me to invade her house for a few days. Thanks to Lucie Mathieu for allowing me to accompany her in the field and for her insights into Maderas volcano. Lastly I’d like to thank my family and friends for their support throughout the last four years. I’d especially like to thank my parents for always supporting my decisions, even when they continuously take me to far-away places. This project was funded by the NSF PIRE Grant #0530109.

Page 13: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment
Page 14: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

xiii

Abstract Maderas volcano is a small, andesitic stratovolcano located on the island of Ometepe, in

Lake Nicaragua, Nicaragua with no record of historic activity. Twenty-one samples were

collected from lava flows from Maderas in 2010. Selected samples were analyzed for

whole-rock geochemical data using ICP-AES and/or were dated using the 40Ar/39Ar

method. The results of these analyses were combined with previously collected data from

Maderas as well as field observations to determine the eruptive history of the volcano and

create a geologic map. The results of the geochemical analyses indicate that Maderas is a

typical Central American andesitic volcano similar to other volcanoes in Nicaragua and

Costa Rica and to its nearest neighbor, Concepción volcano. It is different from

Concepción in one important way – higher incompatible elements. Determined age dates

range from 176.8 ± 6.1 ka to 70.5 ± 6.1 ka. Based on these ages and the geomorphology

of the volcano which is characterized by a bisecting graben, it is proposed that Maderas

experienced two clear generations of development with three separate phases of

volcanism: initial build-up of the older cone, pre-graben lava flows, and post-graben lava

flows. The ages also indicate that Maderas is markedly older than Concepción which is

historically active. Results were also analyzed regarding geologic hazards. The 40Ar/39Ar

ages indicate that Maderas has likely been inactive for tens of thousands of years and the

risk of future volcanic eruptions is low. However, earthquake, lahar and landslide hazards

exist for the communities around the volcano. The steep slopes of the eroded older cone

are the most likely source of landslide and lahar hazards.

Page 15: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment
Page 16: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

1

1. Introduction Maderas is a small (1394 m.a.s.l.), asymmetrical stratovolcano located at 11°26'44"N and

85°30'54"W on the island of Ometepe in Lake Nicaragua, Nicaragua (Figure 1.1). The

dumbbell-shaped Ometepe, which means “two mountains” in the Nahuatl language, is

formed by Maderas and its neighbor, the highly symmetrical stratovolcano Concepción.

Due to its remote location and lack of historic activity, relatively little is known about

Maderas when compared to other Central American volcanoes. Field observations and

hand samples were collected over a one-year period during the author’s two years of

residence, as a Peace Corps volunteer, in Mérida, a small village on the western flanks of

the volcano. Field observations were combined with 21 new geochemical analyses of

Maderas lavas, 88 previously collected geochemical analyses from both Maderas and

Concepción volcanoes, five new 40Ar/39Ar age determinations, and one previously

determined 40Ar/39Ar age to create a new geologic map of Maderas and to assess the

eruptive history and hazards posed by the volcano.

Small communities are located around the flanks of Maderas, and, as an island, Ometepe

and its inhabitants are vulnerable to hazards for a number of geographic, social, and

economic reasons. Developing an understanding of the eruptive history of Maderas will

help with the assessment of the hazards on the volcano and will reduce the vulnerabilities

that exist for the communities there.

Page 17: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

2

Figure 1.1: Map of Central America with inset of Lake Nicaragua and Ometepe. Dashed lines represent the boundaries of the Nicaraguan depression (ND) in the south and the Median Trough (MT) to the north. Triangles represent volcanic centers. Grey lines represent the location of breaks in strike along the volcanic front. Political boundaries are from GADM (2011).

Page 18: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

3

2. Geologic Setting

2.1. Regional Setting: Central America

Maderas is one of 39 Quaternary volcanic centers that form the Central American

volcanic front (CAVF), a 1,100-km chain of volcanoes that range from the Guatemala-

Mexico border to central Costa Rica, and it is the southernmost of 12 volcanic centers

located in Nicaragua (Carr et al., 2003). The CAVF was formed by subduction of the

Cocos plate moving northeast beneath the Caribbean plate at a rate of 84 ± 5 mm yr-1 near

Nicaragua (DeMets, 2001) (Figure 1.1).

The volcanic centers along the CAVF form 8 segments, each between 100 and 300 km

long. Segments are recognized by linear arrays that form right steps along the volcanic

front (Carr, 1984) (Figure 1.1). The largest of these right steps, ~40 km, occurs between

Maderas volcano and Orosí volcano in Costa Rica and is accompanied by a large change

in depth to the slab from the volcano of ~150 km beneath Maderas to ~80 km beneath

Orosí (Funk et al., 2009). Estimates of the dip angle of the slab below Maderas range

from 65° (Syracuse and Abers, 2006) to 80° (Funk et al., 2009). Both the depth to the

slab and the slab dip generally decrease to the north and south along the CAVF from

Maderas volcano. The crust beneath Maderas is thought to be ~35 km thick (Carr et al.,

2007a).

2.2. Regional Setting: Nicaragua

From west to east Nicaragua is divided into four geological regions: the Pacific Coastal

Plain, the Nicaraguan depression, the interior highlands made up largely of Tertiary

volcanics, and the Atlantic Coastal Plain (McBirney and Williams, 1965). The Pacific

Coastal Plain in southern Nicaragua, near Ometepe, is comprised of Cretaceous to

Oligocene sedimentary rocks (Funk et al., 2009). To the east, the CAVF, including

Maderas, lies within and nearly parallel to a roughly 1,000 km long and 40-70 km wide

depression (Figure 1.1). In the south the depression is known as the Nicaraguan

depression and it runs from the Caribbean coast of central Costa Rica through western

Nicaragua and into El Salvador near the Gulf of Fonseca. Lake Nicaragua and Lake

Page 19: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

4

Managua are prominent features of this basin. It continues north from the Gulf of

Fonseca in El Salvador to southern Guatemala as a less geomorphologically-evident

feature, called the Median Trough.

Three tectonic phases have been proposed for the formation of the depression: Miocene

convergence, Pliocene extension, and Pleistocene to present transtensional deformation

(Funk et al., 2009). The initial formation of the depression is thought to have occurred

near Lake Nicaragua during the Oligocene-early Miocene. From there it is thought to

have spread north to the Gulf of Fonseca during the Miocene to Pliocene (Funk et al.,

2009). The actual structure of the depression is still debated due to a lack of information

about the subsurface. Three models have been discussed: the depression formed as an

asymmetrical half-graben (McBirney and Williams, 1965), the depression formed by

large-scale folding (Borgia and van Wyk de Vries, 2003), and the Nicaraguan depression

formed as an asymmetrical graben (Funk et al., 2009).

2.3. Local Setting: Ometepe

Ometepe is ~275 km2 in area and is located in Lake Nicaragua, the largest lake in Central

America, with an area of ~8,000 km2 (Swain, 1966; Freundt et al., 2007). The island

consists of Maderas volcano and its neighbor Concepción volcano, connected by the

Istián isthmus. Concepción volcano is 31 km3 in volume (Carr et al., 2007b), ~1600

m.a.s.l. in elevation, and is historically active with explosions and ashfall occurring as

recently as 2010 (Wilder, 2010). It has been studied extensively by van Wyk de Vries

(1993) and by Borgia and van Wyk de Vries (2003).

Based on the latest census data from Nicaragua taken in 2005 by the National Institute of

Development Information (Instituto Nacional de Información de Desarrollo or INIDE),

approximately 30,000 people inhabit the island of Ometepe (Goffin et al., 2006).

However, in 2010, while Concepción volcano was experiencing gas and ash explosions,

the newspaper La Prensa wrote that the island had a population of 44,000 (Wilder, 2010).

This total likely includes the large number of tourists on the island.

Page 20: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

5

The stratigraphy and structure of the rocks of the Pacific lowlands and within the

Nicaraguan depression of southwestern Nicaragua and, therefore, underneath Maderas,

have been described by McBirney and Williams (1965), Borgia and van Wyk de Vries

(2003) and by Funk et al. (2009). The oldest known rock type in the area is the Nicoya

Complex that ranges in age from Jurassic to Cretaceous (de Boer, 1979; Hoernle et al.,

2004). The Nicoya Complex is a suite of igneous rocks (gabbros, plagiogranites, and

basalts) and Mn-radiolarites that are exposed on the Nicoya Peninsula in Costa Rica and

are believed to extend into southern Nicaragua (Denyer and Baumgartner, 2006). Above

the Nicoya Complex lies a sequence of flysch deposits from the Rivas, Brito and

Masachapa formations that were deposited within the Nicaragua depression. These

formations range in age from Cretaceous to Miocene (Borgia and van Wyk de Vries,

2003). Above these units lies the El Salto Formation of Pliocene age and above this lie

the lake sediments deposited by Lake Nicaragua. The lake sediments are estimated to be

up to 1 km thick (Borgia and van Wyk de Vries, 2003).

2.4. Local Setting: Maderas Volcano

Maderas volcano is a small stratovolcano with a sub-conical shape (Grosse et al., 2009),

an estimated volume of 30 km3 (Carr et al., 2007b), a height of 1,394 m.a.s.l., and a

diameter of ~10 km (Borgia and van Wyk de Vries, 2003). In view of the significant

population and the known activity of Concepción, it is important to assess the potential of

activity at Maderas. No historic activity is recorded. Borgia et al. (2000) state that

Maderas has not erupted for at least 3,000 years. The absence of Holocene activity at

Maderas is consistent with its flat summit and extensive exposed faulting on the volcano.

Mathieu (2010) observes that Maderas’ fault structures would have been covered by

eruptive material faster than they could have formed if the volcano had been active

during their formation, as is believed to be the case at Concepción volcano where edifice

faults have been covered by recent eruptions (Delcamp et al., 2008).

The flanks of Maderas are largely deforested and contain more than 20 small towns and

communities (Figure 2.1). Much of the area below 200-300 m.a.s.l. has been altered for

annual cultivation and pasture (Aguirre, 2009). Above 400 m.a.s.l. the volcano is covered

Page 21: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

6

by cloud forest. In this humid environment, vegetation is thick and lush and difficult to

navigate without a trail. In the summit crater of the volcano is a small crater lake called

Laguna de Maderas (Maderas Lagoon). As can be seen from the satellite photo (Figure

2.1) a large part of the volcano remains forested. The volcano is listed as a protected area

above elevations of 850 m.a.s.l. called Maderas Volcano Natural Reserve by Nicaragua’s

Ministry of the Environment and Natural Resources (Ministerio del Ambiente y los

Recursos Naturales or MARENA). The entire island of Ometepe has also been recently

declared a Biosphere Reserve as part of the Man and the Biosphere Program by the

United Nations Educational, Scientific and Cultural Organization (UNESCO) (UNESCO,

2010).

Figure 2.1: Locations of towns and communities around Maderas and extent of forestation on Maderas. The natural reserve represents all land above 850 m on Maderas volcano. The location of a 1996 lahar is also mapped. Image © 2011 Digital Globe, © 2011 TerraMetrics, © 2011 GeoEye, © 2011 Google.

Page 22: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

7

Geological studies of Maderas are limited to investigations of structural features: van

Wyk de Vries and Borgia (1996), van Wyk de Vries and Merle (1996), van Wyk de Vries

and Matela (1998), Borgia et al. (2000), Delcamp et al. (2008), Byrne et al. (2009) and

Andrade and van Wyk de Vries (2010). These papers regard Maderas as an example of a

volcano with a ductile substratum that has undergone spreading. Some papers also

discuss the development of leaf graben structures around the base of the volcano. Van

Wyk de Vries and Borgia (1996) first called attention to Maderas’ spreading due to the

relatively weak lake sediments underlying the volcano. They used a number of physical

parameters to determine dimensionless pi numbers whose ratios were plotted and then

used to measure the “geometric capacity of the system to spread,” the rate of spreading,

and “the state of the elastic stresses within the volcanic edifice built by the last major

eruptive phase.” Their results indicate that Maderas is a fast-spreading volcano with low

collapse hazard and that the elastic stress should be almost completely relaxed within the

volcano. The paper also mentions that little or no evidence of hydrothermal features were

observed at Maderas and identifies a slump feature on the southwest side of the volcano.

Mathieu et al. (2011) describe deformation features on Maderas volcano with respect to a

135° dextral-striking transtensional fault zone using analog models. This fault zone

parallels the summit graben of the volcano. Their findings indicate that the regional stress

field (transtensional fault) and local stress field (spreading) support the formation of a

central conduit and near-radial lineaments around the base of the volcano that are found

in pairs. The 135°-striking fault zone on the volcano is supported by a 25-km-long and 5-

km wide fault zone described by Funk et al. (2009) that they call the San Ramon Fault

Zone to the SE of Maderas volcano in Lake Nicaragua. Their results suggest a half-

graben structure and this geometry lines up with the graben observed on Maderas

(N45°W).

A geologic map of Maderas volcano was published by the Czech Geologic Service

(Sebesta, 2001) in conjunction with the Nicaraguan Institute of Earth Studies (Instituto

Nicaragüense de Estudios Territoriales or INETER). This map is based on a map created

Page 23: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

8

by van Wyk de Vries (1986). In this paper, the geologic map of Sebesta (2001) is updated

using new age dates and geochemical data.

Page 24: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

9

3. Methodology

3.1. Field Methods

The goals of field research were to locate, map, and collect samples from lava flows from

a wide range of locations around Maderas representing the entire eruptive history of the

volcano. Sampling sites focused on lava flows that could be identified by field

observations and by lobate geomorphology with the help of Google Earth and digital

elevation models (DEMs). Lava flows were chosen because they represent material that

can be radiometrically dated. Samples selected for dating were chosen to reflect

stratigraphic or geomorphological positions that represent earliest and latest activity of

Maderas.

Twenty-one samples were collected from Maderas volcano from January to September

2010. All samples were believed to be from lava flows except for sample MADERAS

-009, which is a piece of lava rock taken from a debris flow. Sample locations were

obtained using a Global Positioning System (GPS) device. Sample locations can be seen

in Figure 3.1. In each location the freshest, most unaltered sample possible was sought,

however, in many locations it was impossible to find or obtain samples that were not

weathered to some degree.

3.2. Thin Sections

Ten samples were selected for thin section and petrographic study (MADERAS-002,

-003, -004, -007, -008, -011, -013, -015, -017, -018). These same samples were analyzed

for 40Ar/39Ar age dates (see section 3.4). Thin sections were prepared by the author at

Michigan Technological University.

3.3. Geochemical Analysis Methods

Geochemical analyses for this study were conducted at the Magma and Volcanoes

Laboratory (Laboratoire Magmas et Volcans) at Blaise Pascal University, Clermont-

Ferrand, France. Samples were crushed and pulverized at Michigan Technological

University and then sent to Blaise Pascal University for whole rock chemical analysis of

Page 25: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

10

major elements by ICP-AES (inductively coupled plasma atomic emission spectroscopy).

Nineteen samples were selected for analysis from this study (Figure 3.1). Six additional

samples (11-A, 14, 17, 26-B, 39, and 41), collected from Maderas by Lucie Mathieu in

January and February of 2009 while conducting research for her Ph.D. (Mathieu, 2010),

were also prepared and analyzed (Figure 3.1). Thirty-four additional whole rock and trace

element analyses from Maderas volcano were used to characterize the volcano: eighteen

samples from Benjamin van Wyk de Vries (unpublished) and sixteen samples from Fara

Lindsay (Lindsay, 2009) (Figure 3.1). This makes a total of 59 whole rock analyses from

Maderas volcano. It should be noted that samples collected for Lindsay’s study are biased

toward more mafic samples in order to look at source processes.

Fifty-four whole rock and trace element analyses from Concepción volcano were

compared to Maderas: forty-two samples from van Wyk de Vries (1993), six samples

from Borgia and van Wyk de Vries (2003) and six samples from the geochemical

database of Central American volcanoes (http://www.rci.rutgers.edu/~carr/index.html)

maintained by Mike Carr (Carr and Rose, 1987). Tables of all of the Ometepe analyses

can be found in Appendix A.

Additional geochemical samples used for this study include 235 samples from

Nicaraguan volcanic front volcanoes and 336 samples from Costa Rican volcanic front

volcanoes. These analyses were also provided by the database of Central American

volcanoes maintained by Mike Carr (Carr and Rose, 1987).

3.4. 40Ar/39Ar Methods

Ten samples were selected for 40Ar/39Ar analysis. These samples were chosen based on

two main factors: lack of weathering and stratigraphic location. The goal was to obtain

high precision dates that would demonstrate the entire age of the volcano, from oldest to

youngest. The locations of samples analyzed for 40Ar/39Ar analysis can be seen in Figure

3.1 as well the location of a previously analyzed sample from Maderas by Carr et al.

(2007b). The following information was provided by Brian Jicha at the University of

Wisconsin-Madison regarding sample preparation and analysis:

Page 26: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

11

Samples were prepared at the University of Wisconsin-Madison. Samples

were crushed, sieved to 250-350 µm, and phenocrysts were removed via

magnetic sorting or density separation using methylene iodide.

Microphenocrysts that survived mechanical separation or groundmass

which still showed evidence of alteration were ultimately removed by

hand picking under a binocular microscope. Phenocryst-free groundmass

separates were weighed and then wrapped in 99.99% copper foil packets

placed into in 2.5cm diameter aluminum disks with sanidine from the

28.201 Ma Fish Canyon tuff (Kuiper et al., 2008), which monitors neutron

fluence. Samples and standards were irradiated at the Oregon State

University TRIGA-type reactor in the Cadmium-Lined In-Core Irradiation

Tube (CLICIT) for 1 hour.

At the University of Wisconsin-Madison Rare Gas Geochronology

Laboratory, ~ 200 mg groundmass packets were incrementally heated in a

double-vacuum resistance furnace attached to a 300 cm3 gas clean-up line.

Prior to sample introduction, furnace blanks were measured at 100 °C

increments throughout the temperature range spanned by the incremental

heating experiment and interpolated. Following blank analyses, samples

were degassed at 550 °C for 60 minutes to potentially remove large

amounts of atmospheric argon. Fully automated experiments consisted of

9-10 steps from 650-1250 °C; each step included a two-minute increase to

the desired temperature that was maintained for 15 minutes, followed by

an additional 15 minutes for gas cleanup. The gas was cleaned during and

after the heating period with three SAES C50 getters, two of which were

operated at ~450 °C and the other at room temperature. Argon isotope

analyses were done using a MAP 215-50 mass spectrometer using a single

Balzers SEM-217 electron multiplier, and the isotopic data was reduced

using ArArCalc software version 2.5 (Koppers, 2002). The age

uncertainties reported for each individual sample are at the 95%

Page 27: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

12

confidence level, and the decay constants used are those of Min et al.

(2000).

Figure 3.1: 40Ar/39Ar and geochemical sample locations by collector and rock type based on Le Bas et al. (1986). Note that some sample names are repeated (i.e. M1 and M1). Both van Wyk de Vries (unpublished) and Lindsay (2009) used the same naming system for their samples.

Page 28: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

13

4. Results 4.1. Petrography

The hand samples and thin sections collected for this project reveal that lavas from

Maderas are largely porphyritic with the majority of samples having between 25-30%

plagioclase phenocrysts. A high abundance of phenocrysts is consistent with lavas found

elsewhere in Central America (Carr et al., 1982). All samples with thin sections contain

plagioclase, olivine, clinopyroxene, apatite and opaque phenocrysts. Some samples also

contain orthopyroxene, amphibole, and biotite. Zoning is common within the plagioclase

phenocrysts as has been observed at other Central American lavas as well (Carr et al.,

2007a). Table 4.1 shows the results of the petrographic analysis.

4.1.1. Basalts

Of the 59 sample analyses from Maderas used for this study, 24 are basalts. To account

for duplicate samples of the same rock unit based on the geologic map (see section 5.1)

or duplicate analyses, 46 samples are used to determine the percentage of each rock type.

The percentage of basalts is ~33% (15 of 46 samples). There are 3 thin sections of basalts

(MADERAS-004, -008, and -017). All three thin sections display high percentages of

plagioclase phenocrysts (25-45%) ranging in size from fine to medium grained and often

displaying twinning and/or zoning. Other phenocrysts include clinopyroxene (<1-5%),

olivine (~1%), and small percentages of opaques (<1%). Two of the samples also contain

small percentages of orthopyroxene (~1%).

4.1.2. Basaltic Andesites

Basaltic andesites represent ~30% or 14 of the 46 analyses. Of those there are 3 thin

sections of basaltic andesite (MADERAS-002, -011, and -018). Phenocrysts present in all

three thin sections include plagioclase (20-30%), olivine (~1%), clinopyroxene (<1-3%),

and opaques (<1%). Two of the thin sections contain orthopyroxene (<1-3%). Twinning

and zoning are common in the plagioclase phenocrysts. Phenocrysts are mostly fine

grained with plagioclase ranging in size from fine to medium grained.

Page 29: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

14

4.1.3. Andesites and Dacites

Andesites/trachy-andesites represent ~28% or 13 of the 46 rock analyses and

trachydacites represent ~9% or 4 of the 46 analyses. Thin sections of two trachy-

andesites (MADERAS-013 and -015) and two trachydacites (MADERAS-003 and -007)

were investigated. All four thin sections contain phenocrysts of plagioclase,

orthopyroxene (<1-2%), clinopyroxene (<1-2%), olivine (<1%), and opaques (<1-1%).

MADERAS-013 and -015 also contain phenocrysts of biotite (<1%) and sample -013

also has phenocrysts of amphibole (<1%).

Phenocrysts range in size from medium- to fine-grained with the majority of phenocrysts

being fine grained. Zoning and twinning is common amongst plagioclase phenocrysts and

twinning is sometimes encountered amongst clinopyroxene grains. Plagioclase

phenocrysts are 20-30% of the rock in the trachy-andesites (MADERAS-013 and

MADERAS-015) while they make up only 3-5% in the trachydacites (MADERAS-003

and MADERAS-007). Sample MADERAS-007 is highly vesicular.

4.1.4. Comparison of Phenocryst Mineralogy

Phenocryst mineralogy for Maderas and Concepción volcanoes was compared to other

Central American volcanoes. A graphical summary of phenocryst mineralogy for Central

American volcanic rocks using data from Carr et al. (1982) was created (Figure 4.1). The

ranges of SiO2 contents found at Maderas and Concepción are plotted. Differences from

the other nearby volcanoes are minor. At Maderas olivine was found in the andesites (up

to 61.43% SiO2). At Concepción, orthopyroxene was not found above 62% SiO2 and

amphibole was seen only in dacites (van Wyk de Vries, 1993). It is concluded that the

mineralogy at Maderas is similar to other nearby volcanoes.

Page 30: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

15

Tab

le 4

.1: R

esul

ts o

f thi

n se

ctio

n an

alys

is.

1. p

l=pl

agio

clas

e, o

l=ol

ivin

e, c

px=c

linop

yrox

ene,

opx

=orth

opyr

oxen

e, a

mph

=am

phib

ole)

2.

phe

nocr

ysts

size

s: f=

fine

grai

ned

(<1m

m),

m=m

ediu

m g

rain

ed (1

-5m

m)

3. a

ltera

tion

is b

ased

on

perc

enta

ges o

f sec

onda

ry m

iner

als:

0-2

5% =

low

, 25-

50%

= m

ed.,

and

>50%

= h

igh

Sam

ple

Num

ber

Roc

k Ty

pe

Phe

nocr

ysts

1 (Siz

e2 an

d W

hole

Roc

k P

erce

ntag

es)

Gro

undm

ass

Tex

ture

A

ltera

tion3

Ves

icle

s Z

eolit

es

pl

ol

cpx

opx

opaq

ues

biot

ite

amph

hi

gh

med

. lo

w

MA

DE

RA

S-0

02

bas

altic

an

desi

te

f-m

f-

m

f-m

f

in

erse

rtal

X

X

30-

35

<1

1-2

1

MA

DE

RA

S-0

03

trac

hyda

cite

f-

m

f f

f f

inte

rser

tal

X

3-5

<1

<1

<1

<1

MA

DE

RA

S-0

04

basa

lt f-

m

f f-

m

f-m

f

inte

rser

tal

X

35-

40

1 5

1 <<

1

MA

DE

RA

S-0

07

trac

hyda

cite

f-

m

f f

f f

inte

rser

tal,

trac

hytic

X

X

3 <<

1 1

<1

<<1

MA

DE

RA

S-0

08

basa

lt f-

m

f- m?

f-m

f

f

in

ters

erta

l

X

25-

30

1 <1

<1

<1

MA

DE

RA

S-0

11

basa

ltic

ande

site

f-m

f

f f

f

f in

ters

erta

l, po

ikal

itic

X

25-

30

<1

<1

<1

<1

<1

MA

DE

RA

S-0

13

trac

hy-

ande

site

f-m

f

f-m

f-

m

f f

f in

ters

erta

l

X

X

X

20

-25

<<

1 <1

1-

2 1

<<1

<<1

MA

DE

RA

S-0

15

trac

hy-

ande

site

f-m

f

f f

f f

in

ters

erta

l

X

25

-30

<<

1 2

2 1

<<1

MA

DE

RA

S-0

17

basa

lt f-

m

f f

f

inte

rser

tal

X

X

40

-45

<1

<1

<<1

MA

DE

RA

S-0

18

basa

ltic

ande

site

f-m

f

f-m

f-

m

f

in

ters

erta

l

X

X

25-

30

1 2-

3 2-

3 <1

Page 31: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

16

Figure 4.1: Phenocryst mineralogy of Maderas and Concepción volcanoes. Values of wt. % SiO2 for each mineral are from Carr et al. (1982) and represent common phenocryst mineralogy for Central America. Solid lines indicate the mineral is usually present, dashed lines indicate the mineral is sometimes present. Symbols: ol = olivine, cp = clinopyroxene, op = orthopyroxene, hb = hornblende, bi = biotite, pl = plagioclase, qt = quarts, kf = potash feldspar, cu = cummingtonite, ma = magnetite, il = ilmenite, ap = apatite.

4.2. Geochemical Analysis Results

4.2.1. General Characteristics

Major element oxide analysis results can be found in Appendix A. The volcanic rock

classification of LeBas et al (1986) shows that Maderas rocks include basalts, basaltic

andesites, and the more silicic rocks are on both sides of the divide between andesites and

trachyandesites, while the highest silica rocks are trachydacites (Figure 4.2). This

distribution of rock types differs from Concepción, where most all of the rocks are basalt,

basaltic andesite, andesite and dacite (Figure 4.2). Figure 4.3 shows the same plot but

includes samples from volcanoes in Nicaragua and Costa Rica. The Maderas and

Concepción samples show the same range in composition (basalt to dacite) as other

Central American (CA) volcanoes based on silica content.

ol cp op hb bi pl qt kf cu ma il ap

Concepción Maderas

?

?

50 60 70 75 55 65 Wt. % SiO2

Page 32: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

17

Picro-basalt

BasaltBasalticandesite

AndesiteDacite

Rhyolite

Trachyte

TrachydaciteTrachy-andesite

Basaltictrachy-andesiteTrachy-

basalt

Tephrite orBasanite

Phono-Tephrite

Tephri-phonolite

Phonolite

Foidite

35 40 45 50 55 60 65 70 750

2

4

6

8

10

12

14

16

Na2O+K2O

SiO2

LeBas et al 1986 NM100

Figure 4.2. Total alkalies vs. silica for Ometepe rocks.

Picro-basalt

BasaltBasalticandesite

AndesiteDacite

Rhyolite

Trachyte

TrachydaciteTrachy-andesite

Basaltictrachy-andesiteTrachy-

basalt

Tephrite orBasanite

Phono-Tephrite

Tephri-phonolite

Phonolite

Foidite

35 40 45 50 55 60 65 70 750

2

4

6

8

10

12

14

16

Na2O+K2O

SiO2

LeBas et al 1986 NM100

Figure 4.3. Total alkalies vs. silica for rocks from Central America.

4.2.2. Bulk Composition of Ometepe lavas

Figure 4.4 shows the silica distribution of Maderas rocks as represented by the whole

rock data in Appendix A. The 59 whole rock analyses describe a typical andesitic

volcano with a mean SiO2 percentage of 54.4 ± 4.1 %. The range is from 48 to 64 %. The

distribution is likely slightly skewed toward the mafic end because one of the

investigators (Lindsay, 2009)sampled mafic materials selectively for petrological reasons.

Page 33: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

18

Figure 4.5 shows the silica distribution for Concepción volcano. Concepción has an

almost identical silica range and distribution as Maderas, with a mean at 55.2 ± 4.5 % and

a slightly larger range of 48 to 66 % SiO2.

Distribution plots from Maderas and Concepción can be compared with the distribution

plot for Nicaragua samples in Figure 4.6. Based on the samples collected, Nicaraguan

volcanic rocks (including Maderas and Concepción) have a mean of 53.7 ± 5.0 % and a

range of 47-68%. This is also nearly identical to Maderas and shows that the bulk

composition of Maderas is similar to other nearby volcanoes.

45 50 55 60 65 700

2

4

6

8

10

12

14

16

18

20

22

24

26

Frequency

S iO2

N=59 M =5.44E+1 SD=4.09E+0 SE=5.32E-1

Figure 4.4: Silica distribution for lavas from Maderas volcano.

45 50 55 60 65 700123456789

101112131415

Frequency

SiO2

N=54 M =5.52E+1 SD=4.49E+0 SE=6.11E-1

Figure 4.5: Silica distribution for Concepción volcano.

Page 34: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

19

45 50 55 60 65 700

5

10

15

20

25

30

35

40

45

50

55

60

65

Frequency

S iO2

N=235 M =5.37E+1 SD=4.96E+0 SE=3.23E-1

Figure 4.6: Silica distribution for samples from Nicaragua.

4.2.3. Incompatible Elements

Maderas lavas differ from Concepción in one significant way. They are higher in

incompatible elements. Figure 4.3 shows that Maderas and Concepción display higher

amounts of alkalies than other Nicaraguan and Costa Rican volcanoes when plotted

against SiO2 and that Maderas displays higher amounts than Concepción. A plot of K2O

vs. SiO2 (Gill, 1981) highlights this trend with the Maderas samples exhibiting higher

concentrations of incompatible potassium (High-K) than most other Nicaraguan and

Costa Rican volcanoes (Figure 4.7). The Concepción samples are found along the high

end of the Medium-K rocks.

L o w -K

M ed iu m -K

H igh -K

A C ID

B A S IC

5 0 5 5 6 0 6 50

1

2

3

4

K2O

S iO2

A n d es ite typ es

Figure 4.7. K2O vs. SiO2 for Central American volcanic rocks.

Page 35: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

20

Plots of incompatible elements vs. MgO for Maderas and Concepción can be seen in

Figure 4.8. For comparable MgO ranges, Maderas lavas are higher in K2O, Rb, Zr, Nb,

and Th than Concepción. This difference amounts to Maderas enrichments of about 20-

50%, but this enrichment is not shared by Ba. This enrichment may reveal a more

evolved magmatic system below Maderas than the system below Concepción but the

cause of Maderas’ incompatible element enrichment is beyond the scope of the study.

In Figure 4.9, incompatible elements at Maderas and Concepción are compared to other

volcanoes from Nicaragua and Costa Rica. For MgO ranges similar to Maderas and

Concepción (0-6 wt. %) Nicaraguan and Costa Rican volcanoes show similar ranges of

incompatible elements with some Costa Rican volcanoes displaying the highest

concentrations. Samples from Maderas and Concepción fall within this range. Above 6

wt. % MgO the Nicaraguan and Costa Rican volcanoes bifurcate with Costa Rican

volcanoes always displaying higher values.

0

1

2

3

4

5

K 2 O

Concepcion Maderas

0

1000

2000

3000

Ba

Concepcion Maderas

0

25

50

75

100

Rb

0

100

200

300

400

500

Zr

0 1 2 3 4 5 60

10

20

30

40

50

Nb

MgO0 1 2 3 4 5 6

0

5

10

15

20

Th

MgO Figure 4.8: Plots of incompatible elements vs. MgO with regression lines for Maderas and

Concepción volcanoes.

Page 36: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

21

0

1

2

3

4

5

K 2 O

Nicaragua Concepcion Maderas Costa Rica

0

1000

2000

3000

Ba

0

100

200

Rb

0

100

200

300

400

500

Zr

0 1 2 3 4 5 6 7 8 9 10 11 120

10

20

30

40

50

60

70

Nb

MgO0 1 2 3 4 5 6 7 8 9 10 11 12

0

10

20

30

40

Th

MgO

Figure 4.9: Plot of incompatible trace elements vs. MgO comparing Maderas and Concepción to

other Central American volcanoes.

While new trace element data was not analyzed for the samples collected in this study

other than Ba and Sr, previous studies of trace elements from Central America show that

Nicaragua has a regional high for degree of melting and fluid from the subducted slab

based on Ba/La and La/Yb ratios (Bolge et al., 2009). However, this applies only to

western Nicaragua and as you move south these ratios decrease steadily towards Maderas

and Concepción to show some of the lowest values in slab signal and degree of melting in

Central America, other than in central Costa Rica. Trace element ratios also indicate that

while most of the magmas along the CAVF are derived from water-rich flux, at Maderas

and Concepción there is also a component of decompression melting due to the steep dip

of the slab (Carr et al., 2007b; Lindsay, 2009).

Page 37: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

22

4.2.4. Fenner Diagrams

Fenner diagrams comparing Maderas and Concepción to other Nicaraguan and Costa

Rican volcanoes are presented below (Figure 4.10). The rocks from Maderas and

Concepción volcanoes display smaller ranges of MgO (0-6 wt. %) than all the

Nicaraguan and Costa Rican volcanoes (0-12 wt. %). However, within their range they

display similar values for the other element oxides indicating that they are typical Central

American volcanoes.

12

17

22

Al 2 O 3

Nicaragua Concepcion Maderas Costa Rica

45

50

55

60

65

SiO 2

0

10

20

FeO

0.0

0.5

1.0

1.5

2.0

TiO 2

0

2

4

6

Na 2 O

0

5

10

15

CaO

05100

2

4

K 2 O

MgO0510

0.0

0.5

1.0

P 2 O 5

MgO Figure 4.10. Fenner diagrams for Central American volcanic rocks. (All FeO as FeO*.)

Page 38: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

23

4.2.5. Analogy to paired volcanoes of Halsor and Rose (1988)

Due to the close proximity of Maderas volcano to Concepción volcano, the two were

compared to superficially similar paired volcanoes in northern Central America (NCA

pairs) studied by Halsor and Rose (1988). The NCA pairs (Cerro Quemado-Santa Maria,

Tolimán-Atitlán, Acatenango-Fuego, and Santa Ana-Izalco) straddle the volcanic front

whereas Maderas and Concepción are arranged parallel to the front. Dollfus and de

Montserrat (1868) and others who have described volcanoes in Guatemala have observed

that volcanic front volcanoes seem to be migrating spatially to the south, as marked by

younger, more active southerly cones which are spatially near older northern vents. This

suggested that the volcanic front, and perhaps the trench and subduction zone, might be

migrating southward.

This has not been suggested for Nicaragua, however. In addition, in Northern Central

America there are silicic calderas located north of the VF (Rose et al., 1999) and so the

northerly position of the older vents suggests that the high incompatible element content

could be influenced by mixing with silicic magma bodies of the caldera. This is unlikely

to apply at Ometepe, where there is as yet no evidence of a silicic center. However,

Maderas does share characteristic incompatible element enrichments along with the older

cones of NCA (all except Ba, Figure 4.8). It is concluded that while there are some

similarities to NCA pairs, it is unlikely that they share completely similar explanations.

4.3. 40Ar/39Ar Results A summary of the results of the 40Ar/39Ar analyses can be found in Table 4.2. Of the ten

samples prepared for analysis, seven samples were analyzed. Two samples (MADERAS-

007 and -008) did not define an age plateau and are not included in the table. The

remaining five samples revealed ages that range from 70.4 ± 6.1 ka to 176.8 ± 6.1 ka. The

ages for samples MADERAS-002, -003, -011, and -013 are precise with uncertainties of

1.4%-8.6%. The age determined for sample MADERAS-004 is less precise with a

(±17%), which may be due to alteration. These ages are consistent with the previous age-

date obtained for Maderas of 76±6 ka (Carr et al., 2007b) which is also included in the

Page 39: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

24

table. An example of an 40Ar/39Ar age determination can be seen in Figure 4.11. For

complete results of the 40Ar/39Ar age determinations see Appendix B.

85.2 ± 3.1 Ka

100

50

0

50

100

150

200

250

300

350

400

450

500

0 10 20 30 40 50 60 70 80 90 100

Cumulative 39Ar Released [ % ]

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

0.0045

0 1 1 2 2 3 3 4 4 5 5 6 6 7 7

39Ar / 40Ar

Figure 4.11 Age plateau diagram (a) and inverse isochron diagram (b) for sample MADERAS-013.

(a)

(b)

85.1 ± 3.8 Ka

Page 40: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

25

Tab

le 4

.2. S

umm

ary

of 40

Ar/

39A

r ex

peri

men

ts

K

/Ca

Tot

al fu

sion

Isoc

hron

Pla

teau

G

eolo

gic

S

ampl

e #

tota

l A

ge (k

a) ±

40A

r/36

Ar i

± 2σ

M

SW

D

Age

(ka)

± 2

σ N

39

Ar %

M

SW

D

Age

(ka)

± 2

σ U

nit1

MA

D00

2 0.

43

68.1

±

7.2

293.

4 ±

5.5

0.31

73

.2

± 9.

4 9

of

9 10

0.0

0.34

70

.4

± 6.

1 Q

poba

MA

D01

3 1.

88

85.1

±

4.7

295.

6 ±

2.4

0.28

85

.1

± 3.

8 10

of

10

10

0.0

0.25

85

.2

± 3.

1 Q

poa

MA

D00

4 0.

13

125.

8 ±

30.9

29

5.0

± 1.

7 0.

23

136.

5 ± 33

.4

9 of

10

95

.7

0.25

12

8.7

± 22

.2

Qpr

gb

MA

D00

3 1.

69

157.

7 ±

3.5

296.

3 ±

7.0

0.23

15

7.1

± 3.

7 9

of

9 10

0.0

0.21

15

7.5

± 2.

2 Q

pra

MA

D01

1 0.

37

175.

5 ±

8.6

295.

5 ±

5.2

0.21

17

6.8

± 9.

1 9

of

9 10

0.0

0.19

17

6.8

± 6.

1 Q

prba

M10

2 -

- -

- -

- -

- -

- -

- -

76.0

±

12.0

3 Q

al

Age

s cal

cula

ted

rela

tive

to 2

8.20

1 M

a fo

r the

Fish

Can

yon

sani

dine

(Kui

per e

t al.,

200

8) u

sing

deca

y co

nsta

nts o

f Min

et a

l. (2

001)

. A

ge in

bol

d is

pre

ferr

ed.

All

unce

rtain

ties a

re g

iven

at 9

5% c

onfid

ence

leve

l.

1 Geo

logi

c un

it re

fers

to F

igur

e 5.

1 2

For m

ore

info

rmat

ion

on sa

mpl

e M

10 se

e C

arr e

t al.

(200

7)

3 Pl

atea

u ag

e ha

s be

en m

odifi

ed fr

om C

arr e

t al.

(200

7) fr

om 7

6.0

± 6.

0 to

76.

0 ±

12.0

to a

ccou

nt fo

r the

diff

eren

ce in

unc

erta

inty

repo

rting

bet

wee

n th

e tw

o st

udie

s (2

σ fo

r thi

s stu

dy a

nd 1

σ fo

r Car

r et a

l.).

Page 41: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment
Page 42: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

27

5. Discussion

5.1. Geological Map

As a framework for gaining the full significance of age dates, geochemical data, sample

locations and field observations, a geologic map of Maderas volcano was constructed

(Figure 5.1). Previous geologic maps by Sebesta (2001) and van Wyk de Vries (1986)

were consulted while constructing this map. For structural features the structural maps in

the articles found in Table 5.1 were consulted. Topographic maps of the island (INETER

and JICA, 2006b; INETER and JICA, 2006a), Google Earth images, and a 20m DEM

were also used in the mapping process. The new map is discussed below along with the

differences from previous maps.

Table 5.1: Articles featuring structural maps of Maderas

Article

van Wyk de Vries and Borgia (1996)

van Wyk de Vries and Merle (1996)

Borgia et al. (2000)

Kerle and van Wyk de Vries (2001)

Delcamp et al. (2008)

Byrne et al. (2009)

Mathieu et al. (2011)

5.1.1. Dominant structural feature: A cross-cutting graben

As discussed above, a graben striking 135° cuts across the center of the volcano. The

main faults are evidently normal. These faults bound an asymmetrical graben with over

100 meters of vertical displacement on the eastern fault and over 50 meters of vertical

displacement on the western fault. The graben created a topographic low along the

summit of the volcano. A cross section and summit profile can be seen in Figure 5.2.

When volcanism occurred after the formation of this graben, the erupted lava

accumulated and flowed along the strike of the graben creating a flatter top to the volcano

and less steep slopes to the north and south. The feature is clearly delineated by the

differential erosion where inside the graben the younger deposits are less deeply incised.

Page 43: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

28

Fi

gure

5.1

: Geo

logi

c m

ap o

f Mad

eras

vol

cano

. SR

FZ =

San

Ram

on F

ault

Zone

. Loc

atio

n of

SR

FZ d

eter

min

ed b

y (F

unk

et a

l., 2

009)

.

Page 44: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

29

Figure 5.2: a) Summit profile and cross-section of Maderas volcano. Vertical exaggeration is ~1.5x. Light grey lines represent a general orientation of volcanic deposits. The blue area represents alluvial deposits b) Location of A and A’ on Maderas volcano.

5.1.2. Existence of an older cone

Following the previous discussion of the cross-cutting graben, Maderas volcano has a flat

summit with relatively steep western and eastern flanks. A map of the slope of the

volcano (Figure 5.3) shows that the area west of the summit crater and east-northeast of

the summit graben have the steepest slopes on the volcano with an average gradient of

~24° on the east side and a gradient of ~25° on the west side. For comparison, the slopes

of Concepción volcano have a gradient of ~28°. This topography is interpreted to

represent an older cone that was eroded and breached by the graben. The east and west

flanks apparently represent the slopes of the cone before faulting and are composed of the

oldest exposed flows on the volcano. The depth of the erosional channels and gullies in

these areas suggest that there have not been any new lava flows or deposits on these

slopes for an extended period of time. This is consistent with the dense forest cover found

on these slopes that is nearly impossible to traverse without a trail.

5.1.3. Alluvial Deposits

Large alluvial deposits are found around the base of the volcano with the most

voluminous deposits on the east and west sides of the volcano (Figure 5.1). The majority

of these deposits are found downslope of the extensively eroded older cone. It is likely

a)

b)

A

A’

Page 45: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

30

that the erosion of the older cone, at times in the form of lahars, is the origin of these

deposits. A gradational contact has been mapped between the old cone and the deposits.

Other depositional features are an alluvial fan on the south side of the island near the

town of Tichaná, streambeds where sediments have been deposited, and lacustrine

deposits from Lake Nicaragua on the isthmus between Maderas and Concepción volcano.

5.1.4. Lava Flows

Lava flows that have been emplaced on the volcano after the formation of the old cone

largely radiate out from the central crater (Figure 5.1). These lava flows can be broken up

into pre-graben flows and post-graben flows. Pre-graben flows are found on the east and

west side of the volcano emanating from the older cone. Where lava flows can be

observed on the lower slopes in these areas they have been traced up the flanks of the

volcano if possible. This indicates that the pre-graben flows are younger than the older

cone as their traces mantle the older cone.

Figure 5.3: Slope map of Maderas volcano in degrees.

Page 46: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

31

Lava compositions from the pre-graben flows vary from basalt to dacite, which differs

from the map by Sebesta (2001) where all of the lava flows were mapped as andesite.

Some flows that were mapped do not have geochemical data associated with them and

have been mapped as having unknown compositions. There is some uncertainty about the

exact contacts between lava flows in some areas. Where uncertainty exists a dashed line

has been used.

Post-graben flows are found to the north and south of the volcano emanating from the

summit crater along the strike of the graben. As the graben formed it created a

topographic low to the north and south causing the flows to move in these directions. The

compositions of these flows based on geochemical data are basaltic to andesitic.

5.1.5. Central Crater and Vents

Knowledge about rock materials near Maderas’ summit is limited by strong weathering

and heavy vegetation cover in an area receiving orographic rainfall. The central vent of

Maderas volcano contains a small lake and is located roughly in the center of the volcano,

within the graben, and along its west side (Figure 5.1). On the west side of the central

crater is a debris avalanche deposit. The east side of the crater had thick vegetation but

possible lava flows are present.

Two other vents can be seen on the northeast side of the volcano. One vent is located in

an area known as Punta Gorda and the other is southeast of Punta Gorda near the town of

El Corozal. Punta Gorda can be divided into two areas, a northern area and a southern

area. The northern-most area at Punta Gorda has a semi-circular shape, a topographic

high towards the northern edge of the point and is cut by a fault. Near the northern coast

of this area and at the topographic highs there are many large boulders of lava. The

largest are ~1.5 m in diameter with an average diameter being ~40 cm. Mathieu (2010)

also found a phreatomagmatic deposit on the southwest side of this area; however, it is

possible it is associated with the more southern area on Punta Gorda.

The southern area on Punta Gorda has a semi-circular shape and a flat central crater with

a rim around it except for an area on the eastern side along the lakeshore. This rim is

Page 47: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

32

highest on the southwest side (~100 m.a.s.l.). A phreatomagmatic deposit is located in

this same area as well as on the eastern side along with a lava flow (Mathieu, 2010). The

flat central crater is roughly 0.8 km in diameter.

Based on the description above, it is proposed that a lava flow descended from the

summit crater of the volcano and started to form a terrace over the lake in the area of

Punta Gorda. This terrace collapsed in the southern area of the point and reacted with

water creating a littoral maar, or rootless vent feature. Lava flows that appear to have

flowed down the side of the volcano to this littoral maar have been mapped in the area

upslope from Punta Gorda by Sebesta (2001) and were mapped in this study as well,

supporting this theory.

A similar situation is thought to have occurred near El Corozal to the southeast where

another semi-circular flat, central crater is located near phreatomagmatic deposits. A

lateral vent, located upslope at about 200 m.a.s.l, is thought to have erupted an andesitic

to dacitic lava near the lakeshore. When this flow reached the water, it reacted with it

forming another littoral maar, or rootless vent feature.

A second lateral vent is located on the northwestern slope of the volcano above the

community of El Tistero. This vent appears to have erupted several lava flows. Sebesta’s

map indicates that this vent is a maar feature, however no hydrothermal features were

found during field observations of this area. Also an investigation into the past lake levels

of Lake Nicaragua did not reveal much as little information is available regarding this

subject. One article did imply that during the mid to late Pleistocene the lake was larger,

reaching down into northern Costa Rica, which could indicate higher lake levels

(Bergoeing and Protti, 2006), however the vent sits at around 350 m.a.s.l. and it is highly

unlikely that lake levels ever reached that high. Also, the lack of hydrothermal deposits

makes it unlikely that water played a role in this vent.

One other possible vent located in this study is Punta el Delirio on the north-northwest

side of the volcano. However, too little information was collected during this study to

determine whether or not this is a littoral vent.

Page 48: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

33

Mathieu et al. (2011) also proposed two more vents near the summit of the crater (one to

the southwest and one to the north) and one other vent south of Punta el Delirio. Van

Wyk de Vries and Borgia (1996) also proposed a vent at Punta El Delirio as well as more

vents in the Punta Gorda area. No evidence was found during this study to support the

presence of these vents.

5.2. Geochemical Data

As the stature of stratovolcanoes increases their silica content may also rise. To evaluate

the geochemical evolution of the volcano, plots of vent elevation versus silica content

were made (Figure 5.4). Excluding the two mapped lateral vents, we see a weak tendency

for trachy-andesites/trachydacites to be erupted from vents higher up on the volcano. It

should be noted that many flows are not plotted, as it is not possible to tell from which

height they were erupted due to their location beneath younger flows.

To determine if the lava flows at the volcano became more evolved over time a plot of

lava flow age vs. silica content was created using known age dates and stratigraphy

(Figure 5.5). Lava flows were first divided up by known age dates and by map unit (old

cone, pre-faulting flow or post-faulting flow, Figure 5.1). Within each unit, flows that

were known to be stratigraphically younger or older than the dated flows were added.

Remaining flows with geochemical data were then placed. In many cases uncertainty

exists about relative ages of these flows. This plot reveals no apparent correlation

between age and silica content. However, it does show that a range of lava compositions

(basalt, basaltic andesite, and andesite) have been erupted throughout the life of the

volcano.

Page 49: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

34

0

200

400

600

800

1000

1200

1400

50 52 54 56 58 60 62 64wt.% SiO2

Figure 5.4. Plot of vent height vs. wt. % SiO2.

45

50

55

60

65

0 18

wt.

% S

iO2

Figure 5.5: Plot of wt. % SiO2 versus age of the lava flow. Age axis is not to scale. Grey symbols represent samples that have been radiometrically dated by 40Ar/39Ar with the determined ages labeled.

>150 ka ~150 to ~100 ka ~100 to ~60 ka

157.5 ± 2.2 ka

176.8 ± 6.1 ka

128.7 ± 22.2 ka

85.2 ± 3.1 ka

70.4 ± 6.1 ka

northwest lateral vent northeast

lateral vent

Page 50: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

35

5.3. 40Ar/39Ar Age Dates

5.3.1. Phases of volcanism The age dates at Maderas range from 176.8 ± 6.13 ka to 70.4 ± 6.1 ka and based on

geomorphology and location of the age dates it is suggested that the volcano experienced

at least three separate periods of volcanism. The first period occurred with the building

up of the original cone of the volcano prior to ~176 ka and lasting up to ~150 ka. This is

based on the two age dates (MADERAS-011 and MADERAS-003) obtained from the old

cone unit that can be seen on the geologic map (Figure 5.1).

The second period of volcanism occurred after ~150 ka but prior to ~100 ka. These lava

flows occur on the west, east, and northeast flanks of the volcano. They cover the old

cone and it is possible to trace their outline up the flanks of the volcano so it is believed

that they are younger than the old cone. This is supported by the age date obtained from

sample MADERAS-004 on the west side of the volcano with an age of ~128 ka (Figure

5.1). It is likely that they are older than the central graben as the graben constrained

volcanism to move north and south of the crater after it formed and these flows have not

been constrained in that manner. However, there is no evidence to show that they could

not have been erupted at the same time as the formation of the graben.

The third phase of volcanism occurred after ~100 ka and after the formation of the central

graben. The direction of the flows of this volcanism to the northwest and southeast was

controlled by the graben structure. The location of the flow with the youngest obtained

age date of ~70 ka lies outside of and near to the graben structure. This supports a

younger age as it shows that enough lava had accumulated within the graben for it to

have flowed over the side of the structure.

5.3.2. Implications of ages for shorelines at Maderas and Concepción One difference between Maderas and Concepción volcanoes is the nature of their

shorelines. Maderas volcano exhibits a drowned shoreline whereas Concepcion’s

shorelines appear to be rising. At Concepcion the base of the volcano contains raised

beaches and deformed beds on its east and west sides (Borgia and van Wyk de Vries,

Page 51: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

36

2003). The eastern side is characterized by diapiric rise while the western side is

characterized by outward thrusting (Borgia and van Wyk de Vries, 2003).

The difference in shorelines of the two volcanoes is likely due to the difference in ages

with Concepcion being younger than Maderas. Concepcion has historic activity (Diez et

al., 2006) as well as an age date of 19 ka (Siebert et al., 2010). At Concepcion the rise of

shorelines around its base is believed to be caused by loading of volcanic material which

causes spreading of the ductile lake sediments on which the volcano sits (Borgia and van

Wyk de Vries, 2003). The drowned shorelines of Maderas, which is no longer loading

volcanic material, imply that it is subsiding. This could be due to the reaction of the

underlying lake sediments to the overlying edifice over the last few tens of thousands of

years. The collapse of the magma chamber below the volcano is another possible

explanation for the apparent subsidence.

5.3.3. Comparison of age dates to other Central American volcanoes The duration and age of volcanic front volcanoes in Central America is not yet well

constrained. Very few volcanoes have been extensively sampled for age dates. Figure 5.6

is a plot of dated age samples from various volcanoes in Central America. Most

volcanoes have numerous recent eruptions that have been dated but few older dates

making it difficult to study the duration of volcanism.

Carr et al. (2007b) show that onset of active volcanoes of the volcanic front in Nicaragua

is generally less than ~400 ka. This is based on the oldest Nicaraguan volcanic front lava

sample, from Telica volcano, that has an age of 330 ± 20 ka. Costa Rican volcanism is

thought to begin ~600 ka. In Nicaragua the age of onset of volcanism is much less

constrained due to the location of the volcanoes within the Nicaraguan depression and the

covering of the earliest flows of the volcanoes by sediments (Carr et al., 2007b).

Guatemalan volcanoes display similar ages. Extensive age-date sampling at Santa Maria

revealed ages ranging from 103 ka to 35 ka (Escobar-Wolf et al., 2010) with another

eruption occurring in 1902. Volcanism at the Fuego-Acatenango volcanic complex

Page 52: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

37

ranges in age from over 230 ka to the present and with an age of less than 30 ka for

Fuego volcano itself (Vallance et al., 2001b).

Figure 5.6: Ranges of age dates analyzed for Central American volcanoes. White symbols represent Guatemalan volcanoes, black symbol represent Nicaraguan volcanoes and grey symbols represent Costa Rican volcanoes. (Age dates from (Bardintzeff and Deniel, 1992; Vallance et al., 2001b; Carr et al., 2007b; Escobar-Wolf et al., 2010; Siebert et al., 2010)

In all of these cases it is difficult to know the duration of volcanism with only a few dated

samples. Most of Fuego’s young volcanism may have happened in the past 30 ka while it

is built on an edifice that is 230 ka or more (Vallance et al., 2001b). While Santa Maria is

mostly younger than 103 ka, it is built on cones that have ages ranging from 163-438 ka

(Singer et al., in press). Only a few volcanoes have more than a few dates, so the duration

of currently active cones is unconstrained and could be a few tens of thousands of years.

Do the maximum ages of cones like Telica suggest that the volcano is continuously active

for 300 ka or is the volcano’s current activity only the latest of several periods of

concentrated activity, each of which could be viewed as a separate volcano? For Maderas

itself are there two volcanoes or one? Does the lack of age-dated materials younger than

60ka mean that Maderas is extinct? The answers to these questions are unknown. But the

apparent lack of activity for 60 ka is surely significant to hazards potential and it

Santa Maria Fuego Pacaya Cosegüina San Cristóbal Telica Cerro Negro Momotombo Concepción Maderas Rincón de la Vieja Miravalles Tenorio Platanar Poás Barba Irazu

Page 53: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

38

contrasts markedly with Concepción which is known to have had dangerous historic

activity.

5.4. An eruptive history of Maderas

Based on the geochemical and age date results gathered in this study and on the geologic

map, a brief history of Maderas volcano has been outlined. It has been divided into 5

phases, each of which is discussed below.

1. Construction of the older cone: The initial activity of Maderas is buried under the

current edifice and cannot be described. Therefore, the first phase of the volcano

discussed here is the construction of the cone. Based on the ages shown in Table 4.2, this

older cone was formed more than ~150 ka. The volcano began to build up an edifice

composed of alternating lava flows and pyroclastic deposits. It is likely that the west side

of the volcano received more pyroclastic material, as seen at Concepción (Borgia and van

Wyk de Vries, 2003), as the prevailing trade wind direction is east to west and this is

likely to have been true throughout the life of the volcano. Traverses into some of the

deepest eroded channels on the volcano revealed both lava flows and pyroclastic

deposits. Mathieu (2010) describes some of these deposits. The locations of these deep

gullies can be found on the steepest slopes of the volcano, which, explained above, are

likely to be remnants of the original cone. It is likely that the older cone formerly reached

an elevation similar to that of Concepción (1600 m.a.s.l. compared to Maderas’ current

elevation of 1394 m.a.s.l.).

The reason for the steeper slopes on Maderas’ older cone is unknown. Continual erosion

over an extended period of time could result in the observed steeper slopes. Additionally,

the formation of the graben could have caused a slight upward tilting of the slopes

making them steeper (Figure 5.2). Another possibility could be the eruption of more

silicic material from higher up on the edifice which could result in a thick hard core to the

volcano and more resistant lava flows near the summit which would be slower to erode

and could cause steepening of the slopes of the underlying units. However, the

geochemical data does not support this as seen in Figure 5.4 where there is not a strong

Page 54: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

39

correlation between vent height and more silicic lava composition. The most silicic rocks

found at Maderas were actually found near the base of the volcano. It is possible that

even though there is not a correlation between composition and vent elevation, there

could be a tendency for thicker and more erosionally resistant units near the central vent.

This could partly explain why erosion seems to enhance steepness.

2. Pre-graben volcanism: Due to the observed traces of lava flows over the old cone,

these flows are thought to have been emplaced after formation of the old cone between

~150 ka and ~100 ka based on obtained age dates. These flows can be seen on the

eastern, northeastern and western sides of Maderas. It is proposed that during this time

period lava flows on the northeast side of the volcano, one of which is from a lateral vent,

flowed out into the lake and reacted with lake water to form littoral maars creating the

point at Punta Gorda and a crater-like feature near the town of El Corozal Nuevo.

3. Faulting and formation of the graben: Maderas was affected by faulting in a general

NW-SE direction roughly parallel to the Nicaraguan depression and the CAVF. These

faults formed an asymmetrical graben through the center of the volcano with the eastern

fault having dropped down more than the western fault and leaving behind a larger fault

scarp. This graben caused the top of the volcano to become flattened and created an

asymmetrical shape to the profile of the volcano. The age of the formation of the graben

is not well constrained. It is thought to have started after or possibly concurrently with the

eruption of the pre-graben flows. The initial faulting of the graben is estimated to have

begun ~100 ka.

4. Post-graben volcanism and lateral vent on the northwest side of the volcano: After

the formation of the graben Maderas continued to erupt. It is thought that little or no

eruptive activity occurred during the formation of the graben as the faults do not appear

to have been covered up by eruptive material. The formation of the graben in the center

of the volcano created a topographic low and constrained the movement of lava along this

low, covering up the older, steeper parts of the cone that had been dropped down. One

flow, to the southeast of the volcano appears to have been strongly constrained by the

Page 55: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

40

faulting and flowed down a channel-like feature. The age range of these lavas is

estimated at ~80 ka to ~60 ka.

An active vent was present on the northwest flanks of the volcano that erupted various

lava flows. Four of the six analyses from these flows are andesitic, one is basaltic

andesite and one is basalt. An age date for MADERAS-015, a lava flow from this vent,

would help us constrain the age of the vent. The graben that runs through the volcano

does not appear to cut through this lateral vent and, therefore, it is proposed that it was

erupted after the formation of the graben.

5. Alluvial deposits: Throughout the life of the volcano, deep gullies formed and the

slopes of the volcano were eroded. Volcanic sediments accumulated around the base of

the volcano in the form of lahars and fluvial deposits. These deposits are more prevalent

below the old cone. There is also an alluvial fan located at the base of a large gully on the

southeast side of the volcano.

5.5. Implications for geologic hazards

5.5.1. History of geologic hazards

According to Bundschuh et al. (2007), Central America is one of the regions in the world

most prone to geology-related natural disasters due its tectonic setting and climate.

Nicaragua, located in the center of Central America has experienced all of the following

geology-related hazards in the past two decades: earthquakes (Lesage et al., 2007),

tsunamis (Molina, 1997; Fernández and Ortiz, 2007), landslides or lahars (Kerle et al.,

2003; Rodríguez, 2007), hurricanes (Kerle et al., 2003), and volcanic eruptions (Alvarado

et al., 2007). Freundt et al. (2006) also list a number of volcano-related hazards that have

occurred in Nicaragua.

As a small island located in Nicaragua, Ometepe is vulnerable to hazards in different

ways than the rest of the country. Pelling and Uitto (2001) list and describe a number of

intrinsic vulnerabilities related to small island developing states (SIDS). While Ometepe

is not its own nation, many of these vulnerabilities still apply. These vulnerabilities are

Page 56: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

41

small size, insularity and remoteness, environmental factors, disaster mitigation

capability, demographic factors, and economic factors.

Small size relates to limited natural resources, land use competition, and other spatial

issues found on small islands. Insularity and remoteness relates to the higher costs of

importing or exporting goods to and from the island, time delays in receiving goods, and

possible reduced flow of information to the island. Environmental factors relate to

exposure from large shorelines and small interiors. Demographic factors relate to smaller

populations and therefore a smaller human resource base, populations located near

shores, possible rapid changes in populations, and single urban centers. Economic factors

relate to small economies, specialized products, and dependence on external finance.

(Pelling and Uitto, 2001). On Ometepe, tourism is a large part of the economy and

hazards on the island could greatly influence its numbers. For example, during the time

the author lived on the island, Concepción volcano experienced small explosions over the

week of Semana Santa, a time of celebration in Nicaragua when many tourists visit the

island. Due to these small eruptions of Concepción, tourism on the island greatly

decreased and many businesses suffered because of it. Therefore it can be seen that when

small islands are confronted with geologic-hazards they face many obstacles.

Ometepe itself has experienced and remains vulnerable to all of the geologic hazards

mentioned above. Concepción volcano has erupted frequently in the past century. Diez et

al. (2006) prepared a table showing reported historical eruptions of Concepción volcano.

While the most recent eruptions have all been VEI =1 or VEI=2, earlier accounts indicate

that more violent eruptions have occurred. The most vulnerable populations for volcanic

eruptions of Ometepe are those living near Concepción and especially those living on the

west side of the volcano as prevailing trade winds move in that direction and will carry

ash and other pyroclastic material that way. Maderas volcano, to the south of

Concepción, is not known to have erupted in historic times. Since debris from

Concepción is blown to the west it is also relatively safe to live around Maderas when

looking at volcanic hazards from Concepción.

Page 57: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

42

The island has experienced and remains at risk for earthquakes as well. The location of

Ometepe along the CAVF and near the subduction zone of the Cocos plate moving

beneath the Caribbean plate means that it is located in a very seismically active region of

the world. Funk et al (2009) prepared a figure (Figure 2) showing the locations of

numerous earthquakes from 1995-2003 in Nicaragua. They do not include the magnitudes

of these earthquakes; however, it is possible to see that many earthquakes have occurred

near Ometepe. They also interpreted a fault along the border of the Nicaraguan

depression on the west side of Lake Nicaragua and another one to the south of Maderas

volcano within Lake Nicaragua. French et al (2010) discuss an Mw 5.3 fore shock and Mw

6.3 main shock that occurred in Lake Nicaragua near Maderas in 2005.

Also, this study, as well as others (van Wyk de Vries and Borgia, 1996; Mathieu et al.,

2011), show that Maderas itself is crossed with a number of faults. Wells and

Coppersmith (1994) plot the surface rupture lengths of faults against moment magnitudes

the results of which suggest that the faults that cut across Ometepe (with the longest

surface rupture length being about 5 km) would have been formed by earthquakes with

magnitudes of about M5.5 or smaller. It is likely that continued faulting of the volcano

would create earthquakes of similar magnitudes.

Landslides and lahars are also known to occur on the island. On September 27, 1996 a

lahar (Figure 2.1) destroyed the town of El Corozal on the northeast flanks of Maderas

volcano, killing six people, destroying 36 houses and causing the people of the town to be

moved to a new location (Smithsonian Institution, 1996). Other deposits around the

volcano also show that lahars and landslides have occurred in other areas as well. A

report on lahar hazards at Concepción volcano was published in 2001 (Vallance et al.,

2001a). A lahar hazard map from this paper shows that large areas around Concepción

are at risk from lahars.

While no tsunamis have been documented on Ometepe, they are still a threat to the island

and possible tsunami triggers in Lake Nicaragua have been identified such as the collapse

of Mombacho volcano on the northwest shore of lake Nicaragua (Freundt et al., 2007). A

Page 58: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

43

collapse of either volcano on Ometepe would not only cause tsunami hazards for the

residents of Ometepe but for those living around the shores of Lake Nicaragua as well.

5.5.2. Implications for Future Hazards

The new age dates imply that the volcano has likely not been active for tens of thousands

of years with the youngest determined age date being 70.4 ± 6.1 ka. It also implies that

the volcano has remained relatively stable over the past 170 ka years in that it has not had

explosive behavior or collapsed. The stability of the volcano is supported by work from

van Wyk de Vries and Borgia (1996) who looked at a number of different ratios between

characteristic geometric parameters to measure stability, how high a volcano can grow

before the failure of the brittle substratum, the mode of deformation of the substratum,

the buoyancy response of the substratum, and rate of deformation. The results of these

ratios imply that Maderas has considerable potential for spreading and low explosive and

collapse hazards. The lack of hydrothermal activity on the volcano (van Wyk de Vries

and Borgia, 1996) also makes it more stable as hydrothermal activity has been linked

with volcanic collapse (Lopez and Williams, 1993; Reid et al., 2001).

The apparent lack of activity at Maderas for ~60 ka implies that the risk for a future

eruption is low, however, it cannot be completely ruled out. Santa Maria volcano in

Guatemala erupted in 1902 after a repose that may have lasted ~30 ka (Escobar-Wolf et

al., 2010). However, there are often signs of unrest before a volcano erupts, especially

after long reposes. Before the Santa Maria eruption there was a marked seismic warning

lasting for months (Anderson, 1908). It is also likely that precursive deformation or

increased seismicity associated with movement of magma below the volcano would be

detected by people around Maderas. While Maderas is not being closely monitored for

deformation, a seismic station is located on its southwest side and there are two other

seismic stations on the island near Concepción. These stations will help scientists monitor

seismic activity on the island and should be able to recognize increased seismicity if it

occurs.

Page 59: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

44

Lahars and landslides remain a concern for the inhabitants living on the flanks of

Maderas. As seen in the geologic map (Figure 5.1) much of the base of the volcano is

covered in alluvial deposits. It is likely that some of these have been deposited in the

form of lahars during extreme rainfall events. Therefore, there is a continued risk in these

areas for more lahars to occur as climate change may bring about more extreme weather

events (McBean, 2004). The older cone is the most likely source of these deposits as they

are largely located downslope of the older cone.

The older cone is also the most likely source for landslides or small-scale collapses on the

volcano. The average gradient of the older cone is about 25° but some slopes have

inclines of up to 77° (Figure 5.3). These steeper slopes are more unstable than other areas

of the volcano. Failure of these slopes could result in landslides. A small-scale collapse

was observed on one of these very steep slopes at Maderas by the author in 2009. Areas

located downslope of these steeper slopes have a higher a risk of landslides than other

areas on the volcano.

The experiences of Casita volcano in Nicaragua, which collapsed in 1998 during

Hurricane Mitch and produced a deadly debris flow (Kerle and van Wyk de Vries, 2001)

and of Toliman volcano in Guatemala, which collapsed in 2005 during Hurricane Stan

(Sheridan et al., 2007), are examples of this type of hazard. They suggest the

investigation of possible hydrothermal alteration in the older cone might be useful, and

they also point to the trigger mechanism of heavy rainfall loading from tropical

hurricanes. On Maderas, van Wyk de Vries and Borgia (1996) found that there is a lack

of hydrothermal features on the volcano because their formation is hindered by the

underlying lake sediments that seal fractures caused by spreading and do not allow a

hydrothermal system to rise into the volcano. This lack of alteration should make

Maderas more stable and less prone to large collapses caused by extreme rainfall events.

Earthquakes also remain a concern for the communities on the volcano due to Maderas’

location along the CAVF and near the subduction zone of the Cocos plate beneath the

Caribbean plate. Continued spreading of the volcano could also lead to more seismic

events.

Page 60: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

45

Disaster preparedness on the island was taking place during the author’s residence in

Mérida. Care, International began a project on the island working with communities on

disasters (http://www.care.org/careswork/projects/NIC170.asp). One of their main

focuses on the island is Concepción as it is an active volcano. However a number of

workshops were given in all communities and schools on the island about the types of

hazards that can occur in each community, what to do in an emergency and signs for

evacuation routes were put up. (For those living on the Maderas side of Ometepe, the

community of San Ramon was chosen as a safe zone in case of a large eruption from

Concepción.) Community leaders were used and committees for each community were

formed, creating a chain of command for what to do in case of an emergency. This is a

positive step toward disaster preparation on the island, and hopefully community

workshops and school activities will continue to be carried out after Care, International

leaves. The choice of San Ramon as a safe location is supported by this study, which

shows that volcanic hazards at Maderas are far less likely than at Concepción.

Page 61: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment
Page 62: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

47

6. Future Work Regarding hazards, seismic monitoring of Maderas volcano should continue. As stated

above, it is unlikely that Maderas will become active again after ~60 ka of inactivity,

however it is not impossible. A look at lahar hazards on Maderas should also be

conducted. A study by the U.S. Geological Survey has been completed for Concepción

volcano (Vallance et al., 2001a). While, Concepción is more prone to lahars than

Maderas, a study of lahars should also be done for Maderas volcano. It is the author’s

understanding that a map of landslide/lahar hazards for Maderas is currently being

conducted by INETER.

Regarding INETER, an important aspect of this study will be to impart the information

gained to INETER. Collaboration is important among scientists, and it is especially

important to work with scientists in countries with fewer resources. It would also be

important to pass this information along to local tour guides who often state that the last

eruption at Maderas was ~800 to 1000 years ago. The author was unable to determine

where this date came from when talking to local tour guides

Finally community outreach programs should continue each year in all of the

communities of Ometepe regarding geologic hazards. It is important to remind the

inhabitants of the risks posed by the volcanoes and to discuss evacuation routes and what

to do in case a natural disaster occurs.

Page 63: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment
Page 64: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

49

7. Conclusions The main conclusions of the study are that Maderas volcano is similar to other Central

American volcanoes in regard to petrology, geochemistry, and age. Maderas is a typical

volcanic front volcano with lava compositions ranging from basalt to trachydacite. The

ages determined in this study for Maderas suggest that the volcano has not erupted for ~

60 ka.

The ages also indicate that Maderas underwent at least three phases of volcanism: the

construction of the initial cone prior to ~150 ka, pre-graben volcanism prior to ~100ka

and post-graben volcanism that occurred between ~100ka and ~60 ka. These phases are

separated by the formation of a central graben through the volcano that constrained the

movement of the last phase of volcanism within its boundaries.

These findings indicate that volcanic eruptions are not considered a likely hazard for

Maderas volcano. However, earthquakes and lahars are considered as significant hazards

that could occur. Tropical storms, especially those with high rainfall rates could lead to

dangerous debris flows beneath Maderas’ steep flanks. Continued seismic monitoring

should take place on the island as well as continued community outreach and education

about possible disasters, emergency plans, and evacuation routes.

Page 65: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment
Page 66: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

51

8 References Aguirre, J.C., 2009. Suelos, capacidad de uso de la tierra y conflictos de uso en el

municipio Altagracia, Asociacion de Municipios de Rivas, Rivas, Nicaragua.

Alvarado, G.E., Soto, G.J., Pullinger, C.R., Escobar, R., Bonis, S., Escobar, D. and Navarro, M., 2007. Volcanic activity, hazards, and monitoring. In: J. Bundschuh and G.E. Alvarado (Editors), Central America: Geology, Resources, Hazards. Taylor & Francis, London, UK, pp. 1155-1188.

Anderson, T., 1908. The volcanoes of Guatemala. The Geographical Journal, 31(5): 473-485.

Andrade, S.D. and van Wyk de Vries, B., 2010. Structural analysis of the early stages of catastrophic stratovolcano flank-collapse using analogue models. Bulletin of Volcanology, 72: 771-789.

Bardintzeff, J.-M. and Deniel, C., 1992. Magmatic evolution of Pacaya and Cerro Chiquito volcanological complex, Guatemala. Bulletin of Volcanology, 54: 267-283.

Bergoeing, J.P. and Protti, R., 2006. Geomorfología paleo-lacustre del sur del Lago de Nicaragua. Revista Geográfica, 139: 27-38.

Bolge, L.L., Carr, M.J., Milidakis, K.I., Lindsay, F.N. and Feigenson, M.D., 2009. Correlating geochemistry, tectonics, and volcanic volume along the Central American volcanic front. Geochemistry Geophysics Geosystems, 10(12).

Borgia, A., Delaney, P.T. and Denlinger, R.P., 2000. Spreading volcanoes. Annual Review of Earth and Planetary Sciences, 28: 539-570.

Borgia, A. and van Wyk de Vries, B., 2003. The volcano-tectonic evolution of Concepción, Nicaragua. Bulletin of Volcanology, 65: 248-266.

Bundschuh, J., Winograd, M., Day, M. and Alvarado, G.E., 2007. Geographical, social, economic, and environmental framework and developments. In: J. Bundschuh and G. Alvarado (Editors), Central America: Geology, Resources and Hazards. Taylor & Francis, London, UK, pp. 1-52.

Byrne, P.K., van Wyk de Vries, B., Murray, J.B. and Troll, V.R., 2009. The geometry of volcano flank terraces on Mars. Earth and Planetary Science Letters, 281: 1-13.

Carr, M.J., 1984. Symmetrical and segmented variation of physical and geochemical characteristics of the Central American volcanic front. Journal of Volcanology and Geothermal Research, 20: 231-252.

Page 67: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

52

Carr, M.J., Feigenson, M.D., Patino, L.C. and Walker, J.A., 2003. Volcanism and geochemistry in Central America: Progress and problems. Geophysical Monograph, 138: 153-174.

Carr, M.J., Patino, L.C. and Feigenson, M.D., 2007a. Chapter 22: Petrology and geochemistry of lavas. In: J. Bundschuh and G.E. Alvarado (Editors), Central America: Geology, Resources and Hazards. Taylor & Francis, London, UK, pp. 565-590.

Carr, M.J. and Rose, W.I., 1987. CENTAM -- A data base of Central American volcanic rocks. Journal of Volcanology and Geothermal Research, 33(1-3): 239-240.

Carr, M.J., Rose, W.I. and Stoiber, R.E., 1982. Central America. In: R.S. Thorpe (Editor), Andesites: Orogenic Andesites and Related Rocks. John Wiley & Sons Ltd., New York, New York, pp. 149-166.

Carr, M.J., Saginor, I., Alvarado, G.E., Bolge, L.L., Lindsay, F.N., Milidakis, K., Turrin, B.D., Feigenson, M.D. and Swisher, C.C., 2007b. Element fluxes from the volcanic front of Nicaragua and Costa Rica. Geochemistry Geophysics Geosystems, 8(6).

de Boer, J., 1979. The outer arc of the Costa Rican orogen (oceanic basement complexes of the Nicoya and Santa Elena Peninsulas). Tectonophysics, 56(3-4): 221-259.

Delcamp, A., van Wyk de Vries, B. and James, M.R., 2008. The influence of edifice slope and substrata on volcano spreading. Journal of Volcanology and Geothermal Research, 177: 925-943.

DeMets, C., 2001. A new estimate for present-day Cocos-Caribbean plate motion: Implications for slip along the Central American volcanic arc. Geophysical Research Letters, 28(21): 4043-4046.

Denyer, P. and Baumgartner, P.O., 2006. Emplacement of Jurassic-Lower Cretaceous radiolarites of the Nicoya Complex (Costa Rica). Geologica Acta, 4(1-2): 203-218.

Diez, M., Connor, C., Navarro, M., Strauch, W., Tenorio, V., Tenorio, L. and Aviles, R., 2006. Volcanic hazards at Concepcion volcano, Nicaragua and recommendations for hazard mitigation, prepared for US Southern Command.

Dollfus, A. and de Montserrat, E., 1868. Voyage geologique dans les republiques de Guatemala et El Salvator. Imperiale, Paris, 539 pp.

Escobar-Wolf, R.P., Diehl, J.F., Singer, B.S. and Rose, W.I., 2010. 40Ar/39Ar and paleomagnetic constraints on the evolution of Volcán de Santa María, Guatemala. GSA Bulletin, 122(5-6): 757-771.

Page 68: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

53

Fernández, M. and Ortiz, M., 2007. Earthquake triggered tsunamis. In: J. Bundschuh and G. Alvarado (Editors), Central America: Geology, Resources and Hazards. Taylor & Francis, London, UK, pp. 1257-1265.

French, S.W., Warren, L.M., Fischer, K.M., Abers, G.A., Strauch, W., Protti, J.M. and Gonzalez, V., 2010. Constraints on upper plate deformation in the Nicaraguan subduction zone from earthquake relocation and directivity analysis. Geochemistry Geophysics Geosystems, 11(3).

Freundt, A., Kutterolf, S., Schmincke, H.-U., Hansteen, T., Wehrmann, H., Pérez, W., Strauch, W. and Navarro, M., 2006. Volcanic Hazards in Nicaragua: Past, present, and future. In: W.I. Rose, G.J.S. Bluth, M.J. Carr, J.W. Ewert, L.C. Patino and J.W. Vallance (Editors), Volcanic Hazards in Central America. The Geological Society of America, Boulder, CO, pp. 141-165.

Freundt, A., Strauch, W., Kutterolf, S. and Schmincke, H.-U., 2007. Volcanogenic tsunamis in lakes: Examples from Nicaragua and general implications. Pure and Applied Geophysics, 164: 527-545.

Funk, J., Mann, P., McIntosh, K. and Stephens, J., 2009. Cenozoic tectonics of the Nicaraguan depression, Nicaragua, and Median Trough, El Salvador, based on seismic-reflection profiling and remote-sensing data. GSA Bulletin, 121(11/12): 1491-1521.

GADM, 2011. GADM database of Global Administrative Areas. http://www.gadm.org/

Gill, J.B., 1981. Orogenic andesites and plate tectonics. Springer-Verlag, Berlin 390 pp.

Goffin, C., Herrera, M.-A.B., Furlan, D.A.P. and Oritiz, J.M.R., 2006. VIII Censo de Población y IV de Vivienda: Población Municipios, Gobierno de Nicaragua, Managua, Nicaragua.

Grosse, P., van Wyk de Vries, B., Petrinovic, I.A., Euillades, P.A. and Alvarado, G.E., 2009. Morphometry and evolution of arc volcanoes. Geology, 37(7): 651-654.

Halsor, S.P. and Rose, W.I., 1988. Common characteristics of paired volcanoes in northern Central America. Journal of Geophysical Research, 93(B5): 4467-4476.

Hoernle, K., Hauff, F. and van den Bogaard, P., 2004. 70 m.y. history (139-69 Ma) for the caribbean large igneous province. Geology, 32: 697-700.

INETER and JICA, 2006a. La Palma, Nicaragua, 3150 III, E751. INETER, Managua, Nicaragua.

INETER and JICA, 2006b. San José del Sur, Nicaragua 3050 II, E751. INETER, Managua, Nicaragua.

Page 69: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

54

Kerle, N. and van Wyk de Vries, B., 2001. The 1998 debris avalanche at Casita volcano Nicaragua - investigation of structural deformation as the cause of slope instability using remote sensing. Journal of Volcanology and Geothermal Research, 105(1-2): 49-63.

Kerle, N., van Wyk de Vries, B. and Oppenheimer, C., 2003. New insight into the factors leading to the 1998 flank collapse and lahar disaster at Casita volcano, Nicaragua. Bulletin of Volcanology, 64(331-345).

Koppers, A.P., 2002. ArArALC-software for 40Ar/39Ar age calculations. Computers and Geosciences, 28(5): 605-619.

Kuiper, K.F., Deino, A., Hilgen, F.J., Krijgsman, W., Renne, P.R. and Wijbrans, J.R., 2008. Synchronizing Rock Clocks of Earth History. Science, 320(87): 500-504.

Le Bas, M.J., Le Maitre, R.W., Streckeisen, A. and Zanettin, B., 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology, 27(3): 745-750.

Lesage, P., Mora, M., Strauch, W., Escobar, D., Matías, O., Tenorio, V., Talavera, E., Rodríguez, A. and Alvarado, G.E., 2007. Volcano seismology. In: J. Bundschuh and G.E. Alvarado (Editors), Central America: Geology, Resources, Hazards. Taylor & Francis, London, UK, pp. 1189-1215.

Lindsay, F.N., 2009. Geochemistry of lavas from southeastern Nicaragua and of mantle xenolyths from Cerro Mercedes, Costa Rica, Rutgers The State University of New Jersey-New Brunswick, New Brunswick.

Lopez, D.L. and Williams, S.N., 1993. Catastrophic volcanic collapse: relation to hydrothermal processes. Science, 260(5115): 1794-1796.

Mathieu, L., 2010. The impact of strike-slip movements on the structure of volcanoes: a case study of Guadeloupe, Maderas and Mt. Cameroon volcanoes, Trinity College, Dublin, Irelend, 152 pp.

Mathieu, L., van Wyk de Vries, B., Pilato, M. and Troll, V.R., 2011. The interaction between volcanoes and strike-slip, transtensional and transpressional fault zones: Analogue models and natural examples. Journal of Structural Geology, 33: 898-906.

McBean, G., 2004. Climate change and extreme weather: A basis for action. Natural Hazards, 31: 177-190.

McBirney, A.R. and Williams, H., 1965. Volcanic History of Nicaragua. University of California Press, Berkeley and Los Angeles, California, 73 pp.

Page 70: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

55

Min, K., Mundil, R., Renne, P.R. and Ludwig, K.R., 2000. A test for systematic erros in 40Ar/39Ar geochronology through comparison with U/Pb analysis of a 1.1-Ga rhyolite. Geochimica et Cosmochimica Acta, 64: 73-98.

Molina, E., 1997. Tsunami catalogue for Central America 1539-1996. II 1-04, Institute of Solid Earth Physics, University of Bergen, Bergen, Norway.

Pelling, M. and Uitto, J.I., 2001. Small island developing states: natural disaster vulnerability and global change. Environmental Hazards, 3: 49-62.

Reid, M.E., Sisson, T.W. and Brien, D.L., 2001. Volcano collapse promoted by hydrothermal alteration and edifice shape, Mount Ranier, Washington. Geology, 29(9): 779-782.

Rodríguez, C.E., 2007. Earthquake-induced landslides. In: J. Bundschuh and G.E. Alvarado (Editors), Central America: Geology, Resources, Hazards. Taylor & Francis, London, UK, pp. 1217-1255.

Rose, W.I., Conway, F.M., Pullinger, C.R., Deino, A. and McIntosh, W.C., 1999. An improved age framework for late Quaterary silicic eruption in northern Central America. Bulletin of Volcanology, 61: 106-120.

Sebesta, J., 2001. Análisis de origen dinámico del relieve, Isla de Ometepe. Czech Geologic Service, Prague, Czech Republic.

Sheridan, M.F., Connor, C., Connor, L., Stinton, A., Galacia, O.R. and Barrios, G., 2007. October 2005 debris flows at Panabaj, Guatemala: Hazard assessment. Eos Transactions AGU, 88(23): Joint Assembly Supplement, Abstract #V33A-07.

Siebert, L., Simkin, T. and Kimbrly, P., 2010. Volcanoes of the World. University of California Press, Smithsonian Institution, Berkeley and Los Angeles, California.

Singer, B.S., Smith, K.E., Jicha, B.R., Beard, B.L., Johnson, C.M. and Rogers, N.W., in press. Tracking open-system differentiation growth of Santa Maria volcano, Guatemala. Journal of Petrology.

Smithsonian Institution, 1996. Maderas. Bulletin of the Global Volcanism Network, 21(09).

Swain, F.M., 1966. Bottom sediments of Lake Nicaragua and Lake Managua, western Nicaragua. Journal of Sedimentary Petrology, 36(2): 522-540.

Syracuse, E.M. and Abers, G.A., 2006. Global compilation of variations in slab depth beneath arc volcanoes and implications. Geochemistry Geophysics Geosystems, 7(5).

UNESCO, 2010. Thirteen new biosphere reserves. A World of Science, 8(3): 12-13.

Page 71: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

56

Vallance, J.W., Schilling, S.P., Devoli, G. and Howell, M.M., 2001a. Lahar hazards at Concepción volcano, Nicaragua. Open-File Report 01-457, U.S. Geological Survey, Vancouver, Washington U.S.A.

Vallance, J.W., Schilling, S.P., Matías, O., Rose, W.I. and Howell, M.M., 2001b. Volcano Hazards at Fuego and Acatenango, Guatemala. In: U.S.G. Survey (Editor), Vancouver, Washington, U.S.A.

van Wyk de Vries, B., 1986. Mapa Geologico Isla de Ometepe. Instituto Nicaraguense de Estudios (INETER), Managua, Nicaragua.

van Wyk de Vries, B., 1993. Tectonics and Magma Evolution of Nicaraguan Volcanic Systems, The Open University, Milton Keynes, UK, 238 pp.

van Wyk de Vries, B. and Borgia, A., 1996. The role of basement in volcano deformation. Geological Society Special Publication, 110: 95-110.

van Wyk de Vries, B. and Matela, R., 1998. Styles of volcano-induced deformation: numberical models of substratum flexure, spreading and extrusion. Journal of Volcanology and Geothermal Research, 81: 1-18.

van Wyk de Vries, B. and Merle, O., 1996. The effect of volcanic constructs on rift fault patterns. Geology, 24(7): 643-646.

Wells, D.L. and Copersmith, K.J., 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84(4): 974-1002.

Wilder, P.R., 2010. Concepción está en plena erupción, La Prensa, Managua, Nicaragua.

Page 72: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

57 9 A

ppen

dice

s

9.1

App

endi

x A

: Geo

chem

ical

Dat

a

Tab

le 9

.1: W

hole

-roc

k ch

emic

al a

naly

sis fo

r sa

mpl

es c

olle

cted

dur

ing

this

stud

y. A

ll va

lues

are

in w

t. %

. All

Fe a

s Fe 2

O3.

Sam

ple

Nam

e M

ader

as-

001

Mad

eras

-00

2 M

ader

as-

003

Mad

eras

-00

4 M

ader

as-

005

Mad

eras

-00

6 M

ader

as-

007

Mad

eras

-00

8 M

ader

as-

009

Mad

eras

-01

1 M

ader

as-

012

Mad

eras

-01

3

SiO

2 53

.33

53.3

0 61

.23

49.5

1 55

.42

55.9

1 61

.43

50.2

2 58

.12

53.0

2 51

.74

57.6

2

TiO

2 0.

97

1.01

0.

96

1.07

1.

18

0.90

0.

94

1.15

0.

90

1.02

1.

08

0.97

Al 2O

3 18

.45

18.9

5 15

.26

17.1

7 17

.00

16.9

9 16

.12

18.4

0 17

.36

19.4

6 18

.17

17.3

8

Fe 2

O3

9.21

9.

84

8.44

12

.42

9.81

8.

78

7.13

11

.72

7.43

10

.12

10.1

4 7.

69

MnO

0.

17

0.17

0.

16

0.19

0.

20

0.16

0.

20

0.19

0.

14

0.15

0.

17

0.16

MgO

3.

34

2.92

1.

11

5.36

2.

42

3.41

1.

30

4.48

2.

22

2.30

3.

74

2.31

CaO

8.

53

8.04

2.

91

10.4

8 6.

33

7.14

3.

50

9.43

4.

80

8.58

9.

07

4.58

Na 2

O

3.28

3.

79

4.38

2.

26

3.92

3.

39

5.33

3.

00

3.82

3.

38

3.31

3.

92

K2O

1.

71

1.96

3.

62

1.03

2.

18

2.44

3.

37

1.17

2.

74

1.81

1.

63

3.01

P2O

5 0.

42

0.39

0.

32

0.26

0.

59

0.38

0.

22

0.34

0.

43

0.37

0.

39

0.40

H2O

+ 0.

00

0.26

1.

00

0.29

0.

26

0.26

0.

21

0.21

0.

45

0.16

0.

21

0.46

H2O

- -0

.51

-0.7

7 0.

00

-0.6

4 -0

.03

-0.0

8 -0

.01

-0.0

5 0.

82

-0.6

5 -0

.27

0.86

Ba

0.

054

0.06

0 0.

086

0.03

3 0.

072

0.06

3 0.

073

0.04

1 0.

066

0.04

4 0.

037

0.06

5

Sr

0.05

9 0.

061

0.03

1 0.

050

0.05

2 0.

052

0.03

7 0.

057

0.04

4 0.

051

0.05

2 0.

043

Tot

al %

99

.01

100.

00

99.5

0 99

.49

99.4

0 99

.80

99.8

6 10

0.37

99

.35

99.8

3 99

.47

99.4

7

Page 73: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

58

Tab

le 9

.1: C

ontin

ued.

Sam

ple

Nam

e M

ader

as-

014

Mad

eras

-01

5 M

ader

as-

016

Mad

eras

-01

7 M

ader

as-

018

Mad

eras

-02

0 M

ader

as-

021

11-A

14

C

17

26 B

39

41

SiO

2 51

.03

58.1

3 57

.37

50.9

6 52

.58

59.0

7 49

.91

53.3

4 49

.34

53.5

6 55

.66

54.6

2 55

.20

TiO

2 1.

10

0.99

0.

93

1.07

1.

09

1.11

1.

15

1.20

1.

17

1.03

1.

19

1.10

1.

23

Al 2O

3 19

.77

17.3

0 17

.95

19.3

0 16

.42

16.2

7 19

.01

18.3

9 16

.69

19.2

9 17

.49

17.2

7 15

.37

Fe 2

O3

10.2

5 7.

99

7.28

10

.38

9.01

8.

18

10.7

3 10

.19

11.4

0 9.

24

8.89

10

.65

11.1

6

MnO

0.

17

0.18

0.

17

0.16

0.

21

0.19

0.

17

0.19

0.

16

0.14

0.

18

0.17

0.

17

MgO

3.

11

2.33

2.

11

3.07

2.

88

1.96

3.

98

2.48

4.

57

2.27

2.

08

2.85

2.

21

CaO

9.

77

4.99

5.

33

9.84

6.

57

4.92

10

.24

7.96

9.

97

8.61

6.

26

6.04

5.

27

Na 2

O

2.71

4.

05

4.40

2.

89

7.53

4.

13

2.79

3.

36

2.42

3.

18

4.18

3.

75

3.56

K2O

1.

22

2.92

2.

91

1.34

2.

23

3.10

1.

26

2.07

1.

16

1.88

2.

35

2.24

2.

53

P2O

5 0.

33

0.32

0.

36

0.32

0.

42

0.61

0.

39

0.54

0.

44

0.36

0.

63

0.45

0.

62

H2O

+ 0.

12

0.10

0.

14

0.11

0.

18

0.15

0.

17

0.39

1.

42

0.28

0.

26

0.45

0.

31

H2O

- 0.

03

0.28

0.

15

-0.2

3 0.

06

-0.0

5 -0

.28

-0.1

5 0.

61

-0.3

6 -0

.16

0.23

-0

.45

Ba

0.

043

0.05

6 0.

059

0.04

0 0.

049

0.04

9 0.

027

0.03

7 0.

023

0.04

8 0.

073

0.09

0 0.

063

Sr

0.05

2 0.

044

0.04

5 0.

051

0.04

5 0.

045

0.06

2 0.

059

0.05

9 0.

051

0.05

5 0.

044

0.03

9

Tot

al %

99

.70

99.6

8 99

.19

99.3

0 99

.27

99.7

5 99

.61

100.

04

99.4

3 99

.58

99.1

4 99

.96

97.2

7

Page 74: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

59

Tab

le 9

.2: G

eoch

emic

al in

form

atio

n fr

om M

ader

as v

olca

no (L

inds

ay 2

009)

. Ele

men

t oxi

des a

re in

wt.

% a

nd e

lem

ents

are

in p

pm. A

ll Fe

as F

e 2O

3.

Sam

ple

M1

M2

M3

M4

M5

M5d

up

M6

M7

M8

M8a

M

9 M

9S0

M10

M

11

M11

a M

12

SiO

2 60

.75

61.7

4 50

.37

51.7

3 50

.69

50.6

9 51

.22

50.7

9 51

.56

51.5

6 51

.2

51.2

51

.7

50.2

1 50

.21

48.1

2

TiO

2 1.

07

1.09

1.

1 1.

07

1.07

1.

07

1.07

1.

04

0.99

0.

99

0.98

0.

98

0.56

0.

88

0.88

1.

18

Al 2O

3 16

.46

17.3

2 18

.66

18.2

9 18

.39

18.3

9 18

.26

18.4

1 18

.06

18.0

6 18

.22

18.2

2 20

.8

17.7

8 17

.78

18.6

5

Fe 2

O3

6.81

7.

26

10.0

3 9.

79

9.81

9.

81

9.97

9.

69

9.82

9.

82

9.67

9.

67

8.28

9.

36

9.36

10

.8

MnO

0.

17

0.17

0.

18

0.17

0.

17

0.17

0.

17

0.17

0.

17

0.17

0.

17

0.17

0.

15

0.15

0.

15

0.17

MgO

1.

91

1.95

4.

56

4.18

4.

49

4.49

4.

51

4.54

4.

76

4.76

4.

68

4.68

4.

16

5.82

5.

82

5.29

CaO

4.

56

4.4

9.54

9.

3 9.

52

9.52

9.

53

9.63

9.

48

9.48

9.

65

9.65

10

.13

10.6

5 10

.65

10.8

5

Na 2

O

4.29

4.

34

2.76

2.

84

2.69

2.

69

2.62

2.

49

2.38

2.

38

2.48

2.

48

2.35

2.

56

2.56

2.

25

K2O

2.

83

2.8

1.07

1.

22

1.15

1.

15

1.21

1.

33

1.22

1.

22

1.17

1.

17

0.43

1.

21

1.21

0.

96

P2O

5 0.

46

0.44

0.

32

0.3

0.3

0.3

0.31

0.

3 0.

27

0.27

0.

27

0.27

0.

13

0.23

0.

23

0.3

Sc

15.7

4 17

.13

30.7

9 28

.46

24.0

1 25

.92

26.3

8 26

.5

24.9

9 25

.21

28.7

7 27

.97

24.3

2 26

.35

21.8

8 29

.24

V

77.9

4 85

.36

307.

22

292.

56

260.

76

270

274.

65

261.

13

290.

99

233.

95

282.

93

273.

38

210.

24

243.

95

212.

44

322.

24

Cr

2.12

1.

6 26

.01

26.1

7 23

.11

24.1

2 23

.63

23.5

4 23

.36

19.4

3 23

.5

22.9

1 12

.23

50.4

4 41

.89

10.9

9

Co

9.11

10

.22

29.7

7 27

.16

24.7

8 24

.78

26.7

8 26

.89

27.0

5 23

.54

27.6

4 28

.08

21.6

6 30

.79

25.9

34

.61

Ni

0.54

0.

3 14

.9

11.9

11

.46

13

12.5

2 12

.58

15.1

4 13

.13

16.3

1 14

.71

10.7

4 27

.81

22.4

4 19

.68

Cu

20.1

22

.36

137.

25

95.3

10

8 10

7.23

12

8.9

125.

73

110.

05

96.9

1 12

8.45

12

2.59

98

.76

135.

76

119.

45

149.

06

Zn

82.2

3 84

.37

79.7

4 77

.02

67.9

1 72

.76

75.2

8 69

.61

74.0

5 67

.3

76.5

8 72

.88

71.4

4 68

.21

58.9

5 80

.33

Rb

66.6

5 57

.68

15.6

23

.88

21.9

5 22

.55

22.5

7 25

.01

20.3

2 22

.02

25.9

7 25

.65

37.2

5 20

.4

17.9

7 18

.64

Sr

431.

69

416.

37

561.

03

530.

19

511.

27

504.

01

497.

51

499.

01

444.

01

448.

53

484.

54

494

484.

98

429.

25

424.

84

543.

3

Y

36.3

4 43

.71

21.8

7 21

.22

19

18.4

7 19

.03

19.6

4 16

.72

18.2

1 19

.02

18.5

22

.81

18.2

3 17

.43

19.9

8

Zr

299.

98

314.

27

144.

03

125.

57

118

119.

92

117.

99

118.

18

118.

94

119.

72

121.

21

120.

68

176.

78

119.

14

109.

83

123.

06

Nb

29.6

6 29

.69

12.8

5 12

.36

11.6

7 11

.84

11.2

1 11

.4

11.0

6 11

.7

11.7

5 11

.6

15.8

1 9.

46

9.16

13

.06

Mo

1.59

2.

63

1.1

1.02

1.

06

1.01

1.

05

0.99

1.

04

1.1

1.17

1.

11

1.59

0.

94

0.91

0.

92

Cs

0.76

0.

82

0.27

0.

24

0.45

0.

48

0.45

0.

51

0.5

0.54

0.

58

0.57

0.

87

0.48

0.

44

0.15

Ba

1160

12

00

624

586

538

536

562

550

521

549

551

544

759

471

487

503

Hf

4.02

4.

21

1.92

1.

75

1.65

1.

66

1.63

1.

6 1.

66

1.83

1.

74

1.69

2.

27

1.62

1.

66

1.7

Ta

1.42

1.

54

0.59

0.

6 0.

54

0.59

0.

59

0.55

0.

56

0.6

0.65

0.

57

0.8

0.47

0.

47

0.59

W

0.72

0.

89

0.28

0.

29

0.29

0.

3 0.

27

0.29

0.

28

0.32

0.

33

0.3

0.41

0.

23

0.26

0.

23

Tl

5.6

5.53

1.

54

1.98

2.

29

2.47

2.

54

2.92

3.

16

3.45

3.

44

3.48

5.

08

2.15

2.

05

0.98

Pb

8.44

5.

6 2.

27

2.47

2.

51

2.42

2.

53

2.47

2.

54

2.82

3.

32

2.75

3.

78

2.57

2.

74

2.1

Th

5.86

5.

64

2.33

2.

02

1.95

2.

07

1.86

1.

9 1.

8 2.

48

2.38

2.

11

3.16

1.

86

2.09

1.

85

U

3.53

3.

66

1.41

1.

38

1.3

1.43

1.

21

1.18

1.

23

1.63

1.

55

1.38

2.

08

1.3

1.45

1.

07

Page 75: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

60

Tab

le 9

.3: R

are

eart

h el

emen

t ana

lyse

s of M

ader

as v

olca

no fr

om L

inds

ay (2

009)

. Ele

men

ts a

re in

ppm

.

Sam

ple

M1

M2

M3

M4

M5

M5

dup

M6

M7

M8

M8a

M

9 M

9S0

M10

M

11

M11

a M

12

La

35.9

7 48

.3

19.0

4 18

.14

15.9

8 16

.42

16.5

4 16

.7

15.5

2 17

.55

17.0

8 17

23

.17

14.3

5 14

.23

16.8

1

Ce

73.7

1 75

.13

38.5

6 35

.13

33.2

3 33

.88

34.7

34

.33

31.7

8 34

.5

35.1

8 35

.34

45.1

5 28

.56

29.3

4 34

.58

Pr

8.64

10

.28

5.22

5.

06

4.16

4.

24

4.44

4.

37

4.04

4.

68

4.57

4.

49

5.61

3.

89

4.05

4.

51

Nd

35.8

6 47

.1

24.3

6 22

.52

19.7

19

.97

19.0

5 19

.11

17.7

8 20

.01

19.7

2 20

.23

26.8

9 17

.69

17.5

7 20

.72

Sm

7.

63

9.4

5.04

4.

72

4.26

4.

24

4.43

4.

15

3.87

4.

23

4.42

4.

15

5.45

4.

1 3.

84

4.51

Eu

1.95

2.

11

1.43

1.

47

1.24

1.

26

1.24

1.

28

1.15

1.

28

1.3

1.25

1.

45

1.13

1.

08

1.28

Gd

7.09

8.

54

4.78

4.

74

4.19

4.

03

4.27

4.

28

3.84

4.

12

4.26

4.

14

5.07

3.

78

4 4.

57

Tb

1.03

1.

23

0.7

0.68

0.

62

0.61

0.

6 0.

65

0.6

0.65

0.

66

0.63

0.

74

0.59

0.

6 0.

63

Dy

5.84

6.

95

3.94

3.

74

3.31

3.

44

3.55

3.

56

3.34

3.

62

3.6

3.46

4

3.24

3.

36

3.69

Ho

1.21

1.

46

0.8

0.73

0.

74

0.7

0.73

0.

69

0.65

0.

71

0.72

0.

67

0.84

0.

64

0.68

0.

74

Er

3.91

4.

11

2.34

2.

31

1.96

2.

07

2.07

2.

1 1.

87

2.14

2.

15

2.14

2.

45

1.95

1.

95

2.22

Tm

0.

54.

0.63

0.

32

0.32

0.

3 0.

31

0.29

0.

3 0.

28

0.32

0.

31

0.3

0.37

0.

29

0.3

0.3

Yb

3.42

3.

87

2.21

2.

07

1.86

2.

03

1.93

1.

99

1.83

2.

13

2.06

2.

01

2.36

1.

95

2.01

1.

86

Lu

0.56

0.

61

0.34

0.

3 0.

28

0.29

0.

27

0.29

0.

27

0.3

0.31

0.

29

0.35

0.

27

0.28

0.

29

Page 76: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

61 T

able

9.4

: Who

le r

ock

and

trac

e el

emen

t ana

lyse

s of M

ader

as v

olca

no fr

om v

an W

yk d

e V

ries

(unp

ublis

hed)

. Ele

men

t oxi

des a

re in

wt.

%. E

lem

ents

ar

e in

ppm

. All

Fe a

s Fe 2

O3.

Sam

ple

M1

M2

M2A

M

3 M

4 M

5 M

6 M

7 M

8 M

9 M

10

M11

M

13X

M

14

M15

M

16

M17

M

18

SiO

2 52

.02

63.3

2 62

.98

60.2

3 63

.15

52.8

7 50

.36

57.0

1 57

.34

52.6

9 54

.11

50.5

6 51

.7

57.4

6 57

.22

57.7

9 56

.25

59.2

3 T

iO2

1.01

0.

88

0.87

1.

13

0.09

1.

4 1.

11

0.97

0.

96

1.4

1.03

1.

2 1.

07

1.15

0.

93

0.91

1.

18

1.13

A

l 2O3

19.1

9 16

.97

16.8

8 16

.97

16.7

8 19

.35

17.7

7 18

.7

19.0

8 18

.28

18.3

4 16

.61

18.2

2 17

.03

17.2

2 16

.94

16.9

8 17

.52

Fe 2

O3

9.32

5.

26

5.19

7.

14

5.31

8.

96

10.5

2 7.

1 6.

86

9.8

8.32

9.

77

10.0

5 7.

83

7.64

7.

26

8.24

7.

11

MnO

0.

17

0.13

0.

12

0.19

0.

16

0.16

0.

18

0.15

0.

15

0.17

0.

16

0.17

0.

18

0.2

0.17

0.

16

0.2

0.19

M

gO

4.31

1

1.1

1.85

0.

1 2.

66

5.53

2.

07

2.11

3.

91

3.82

5.

28

4.08

2.

46

3.27

2.

64

2.36

1.

87

CaO

9.

71

3.51

3.

42

4.94

3.

52

8.88

10

.44

7 7.

03

9.39

8.

72

10.0

5 8.

41

5.83

6.

94

6.32

6.

24

5.29

N

a 2O

3.

1 4.

3 4.

43

4.4

4.86

3.

62

2.93

3.

86

3.97

3.

28

3.31

2.

47

2.68

3.

96

3.45

3.

55

3.93

5.

27

K2O

1.

14

3.5

3.49

2.

82

3.73

2.

02

1.27

2.

33

2.22

1.

57

1.83

1.

45

1.6

2.51

2.

72

2.63

2.

37

2.56

P

2O5

0.24

0.

29

0.27

0.

53

0.31

0.

52

0.3

0.44

0.

41

0.39

0.

38

0.32

0.

32

0.44

0.

35

0.35

0.

55

0.57

V

252

55

78

125

63

214

246

123

127

210

173

252

233

122

129

151

152

79

Cr

210

53

51

56

53

127

202

58

108

305

181

336

75

57

59

81

58

56

Co

30

21

22

24

21

28

30

25

24

29

29

30

41

26

25

25

27

25

Ni

16

13

13

14

13

15

16

14

14

16

16

16

17

14

14

14

15

14

Cu

136

13

14

16

14

64

113

44

49

89

59

107

121

49

57

66

58

20

Zn

81

79

84

90

85

75

65

74

70

89

74

85

89

77

70

68

98

101

Ga

17

18

15

19

16

19

16

19

17

17

19

12

19

17

16

17

20

19

Rb

22

88

87

68

88

45

30

53

52

31

41

30

37

56

61

63

51

54

Sr

515

360

355

440

350

603

508

546

537

524

498

494

482

435

482

470

509

503

Y

21

100

91

46

51

39

25

31

32

32

28

24

38

50

30

34

41

43

Zr

131

386

386

306

393

261

157

246

234

209

184

175

207

274

260

265

253

283

Nb

11.4

33

34

26

.2

34.8

23

.4

14.9

22

.4

21.8

20

.9

16.3

19

.7

17.3

25

.4

22.5

24

.2

23.7

28

.5

Mo

3 3

3 3

4 4

4 3

4 4

4 4

2 3

4 3

4 3

Ba

918

1706

17

50

1759

19

13

1412

94

2 11

50

1523

11

41

1375

98

9 12

97

1504

14

59

1560

15

51

1557

P

b 5

12

10

10

14

5 6

6 9

5 10

5

6 8

9 8

11

10

Th

4 11

10

9

12

4 6

6 4

5 4

4 4

7 8

6 5

7

U

5 5

5 5

5 6

5 5

5 5

6 5

3 5

5 5

5 5

Page 77: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

62 Tab

le 9

.5: W

hole

roc

k an

d tr

ace

elem

ent d

ata

for

Con

cepc

ión

volc

ano

from

van

Wyk

de

Vri

es (1

993)

. Oxi

des a

re in

wt.

%. T

race

ele

men

ts a

re in

ppm

. A

ll Fe

as F

e 2O

3.

Sam

ple

CL1

C

L2

CL3

C

L4

CL5

C

L6

CL7

C

L8

CL9

C

L10

CL1

1 C

L13

CL1

4 C

L15

CL1

6

SiO

2 59

.48

59.2

5 53

.21

53.9

1 48

.05

53.5

2 52

.94

52.5

2 60

.62

59.4

1 61

.26

56.6

9 60

.65

54.5

5 54

.39

TiO

2 0.

91

0.94

0.

96

0.99

1.

25

1.11

1.

02

0.99

0.

80

0.92

0.

85

0.89

0.

93

0.95

0.

93

Al2

O3

17.4

2 17

.09

19.1

2 19

.00

20.5

7 18

.67

19.4

8 18

.93

17.1

9 17

.17

17.3

8 16

.95

17.2

6 19

.07

19.7

2 F

e2O

3 6.

68

6.77

7.

90

7.92

10

.32

9.15

8.

36

8.65

5.

93

6.77

6.

10

6.94

6.

29

7.58

7.

71

MnO

0.

18

0.18

0.

16

0.17

0.

18

0.20

0.

17

0.19

0.

16

0.19

0.

17

0.19

0.

18

0.17

0.

17

MgO

2.

57

2.52

3.

24

3.37

3.

42

3.35

3.

15

3.79

2.

14

2.48

2.

17

2.27

2.

34

2.92

2.

64

CaO

5.

49

5.47

8.

58

8.49

9.

17

7.98

8.

90

8.78

5.

49

5.51

5.

67

5.40

5.

44

8.36

8.

56

Na2

O

4.84

4.

70

3.96

3.

57

3.07

4.

28

3.82

4.

06

4.43

5.

13

4.02

4.

80

4.63

4.

11

3.96

K

2O

2.10

2.

12

1.52

1.

50

0.79

1.

44

1.29

1.

21

2.15

2.

10

2.11

2.

18

2.13

1.

31

1.16

P

2O5

0.44

0.

46

0.28

0.

37

0.47

0.

38

0.31

0.

42

0.37

0.

44

0.35

0.

48

0.45

0.

42

0.37

LO

I 0.

60

0.02

0.

04

0.11

2.

37

0.01

0.

07

0.19

0.

12

0.09

0.

09

0.18

0.

01

-0.1

4 0.

02

V

93

75

199

183

17

4 18

4 19

9 98

14

5 98

10

2 95

16

7 17

9 C

r 54

56

10

6 18

7

88

131

98

55

56

56

57

56

62

117

Co

25

25

28

28

29

28

28

24

25

24

25

24

27

27

N

i 14

14

15

15

15

15

15

14

14

13

14

13

14

15

Cu

27

34

104

84

83

76

41

25

37

24

33

21

47

60

Z

n 94

95

89

89

85

85

78

81

94

82

96

88

82

80

Ga

21

18

19

19

17

17

18

21

14

17

18

18

19

20

A

s 5

5 5

6

5 5

5 5

5 5

6 5

5 5

Rb

48

48

36

34

31

26

23

46

46

47

49

48

27

23

S

r 46

1 45

5 59

7 58

9

539

570

571

458

458

457

471

454

627

623

Y

39

40

27

28

33

27

27

36

69

34

41

37

28

25

Z

r 20

6 20

7 14

7 14

7

144

135

122

214

204

205

217

208

135

119

Nb

16

17

11

12

12

11

10

17

15

17

17

16

11

10

M

o 3

3 3

3

3 3

3 3

3 3

3 4

3 4

Ba

1488

15

33

1402

98

2

889

1188

14

16

1640

14

52

1523

14

63

1433

12

54

924

Pb

9 12

6

6

5 10

5

9 8

8 9

13

7 7

Th

4 5

4 4

4

4 4

5 4

5 5

5 4

4

U

5 5

5 5

6

5 5

5 5

5 5

5 6

5

Page 78: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

63

Tab

le 9

.5: C

ontin

ued.

Sam

ple

CL1

7 C

L19

CL2

0 C

L21

CL2

3 C

L25A

C

L25A

C

L25

CL2

6 C

L27

CL2

8 C

L29A

C

L29B

C

L30

CL3

1

SiO

2 56

.01

61.5

9 62

.02

61.5

3 54

.87

53.5

7 53

.95

56.5

4 54

.64

58.6

6 62

.87

52.0

3 52

.02

51.6

8 57

.74

TiO

2 1.

02

0.83

0.

87

0.84

0.

99

0.97

0.

98

0.99

0.

93

0.92

0.

83

1.25

1.

14

1.13

0.

97

Al2

O3

18.8

5 16

.75

16.6

2 16

.84

19.3

8 18

.77

18.9

0 18

.94

19.0

6 16

.93

16.8

4 19

.36

19.5

0 19

.30

19.9

6 F

e2O

3 7.

68

6.11

6.

12

5.45

7.

72

7.91

7.

97

7.26

8.

05

7.68

5.

64

9.79

9.

96

9.82

8.

11

MnO

0.

17

0.18

0.

18

0.17

0.

17

0.18

0.

18

0.18

0.

16

0.18

0.

18

0.19

0.

18

0.18

0.

18

MgO

2.

44

1.79

1.

97

2.29

2.

89

3.37

3.

39

2.69

2.

72

2.10

1.

72

3.75

3.

87

3.94

2.

18

CaO

8.

05

4.57

4.

57

4.75

8.

41

8.62

8.

68

7.66

8.

47

6.47

4.

57

9.53

9.

59

9.50

6.

56

Na2

O

4.02

5.

11

4.76

5.

31

4.16

4.

38

4.41

4.

03

3.79

4.

14

4.72

2.

79

2.87

2.

68

4.20

K

2O

1.61

2.

45

2.42

1.

99

1.36

1.

55

1.56

1.

55

1.67

1.

73

2.15

1.

04

1.05

1.

00

1.97

P

2O5

0.43

0.

47

0.42

0.

41

0.40

0.

39

0.39

0.

37

0.39

0.

39

0.29

0.

22

0.35

0.

34

0.43

LO

I 0.

25

0.17

0.

22

0.14

0.

02

0.20

0.

08

0.38

0.

22

0.70

0.

13

0.37

0.

50

0.44

0.

21

V

141

97

77

50

146

230

230

128

173

145

98

253

286

264

127

Cr

121

55

56

55

167

148

148

129

97

59

54

100

169

74

58

Co

27

24

24

23

27

28

28

27

28

33

29

42

43

42

34

Ni

15

14

14

13

14

15

15

14

15

8 7

13

13

13

9 C

u 72

18

17

10

67

92

92

61

10

6 25

8

112

189

110

35

Zn

77

86

96

89

88

86

86

88

82

81

83

94

99

98

83

Ga

19

19

18

20

17

20

20

16

19

18

20

21

18

21

21

As

6 5

5 5

5 6

6 5

6 4

4 5

5 5

4 R

b 34

54

57

44

26

35

35

33

34

32

45

26

23

23

37

S

r 57

5 45

2 45

1 45

6 60

6 58

5 58

5 57

8 63

1 53

7 49

0 66

3 54

4 64

4 55

0 Y

31

43

42

38

28

26

26

31

29

32

39

29

24

27

38

Z

r 16

7 23

6 23

4 20

2 13

4 15

0 15

0 16

7 14

9 16

1 21

3 13

0 88

12

4 20

1 N

b 14

18

18

17

11

12

12

13

12

14

18

12

8

11

18

Mo

3 5

3 5

3 3

3 3

3 3

3 2

3 3

3 B

a 11

60

1588

15

86

1823

12

72

1527

15

27

1475

10

78

1206

13

28

708

751

876

1372

P

b 6

10

7 12

6

11

11

5 7

6 11

5

5 8

6 T

h 4

4 5

6 4

4 4

4 4

2 4

3 3

3 4

U

5 5

5 5

5 6

6 5

6 3

3 3

3 3

3

Page 79: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

64

Tab

le 9

.5: C

ontin

ued.

Sam

ple

CL3

3 C

L35

CL3

6 C

L37A

C

L38

CL3

9 C

L40

CL4

2 C

L41

CL4

3 C

L44

CL4

5

SiO

2 63

.10

53.1

8 53

.72

51.0

2 51

.16

47.8

6 48

.27

47.9

3 47

.34

51.3

5 55

.59

53.5

2

TiO

2 0.

86

1.03

0.

96

1.03

1.

22

0.89

0.

90

0.89

0.

83

0.92

1.

11

1.07

Al2

O3

16.3

6 19

.43

19.3

8 19

.97

18.2

3 21

.42

21.3

4 20

.91

20.6

3 20

.39

17.1

2 18

.29

Fe2

O3

5.96

8.

98

8.37

8.

49

10.9

1 10

.26

9.75

10

.11

10.4

0 9.

24

9.03

9.

23

MnO

0.

18

0.17

0.

16

0.15

0.

20

0.15

0.

16

0.15

0.

15

0.15

0.

17

0.18

MgO

1.

75

2.45

2.

42

3.13

4.

54

3.52

3.

77

3.92

3.

75

2.90

2.

67

3.87

CaO

4.

40

8.85

8.

92

9.20

9.

51

12.2

2 12

.71

12.3

7 12

.38

10.0

6 7.

77

8.32

Na2

O

4.59

3.

37

3.66

3.

24

3.24

1.

90

2.01

2.

22

2.30

2.

85

4.05

3.

37

K2O

2.

27

1.56

1.

65

1.36

0.

95

0.47

0.

54

0.57

0.

58

0.97

1.

63

1.47

P2O

5 0.

29

0.38

0.

46

0.42

0.

37

0.08

0.

04

0.07

0.

14

0.17

0.

41

0.41

LOI

0.61

0.

15

0.21

0.

29

-0.2

2 1.

20

0.93

0.

35

0.01

0.

55

0.01

0.

51

V

79

175

161

225

211

242

254

185

269

Cr

56

62

62

134

131

161

144

84

62

13

Co

29

37

35

40

40

40

40

37

37

Ni

7 9

11

13

22

12

13

9 11

19

Cu

16

95

59

133

117

122

126

88

107

Zn

91

79

78

76

77

74

71

77

84

Ga

17

22

21

18

17

18

22

19

20

As

4 4

4

4

4 4

4 4

4

Rb

51

30

32

10

10

11

12

20

32

Sr

475

750

738

690

654

662

681

689

595

Y

38

28

27

17

18

17

18

23

30

Zr

217

144

140

74

72

71

71

108

170

Nb

18

14

14

7 7

7 8

9 15

Mo

3 2

3

3

3 3

3 3

3

Ba

1362

93

4 91

6

71

5 46

2 71

7 61

1 59

5 12

39

872

Pb

9 8

7

6

5 5

5 8

8

Th

5 2

3

2

2 2

3 2

3

U

3 3

3

3

3 3

3 3

3

Page 80: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

65

Tab

le 9

.6: R

are

eart

h el

emen

ts a

t Con

cepc

ión

volc

ano

from

van

Wyk

de

Vri

es (1

993)

. Ele

men

ts a

re in

ppm

.

Sam

ple

Nam

e C

L7

CL1

1 C

L26

CL2

9A

CL2

9B

CL3

1 C

L36

La

21.4

0 29

.50

23.2

0 18

.60

9.70

29

.10

25.7

0

Ce

44.1

0 59

.10

47.7

0 37

.40

22.6

0 60

.50

50.3

0

Nd

26.3

0 34

.10

29.1

0 24

.10

15.5

0 35

.80

29.1

0

Sm

5.

80

7.37

6.

47

5.63

3.

76

8.01

6.

31

Eu

1.71

1.

89

1.82

1.

72

1.17

2.

12

1.84

Tb

0.79

1.

00

0.82

0.

76

0.68

1.

08

0.78

Yb

2.40

3.

22

2.41

2.

23

1.97

3.

34

2.22

Lu

0.41

0.

54

0.41

0.

38

0.29

0.

55

0.37

Th

2.27

3.

89

2.51

1.

87

0.87

3.

05

2.44

U

1.31

2.

59

1.74

1.

21

0.83

1.

97

1.71

Ta

0.64

0.

97

0.59

0.

47

0.33

0.

95

0.66

Hf

3.05

4.

82

3.32

2.

65

1.71

4.

49

3.00

Rb

30.0

0 52

.00

38.0

0 29

.00

46

.00

33.0

0

Cs

0.53

1.

04

0.78

0.

63

0.80

0.

36

0.39

Co

22.8

0 11

.30

19.2

0 26

.10

26.2

0 15

.60

20.2

0

Sc

25.3

0 16

.40

22.1

0 27

.90

27.7

0 18

.80

21.7

0

Cr

10.0

0 5.

00

11.0

0 14

.00

6.

00

13.0

0

Page 81: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

66 Tab

le 9

.7: W

hole

roc

k an

d tr

ace

elem

ent a

naly

ses f

rom

Con

cepc

ión

volc

ano

from

Bor

gia

and

van

Wyk

de

Vri

es (2

003)

and

from

Car

r an

d R

ose

(198

7).

Ele

men

t oxi

des a

re in

wt.

% a

nd e

lem

ents

are

in p

pm. A

ll Fe

as F

e 2O

3.

Sam

ple

C1

C2

C3

N14

6 N

148

C-9

2-2

C2

C1b

C

5a

C7a

C

1b

GA

B1

SiO

2 55

.78

55.4

3 56

.77

55.9

6 51

.9

58.7

5 49

.09

65.7

1 61

.71

52.7

8 54

.61

48.7

T

iO2

1 0.

98

1.1

1.14

1.

13

0.71

1.

319

0.47

8 0.

873

0.99

9 0.

895

1.02

1 A

l 2O3

17.6

3 17

.92

16.9

5 17

.66

19.0

3 16

.58

18.5

2 16

.29

16.6

20

.05

17.7

1 21

.67

Fe 2

O3

9.03

8.

68

8.57

2.

25

3.85

11.1

3.

87

6.35

8.

88

8.83

9.

31

Fe 2

O3

9.03

8.

68

8.57

8.

62

9.81

8.

89

11.1

3.

87

6.35

8.

88

8.83

9.

31

MnO

0.

2 0.

2 0.

18

0.17

0.

16

0.17

0.

24

0.18

0.

18

0.17

0.

201

0.15

1 M

gO

3.31

3.

28

2.7

2.9

3.94

3.

72

5.64

1.

11

1.88

2.

83

3.97

3.

89

CaO

7.

73

7.71

6.

49

6.88

9.

02

7.11

11

.09

3.12

4.

46

8.4

8.43

12

.41

Na 2

O

4.11

3.

74

3.49

4.

06

2.88

3.

17

2.99

5.

04

4.79

2.

98

3.54

2.

53

K2O

1.

22

1.2

1.94

1.

65

1.2

1.7

0.64

2.

6 2.

54

1.46

1.

33

0.57

P

2O5

0.38

0.

37

0.49

0.

58

0.37

0.

23

0.10

4 0.

185

0.41

1 0.

394

3.66

0.

292

Sc

19.8

8 19

.03

19.7

7 20

.43

27.2

1 23

.51

V

165.

13

174.

51

183.

96

130.

4 22

9.5

237

Cr

2.54

2.

43

2.92

15

.96

15.5

9 20

.4

Co

17.4

5 18

.45

17.2

6

Ni

2.49

2.

42

1.91

12

.04

12.3

4 18

.6

16

4 3

7 13

11

C

u 51

.08

47.8

7 96

.85

32.6

3 91

.07

84.4

Z

n 81

.04

88.2

7 87

.43

R

b 23

.19

20.3

4 34

.99

35.5

26

.5

37.5

31

51

58

32

26

13

S

r 54

7.48

57

2.52

45

0.12

60

7.3

577.

9 58

9.1

783

425

463

616

611

730

Y

25.4

6 24

.63

29.6

7 40

.21

28.9

9

20

30

43

31

28

17

Zr

122.

19

127.

26

184.

94

159.

1 13

6.2

119.

8 72

24

3 24

1 15

3 12

3 65

N

b 11

.11

11.7

6 15

.18

10.7

10

.3

M

o 1.

02

1.1

1.67

Cs

0.34

0.

44

0.82

0.

822

0.69

Ba

657.

21

674.

18

973.

89

986.

6 78

9.4

990.

3

Page 82: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

67

Tab

le 9

.8: R

are

eart

h el

emen

t ana

lysi

s fro

m C

once

pció

n vo

lcan

o fr

om C

arr

and

Ros

e (1

987)

.

Sam

ple

C1

C2

C3

N14

6 N

148

La

17.8

9 18

.42

25.9

5 27

.04

22.0

5

Ce

37.3

4 39

.14

53.4

1 56

.17

44.6

8

Pr

5.13

5.

14

6.92

Nd

24.0

5 24

.09

29.4

8 34

.83

26.4

5

Sm

5.

32

5.27

6.

44

7.35

5.

73

Eu

1.66

1.

67

1.87

2.

26

1.69

Gd

5.23

5.

33

6.34

7.

56

5.71

Tb

0.79

0.

78

0.95

Dy

4.51

4.

38

5.01

6.

45

5.14

Ho

0.92

0.

91

1.08

Er

2.64

2.

65

3.06

3.

57

2.69

Tm

0.

39

0.39

0.

47

Yb

2.63

2.

5 3.

18

3.69

2.

33

Lu

0.39

0.

38

0.46

Hf

1.8

1.75

2.

5

Ta

0.55

0.

58

0.77

W

0.23

0.

21

0.36

Tl

0.08

0.

09

0.17

Pb

2.87

2.

7 4.

16

4.47

9 3.

98

Th

1.8

1.87

3.

08

2.48

2 2.

158

U

1.13

1.

15

1.87

1.

835

1.49

7

Page 83: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

68 9.2

App

endi

x B

: 40A

r/39Ar

Res

ults

9.2.

1 Sa

mpl

e M

AD

ER

AS-

002

Tab

le 9

.9: I

ncre

men

tal h

eatin

g su

mm

ary

for

MA

DE

RA

S-00

2

Incr

emen

tal

Hea

ting

36

Ar(

a)

37A

r(ca

) 38

Ar(

cl)

39A

r(k)

40

Ar(

r)

Age

±

40A

r(r)

39

Ar(

k)

K/C

a ±

(Ka)

(%

) (%

)

BH

5976

67

5 °C

0.

0001

72

0.02

9115

0.

0000

11

0.02

8409

0.

0016

84

28.5

±

75.9

3.

20

2.11

0.

420

± 0.

024

BH

5977

72

0 °C

0.

0000

73

0.01

8225

0.

0000

00

0.01

9890

0.

0020

89

50.4

±

117.

5 8.

85

1.48

0.

469

± 0.

030

BH

5978

73

5 °C

0.

0000

47

0.01

5139

0.

0000

00

0.01

7814

0.

0018

48

49.8

±

152.

4 11

.66

1.32

0.

506

± 0.

033

BH

5979

80

0 °C

0.

0002

51

0.09

3700

0.

0000

00

0.10

8512

0.

0148

28

65.6

±

22.1

16

.67

8.06

0.

498

± 0.

027

BH

5980

87

0 °C

0.

0006

26

0.26

7650

0.

0000

00

0.34

0424

0.

0522

17

73.6

±

10.8

22

.01

25.2

8 0.

547

± 0.

028

BH

5981

94

0 °C

0.

0005

68

0.22

1664

0.

0000

80

0.31

4617

0.

0475

40

72.5

±

10.0

22

.09

23.3

6 0.

610

± 0.

031

BH

5982

10

25 °

C

0.00

0905

0.

2270

12

0.00

0104

0.

2236

59

0.03

0329

65

.1

± 16

.8

10.1

9 16

.61

0.42

4 ±

0.02

2 B

H59

83

1125

°C

0.

0009

09

0.18

7692

0.

0002

59

0.18

5675

0.

0255

72

66.1

±

24.4

8.

69

13.7

9 0.

425

± 0.

022

BH

5984

12

25 °

C

0.00

1435

0.

2968

03

0.00

0400

0.

1078

37

0.01

4919

66

.4

± 31

.8

3.40

8.

01

0.15

6 ±

0.00

8

Σ 0.

0049

85

1.35

7000

0.

0008

55

1.34

6837

0.

1910

27

T

able

9.9

: Con

tinue

d

Info

rmat

ion

on A

naly

sis

R

esul

ts

40(r

)/39

(k)

± 2σ

A

ge

± 2σ

MSWD

39A

r(k)

K

/Ca

± 2σ

(Ka)

(%

,n)

Sam

ple

= M

AD

002

A

ge P

late

au

0.14

66

± 0.

0126

70

.4

± 6.

1 0.

34

100.

00

0.29

3 ±

0.11

4 M

ater

ial =

gro

undm

ass

±

8.62

%

± 8.

62%

9

Loca

tion

= U

W93

C42

Min

imal

Ext

erna

l Err

or

± 6.

7 2.

31

Sta

tistic

al T

Rat

io

Ana

lyst

= B

rian

Jich

a

Ana

lytic

al E

rror

±

6.1

1.00

00

Err

or M

agni

ficat

ion

Pro

ject

= U

W93

C

M

ass

Dis

crim

inat

ion

Law

= L

IN

T

otal

Fus

ion

Age

0.

1418

±

0.01

49

68.1

±

7.2

9

0.42

7 ±

0.00

9 Ir

radi

atio

n =

UW

93

±

10.5

1%

± 10

.51%

J =

0.00

0262

30 ±

0.0

0000

013

M

inim

al E

xter

nal E

rror

±

7.6

FC

S =

28.

201

± 0.

023

Ma

A

naly

tical

Err

or

± 7.

2

Page 84: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

69

Table 9.10: Normal isochron table for MADERAS-002

Normal Isochron 39(k)/36(a) ± 2σ 40(a+r)/36(a) ± 2σ

r.i.

BH5976 675 °C 164.9 ± 14.5 305.3 ± 26.9 0.9972

BH5977 720 °C 273.1 ± 61.7 324.2 ± 73.3 0.9992

BH5978 735 °C 375.8 ± 151.7 334.5 ± 135.0 0.9997

BH5979 800 °C 432.7 ± 29.2 354.6 ± 23.9 0.9981

BH5980 870 °C 543.8 ± 22.5 378.9 ± 15.7 0.9983

BH5981 940 °C 554.3 ± 21.6 379.3 ± 14.8 0.9985

BH5982 1025 °C 247.3 ± 7.2 329.0 ± 9.6 0.9891

BH5983 1125 °C 204.3 ± 7.2 323.6 ± 11.3 0.9943

BH5984 1225 °C 75.1 ± 1.3 305.9 ± 5.1 0.9810

Table 9.10:Continued

Results 40(a)/36(a) ± 2σ 40(r)/39(k) ± 2σ Age ± 2σ

MS

WD

(Ka)

Normal Isochron 293.3429 ± 5.4894 0.1524 ± 0.0199 73.2 ± 9.5 0.32 ± 1.87% ± 13.03% ± 13.03%

Minimal External Error ± 10.0 Analytical Error ± 9.5

Statistics Statistical F ratio 2.01 Convergence 0.0000000004

Error Magnification 1.0000 Number of Iterations 12

Number of Data Points 9 Calculated Line Weighted York-2

Table 9.11: Inverse isochron table for MADERAS-002

Inverse Isochron 39(k)/40(a+r) ± 2σ 36(a)/40(a+r) ± 2σ

r.i.

BH5976 675 °C 0.540065 ± 0.003590 0.003276 ± 0.000289 0.0403

BH5977 720 °C 0.842375 ± 0.007590 0.003085 ± 0.000697 0.0201

BH5978 735 °C 1.123452 ± 0.011730 0.002990 ± 0.001207 0.0174

BH5979 800 °C 1.220118 ± 0.005072 0.002820 ± 0.000190 0.0084

BH5980 870 °C 1.435059 ± 0.003509 0.002639 ± 0.000109 0.0239

BH5981 940 °C 1.461635 ± 0.003123 0.002637 ± 0.000103 0.0210

BH5982 1025 °C 0.751508 ± 0.003242 0.003039 ± 0.000089 0.1009

BH5983 1125 °C 0.631266 ± 0.002357 0.003090 ± 0.000108 0.0367

BH5984 1225 °C 0.245667 ± 0.000813 0.003269 ± 0.000055 0.0251

Table 9.11: Continued

Results 40(a)/36(a) ± 2σ 40(r)/39(k) ± 2σ Age ± 2σ

MS

WD

(Ka)

Inverse Isochron 293.3914

± 2.7383 0.1525 ± 0.0098 73.2 ± 4.7 0.31

± 0.93% ± 6.45% ± 6.45%

Minimal External Error ± 5.5 Analytical Error ± 4.7

Statistics Statistical F ratio 2.01 Convergence 0.0000000087

Error Magnification 1.0000 Number of Iterations 4 Number of Data Points 9 Calculated Line Weighted York-2

Page 85: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

70

Tab

le 9

.12:

Rel

ativ

e ab

unda

nces

for

MA

DE

RA

S-00

2

Rel

ativ

e A

bund

ance

s

36A

r %

37A

r %

38A

r %

39A

r %

40A

r %

Age

±

40A

r(r)

39

Ar(

k)

K/C

a ±

(Ka)

(%

) (%

)

BH

5976

67

5 °C

0.

0001

800

4.21

3 0.

0291

148

2.86

0 0.

0003

860

6.36

4 0.

0284

290

0.22

7 0.

0526

036

0.24

3 28

.5

± 75

.9

3.20

2.

11

0.42

0 ±

0.02

4

BH

5977

72

0 °C

0.

0000

776

10.5

99

0.01

8224

6 3.

199

0.00

0243

6 5.

287

0.01

9902

1 0.

317

0.02

3611

6 0.

320

50.4

±

117.

5 8.

85

1.48

0.

469

± 0.

030

BH

5978

73

5 °C

0.

0000

514

18.6

09

0.01

5139

1 3.

280

0.00

0200

6 8.

877

0.01

7823

7 0.

299

0.01

5856

1 0.

428

49.8

±

152.

4 11

.66

1.32

0.

506

± 0.

033

BH

5979

80

0 °C

0.

0002

755

3.05

7 0.

0936

999

2.68

9 0.

0012

961

1.81

0 0.

1085

748

0.19

3 0.

0889

355

0.07

7 65

.6

± 22

.1

16.6

7 8.

06

0.49

8 ±

0.02

7

BH

5980

87

0 °C

0.

0006

967

1.84

2 0.

2676

503

2.55

3 0.

0039

962

1.15

0 0.

3406

039

0.09

4 0.

2372

194

0.07

8 73

.6

± 10

.8

22.0

1 25

.28

0.54

7 ±

0.02

8

BH

5981

94

0 °C

0.

0006

261

1.74

7 0.

2216

639

2.55

1 0.

0039

802

1.62

7 0.

3147

667

0.08

4 0.

2152

504

0.06

6 72

.5

± 10

.0

22.0

9 23

.36

0.61

0 ±

0.03

1

BH

5982

10

25 °

C

0.00

0964

4 1.

351

0.22

7012

0 2.

556

0.00

2970

5 1.

503

0.22

3812

1 0.

121

0.29

7613

8 0.

178

65.1

±

16.8

10

.19

16.6

1 0.

424

± 0.

022

BH

5983

11

25 °

C

0.00

0958

4 1.

654

0.18

7691

9 2.

559

0.00

2668

6 1.

169

0.18

5801

0 0.

151

0.29

4130

7 0.

110

66.1

±

24.4

8.

69

13.7

9 0.

425

± 0.

022

BH

5984

12

25 °

C

0.00

1513

3 0.

784

0.29

6803

2 2.

583

0.00

1968

6 1.

200

0.10

8036

7 0.

154

0.43

8956

2 0.

059

66.4

±

31.8

3.

40

8.01

0.

156

± 0.

008

Σ 0.

0053

435

0.63

0 1.

3569

996

1.04

7 0.

0177

104

0.60

5 1.

3477

499

0.04

7 1.

6641

773

0.04

4

T

able

9.1

2: C

ontin

ued

Info

rmat

ion

on A

naly

sis

and

Con

stan

ts U

sed

in C

alcu

latio

ns

Sam

ple

= M

AD

002

Ext

ract

ion

Met

hod

= U

ndef

ined

M

ater

ial =

gro

undm

ass

Hea

ting

= 90

0 se

c L

ocat

ion

= U

W93

C42

Is

olat

ion

= 15

.00

min

A

naly

st =

Bria

n Ji

cha

Inst

rum

ent =

MA

P21

5 P

roje

ct =

UW

93C

L

ithol

ogy

= U

ndef

ined

M

ass

Dis

crim

inat

ion

Law

= L

IN

Lat

-Lon

= U

ndef

ined

- U

ndef

ined

Ir

radi

atio

n =

UW

93

Age

Equ

atio

ns =

Con

vent

iona

l J

= 0

.000

2623

0 ±

0.00

0000

13

Neg

ativ

e In

tens

ities

= F

orce

d Z

ero

FC

S =

28.

201

± 0.

023

Ma

Dec

ay C

onst

ant 4

0K =

5.4

63 ±

0.1

07 E

-10

1/a

IGS

N =

Und

efin

ed

Dec

ay C

onst

ant 3

9Ar =

2.9

40 ±

0.0

29 E

-07

1/h

Pre

ferr

ed A

ge =

Und

efin

ed

Dec

ay C

onst

ant 3

7Ar =

8.2

30 ±

0.0

82 E

-04

1/h

Cla

ssifi

catio

n =

Und

efin

ed

No

36C

l Cor

rect

ion

Exp

erim

ent T

ype

= U

ndef

ined

N

o 36

Cl C

orre

ctio

n

Page 86: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

71

Tab

le 9

.12:

Con

tinue

d

Res

ults

40

(r)/

39(k

) ±

Age

±

MSWD

39A

r(k)

K

/Ca

± 2σ

(K

a)

(%,n

)

Age

P

late

au

0.14

66

± 0.

0126

70

.4

± 6.

1 0.

34

100.

00

0.29

3 ±

0.11

4 ±

8.62

%

± 8.

62%

9

Min

imal

Ext

erna

l Err

or

± 6.

7 2.

31

Sta

tistic

al T

Rat

io

Ana

lytic

al E

rror

±

6.1

1.00

00

Err

or M

agni

ficat

ion

Tot

al

Fus

ion

Age

0.

1418

±

0.01

49

68.1

±

7.2

9

0.42

7 ±

0.00

9 ±

10.5

1%

± 10

.51%

Min

imal

Ext

erna

l Err

or

± 7.

6

A

naly

tical

Err

or

± 7.

2

Nor

mal

Is

ochr

on

0.15

24

± 0.

0199

73

.2

± 9.

5 0.

32

100.

00

± 13

.03%

±

13.0

3%

9

Min

imal

Ext

erna

l Err

or

± 10

.0

2.01

S

tatis

tical

F ra

tio

Ana

lytic

al E

rror

±

9.5

1.00

00

Err

or M

agni

ficat

ion

Inve

rse

Isoc

hron

0.

1525

±

0.00

98

73.2

±

4.7

0.31

10

0.00

±

6.45

%

± 6.

45%

9

Min

imal

Ext

erna

l Err

or

± 5.

5 2.

01

Sta

tistic

al F

ratio

A

naly

tical

Err

or

± 4.

7 1.

0000

E

rror

Mag

nific

atio

n

T

able

9.1

3: D

egas

sing

patt

erns

for

MA

DE

RA

S-00

2

Deg

assi

ng

Pat

tern

s

36A

r(a)

%

36A

r(c)

%

36A

r(ca

) %

36A

r(cl

) %

37A

r(ca

) %

38A

r(a)

%

38A

r(c)

%

BH

5976

6

75 °

C

0.

0001

72

4.4

0

0.00

0000

0

.00

0.

0000

08

2.8

6

0.00

0000

0

.00

0.

0291

15

2.8

6

0.00

0032

4

.40

0.

0000

00

0.0

0

BH

5977

7

20 °

C

0.

0000

73

11.

30

0.

0000

00

0.0

0

0.00

0005

3

.20

0.

0000

00

0.0

0

0.01

8225

3

.20

0.

0000

14

11.

30

0.

0000

00

0.0

0

BH

5978

7

35 °

C

0.

0000

47

20.

18

0.

0000

00

0.0

0

0.00

0004

3

.28

0.

0000

00

0.0

0

0.01

5139

3

.28

0.

0000

09

20.

18

0.

0000

00

0.0

0

BH

5979

8

00 °

C

0.

0002

51

3.3

7

0.00

0000

0

.00

0.

0000

25

2.6

9

0.00

0000

0

.00

0.

0937

00

2.6

9

0.00

0047

3

.37

0.

0000

00

0.0

0

BH

5980

8

70 °

C

0.

0006

26

2.0

7

0.00

0000

0

.00

0.

0000

71

2.5

5

0.00

0000

0

.00

0.

2676

50

2.5

5

0.00

0117

2

.07

0.

0000

00

0.0

0

BH

5981

9

40 °

C

0.

0005

68

1.9

4

0.00

0000

0

.00

0.

0000

59

2.5

5

0.00

0000

0

.00

0.

2216

64

2.5

5

0.00

0106

1

.94

0.

0000

00

0.0

0

BH

5982

10

25 °

C

0.

0009

05

1.4

5

0.00

0000

0

.00

0.

0000

60

2.5

6

0.00

0000

0

.00

0.

2270

12

2.5

6

0.00

0169

1

.45

0.

0000

00

0.0

0

BH

5983

11

25 °

C

0.

0009

09

1.7

5

0.00

0000

0

.00

0.

0000

50

2.5

6

0.00

0000

0

.00

0.

1876

92

2.5

6

0.00

0170

1

.75

0.

0000

00

0.0

0

BH

5984

12

25 °

C

0.

0014

35

0.8

4

0.00

0000

0

.00

0.

0000

78

2.5

8

0.00

0000

0

.00

0.

2968

03

2.5

8

0.00

0268

0

.84

0.

0000

00

0.0

0

Σ

0.00

4985

0

.68

0.

0000

00

0.0

0

0.00

0358

1

.05

0.

0000

00

0.0

0

1.35

7000

1

.05

0.

0009

32

0.6

8

0.00

0000

0

.00

Σ

0.00

5344

0

.64

1.

3570

00

1.0

5

Page 87: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

72

Tab

le 9

.13:

Con

tinue

d

38A

r(k)

%

38A

r(ca

) %

38A

r(cl

) %

39A

r(k)

%

39A

r(ca

) %

40A

r(r)

%

40A

r(a)

%

40A

r(c)

%

40A

r(k)

%

0.00

0343

0

.23

0.

0000

00

0.0

0

0.00

0011

22

0.28

0.02

8409

0

.23

0.

0000

20

2.8

6

0.00

1684

13

3.38

0.05

0920

4

.40

0.

0000

00

0.0

0

0.00

0000

0

.00

0.00

0240

0

.32

0.

0000

00

0.0

0

0.00

0000

0

.00

0.

0198

90

0.3

2

0.00

0012

3

.20

0.

0020

89

116.

47

0.

0215

22

11.

30

0.

0000

00

0.0

0

0.00

0000

0

.00

0.00

0215

0

.30

0.

0000

00

0.0

0

0.00

0000

0

.00

0.

0178

14

0.3

0

0.00

0010

3

.28

0.

0018

48

152.

97

0.

0140

08

20.

18

0.

0000

00

0.0

0

0.00

0000

0

.00

0.00

1309

0

.19

0.

0000

00

0.0

0

0.00

0000

0

.00

0.

1085

12

0.1

9

0.00

0063

2

.69

0.

0148

28

16.

84

0.

0741

07

3.3

7

0.00

0000

0

.00

0.

0000

00

0.0

0

0.00

4106

0

.09

0.

0000

00

0.0

0

0.00

0000

0

.00

0.

3404

24

0.0

9

0.00

0180

2

.55

0.

0522

17

7.3

4

0.18

5002

2

.07

0.

0000

00

0.0

0

0.00

0000

0

.00

0.00

3794

0

.08

0.

0000

00

0.0

0

0.00

0080

8

1.23

0.31

4617

0

.08

0.

0001

49

2.5

5

0.04

7540

6

.87

0.

1677

11

1.9

4

0.00

0000

0

.00

0.

0000

00

0.0

0

0.00

2697

0

.12

0.

0000

00

0.0

0

0.00

0104

4

3.06

0.22

3659

0

.12

0.

0001

53

2.5

6

0.03

0329

1

2.90

0.26

7285

1

.45

0.

0000

00

0.0

0

0.00

0000

0

.00

0.00

2239

0

.15

0.

0000

00

0.0

0

0.00

0259

1

2.15

0.18

5675

0

.15

0.

0001

26

2.5

6

0.02

5572

1

8.42

0.26

8559

1

.75

0.

0000

00

0.0

0

0.00

0000

0

.00

0.00

1301

0

.15

0.

0000

00

0.0

0

0.00

0400

5

.96

0.

1078

37

0.1

5

0.00

0200

2

.58

0.

0149

19

23.

90

0.

4240

37

0.8

4

0.00

0000

0

.00

0.

0000

00

0.0

0

0.01

6243

0

.05

0.

0000

00

0.0

0

0.00

0855

1

0.72

1.34

6837

0

.05

0.

0009

13

1.0

5

0.19

1027

5

.26

1.

4731

50

0.6

8

0.00

0000

0

.00

0.

0000

00

0.0

0

0.

0180

29

0.5

1

1.34

7750

0

.05

1.

6641

77

0.8

5

T

able

9.1

4: A

dditi

onal

par

amet

ers f

or M

AD

ER

AS-

002

Add

ition

al

Par

amet

ers

40

(r)/3

9(k)

40

(r+a

) 1σ

40

Ar/

39A

r 1σ

37

Ar/

39A

r 1σ

36

Ar/

39A

r 1σ

T

ime

(day

s)

37A

r (d

ecay

) 39

Ar

(dec

ay)

40A

r (m

oles

)

BH

5976

6

75 °

C

0.05

9268

0.

0790

5 0.

0526

04

0.

0001

3 1

.850

353

0.

0061

5 1

.024

124

0.

0293

8 0

.006

332

0.00

027

128

.020

12

.541

7772

9 1.

0009

0387

3.

105E

-16

BH

5977

7

20 °

C

0.10

5044

0.

1223

5 0.

0236

12

0.

0000

8 1

.186

388

0.

0053

4 0

.915

713

0.

0294

3 0

.003

901

0.00

041

128

.055

12

.550

3818

1 1.

0009

0411

1.

394E

-16

BH

5978

7

35 °

C

0.10

3769

0.

1587

3 0.

0158

56

0.

0000

7 0

.889

605

0.

0046

4 0

.849

381

0.

0279

7 0

.002

884

0.00

054

128

.094

12

.560

1981

7 1.

0009

0439

9.

358E

-17

BH

5979

8

00 °

C

0.13

6653

0.

0230

2 0.

0889

36

0.

0000

7 0

.819

117

0.

0017

0 0

.862

999

0.

0232

7 0

.002

538

0.00

008

128

.132

12

.569

5049

5 1.

0009

0465

5.

249E

-16

BH

5980

8

70 °

C

0.15

3389

0.

0112

7 0.

2372

19

0.

0001

8 0

.696

467

0.

0008

5 0

.785

811

0.

0200

8 0

.002

046

0.00

004

128

.167

12

.578

1284

9 1.

0009

0490

1.

400E

-15

BH

5981

9

40 °

C

0.15

1103

0.

0103

8 0.

2152

50

0.

0001

4 0

.683

841

0.

0007

3 0

.704

217

0.

0179

7 0

.001

989

0.00

003

128

.202

12

.586

9306

0 1.

0009

0515

1.

270E

-15

BH

5982

10

25 °

C

0.13

5605

0.

0174

9 0.

2976

14

0.

0005

3 1

.329

749

0.

0028

7 1

.014

297

0.

0259

6 0

.004

309

0.00

006

128

.237

12

.595

5661

0 1.

0009

0540

1.

757E

-15

BH

5983

11

25 °

C

0.13

7724

0.

0253

7 0.

2941

31

0.

0003

2 1

.583

042

0.

0029

5 1

.010

177

0.

0258

9 0

.005

158

0.00

009

128

.272

12

.604

3804

1 1.

0009

0565

1.

736E

-15

BH

5984

12

25 °

C

0.13

8352

0.

0330

7 0.

4389

56

0.

0002

6 4

.063

029

0.

0067

1 2

.747

244

0.

0710

9 0

.014

008

0.00

011

128

.307

12

.613

0278

8 1.

0009

0589

2.

591E

-15

Page 88: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

73

Tab

le 9

.15:

Pro

cedu

re b

lank

s for

MA

DE

RA

S-00

2

Pro

cedu

re

Bla

nks

36A

r 1σ

37

Ar

38A

r 1σ

39

Ar

40A

r 1σ

BH

5976

6

75 °

C

0.0

0005

6 0

.000

007

0.0

0000

9 0

.000

016

0.0

0002

7 0

.000

012

0.0

0001

6 0

.000

010

0.0

1622

1 0

.000

050

BH

5977

7

20 °

C

0.0

0005

8 0

.000

007

0.0

0001

3 0

.000

016

0.0

0002

5 0

.000

012

0.0

0000

4 0

.000

010

0.0

1721

5 0

.000

050

BH

5978

7

35 °

C

0.0

0005

9 0

.000

007

0.0

0001

4 0

.000

016

0.0

0002

4 0

.000

012

0.0

0000

3 0

.000

010

0.0

1743

5 0

.000

050

BH

5979

8

00 °

C

0.0

0006

2 0

.000

007

0.0

0002

0 0

.000

016

0.0

0002

1 0

.000

012

0.0

0001

6 0

.000

010

0.0

1797

4 0

.000

050

BH

5980

8

70 °

C

0.0

0006

6 0

.000

007

0.0

0002

5 0

.000

016

0.0

0001

8 0

.000

012

0.0

0003

4 0

.000

010

0.0

1819

4 0

.000

050

BH

5981

9

40 °

C

0.0

0006

9 0

.000

007

0.0

0003

1 0

.000

016

0.0

0001

6 0

.000

012

0.0

0004

2 0

.000

010

0.0

1847

3 0

.000

050

BH

5982

10

25 °

C

0.0

0007

3 0

.000

007

0.0

0003

8 0

.000

016

0.0

0001

2 0

.000

012

0.0

0003

0 0

.000

010

0.0

1928

0 0

.000

050

BH

5983

11

25 °

C

0.0

0007

8 0

.000

007

0.0

0004

6 0

.000

016

0.0

0000

8 0

.000

012

0.0

0000

9 0

.000

010

0.0

2104

7 0

.000

050

BH

5984

12

25 °

C

0.0

0008

3 0

.000

007

0.0

0005

4 0

.000

016

0.0

0000

4 0

.000

012

0.0

0005

4 0

.000

010

0.0

2329

6 0

.000

050

T

able

9.1

6: In

terc

ept v

alue

s for

MA

DE

RA

S-00

2

Inte

rcep

t V

alue

s 36

Ar

r2

37

Ar

r2

38

Ar

r2

BH

5976

6

75 °

C

0.00

0240

0.

0000

02

0.90

80

LIN

7

of 8

0.

0023

66

0.00

0027

0.

9335

LI

N

8 of

8

0.00

0417

0.

0000

22

0.41

28

LIN

8

of 8

B

H59

77

720

°C

0.

0001

38

0.00

0004

0.

1250

E

XP

8

of 8

0.

0014

87

0.00

0024

0.

7950

E

XP

8

of 8

0.

0002

71

0.00

0006

0.

8349

E

XP

8

of 8

B

H59

78

735

°C

0.

0001

12

0.00

0006

0.

0801

LI

N

7 of

8

0.00

1238

0.

0000

20

0.57

45

EX

P

8 of

8

0.00

0227

0.

0000

14

0.23

83

EX

P

8 of

8

BH

5979

8

00 °

C

0.00

0343

0.

0000

04

0.84

05

EX

P

8 of

8

0.00

7588

0.

0000

67

0.95

94

EX

P

8 of

8

0.00

1331

0.

0000

21

0.86

01

EX

P

8 of

8

BH

5980

8

70 °

C

0.00

0777

0.

0000

11

0.83

35

LIN

8

of 8

0.

0216

29

0.00

0067

0.

9946

E

XP

7

of 8

0.

0040

55

0.00

0045

0.

9149

E

XP

8

of 8

B

H59

81

940

°C

0.

0007

08

0.00

0008

0.

8974

E

XP

7

of 8

0.

0179

11

0.00

0049

0.

9943

E

XP

8

of 8

0.

0040

36

0.00

0064

0.

8528

E

XP

8

of 8

B

H59

82

1025

°C

0.

0010

57

0.00

0011

0.

8942

LI

N

8 of

8

0.01

8336

0.

0000

58

0.99

32

EX

P

8 of

8

0.00

3013

0.

0000

44

0.82

56

EX

P

8 of

8

BH

5983

11

25 °

C

0.00

1056

0.

0000

14

0.87

12

LIN

8

of 8

0.

0151

64

0.00

0049

0.

9931

E

XP

8

of 8

0.

0027

04

0.00

0029

0.

9051

E

XP

8

of 8

B

H59

84

1225

°C

0.

0016

27

0.00

0009

0.

9759

LI

N

8 of

8

0.02

3945

0.

0001

16

0.98

47

EX

P

8 of

8

0.00

1992

0.

0000

21

0.85

77

EX

P

8 of

8

Page 89: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

74

Tab

le 9

.16:

Con

tinue

d

39A

r 1σ

r2

40A

r 1σ

r2

0.0

2856

4 0

.000

063

0.99

52

LIN

8

of 8

0

.068

824

0.0

0011

8 0.

9923

E

XP

8

of 8

0

.019

989

0.0

0006

2 0.

9874

E

XP

8

of 8

0

.040

826

0.0

0005

7 0.

9797

E

XP

8

of 8

0

.017

902

0.0

0005

2 0.

9958

LI

N

4 of

8

0.0

3329

1 0

.000

046

0.95

61

EX

P

7 of

8

0.1

0904

4 0

.000

208

0.99

72

EX

P

8 of

8

0.1

0691

0 0

.000

046

0.99

96

EX

P

5 of

8

0.3

4206

1 0

.000

306

0.99

93

EX

P

8 of

8

0.2

5541

3 0

.000

177

0.99

92

EX

P

7 of

8

0.3

1612

3 0

.000

247

0.99

95

EX

P

8 of

8

0.2

3372

4 0

.000

133

0.99

92

EX

P

8 of

8

0.2

2477

6 0

.000

264

0.99

88

EX

P

8 of

8

0.3

1689

4 0

.000

528

0.99

56

EX

P

8 of

8

0.1

8658

6 0

.000

276

0.99

81

EX

P

8 of

8

0.3

1517

8 0

.000

319

0.99

84

EX

P

8 of

8

0.1

0854

2 0

.000

164

0.99

77

EX

P

8 of

8

0.4

6225

2 0

.000

254

0.99

97

EX

P

8 of

8

T

able

9.1

7: S

ampl

e pa

ram

eter

s for

MA

DE

RA

S-00

2

Sam

ple

Par

amet

ers

Sam

ple

Mat

eria

l Lo

catio

n A

naly

st

Temp

Sta

ndar

d %

J %

(in M

a)

BH

5976

6

75 °

C

MA

D00

2 gr

ound

mas

s U

W93

C42

B

rian

Jich

a 67

5 28

.201

0.

08

0.00

0262

3 0.

05

BH

5977

7

20 °

C

MA

D00

2 gr

ound

mas

s U

W93

C42

B

rian

Jich

a 72

0 28

.201

0.

08

0.00

0262

3 0.

05

BH

5978

7

35 °

C

MA

D00

2 gr

ound

mas

s U

W93

C42

B

rian

Jich

a 73

5 28

.201

0.

08

0.00

0262

3 0.

05

BH

5979

8

00 °

C

MA

D00

2 gr

ound

mas

s U

W93

C42

B

rian

Jich

a 80

0 28

.201

0.

08

0.00

0262

3 0.

05

BH

5980

8

70 °

C

MA

D00

2 gr

ound

mas

s U

W93

C42

B

rian

Jich

a 87

0 28

.201

0.

08

0.00

0262

3 0.

05

BH

5981

9

40 °

C

MA

D00

2 gr

ound

mas

s U

W93

C42

B

rian

Jich

a 94

0 28

.201

0.

08

0.00

0262

3 0.

05

BH

5982

10

25 °

C

MA

D00

2 gr

ound

mas

s U

W93

C42

B

rian

Jich

a 10

25

28.2

01

0.08

0.

0002

623

0.05

B

H59

83

1125

°C

M

AD

002

grou

ndm

ass

UW

93C

42

Bria

n Ji

cha

1125

28

.201

0.

08

0.00

0262

3 0.

05

BH

5984

12

25 °

C

MA

D00

2 gr

ound

mas

s U

W93

C42

B

rian

Jich

a 12

25

28.2

01

0.08

0.

0002

623

0.05

Page 90: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

75

Table 9.17: Continued

MDF %1σ Volume Ratio Sensitivity D

ay

Mon

th

Yea

r

Hou

r

Min

Res

ist

Irradiation Project Experiment

Nm

b Standard Name

(mol/volt)

1.005096 0.03 1 5.902E-15 20 OCT 2011 17 40 001 UW93 UW93C UW93C42 01 FCS

1.005096 0.03 1 5.902E-15 20 OCT 2011 18 30 001 UW93 UW93C UW93C42 01 FCS

1.005096 0.03 1 5.902E-15 20 OCT 2011 19 27 001 UW93 UW93C UW93C42 01 FCS

1.005096 0.03 1 5.902E-15 20 OCT 2011 20 21 001 UW93 UW93C UW93C42 01 FCS

1.005096 0.03 1 5.902E-15 20 OCT 2011 21 11 001 UW93 UW93C UW93C42 01 FCS

1.005096 0.03 1 5.902E-15 20 OCT 2011 22 02 001 UW93 UW93C UW93C42 01 FCS

1.005096 0.03 1 5.902E-15 20 OCT 2011 22 52 001 UW93 UW93C UW93C42 01 FCS

1.005096 0.03 1 5.902E-15 20 OCT 2011 23 43 001 UW93 UW93C UW93C42 01 FCS

1.005096 0.03 1 5.902E-15 21 OCT 2011 00 33 001 UW93 UW93C UW93C42 01 FCS

Table 9.18: Irradiation constants for MADERAS-002

Irradiation Constants 40/36(a) %1

σ 40/36

(c) %1σ 38/36

(a) %1σ

38/36(c)

%1σ

39/37(ca) %1σ

38/37(ca)

%1σ

36/37(ca) %1σ

BH5976 675 °C 295.5 0 0.018 35 0.1869 0 1.493 3 0.000673 0 0 0 0.000264 0

BH5977 720 °C 295.5 0 0.018 35 0.1869 0 1.493 3 0.000673 0 0 0 0.000264 0

BH5978 735 °C 295.5 0 0.018 35 0.1869 0 1.493 3 0.000673 0 0 0 0.000264 0

BH5979 800 °C 295.5 0 0.018 35 0.1869 0 1.493 3 0.000673 0 0 0 0.000264 0

BH5980 870 °C 295.5 0 0.018 35 0.1869 0 1.493 3 0.000673 0 0 0 0.000264 0

BH5981 940 °C 295.5 0 0.018 35 0.1869 0 1.493 3 0.000673 0 0 0 0.000264 0

BH5982 1025 °C 295.5 0 0.018 35 0.1869 0 1.493 3 0.000673 0 0 0 0.000264 0

BH5983 1125 °C 295.5 0 0.018 35 0.1869 0 1.493 3 0.000673 0 0 0 0.000264 0

BH5984 1225 °C 295.5 0 0.018 35 0.1869 0 1.493 3 0.000673 0 0 0 0.000264 0

Table 9.18: Continued

40/39(k) %1σ 38/39(k) %1σ 36/38(cl) %1σ K/Ca %1σ K/Cl %1σ Ca/Cl %1σ

0 0 0.01206 0 0 0 0.43 0 0 0 0 0 0 0 0.01206 0 0 0 0.43 0 0 0 0 0 0 0 0.01206 0 0 0 0.43 0 0 0 0 0 0 0 0.01206 0 0 0 0.43 0 0 0 0 0 0 0 0.01206 0 0 0 0.43 0 0 0 0 0 0 0 0.01206 0 0 0 0.43 0 0 0 0 0 0 0 0.01206 0 0 0 0.43 0 0 0 0 0 0 0 0.01206 0 0 0 0.43 0 0 0 0 0 0 0 0.01206 0 0 0 0.43 0 0 0 0 0

Page 91: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

76

70.4 ± 6.1 Ka

200

150

100

50

0

50

100

150

200

0 10 20 30 40 50 60 70 80 90 100

Cumulative 39Ar Released [ % ]

UW93C42.AGE >>> MAD002 >>> UW93C PROJECT

Ar-Ages in Ka

WEIGHTED PLATEAU70.4 ± 6.1TOTAL FUSION 68.1 ± 7.2NORMAL ISOCHRON 73.2 ± 9.5INVERSE ISOCHRON73.2 ± 4.7

MSWD0.34

Sample Info

groundmassUW93C42Brian Jicha

IRR = UW93J = 0.00026230 ± 0.00000013

Figure 9.1: Age plateau for MADERAS-002

0.293 ± 0.114

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 10 20 30 40 50 60 70 80 90 100

Cumulative 39Ar Released [ % ]

UW93C42.AGE >>> MAD002 >>> UW93C PROJECT

Ar-Ages in Ka

WEIGHTED PLATEAU70.4 ± 6.1TOTAL FUSION 68.1 ± 7.2NORMAL ISOCHRON 73.2 ± 9.5INVERSE ISOCHRON73.2 ± 4.7

Sample Info

groundmassUW93C42Brian Jicha

IRR = UW93J = 0.00026230 ± 0.00000013

Figure 9.2: K-Ca plateau for MADERAS-002

Page 92: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

77

0

50

100

150

200

250

300

350

400

450

500

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700

39Ar / 36Ar

UW93C42.AGE >>> MAD002 >>> UW93C PROJECT

Ar-Ages in Ka

WEIGHTED PLATEAU70.4 ± 6.1TOTAL FUSION 68.1 ± 7.2NORMAL ISOCHRON 73.2 ± 9.5INVERSE ISOCHRON73.2 ± 4.7

MSWD0.32

40AR/36AR INTERCEPT293.3 ± 5.5

Sample Info

groundmassUW93C42Brian Jicha

IRR = UW93J = 0.00026230 ± 0.00000013

Figure 9.3: Normal isochron for MADERAS-002

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

0.0045

0 1 2 3 4 5 6 7 8 9

39Ar / 40Ar

UW93C42.AGE >>> MAD002 >>> UW93C PROJECT

Ar-Ages in Ka

WEIGHTED PLATEAU70.4 ± 6.1TOTAL FUSION 68.1 ± 7.2NORMAL ISOCHRON 73.2 ± 9.5INVERSE ISOCHRON73.2 ± 4.7

MSWD0.31

40AR/36AR INTERCEPT293.4 ± 2.7

Sample Info

groundmassUW93C42Brian Jicha

IRR = UW93J = 0.00026230 ± 0.00000013

Figure 9.4: Inverse isochron for MADERAS-002

Page 93: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

78 9.2.

2 Sa

mpl

e M

AD

ER

AS-

003

Tab

le 9

.19:

Incr

emen

tal h

eatin

g su

mm

ary

for

MA

DE

RA

S-00

3

Incr

emen

tal

Hea

ting

36

Ar(

a)

37A

r(ca

) 38

Ar(

cl)

39A

r(k)

40

Ar(

r)

Age

±

40A

r(r)

39

Ar(

k)

K/C

a ±

(Ka)

(%

) (%

) B

H59

51

720

°C

0.

0006

00

0.01

3712

0.

0000

00

0.04

8528

0.

0174

58

172.

7 ±

62.3

8

.97

2.2

5 1.

52

± 0.

09

BH

5952

7

85 °

C

0.00

0519

0.

0527

41

0.00

0000

0.

2231

42

0.07

2619

15

6.2

± 8.

4 3

2.12

1

0.36

1.

82

± 0.

10

BH

5953

8

45 °

C

0.00

0467

0.

1038

17

0.00

0000

0.

5811

65

0.19

1857

15

8.5

± 3.

1 5

8.16

2

6.98

2.

41

± 0.

12

BH

5954

9

00 °

C

0.00

0320

0.

0937

38

0.00

0000

0.

5546

42

0.18

0650

15

6.4

± 3.

6 6

5.61

2

5.75

2.

54

± 0.

13

BH

5955

9

60 °

C

0.00

0246

0.

0830

57

0.00

0000

0.

3827

87

0.12

5462

15

7.4

± 6.

3 6

3.33

1

7.77

1.

98

± 0.

10

BH

5956

10

25 °

C

0.00

0205

0.

0516

85

0.00

0145

0.

1514

95

0.04

9685

15

7.5

± 15

.8

45.

05

7.0

3 1.

26

± 0.

07

BH

5957

10

95 °

C

0.00

0255

0.

0591

00

0.00

0223

0.

1198

77

0.03

9421

15

7.9

± 22

.6

34.

37

5.5

7 0.

87

± 0.

05

BH

5958

11

60 °

C

0.00

0219

0.

0379

67

0.00

0234

0.

0416

92

0.01

2185

14

0.3

± 56

.5

15.

82

1.9

4 0.

47

± 0.

03

BH

5959

12

25 °

C

0.00

0323

0.

0536

65

0.00

0233

0.

0507

65

0.01

8094

17

1.1

± 69

.0

15.

94

2.3

6 0.

41

± 0.

02

Σ 0.

0031

54

0.54

9483

0.

0008

36

2.15

4093

0.

7074

30

T

able

9.1

9: C

ontin

ued

Info

rmat

ion

on A

naly

sis

R

esul

ts

40(r

)/39

(k)

± 2σ

A

ge

± 2σ

MSWD

39A

r(k)

K

/Ca

± 2σ

(Ka)

(%

,n)

Sam

ple

= M

AD

003

A

ge P

late

au

0.32

80

± 0.

0044

15

7.5

± 2.

2 0.

21

100.

00

0.67

±

0.34

M

ater

ial =

gro

undm

ass

±

1.34

%

± 1.

37%

9

Loc

atio

n =

UW

93C

43

M

inim

al E

xter

nal E

rror

±

6.5

2.31

S

tatis

tical

T R

atio

A

naly

st =

Bria

n Ji

cha

A

naly

tical

Err

or

± 2.

1 1.

0000

E

rror

Mag

nific

atio

n P

roje

ct =

UW

93C

Mas

s D

iscr

imin

atio

n La

w =

LIN

Tot

al F

usio

n A

ge

0.32

84

± 0.

0073

15

7.7

± 3.

5

9 1.

69

± 0.

03

Irra

diat

ion

= U

W93

± 2.

22%

±

2.23

%

J =

0.0

0026

230

± 0.

0000

0037

Min

imal

Ext

erna

l Err

or

± 7.

1

F

CS

= 2

8.20

1 ±

0.02

3 M

a

Ana

lytic

al E

rror

±

3.5

Page 94: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

79

Table 9.20: Normal isochron table for MADERAS-003

Normal Isochron

39(k)/36(a) ± 2σ 40(a+r)/36(a) ± 2σ

r.i.

BH5951 720 °C 80.9 ± 2.9 324.6 ± 11.5 0.9888 BH5952 785 °C 429.6 ± 10.9 435.3 ± 11.1 0.9959 BH5953 845 °C 1244.2 ± 32.6 706.2 ± 18.7 0.9901 BH5954 900 °C 1730.8 ± 72.8 859.2 ± 36.3 0.9945 BH5955 960 °C 1557.2 ± 106.5 805.9 ± 55.2 0.9970 BH5956 1025 °C 738.8 ± 60.1 537.8 ± 43.8 0.9963 BH5957 1095 °C 470.6 ± 34.9 450.3 ± 33.5 0.9940 BH5958 1160 °C 190.1 ± 14.3 351.1 ± 26.5 0.9919 BH5959 1225 °C 157.2 ± 12.0 351.5 ± 26.8 0.9941

Table 9.20: Continued

Results 40(a)/36(a) ± 2σ 40(r)/39(k) ± 2σ Age ± 2σ

MS

WD

(Ka)

Normal Isochron

296.2474 ± 7.0069 0.3273 ± 0.0074 157.1 ± 3.6 0.23 ± 2.37% ± 2.26% ± 2.28%

Minimal External Error ± 7.1 Analytical Error ± 3.6

Statistics Statistical F ratio 2.01 Convergence 0.0000000032 Error Magnification 1.0000 Number of Iterations 33

Number of Data Points 9 Calculated Line Weighted York-2

Table 9.21: Inverse isochron table for MADERAS-003

Inverse Isochron

39(k)/40(a+r) ± 2σ 36(a)/40(a+r) ± 2σ

r.i.

BH5951 720 °C 0.249345 ± 0.001322 0.003081 ± 0.000109 0.0836 BH5952 785 °C 0.986861 ± 0.002273 0.002297 ± 0.000058 0.0690 BH5953 845 °C 1.761703 ± 0.006518 0.001416 ± 0.000037 0.1296 BH5954 900 °C 2.014361 ± 0.008884 0.001164 ± 0.000049 0.0821 BH5955 960 °C 1.932287 ± 0.010225 0.001241 ± 0.000085 0.0510 BH5956 1025 °C 1.373782 ± 0.009596 0.001859 ± 0.000152 0.0709 BH5957 1095 °C 1.045234 ± 0.008486 0.002221 ± 0.000165 0.0709 BH5958 1160 °C 0.541437 ± 0.005205 0.002849 ± 0.000215 0.0757 BH5959 1225 °C 0.447222 ± 0.003694 0.002845 ± 0.000217 0.0478

Table 9.21 Continued

Results 40(a)/36(a) ± 2σ 40(r)/39(k) ± 2σ Age ± 2σ

MS

WD

(Ka)

Inverse Isochron

296.3144 ± 3.5081 0.3273 ± 0.0037 157.1 ± 1.8 0.23 ± 1.18% ± 1.13% ± 1.17%

Minimal External Error ± 6.4 Analytical Error ± 1.8

Statistics Statistical F ratio 2.01 Convergence 0.0000002122 Error Magnification 1.0000 Number of Iterations 4

Number of Data Points 9 Calculated Line Weighted York-2

Page 95: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

80

Tab

le 9

.22:

Rel

ativ

e ab

unda

nces

for

MA

DE

RA

S-00

3

Rel

ativ

e A

bund

ance

s

36A

r %

37A

r %

38A

r %

39A

r %

40A

r %

Age

±

40A

r(r)

39

Ar(

k)

K/C

a ±

(Ka)

(%

) (%

)

BH

5951

7

20 °

C

0.00

0603

2 1.

752

0.0

1371

25

2.94

9 0

.000

6735

2.

479

0.0

4853

73

0.17

6 0

.194

6222

0.

198

172.

7 ±

62.3

8

.97

2.2

5 1.

52

± 0.

09

BH

5952

7

85 °

C

0.00

0533

4 1.

233

0.0

5274

15

2.69

5 0

.002

5639

1.

531

0.2

2317

77

0.05

6 0

.226

1132

0.

100

156.

2 ±

8.4

32.

12

10.

36

1.82

±

0.10

BH

5953

8

45 °

C

0.00

0494

5 1.

228

0.1

0381

74

2.56

1 0

.006

4066

1.

048

0.5

8123

52

0.05

1 0

.329

8885

0.

178

158.

5 ±

3.1

58.

16

26.

98

2.41

±

0.12

BH

5954

9

00 °

C

0.00

0345

2 1.

942

0.0

9373

75

2.55

2 0

.006

4551

0.

810

0.5

5470

46

0.10

2 0

.275

3436

0.

195

156.

4 ±

3.6

65.

61

25.

75

2.54

±

0.13

BH

5955

9

60 °

C

0.00

0267

7 3.

131

0.0

8305

72

2.55

4 0

.004

5456

0.

819

0.3

8284

30

0.15

4 0

.198

1005

0.

215

157.

4 ±

6.3

63.

33

17.

77

1.98

±

0.10

BH

5956

10

25 °

C

0.00

0218

7 3.

806

0.0

5168

48

2.62

8 0

.002

0108

1.

065

0.1

5152

98

0.14

5 0

.110

2759

0.

318

157.

5 ±

15.8

4

5.05

7

.03

1.26

±

0.07

BH

5957

10

95 °

C

0.00

0270

3 3.

488

0.0

5910

04

2.61

5 0

.001

7164

0.

997

0.1

1991

72

0.24

0 0

.114

6896

0.

327

157.

9 ±

22.6

3

4.37

5

.57

0.87

±

0.05

BH

5958

11

60 °

C

0.00

0229

4 3.

593

0.0

3796

72

2.64

3 0

.000

7777

2.

929

0.0

4171

72

0.30

6 0

.077

0018

0.

371

140.

3 ±

56.5

1

5.82

1

.94

0.47

±

0.03

BH

5959

12

25 °

C

0.00

0337

1 3.

645

0.0

5366

45

2.78

1 0

.000

9057

2.

412

0.0

5080

13

0.30

8 0

.113

5123

0.

274

171.

1 ±

69.0

1

5.94

2

.36

0.41

±

0.02

Σ 0.

0032

994

0.79

3 0

.549

4829

0.

945

0.0

2605

53

0.42

4 2

.154

4632

0.

045

1.6

3954

76

0.07

4

T

able

9.2

2: C

ontin

ued

Info

rmat

ion

on A

naly

sis

and

Con

stan

ts U

sed

in C

alcu

latio

ns

Sam

ple

= M

AD

003

Ext

ract

ion

Met

hod

= U

ndef

ined

M

ater

ial =

gro

undm

ass

Hea

ting

= 90

0 se

c L

ocat

ion

= U

W93

C43

Is

olat

ion

= 15

.00

min

A

naly

st =

Bria

n Ji

cha

Inst

rum

ent =

MA

P21

5 P

roje

ct =

UW

93C

L

ithol

ogy

= U

ndef

ined

M

ass

Dis

crim

inat

ion

Law

= L

IN

Lat

-Lon

= U

ndef

ined

- U

ndef

ined

Ir

radi

atio

n =

UW

93

Age

Equ

atio

ns =

Con

vent

iona

l J

= 0

.000

2623

0 ±

0.00

0000

37

Neg

ativ

e In

tens

ities

= F

orce

d Z

ero

FC

S =

28.

201

± 0.

023

Ma

Dec

ay C

onst

ant 4

0K =

5.4

63 ±

0.1

07 E

-10

1/a

IGS

N =

Und

efin

ed

Dec

ay C

onst

ant 3

9Ar =

2.9

40 ±

0.0

29 E

-07

1/h

Pre

ferr

ed A

ge =

Und

efin

ed

Dec

ay C

onst

ant 3

7Ar =

8.2

30 ±

0.0

82 E

-04

1/h

Cla

ssifi

catio

n =

Und

efin

ed

No

36C

l Cor

rect

ion

Exp

erim

ent T

ype

= U

ndef

ined

N

o 36

Cl C

orre

ctio

n

Page 96: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

81

Tab

le 9

.22:

Con

tinue

d

Res

ults

40

(r)/

39(k

) ±

Age

±

MSWD

39A

r(k)

K

/Ca

± 2σ

(K

a)

(%,n

)

Age

Pla

teau

0.

3280

±

0.00

44

157.

5 ±

2.2

0.21

10

0.00

0.

67

± 0.

34

± 1.

34%

±

1.37

%

9

Min

imal

Ext

erna

l Err

or

± 6.

5 2.

31

Sta

tistic

al T

Rat

io

Ana

lytic

al E

rror

±

2.1

1.00

00

Err

or M

agni

ficat

ion

Tot

al F

usio

n A

ge

0.32

84

± 0.

0073

15

7.7

± 3.

5

9 1.

69

± 0.

03

± 2.

22%

±

2.23

%

Min

imal

Ext

erna

l Err

or

± 7.

1

Ana

lytic

al E

rror

±

3.5

Nor

mal

Is

ochr

on

0.32

73

± 0.

0074

15

7.1

± 3.

6 0.

23

100.

00

± 2.

26%

±

2.28

%

9

Min

imal

Ext

erna

l Err

or

± 7.

1 2.

01

Sta

tistic

al F

ratio

Ana

lytic

al E

rror

±

3.6

1.00

00

Err

or M

agni

ficat

ion

Inve

rse

Isoc

hron

0.

3273

±

0.00

37

157.

1 ±

1.8

0.23

10

0.00

±

1.13

%

± 1.

17%

9

Min

imal

Ext

erna

l Err

or

± 6.

4 2.

01

Sta

tistic

al F

ratio

Ana

lytic

al E

rror

±

1.8

1.00

00

Err

or M

agni

ficat

ion

T

able

9.2

3: D

egas

sing

pat

tern

s for

MA

DE

RA

S-00

3

Deg

assi

ng

Pat

tern

s

36A

r(a)

%

36A

r(c)

%

36A

r(ca

) %

36A

r(cl

) %

37A

r(ca

) %

38A

r(a)

%

38A

r(c)

%

38A

r(k)

%

BH

5951

7

20 °

C

0.

0006

00

1.7

6

0.00

0000

0

.00

0.

0000

04

2.9

5

0.00

0000

0

.00

0.

0137

12

2.9

5

0.00

0112

1

.76

0.

0000

00

0.0

0

0.00

0585

0

.18

BH

5952

7

85 °

C

0.

0005

19

1.2

7

0.00

0000

0

.00

0.

0000

14

2.7

0

0.00

0000

0

.00

0.

0527

41

2.7

0

0.00

0097

1

.27

0.

0000

00

0.0

0

0.00

2691

0

.06

BH

5953

8

45 °

C

0.

0004

67

1.3

1

0.00

0000

0

.00

0.

0000

27

2.5

6

0.00

0000

0

.00

0.

1038

17

2.5

6

0.00

0087

1

.31

0.

0000

00

0.0

0

0.00

7009

0

.05

BH

5954

9

00 °

C

0.

0003

20

2.1

0

0.00

0000

0

.00

0.

0000

25

2.5

5

0.00

0000

0

.00

0.

0937

38

2.5

5

0.00

0060

2

.10

0.

0000

00

0.0

0

0.00

6689

0

.10

BH

5955

9

60 °

C

0.

0002

46

3.4

2

0.00

0000

0

.00

0.

0000

22

2.5

5

0.00

0000

0

.00

0.

0830

57

2.5

5

0.00

0046

3

.42

0.

0000

00

0.0

0

0.00

4616

0

.15

BH

5956

10

25 °

C

0.

0002

05

4.0

6

0.00

0000

0

.00

0.

0000

14

2.6

3

0.00

0000

0

.00

0.

0516

85

2.6

3

0.00

0038

4

.06

0.

0000

00

0.0

0

0.00

1827

0

.15

BH

5957

10

95 °

C

0.

0002

55

3.7

0

0.00

0000

0

.00

0.

0000

16

2.6

1

0.00

0000

0

.00

0.

0591

00

2.6

1

0.00

0048

3

.70

0.

0000

00

0.0

0

0.00

1446

0

.24

BH

5958

11

60 °

C

0.

0002

19

3.7

6

0.00

0000

0

.00

0.

0000

10

2.6

4

0.00

0000

0

.00

0.

0379

67

2.6

4

0.00

0041

3

.76

0.

0000

00

0.0

0

0.00

0503

0

.31

BH

5959

12

25 °

C

0.

0003

23

3.8

1

0.00

0000

0

.00

0.

0000

14

2.7

8

0.00

0000

0

.00

0.

0536

65

2.7

8

0.00

0060

3

.81

0.

0000

00

0.0

0

0.00

0612

0

.31

Σ

0.00

3154

0

.83

0.

0000

00

0.0

0

0.00

0145

0

.94

0.

0000

00

0.0

0

0.54

9483

0

.94

0.

0005

90

0.8

3

0.00

0000

0

.00

0.

0259

78

0.0

5

Σ

0.00

3299

0

.79

0.

5494

83

0.9

4

Page 97: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

82

Tab

le 9

.23:

Con

tinue

d

38A

r(ca

) %

38A

r(cl

) %

39A

r(k)

%

39A

r(ca

) %

40A

r(r)

%

40A

r(a)

%

40A

r(c)

%

40A

r(k)

%

0.

0000

00

0.0

0

0.00

0000

0

.00

0.

0485

28

0.1

8

0.00

0009

2

.95

0.

0174

58

18.

02

0.

1771

64

1.7

6

0.00

0000

0

.00

0.

0000

00

0.0

0

0.

0000

00

0.0

0

0.00

0000

0

.00

0.

2231

42

0.0

6

0.00

0035

2

.70

0.

0726

19

2.7

0

0.15

3494

1

.27

0.

0000

00

0.0

0

0.00

0000

0

.00

0.

0000

00

0.0

0

0.00

0000

0

.00

0.

5811

65

0.0

5

0.00

0070

2

.56

0.

1918

57

0.9

9

0.13

8032

1

.31

0.

0000

00

0.0

0

0.00

0000

0

.00

0.

0000

00

0.0

0

0.00

0000

0

.00

0.

5546

42

0.1

0

0.00

0063

2

.55

0.

1806

50

1.1

4

0.09

4694

2

.10

0.

0000

00

0.0

0

0.00

0000

0

.00

0.

0000

00

0.0

0

0.00

0000

0

.00

0.

3827

87

0.1

5

0.00

0056

2

.55

0.

1254

62

2.0

1

0.07

2638

3

.42

0.

0000

00

0.0

0

0.00

0000

0

.00

0.

0000

00

0.0

0

0.00

0145

1

4.87

0.15

1495

0

.15

0.

0000

35

2.6

3

0.04

9685

5

.00

0.

0605

91

4.0

6

0.00

0000

0

.00

0.

0000

00

0.0

0

0.

0000

00

0.0

0

0.00

0223

7

.87

0.

1198

77

0.2

4

0.00

0040

2

.61

0.

0394

21

7.1

4

0.07

5268

3

.70

0.

0000

00

0.0

0

0.00

0000

0

.00

0.

0000

00

0.0

0

0.00

0234

9

.78

0.

0416

92

0.3

1

0.00

0026

2

.64

0.

0121

85

20.

13

0.

0648

17

3.7

6

0.00

0000

0

.00

0.

0000

00

0.0

0

0.

0000

00

0.0

0

0.00

0233

9

.46

0.

0507

65

0.3

1

0.00

0036

2

.78

0.

0180

94

20.

15

0.

0954

19

3.8

1

0.00

0000

0

.00

0.

0000

00

0.0

0

0.

0000

00

0.0

0

0.00

0836

5

.06

2.

1540

93

0.0

5

0.00

0370

0

.94

0.

7074

30

1.1

1

0.93

2117

0

.83

0.

0000

00

0.0

0

0.00

0000

0

.00

0.

0274

03

0.1

6

2.15

4463

0

.05

1.

6395

48

0.6

7

T

able

9.2

4: A

dditi

onal

par

amet

ers f

or M

AD

ER

AS-

003

Add

ition

al

Par

amet

ers

40

(r)/3

9(k)

40

(r+a

) 1σ

40

Ar/

39A

r 1σ

37

Ar/

39A

r 1σ

36

Ar/

39A

r 1σ

T

ime

(day

s)

37A

r (d

ecay

) 39

Ar

(dec

ay)

40A

r (m

oles

)

BH

5951

7

20 °

C

0.3

5975

7 0.

0648

3 0

.194

622

0.00

039

4.0

0974

8 0.

0106

3 0

.282

514

0.00

834

0.0

1242

7

0.00

022

127

.142

12

.326

2038

2 1.

0008

9767

1.

149E

-15

BH

5952

7

85 °

C

0.3

2543

9 0.

0087

8 0

.226

113

0.00

023

1.0

1315

3 0.

0011

7 0

.236

321

0.00

637

0.0

0239

0

0.00

003

127

.178

12

.334

8296

4 1.

0008

9792

1.

335E

-15

BH

5953

8

45 °

C

0.3

3012

4 0.

0032

7 0

.329

888

0.00

059

0.5

6756

4 0.

0010

5 0

.178

615

0.00

458

0.0

0085

1

0.00

001

127

.213

12

.343

2921

7 1.

0008

9816

1.

947E

-15

BH

5954

9

00 °

C

0.3

2570

6 0.

0037

3 0

.275

344

0.00

054

0.4

9637

9 0.

0010

9 0

.168

986

0.00

432

0.0

0062

2

0.00

001

127

.247

12

.351

7605

2 1.

0008

9841

1.

625E

-15

BH

5955

9

60 °

C

0.3

2776

0 0.

0066

0 0

.198

101

0.00

043

0.5

1744

6 0.

0013

7 0

.216

948

0.00

555

0.0

0069

9

0.00

002

127

.283

12

.360

4042

2 1.

0008

9866

1.

169E

-15

BH

5956

10

25 °

C

0.3

2796

1 0.

0164

2 0

.110

276

0.00

035

0.7

2775

0 0.

0025

4 0

.341

087

0.00

898

0.0

0144

3

0.00

005

127

.317

12

.368

8843

0 1.

0008

9890

6.

508E

-16

BH

5957

10

95 °

C

0.3

2884

5 0.

0234

9 0

.114

690

0.00

038

0.9

5640

7 0.

0038

8 0

.492

844

0.01

294

0.0

0225

4

0.00

008

127

.352

12

.377

3702

0 1.

0008

9915

6.

769E

-16

BH

5958

11

60 °

C

0.2

9226

1 0.

0588

4 0

.077

002

0.00

029

1.8

4580

7 0.

0088

7 0

.910

109

0.02

422

0.0

0549

8

0.00

020

127

.388

12

.386

0318

2 1.

0008

9940

4.

545E

-16

BH

5959

12

25 °

C

0.3

5641

7 0.

0718

3 0

.113

512

0.00

031

2.2

3443

8 0.

0092

3 1

.056

362

0.02

955

0.0

0663

5

0.00

024

127

.422

12

.394

5294

9 1.

0008

9964

6.

699E

-16

Page 98: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

83

Tab

le 9

.25:

Pro

cedu

re b

lank

s for

MA

DE

RA

S-00

3

Pro

cedu

re

Bla

nks

36A

r 1σ

37

Ar

38A

r 1σ

39

Ar

40A

r 1σ

BH

5951

7

20 °

C

0.0

0006

3 0

.000

005

0.0

0001

1 0

.000

012

0.0

0000

5 0

.000

012

0.0

0000

0 0

.000

009

0.0

1918

6 0

.000

192

BH

5952

7

85 °

C

0.0

0006

6 0

.000

005

0.0

0001

1 0

.000

012

0.0

0000

5 0

.000

012

0.0

0000

4 0

.000

009

0.0

1840

8 0

.000

184

BH

5953

8

45 °

C

0.0

0007

0 0

.000

005

0.0

0001

2 0

.000

012

0.0

0000

5 0

.000

012

0.0

0000

8 0

.000

009

0.0

1894

3 0

.000

189

BH

5954

9

00 °

C

0.0

0007

4 0

.000

005

0.0

0001

5 0

.000

012

0.0

0000

6 0

.000

012

0.0

0001

1 0

.000

009

0.0

2018

0 0

.000

202

BH

5955

9

60 °

C

0.0

0008

0 0

.000

005

0.0

0002

3 0

.000

012

0.0

0000

7 0

.000

012

0.0

0001

5 0

.000

009

0.0

2201

2 0

.000

220

BH

5956

10

25 °

C

0.0

0008

7 0

.000

005

0.0

0003

8 0

.000

012

0.0

0000

9 0

.000

012

0.0

0001

9 0

.000

009

0.0

2416

5 0

.000

242

BH

5957

10

95 °

C

0.0

0009

5 0

.000

005

0.0

0006

7 0

.000

012

0.0

0001

2 0

.000

012

0.0

0002

3 0

.000

009

0.0

2617

6 0

.000

262

BH

5958

11

60 °

C

0.0

0010

4 0

.000

005

0.0

0010

7 0

.000

012

0.0

0001

5 0

.000

012

0.0

0002

7 0

.000

009

0.0

2727

6 0

.000

273

BH

5959

12

25 °

C

0.0

0011

4 0

.000

006

0.0

0016

3 0

.000

012

0.0

0001

9 0

.000

012

0.0

0003

0 0

.000

009

0.0

2717

6 0

.000

272

T

able

9.2

6: In

terc

ept v

alue

s for

MA

DE

RA

S-00

3

Inte

rcep

t V

alue

s 36

Ar

r2

37

Ar

r2

38

Ar

r2

BH

5951

7

20 °

C

0.00

0679

0.

0000

09

0.89

06

EX

P

7 of

8

0.00

1142

0.

0000

13

0.93

99

LIN

7

of 8

0.

0006

86

0.00

0012

0.

7761

E

XP

8

of 8

B

H59

52

785

°C

0.

0006

11

0.00

0004

0.

9519

P

AR

7

of 8

0.

0043

57

0.00

0041

0.

9392

E

XP

8

of 8

0.

0025

97

0.00

0038

0.

8565

E

XP

8

of 8

B

H59

53

845

°C

0.

0005

76

0.00

0003

0.

9441

LI

N

6 of

8

0.00

8561

0.

0000

40

0.98

45

EX

P

8 of

8

0.00

6482

0.

0000

67

0.91

38

EX

P

8 of

8

BH

5954

9

00 °

C

0.00

0427

0.

0000

04

0.40

70

EX

P

8 of

8

0.00

7728

0.

0000

32

0.99

03

EX

P

8 of

8

0.00

6532

0.

0000

51

0.96

60

EX

P

8 of

8

BH

5955

9

60 °

C

0.00

0353

0.

0000

07

A

VE

7

of 8

0.

0068

52

0.00

0028

0.

9888

E

XP

8

of 8

0.

0046

03

0.00

0036

0.

9412

E

XP

8

of 8

B

H59

56

1025

°C

0.

0003

10

0.00

0007

0.

6817

E

XP

8

of 8

0.

0042

85

0.00

0030

0.

9692

E

XP

8

of 8

0.

0020

42

0.00

0018

0.

9719

LI

N

7 of

8

BH

5957

10

95 °

C

0.00

0371

0.

0000

08

0.58

54

LIN

8

of 8

0.

0049

20

0.00

0032

0.

9760

E

XP

8

of 8

0.

0017

47

0.00

0012

0.

9800

E

XP

7

of 8

B

H59

58

1160

°C

0.

0003

38

0.00

0007

0.

8210

E

XP

8

of 8

0.

0032

23

0.00

0022

0.

9778

E

XP

8

of 8

0.

0008

01

0.00

0020

0.

7901

E

XP

8

of 8

B

H59

59

1225

°C

0.

0004

58

0.00

0011

0.

5925

E

XP

8

of 8

0.

0045

64

0.00

0051

0.

9268

E

XP

8

of 8

0.

0009

35

0.00

0019

0.

8804

LI

N

7 of

8

Page 99: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

84

Table 9.26: Continued

39Ar 1σ r2 40Ar 1σ r2

0.048759 0.000085 0.9970 EXP 8 of 8 0.213808 0.000335 0.9977 PAR 8 of 8 0.224200 0.000117 0.9998 EXP 8 of 8 0.244521 0.000133 0.9997 LIN 6 of 8 0.583894 0.000271 0.9999 EXP 8 of 8 0.348832 0.000556 0.9955 EXP 8 of 8 0.557246 0.000558 0.9993 EXP 8 of 8 0.295523 0.000499 0.9943 EXP 6 of 8 0.384604 0.000588 0.9982 EXP 6 of 8 0.220112 0.000364 0.9937 EXP 8 of 8 0.152239 0.000219 0.9990 EXP 7 of 8 0.134441 0.000254 0.9954 EXP 7 of 8 0.120487 0.000288 0.9967 EXP 8 of 8 0.140865 0.000269 0.9961 EXP 8 of 8 0.041934 0.000128 0.9927 EXP 8 of 8 0.104278 0.000084 0.9996 PAR 6 of 8 0.051063 0.000157 0.9924 EXP 8 of 8 0.140689 0.000152 0.9991 LIN 6 of 8

Table 9.27: Sample parameters for MADERAS-003

Sample Parameters Sample Material Location Analyst

Tem

p

Standard %1σ J %1σ (in Ma)

BH5951 720 °C MAD003 groundmass UW93C43 Brian Jicha 720 28.201 0.08 0.0002623 0.14

BH5952 785 °C MAD003 groundmass UW93C43 Brian Jicha 785 28.201 0.08 0.0002623 0.14

BH5953 845 °C MAD003 groundmass UW93C43 Brian Jicha 845 28.201 0.08 0.0002623 0.14

BH5954 900 °C MAD003 groundmass UW93C43 Brian Jicha 900 28.201 0.08 0.0002623 0.14

BH5955 960 °C MAD003 groundmass UW93C43 Brian Jicha 960 28.201 0.08 0.0002623 0.14

BH5956 1025 °C MAD003 groundmass UW93C43 Brian Jicha 1025 28.201 0.08 0.0002623 0.14

BH5957 1095 °C MAD003 groundmass UW93C43 Brian Jicha 1095 28.201 0.08 0.0002623 0.14

BH5958 1160 °C MAD003 groundmass UW93C43 Brian Jicha 1160 28.201 0.08 0.0002623 0.14

BH5959 1225 °C MAD003 groundmass UW93C43 Brian Jicha 1225 28.201 0.08 0.0002623 0.14

Table 9.27: Continued

MDF %1σ Vol.

Ratio Sensitivity

Day

Mon

th

Yea

r

Hou

r

Min

Res

ist

Irradiation Project Experiment

Nm

b Standard

Name (mol/volt)

1.005474 0.02 1 5.902E-15 19 OCT 2011 20 36 001 UW93 UW93C UW93C43 01 FCS

1.005474 0.02 1 5.902E-15 19 OCT 2011 21 27 001 UW93 UW93C UW93C43 01 FCS

1.005474 0.02 1 5.902E-15 19 OCT 2011 22 17 001 UW93 UW93C UW93C43 01 FCS

1.005474 0.02 1 5.902E-15 19 OCT 2011 23 07 001 UW93 UW93C UW93C43 01 FCS

1.005474 0.02 1 5.902E-15 19 OCT 2011 23 58 001 UW93 UW93C UW93C43 01 FCS

1.005474 0.02 1 5.902E-15 20 OCT 2011 00 48 001 UW93 UW93C UW93C43 01 FCS

1.005474 0.02 1 5.902E-15 20 OCT 2011 01 38 001 UW93 UW93C UW93C43 01 FCS

1.005474 0.02 1 5.902E-15 20 OCT 2011 02 29 001 UW93 UW93C UW93C43 01 FCS

1.005474 0.02 1 5.902E-15 20 OCT 2011 03 19 001 UW93 UW93C UW93C43 01 FCS

Page 100: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

85

Tab

le 9

.28:

Irra

diat

ion

cons

tant

s for

MA

DE

RA

S-00

3

Irra

diat

ion

Con

stan

ts

40/3

6(a)

%

40/3

6(c)

%

38/3

6(a)

%

38/3

6(c)

%

39/3

7(ca

) %

38/3

7 (c

a)

%1σ

36

/37(

ca)

%1σ

40

/39

(k)

%1σ

BH

5951

7

20 °

C

295.

5 0

0.01

8 35

0.

1869

0

1.49

3 3

0.00

0673

0

0 0

0.00

0264

0

0 0

BH

5952

7

85 °

C

295.

5 0

0.01

8 35

0.

1869

0

1.49

3 3

0.00

0673

0

0 0

0.00

0264

0

0 0

BH

5953

8

45 °

C

295.

5 0

0.01

8 35

0.

1869

0

1.49

3 3

0.00

0673

0

0 0

0.00

0264

0

0 0

BH

5954

9

00 °

C

295.

5 0

0.01

8 35

0.

1869

0

1.49

3 3

0.00

0673

0

0 0

0.00

0264

0

0 0

BH

5955

9

60 °

C

295.

5 0

0.01

8 35

0.

1869

0

1.49

3 3

0.00

0673

0

0 0

0.00

0264

0

0 0

BH

5956

10

25 °

C

295.

5 0

0.01

8 35

0.

1869

0

1.49

3 3

0.00

0673

0

0 0

0.00

0264

0

0 0

BH

5957

10

95 °

C

295.

5 0

0.01

8 35

0.

1869

0

1.49

3 3

0.00

0673

0

0 0

0.00

0264

0

0 0

BH

5958

11

60 °

C

295.

5 0

0.01

8 35

0.

1869

0

1.49

3 3

0.00

0673

0

0 0

0.00

0264

0

0 0

BH

5959

12

25 °

C

295.

5 0

0.01

8 35

0.

1869

0

1.49

3 3

0.00

0673

0

0 0

0.00

0264

0

0 0

T

able

9.2

8: C

ontin

ued

38/3

9(k)

%

36/3

8(cl

) %

K/C

a %

K/C

l %

Ca/

Cl

%1σ

0.01

206

0 0

0 0.

43

0 0

0 0

0 0.

0120

6 0

0 0

0.43

0

0 0

0 0

0.01

206

0 0

0 0.

43

0 0

0 0

0 0.

0120

6 0

0 0

0.43

0

0 0

0 0

0.01

206

0 0

0 0.

43

0 0

0 0

0 0.

0120

6 0

0 0

0.43

0

0 0

0 0

0.01

206

0 0

0 0.

43

0 0

0 0

0 0.

0120

6 0

0 0

0.43

0

0 0

0 0

0.01

206

0 0

0 0.

43

0 0

0 0

0

Page 101: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

86

157.5 ± 2.2 Ka

60

80

100

120

140

160

180

200

220

240

260

280

300

320

340

0 10 20 30 40 50 60 70 80 90 100

Cumulative 39Ar Released [ % ]

UW93C43.AGE >>> MAD003 >>> UW93C PROJECT

Ar-Ages in Ka

WEIGHTED PLATEAU157.5 ± 2.2TOTAL FUSION 157.7 ± 3.5NORMAL ISOCHRON 157.1 ± 3.6INVERSE ISOCHRON157.1 ± 1.8

MSWD0.21

Sample Info

groundmassUW93C43Brian Jicha

IRR = UW93J = 0.00026230 ± 0.00000037

Figure 9.5: Age plateau for MADERAS-003

0.67 ± 0.34

0.0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

3.0

3.3

3.6

3.9

0 10 20 30 40 50 60 70 80 90 100Cumulative 39Ar Released [ % ]

UW93C43.AGE >>> MAD003 >>> UW93C PROJECT

Ar-Ages in Ka

WEIGHTED PLATEAU157.5 ± 2.2TOTAL FUSION 157.7 ± 3.5NORMAL ISOCHRON 157.1 ± 3.6INVERSE ISOCHRON157.1 ± 1.8

Sample Info

groundmassUW93C43Brian Jicha

IRR = UW93J = 0.00026230 ± 0.00000037

Figure 9.6: K-Ca plateau for MADERAS-003

Page 102: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

87

0

100

200

300

400

500

600

700

800

900

1000

1100

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

39Ar / 36Ar

UW93C43.AGE >>> MAD003 >>> UW93C PROJECT

Ar-Ages in Ka

WEIGHTED PLATEAU157.5 ± 2.2TOTAL FUSION 157.7 ± 3.5NORMAL ISOCHRON 157.1 ± 3.6INVERSE ISOCHRON157.1 ± 1.8

MSWD0.23

40AR/36AR INTERCEPT296.2 ± 7.0

Sample Info

groundmassUW93C43Brian Jicha

IRR = UW93J = 0.00026230 ± 0.00000037

Figure 9.7: Normal isochron for MADERAS-003

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

0.0045

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0 3.3 3.6 3.9

39Ar / 40Ar

UW93C43.AGE >>> MAD003 >>> UW93C PROJECT

Ar-Ages in Ka

WEIGHTED PLATEAU157.5 ± 2.2TOTAL FUSION 157.7 ± 3.5NORMAL ISOCHRON 157.1 ± 3.6INVERSE ISOCHRON157.1 ± 1.8

MSWD0.23

40AR/36AR INTERCEPT296.3 ± 3.5

Sample Info

groundmassUW93C43Brian Jicha

IRR = UW93J = 0.00026230 ± 0.00000037

Figure 9.8: Inverse isochron for MADERAS-003

Page 103: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

88 9.2.

3 Sa

mpl

e M

AD

ER

AS-

004

Tab

le 9

.29:

Incr

emen

tal h

eatin

g su

mm

ary

for

MA

DE

RA

S-00

4

Incr

emen

tal

Hea

ting

36

Ar(

a)

37A

r(ca

) 38

Ar(

cl)

39A

r(k)

40

Ar(

r)

Age

±

40A

r(r)

39

Ar(

k)

K/C

a ±

(Ka)

(%

) (%

)

BH

5991

6

75 °

C

0.0

0377

7 0

.046

903

0.0

0008

2 0

.023

839

0.

0029

37

59.1

±

225.

5 0

.26

4.9

7 0.

219

± 0.

012

BH

5992

7

20 °

C

0.0

0168

8 0

.031

165

0.0

0007

4 0

.012

243

0.

0077

36

303.

4 ±

436.

5 1

.53

2.5

5 0.

169

± 0.

009

BH

5993

7

85 °

C

0.0

0308

1 0

.138

734

0.0

0005

1 0

.047

412

0.

0160

62

162.

7 ±

147.

7 1

.73

9.8

8 0.

147

± 0.

008

BH

5994

8

30 °

C

0.0

0158

7 0

.078

312

0.0

0000

0 0

.032

112

0.

0092

96

139.

0 ±

160.

0 1

.94

6.6

9 0.

176

± 0.

009

BH

5995

8

75 °

C

0.0

0177

9 0

.137

666

0.0

0000

0 0

.062

204

0.

0182

94

141.

2 ±

66.9

3

.36

12.

96

0.19

4 ±

0.01

0 B

H59

96

925

°C

0

.001

863

0.2

0354

8 0

.000

000

0.0

9410

3

0.02

5853

13

1.9

± 46

.6

4.4

9 1

9.60

0.

199

± 0.

010

BH

5997

9

80 °

C

0.0

0183

4 0

.238

072

0.0

0006

5 0

.090

463

0.

0241

65

128.

3 ±

31.5

4

.27

18.

85

0.16

3 ±

0.00

8 B

H59

98

1050

°C

0

.002

292

0.2

2561

2 0

.000

094

0.0

5642

3

0.01

3410

11

4.1

± 92

.0

1.9

4 1

1.75

0.

108

± 0.

006

BH

5999

11

40 °

C

0.0

0469

8 0

.198

125

0.0

0020

8 0

.040

385

0.

0079

86

94.9

±

95.6

0

.57

8.4

1 0.

088

± 0.

005

BH

6000

12

25 °

C

0

.004

005

0.3

1239

1 0

.000

229

0.0

2083

8

0.00

0000

0.

0 ±

0.0

0.0

0 4

.34

0.02

9 ±

0.00

1

Σ 0

.026

603

1.6

1052

7 0

.000

802

0.4

8002

2

0.12

5738

T

able

9.2

9: C

ontin

ued

Info

rmat

ion

on A

naly

sis

R

esul

ts

40(r

)/39

(k)

± 2σ

A

ge

± 2σ

MSWD

39A

r(k)

K

/Ca

± 2σ

(Ka)

(%

,n)

Sam

ple

= M

AD

004

A

ge P

late

au

0.26

80

± 0.

0462

12

8.7

± 22

.2

0.25

95

.66

0.13

6 ±

0.03

1 M

ater

ial =

gro

undm

ass

±

17.2

5%

± 17

.25%

9

Loc

atio

n =

UW

93C

44

M

inim

al E

xter

nal E

rror

±

22.8

2.

31

Sta

tistic

al T

Rat

io

Ana

lyst

= B

rian

Jich

a

Ana

lytic

al E

rror

±

22.2

1.

0000

E

rror

Mag

nific

atio

n P

roje

ct =

UW

93C

M

ass

Dis

crim

inat

ion

Law

= L

IN

T

otal

Fus

ion

Age

0.

2619

±

0.06

43

125.

8 ±

30.9

10

0.12

8 ±

0.00

2 Ir

radi

atio

n =

UW

93

±

24.5

3%

± 24

.53%

J =

0.0

0026

230

± 0.

0000

0013

Min

imal

Ext

erna

l Err

or

± 31

.2

FC

S =

28.

201

± 0.

023

Ma

A

naly

tical

Err

or

± 30

.9

Page 104: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

89

Table 9.30: Normal isochron table for MADERAS-004

Normal Isochron

39(k)/36(a) ± 2σ 40(a+r)/36(a) ± 2σ

r.i.

BH5991 675 °C 6.3 ± 0.1 296.3 ± 3.0 0.7818

BH5992 720 °C 7.3 ± 0.2 300.1 ± 6.7 0.9415

BH5993 785 °C 15.4 ± 0.3 300.7 ± 4.8 0.9593

BH5994 830 °C 20.2 ± 0.5 301.4 ± 6.9 0.9740

BH5995 875 °C 35.0 ± 0.6 305.8 ± 5.0 0.9836

BH5996 925 °C 50.5 ± 0.8 309.4 ± 5.1 0.9831

BH5997 980 °C 49.3 ± 0.5 308.7 ± 3.4 0.9407

BH5998 1050 °C 24.6 ± 0.4 301.3 ± 4.8 0.9842

BH5999 1140 °C 8.6 ± 0.1 297.2 ± 1.7 0.5689

BH6000 1225 °C 5.2 ± 0.1 295.5 ± 2.8 0.8536

Table 9.30: Continued

Results 40(a)/36(a) ± 2σ 40(r)/39(k) ± 2σ Age ± 2σ

MS

WD

(Ka)

Normal Isochron

294.9624 ± 1.7393 0.2843 ± 0.0705 136.5 ± 33.8 0.23 ± 0.59% ± 24.79% ± 24.79%

Minimal External Error ± 34.3 Analytical Error ± 33.8

Statistics Statistical F ratio 2.01 Convergence 0.0000000009

Error Magnification 1.0000 Number of Iterations 6

Number of Data Points 9 Calculated Line Weighted York-2

Table 9.31: Inverse isochron table for MADERAS-004

Inverse Isochron

39(k)/40(a+r) ± 2σ 36(a)/40(a+r) ± 2σ

r.i.

BH5991 675 °C 0.021303 ± 0.000163 0.003375 ± 0.000034 0.0568

BH5992 720 °C 0.024171 ± 0.000190 0.003332 ± 0.000074 0.0420

BH5993 785 °C 0.051181 ± 0.000239 0.003325 ± 0.000053 0.0275

BH5994 830 °C 0.067141 ± 0.000349 0.003318 ± 0.000076 0.1212

BH5995 875 °C 0.114360 ± 0.000340 0.003270 ± 0.000054 0.1357

BH5996 925 °C 0.163266 ± 0.000496 0.003232 ± 0.000054 0.1112

BH5997 980 °C 0.159823 ± 0.000607 0.003240 ± 0.000035 0.1254

BH5998 1050 °C 0.081680 ± 0.000233 0.003318 ± 0.000053 0.0548

BH5999 1140 °C 0.028927 ± 0.000233 0.003365 ± 0.000019 0.0265

BH6000 1225 °C 0.017609 ± 0.000098 0.003384 ± 0.000032 0.0424

Table 9.31: Continued

Results 40(a)/36(a) ± 2σ 40(r)/39(k) ± 2σ Age ± 2σ

MS

WD

(Ka)

Inverse Isochron

294.9699 ± 0.8699 0.2842 ± 0.0348 136.5 ± 16.7 0.23 ± 0.29% ± 12.25% ± 12.25%

Minimal External Error ± 17.5 Analytical Error ± 16.7

Statistics Statistical F ratio 2.01 Convergence 0.0000000311

Error Magnification 1.0000 Number of Iterations 4

Number of Data Points 9 Calculated Line Weighted York-2

Page 105: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

90

Tab

le 9

.32:

Rel

ativ

e ab

unda

nces

for

MA

DE

RA

S-00

4

Rel

ativ

e A

bund

ance

s

36A

r %

37A

r %

38A

r %

39A

r %

40A

r %

Age

±

40A

r(r)

39

Ar(

k)

K/C

a ±

(Ka)

(%

) (%

)

BH

5991

67

5°C

0.

0037

895

0.48

9 0.

0469

027

2.64

7 0.

0010

750

2.77

4 0.

0238

708

0.36

8 1.

1190

795

0.10

4 59

.1

± 22

5.5

0.26

4.

97

0.21

9 ±

0.01

2

BH

5992

72

0°C

0.

0016

962

1.10

2 0.

0311

651

2.65

9 0.

0005

368

3.09

4 0.

0122

642

0.36

9 0.

5065

342

0.13

6 30

3.4

± 43

6.5

1.53

2.

55

0.16

9 ±

0.00

9

BH

5993

78

5°C

0.

0031

172

0.78

8 0.

1387

339

2.65

8 0.

0011

987

2.37

1 0.

0475

051

0.22

2 0.

9263

583

0.07

2 16

2.7

± 14

7.7

1.73

9.

88

0.14

7 ±

0.00

8

BH

5994

83

0°C

0.

0016

077

1.11

0 0.

0783

120

2.65

3 0.

0006

670

4.81

6 0.

0321

643

0.17

7 0.

4782

722

0.18

9 13

9.0

± 16

0.0

1.94

6.

69

0.17

6 ±

0.00

9

BH

5995

87

5°C

0.

0018

151

0.79

6 0.

1376

659

2.56

5 0.

0010

414

2.29

0 0.

0622

964

0.07

4 0.

5439

288

0.12

9 14

1.2

± 66

.9

3.36

12

.96

0.19

4 ±

0.01

0

BH

5996

92

5°C

0.

0019

168

0.79

4 0.

2035

477

2.57

6 0.

0014

591

2.07

1 0.

0942

405

0.09

5 0.

5763

821

0.11

8 13

1.9

± 46

.6

4.49

19

.60

0.19

9 ±

0.01

0

BH

5997

98

0°C

0.

0018

965

0.50

9 0.

2380

724

2.59

6 0.

0014

983

2.23

8 0.

0906

229

0.15

1 0.

5660

188

0.11

4 12

8.3

± 31

.5

4.27

18

.85

0.16

3 ±

0.00

8

BH

5998

10

50°C

0.

0023

519

0.77

1 0.

2256

117

2.58

9 0.

0012

030

3.24

8 0.

0565

749

0.11

8 0.

6907

812

0.07

9 11

4.1

± 92

.0

1.94

11

.75

0.10

8 ±

0.00

6

BH

5999

11

40°C

0.

0047

498

0.28

0 0.

1981

247

2.60

4 0.

0015

734

0.95

6 0.

0405

179

0.39

8 1.

3960

979

0.05

6 94

.9

± 95

.6

0.57

8.

41

0.08

8 ±

0.00

5

BH

6000

12

25°C

0.00

4087

3 0.

448

0.31

2391

4 2.

579

0.00

1228

7 1.

470

0.02

1048

4 0.

264

1.18

3366

5 0.

074

0.0

± 0.

0 0.

00

4.34

0.

029

± 0.

001

Σ 0.

0270

280

0.20

2 1.

6105

274

0.92

9 0.

0114

814

0.76

4 0.

4811

055

0.06

1 7.

9868

195

0.03

1

T

able

9.3

2: C

ontin

ued

Info

rmat

ion

on A

naly

sis

and

Con

stan

ts U

sed

in C

alcu

latio

ns

Sam

ple

= M

AD

004

Ext

ract

ion

Met

hod

= U

ndef

ined

M

ater

ial =

gro

undm

ass

Hea

ting

= 90

0 se

c L

ocat

ion

= U

W93

C44

Is

olat

ion

= 15

.00

min

A

naly

st =

Bria

n Ji

cha

Inst

rum

ent =

MA

P21

5 P

roje

ct =

UW

93C

L

ithol

ogy

= U

ndef

ined

M

ass

Dis

crim

inat

ion

Law

= L

IN

Lat

-Lon

= U

ndef

ined

- U

ndef

ined

Ir

radi

atio

n =

UW

93

Age

Equ

atio

ns =

Con

vent

iona

l J

= 0

.000

2623

0 ±

0.00

0000

13

Neg

ativ

e In

tens

ities

= F

orce

d Z

ero

FC

S =

28.

201

± 0.

023

Ma

Dec

ay C

onst

ant 4

0K =

5.4

63 ±

0.1

07 E

-10

1/a

IGS

N =

Und

efin

ed

Dec

ay C

onst

ant 3

9Ar =

2.9

40 ±

0.0

29 E

-07

1/h

Pre

ferr

ed A

ge =

Und

efin

ed

Dec

ay C

onst

ant 3

7Ar =

8.2

30 ±

0.0

82 E

-04

1/h

Cla

ssifi

catio

n =

Und

efin

ed

No

36C

l Cor

rect

ion

Exp

erim

ent T

ype

= U

ndef

ined

N

o 36

Cl C

orre

ctio

n

Page 106: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

91

Tab

le 9

.32:

Con

tinue

d

Res

ults

40

(r)/3

9(k)

±

Age

±

MSWD

39A

r(k)

K

/Ca

± 2σ

(K

a)

(%,n

)

Age

Pla

teau

0.

2680

±

0.04

62

128.

7 ±

22.2

0.

25

95.6

6 0.

136

± 0.

031

± 17

.25%

±

17.2

5%

9

Min

imal

Ext

erna

l Err

or

± 22

.8

2.31

S

tatis

tical

T R

atio

Ana

lytic

al E

rror

±

22.2

1.

0000

E

rror

Mag

nific

atio

n

Tot

al F

usio

n A

ge

0.26

19

± 0.

0643

12

5.8

± 30

.9

10

0.

128

± 0.

002

± 24

.53%

±

24.5

3%

Min

imal

Ext

erna

l Err

or

± 31

.2

Ana

lytic

al E

rror

±

30.9

Nor

mal

Is

ochr

on

0.28

43

± 0.

0705

13

6.5

± 33

.8

0.23

95

.66

± 24

.79%

±

24.7

9%

9

Min

imal

Ext

erna

l Err

or

± 34

.3

2.01

S

tatis

tical

F ra

tio

Ana

lytic

al E

rror

±

33.8

1.

0000

E

rror

Mag

nific

atio

n

Inve

rse

Isoc

hron

0.

2842

±

0.03

48

136.

5 ±

16.7

0.

23

95.6

6

±

12.2

5%

± 12

.25%

9

Min

imal

Ext

erna

l Err

or

± 17

.5

2.01

S

tatis

tical

F ra

tio

Ana

lytic

al E

rror

±

16.7

1.

0000

E

rror

Mag

nific

atio

n

T

able

9.3

3: D

egas

sing

pat

tern

s for

MA

DE

RA

S-00

4

Deg

assi

ng P

atte

rns

36

Ar(

a)

%1σ

36

Ar(

c)

%1σ

36

Ar(

ca)

%1σ

36

Ar(

cl)

%1σ

37

Ar(

ca)

%1σ

38

Ar(

a)

%1σ

38

Ar(

c)

%1σ

38

Ar(

k)

%1σ

BH

5991

6

75 °

C

0.00

3777

0.

49

0.00

0000

0

.00

0.

0000

12

2.6

5

0.00

0000

0

.00

0.

0469

03

2.6

5 0.

0007

06

0.4

9 0.

0000

00

0.0

0 0.

0002

88

0.3

7

BH

5992

7

20 °

C

0.00

1688

1.

11

0.00

0000

0

.00

0.

0000

08

2.6

6

0.00

0000

0

.00

0.

0311

65

2.6

6 0.

0003

15

1.1

1 0.

0000

00

0.0

0 0.

0001

48

0.3

7

BH

5993

7

85 °

C

0.00

3081

0.

80

0.00

0000

0

.00

0.

0000

37

2.6

6

0.00

0000

0

.00

0.

1387

34

2.6

6 0.

0005

76

0.8

0 0.

0000

00

0.0

0 0.

0005

72

0.2

2

BH

5994

8

30 °

C

0.00

1587

1.

12

0.00

0000

0

.00

0.

0000

21

2.6

5

0.00

0000

0

.00

0.

0783

12

2.6

5 0.

0002

97

1.1

2 0.

0000

00

0.0

0 0.

0003

87

0.1

8

BH

5995

8

75 °

C

0.00

1779

0.

81

0.00

0000

0

.00

0.

0000

36

2.5

6

0.00

0000

0

.00

0.

1376

66

2.5

6 0.

0003

32

0.8

1 0.

0000

00

0.0

0 0.

0007

50

0.0

7

BH

5996

9

25 °

C

0.00

1863

0.

82

0.00

0000

0

.00

0.

0000

54

2.5

8

0.00

0000

0

.00

0.

2035

48

2.5

8 0.

0003

48

0.8

2 0.

0000

00

0.0

0 0.

0011

35

0.1

0

BH

5997

9

80 °

C

0.00

1834

0.

53

0.00

0000

0

.00

0.

0000

63

2.6

0

0.00

0000

0

.00

0.

2380

72

2.6

0 0.

0003

43

0.5

3 0.

0000

00

0.0

0 0.

0010

91

0.1

5

BH

5998

10

50 °

C

0.00

2292

0.

79

0.00

0000

0

.00

0.

0000

60

2.5

9

0.00

0000

0

.00

0.

2256

12

2.5

9 0.

0004

28

0.7

9 0.

0000

00

0.0

0 0.

0006

80

0.1

2

BH

5999

11

40 °

C

0.00

4698

0.

28

0.00

0000

0

.00

0.

0000

52

2.6

0

0.00

0000

0

.00

0.

1981

25

2.6

0 0.

0008

78

0.2

8 0.

0000

00

0.0

0 0.

0004

87

0.4

0

BH

6000

12

25 °

C

0.

0040

05

0.46

0.

0000

00

0.0

0

0.00

0082

2

.58

0.

0000

00

0.0

0

0.31

2391

2

.58

0.00

0748

0

.46

0.00

0000

0

.00

0.00

0251

0

.27

Σ 0.

0266

03

0.21

0.

0000

00

0.0

0

0.00

0425

0

.93

0.

0000

00

0.0

0

1.61

0527

0

.93

0.00

4972

0

.21

0.00

0000

0

.00

0.00

5789

0

.06

Σ

0.02

7028

0

.20

1.

6105

27

0.9

3

Page 107: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

92

Tab

le 9

.33:

Con

tinue

d

38A

r(ca

) %

38A

r(cl

) %

39A

r(k)

%

39A

r(ca

) %

40A

r(r)

%

40A

r(a)

%

40A

r(c)

%

40A

r(k)

%

0.00

0000

0

.00

0.

0000

82

36.

83

0.

0238

39

0.3

7

0.00

0032

2

.65

0.

0029

37

190.

61

1.

1161

43

0.4

9

0.00

0000

0

.00

0.

0000

00

0.0

0

0.00

0000

0

.00

0.

0000

74

23.

06

0.

0122

43

0.3

7

0.00

0021

2

.66

0.

0077

36

71.

94

0.

4987

98

1.1

1

0.00

0000

0

.00

0.

0000

00

0.0

0

0.00

0000

0

.00

0.

0000

51

56.

28

0.

0474

12

0.2

2

0.00

0093

2

.66

0.

0160

62

45.

39

0.

9102

96

0.8

0

0.00

0000

0

.00

0.

0000

00

0.0

0

0.00

0000

0

.00

0.

0000

00

0.0

0

0.03

2112

0

.18

0.

0000

53

2.6

5

0.00

9296

5

7.57

0.46

8977

1

.12

0.

0000

00

0.0

0

0.00

0000

0

.00

0.00

0000

0

.00

0.

0000

00

0.0

0

0.06

2204

0

.07

0.

0000

93

2.5

6

0.01

8294

2

3.69

0.52

5634

0

.81

0.

0000

00

0.0

0

0.00

0000

0

.00

0.00

0000

0

.00

0.

0000

00

0.0

0

0.09

4103

0

.10

0.

0001

37

2.5

8

0.02

5853

1

7.66

0.55

0529

0

.82

0.

0000

00

0.0

0

0.00

0000

0

.00

0.00

0000

0

.00

0.

0000

65

52.

02

0.

0904

63

0.1

5

0.00

0160

2

.60

0.

0241

65

12.

27

0.

5418

54

0.5

3

0.00

0000

0

.00

0.

0000

00

0.0

0

0.00

0000

0

.00

0.

0000

94

41.

66

0.

0564

23

0.1

2

0.00

0152

2

.59

0.

0134

10

40.

29

0.

6773

72

0.7

9

0.00

0000

0

.00

0.

0000

00

0.0

0

0.00

0000

0

.00

0.

0002

08

7.3

7

0.04

0385

0

.40

0.

0001

33

2.6

0

0.00

7986

5

0.33

1.38

8112

0

.28

0.

0000

00

0.0

0

0.00

0000

0

.00

0.00

0000

0

.00

0.

0002

29

8.0

4

0.02

0838

0

.27

0.

0002

10

2.5

8

0.00

0000

0

.00

1.

1834

20

0.4

6

0.00

0000

0

.00

0.

0000

00

0.0

0

0.

0008

02

9.0

4

0.48

0022

0

.06

0.

0010

84

0.9

3

0.12

5738

1

2.27

7.86

1135

0

.21

0.

0000

00

0.0

0

0.00

0000

0

.00

0.00

0000

0

.00

0.

0115

64

0.6

3

0.48

1106

0

.06

7.

9868

73

0.2

8

T

able

9.3

4: A

dditi

onal

par

amet

ers f

or M

AD

ER

AS-

004

Add

ition

al

Par

amet

ers

40

(r)/

39(k

) 1σ

40

(r+a

) 1σ

40

Ar/

39A

r 1σ

37

Ar/

39A

r 1σ

36

Ar/

39A

r 1σ

T

ime

(day

s)

BH

5991

6

75 °

C

0.1

2318

2

0.23

480

1.1

1908

0

0.00

117

46.

8806

99

0.

1794

0 1

.964

859

0.

0525

0 0

.158

751

0.

0009

7 1

28.9

48

BH

5992

7

20 °

C

0.6

3185

3

0.45

458

0.5

0653

4

0.00

069

41.

3018

48

0.

1623

8 2

.541

141

0.

0682

1 0

.138

306

0.

0016

1 1

28.9

83

BH

5993

7

85 °

C

0.3

3878

6

0.15

378

0.9

2635

8

0.00

067

19.

5001

91

0.

0455

0 2

.920

401

0.

0779

0 0

.065

617

0.

0005

4 1

29.0

18

BH

5994

8

30 °

C

0.2

8947

9

0.16

667

0.4

7827

2

0.00

091

14.

8696

43

0.

0385

7 2

.434

747

0.

0647

3 0

.049

985

0.

0005

6 1

29.0

53

BH

5995

8

75 °

C

0.2

9410

4

0.06

968

0.5

4392

9

0.00

070

8.7

3130

0

0.01

297

2.2

0985

2

0.05

671

0.0

2913

7

0.00

023

129

.088

B

H59

96

925

°C

0

.274

733

0.

0485

2 0

.576

382

0.

0006

8 6

.116

078

0.

0092

9 2

.159

875

0.

0556

7 0

.020

339

0.

0001

6 1

29.1

23

BH

5997

9

80 °

C

0.2

6712

5

0.03

279

0.5

6601

9

0.00

065

6.2

4586

6

0.01

184

2.6

2706

5

0.06

832

0.0

2092

8

0.00

011

129

.158

B

H59

98

1050

°C

0

.237

661

0.

0957

6 0

.690

781

0.

0005

5 1

2.21

0023

0.01

734

3.9

8783

9

0.10

336

0.0

4157

1

0.00

032

129

.193

B

H59

99

1140

°C

0

.197

743

0.

0995

3 1

.396

098

0.

0007

8 3

4.45

6287

0.13

844

4.8

8980

0

0.12

880

0.1

1722

7

0.00

057

129

.228

B

H60

00

1225

°C

0.0

0000

0

0.00

000

1.1

8336

7

0.00

088

56.

2213

10

0.

1540

6 1

4.84

1599

0.38

470

0.1

9418

5

0.00

101

129

.263

Page 108: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

93

Tab

le 9

.34:

Con

tinue

d

37A

r (d

ecay

) 39

Ar

(dec

ay)

40A

r (m

oles

)

12.7

7373

005

1.00

0910

42

6.60

5E-1

5 12

.782

6690

3 1.

0009

1067

2.

990E

-15

12.7

9143

882

1.00

0910

91

5.46

7E-1

5 12

.800

2146

3 1.

0009

1116

2.

823E

-15

12.8

0917

215

1.00

0911

41

3.21

0E-1

5 12

.817

9601

2 1.

0009

1165

3.

402E

-15

12.8

2675

412

1.00

0911

90

3.34

1E-1

5 12

.835

7302

1 1.

0009

1215

4.

077E

-15

12.8

4453

641

1.00

0912

39

8.24

0E-1

5 12

.853

3486

4 1.

0009

1264

6.

984E

-15

T

able

9.3

5: P

roce

dure

Bla

nks f

or M

AD

ER

AS-

004

Pro

cedu

re

Bla

nks

36A

r 1σ

37

Ar

38A

r 1σ

39

Ar

40A

r 1σ

BH

5991

6

75 °

C

0.0

0005

7 0

.000

008

0.0

0000

1 0

.000

009

0.0

0001

1 0

.000

013

0.0

0000

2 0

.000

011

0.0

1487

5 0

.000

529

BH

5992

7

20 °

C

0.0

0005

7 0

.000

008

0.0

0000

5 0

.000

010

0.0

0001

2 0

.000

013

0.0

0000

5 0

.000

012

0.0

1520

8 0

.000

576

BH

5993

7

85 °

C

0.0

0005

6 0

.000

008

0.0

0001

2 0

.000

010

0.0

0001

4 0

.000

013

0.0

0001

2 0

.000

012

0.0

1546

5 0

.000

576

BH

5994

8

30 °

C

0.0

0005

6 0

.000

008

0.0

0001

7 0

.000

010

0.0

0001

5 0

.000

013

0.0

0002

1 0

.000

012

0.0

1572

6 0

.000

576

BH

5995

8

75 °

C

0.0

0005

8 0

.000

008

0.0

0002

3 0

.000

010

0.0

0001

6 0

.000

013

0.0

0003

2 0

.000

012

0.0

1605

4 0

.000

576

BH

5996

9

25 °

C

0.0

0006

0 0

.000

008

0.0

0003

0 0

.000

010

0.0

0001

7 0

.000

013

0.0

0004

3 0

.000

012

0.0

1650

0 0

.000

576

BH

5997

9

80 °

C

0.0

0006

4 0

.000

008

0.0

0003

9 0

.000

010

0.0

0001

8 0

.000

013

0.0

0005

2 0

.000

012

0.0

1708

7 0

.000

576

BH

5998

10

50 °

C

0.0

0006

9 0

.000

007

0.0

0005

2 0

.000

010

0.0

0001

8 0

.000

012

0.0

0005

0 0

.000

008

0.0

1769

7 0

.000

527

BH

5999

11

40 °

C

0.0

0007

7 0

.000

007

0.0

0006

9 0

.000

010

0.0

0001

5 0

.000

012

0.0

0003

6 0

.000

008

0.0

1971

9 0

.000

527

BH

6000

12

25 °

C

0.0

0008

5 0

.000

007

0.0

0007

3 0

.000

010

0.0

0001

1 0

.000

012

0.0

0003

7 0

.000

008

0.0

2208

6 0

.000

527

Page 109: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

94

Tab

le 9

.36:

Inte

rcep

t val

ues f

or M

AD

ER

AS-

004

Inte

rcep

t V

alue

s 36

Ar

r2

37

Ar

r2

38

Ar

r2

BH

5991

6

75 °

C

0.0

0392

4 0

.000

017

0.98

67

EX

P

8 of

8

0.0

0372

9 0

.000

025

0.96

29

EX

P

8 of

8

0.0

0109

7 0

.000

027

0.44

04

EX

P

8 of

8

BH

5992

7

20 °

C

0.0

0178

7 0

.000

017

0.92

09

LIN

8

of 8

0

.002

480

0.0

0001

5 0.

9646

E

XP

8

of 8

0

.000

555

0.0

0001

1 0.

8599

E

XP

7

of 8

B

H59

93

785

°C

0

.003

237

0.0

0002

4 0.

9589

E

XP

8

of 8

0

.011

023

0.0

0008

2 0.

9669

E

XP

8

of 8

0

.001

225

0.0

0002

6 0.

6078

E

XP

8

of 8

B

H59

94

830

°C

0

.001

697

0.0

0001

6 0.

9388

LI

N

6 of

8

0.0

0622

8 0

.000

044

0.95

96

EX

P

8 of

8

0.0

0068

9 0

.000

030

0.10

10

EX

P

8 of

8

BH

5995

8

75 °

C

0.0

0191

0 0

.000

012

0.96

69

EX

P

8 of

8

0.0

1093

4 0

.000

026

0.99

60

EX

P

8 of

8

0.0

0106

8 0

.000

020

0.29

58

LIN

8

of 8

B

H59

96

925

°C

0

.002

016

0.0

0001

3 0.

9784

LI

N

6 of

8

0.0

1615

2 0

.000

055

0.99

26

EX

P

8 of

8

0.0

0149

1 0

.000

028

0.72

44

EX

P

8 of

8

BH

5997

9

80 °

C

0.0

0199

9 0

.000

006

0.99

35

EX

P

8 of

8

0.0

1888

3 0

.000

088

0.98

57

EX

P

8 of

8

0.0

0153

2 0

.000

031

0.77

19

EX

P

8 of

8

BH

5998

10

50 °

C

0.0

0246

9 0

.000

017

0.97

20

LIN

7

of 8

0

.017

897

0.0

0007

5 0.

9860

E

XP

8

of 8

0

.001

234

0.0

0003

8 0.

3378

E

XP

8

of 8

B

H59

99

1140

°C

0

.004

923

0.0

0001

0 0.

9975

E

XP

7

of 8

0

.015

729

0.0

0007

8 0.

9838

E

XP

8

of 8

0

.001

605

0.0

0000

9 0.

8885

LI

N

7 of

8

BH

6000

12

25 °

C

0.0

0425

5 0

.000

017

0.98

87

LIN

8

of 8

0

.024

749

0.0

0008

5 0.

9908

E

XP

8

of 8

0

.001

252

0.0

0001

4 0.

5297

E

XP

8

of 8

T

able

9.3

6: C

ontin

ued

39A

r 1σ

r2

40A

r 1σ

r2

0.0

2397

2 0

.000

087

0.98

37

LIN

7

of 8

1

.133

954

0.0

0104

3 0.

9991

E

XP

8

of 8

0

.012

320

0.0

0004

4 0.

9763

LI

N

8 of

8

0.5

2174

3 0

.000

375

0.99

95

EX

P

8 of

8

0.0

4771

5 0

.000

104

0.96

05

EX

P

8 of

8

0.9

4182

3 0

.000

332

0.99

99

EX

P

8 of

8

0.0

3232

0 0

.000

055

0.98

61

EX

P

8 of

8

0.4

9399

8 0

.000

699

0.99

79

EX

P

8 of

8

0.0

6258

8 0

.000

040

0.99

95

EX

P

6 of

8

0.5

5998

3 0

.000

399

0.99

96

EX

P

7 of

8

0.0

9467

6 0

.000

085

0.99

91

EX

P

8 of

8

0.5

9288

2 0

.000

364

0.99

96

EX

P

8 of

8

0.0

9105

3 0

.000

135

0.99

74

EX

P

8 of

8

0.5

8310

6 0

.000

291

0.99

97

EX

P

4 of

8

0.0

5686

1 0

.000

064

0.99

62

EX

P

7 of

8

0.7

0847

8 0

.000

141

1.00

00

EX

P

6 of

8

0.0

4072

3 0

.000

161

0.81

06

EX

P

8 of

8

1.4

1581

7 0

.000

570

0.99

98

LIN

8

of 8

0

.021

173

0.0

0005

5 0.

9960

E

XP

7

of 8

1

.205

453

0.0

0070

2 0.

9997

E

XP

8

of 8

Page 110: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

95

Tab

le 9

.37:

Sam

ple

para

met

ers f

or M

AD

ER

AS-

004

Sam

ple

Par

amet

ers

Sam

ple

Mat

eria

l Lo

catio

n A

naly

st

Temp

Sta

ndar

d %

J %

MD

F %

(in M

a)

BH

5991

6

75 °

C

MA

D00

4 gr

ound

mas

s U

W93

C44

B

rian

Jich

a 67

5 28

.201

0.

08

0.00

0262

3 0.

05

1.00

5096

0.

03

BH

5992

7

20 °

C

MA

D00

4 gr

ound

mas

s U

W93

C44

B

rian

Jich

a 72

0 28

.201

0.

08

0.00

0262

3 0.

05

1.00

5096

0.

03

BH

5993

7

85 °

C

MA

D00

4 gr

ound

mas

s U

W93

C44

B

rian

Jich

a 78

5 28

.201

0.

08

0.00

0262

3 0.

05

1.00

5096

0.

03

BH

5994

8

30 °

C

MA

D00

4 gr

ound

mas

s U

W93

C44

B

rian

Jich

a 83

0 28

.201

0.

08

0.00

0262

3 0.

05

1.00

5096

0.

03

BH

5995

8

75 °

C

MA

D00

4 gr

ound

mas

s U

W93

C44

B

rian

Jich

a 87

5 28

.201

0.

08

0.00

0262

3 0.

05

1.00

5096

0.

03

BH

5996

9

25 °

C

MA

D00

4 gr

ound

mas

s U

W93

C44

B

rian

Jich

a 92

5 28

.201

0.

08

0.00

0262

3 0.

05

1.00

5096

0.

03

BH

5997

9

80 °

C

MA

D00

4 gr

ound

mas

s U

W93

C44

B

rian

Jich

a 98

0 28

.201

0.

08

0.00

0262

3 0.

05

1.00

5096

0.

03

BH

5998

10

50 °

C

MA

D00

4 gr

ound

mas

s U

W93

C44

B

rian

Jich

a 10

50

28.2

01

0.08

0.

0002

623

0.05

1.

0050

96

0.03

B

H59

99

1140

°C

M

AD

004

grou

ndm

ass

UW

93C

44

Bria

n Ji

cha

1140

28

.201

0.

08

0.00

0262

3 0.

05

1.00

5096

0.

03

BH

6000

12

25 °

C

MA

D00

4 gr

ound

mas

s U

W93

C44

B

rian

Jich

a 12

25

28.2

01

0.08

0.

0002

623

0.05

1.

0050

96

0.03

T

able

9.3

7: C

ontin

ued

Vol

ume

Rat

io

Sen

sitiv

ity

Day

Month

Year

Hour

Min

Resist

Irra

diat

ion

Pro

ject

E

xper

imen

t

Nmb

Sta

ndar

d N

ame

(mol

/vol

t)

1 5.

902E

-15

21

OC

T

2011

15

56

00

1 U

W93

U

W93

C

UW

93C

44

01

FC

S

1 5.

902E

-15

21

OC

T

2011

16

47

00

1 U

W93

U

W93

C

UW

93C

44

01

FC

S

1 5.

902E

-15

21

OC

T

2011

17

37

00

1 U

W93

U

W93

C

UW

93C

44

01

FC

S

1 5.

902E

-15

21

OC

T

2011

18

27

00

1 U

W93

U

W93

C

UW

93C

44

01

FC

S

1 5.

902E

-15

21

OC

T

2011

19

18

00

1 U

W93

U

W93

C

UW

93C

44

01

FC

S

1 5.

902E

-15

21

OC

T

2011

20

08

00

1 U

W93

U

W93

C

UW

93C

44

01

FC

S

1 5.

902E

-15

21

OC

T

2011

20

58

00

1 U

W93

U

W93

C

UW

93C

44

01

FC

S

1 5.

902E

-15

21

OC

T

2011

21

49

00

1 U

W93

U

W93

C

UW

93C

44

01

FC

S

1 5.

902E

-15

21

OC

T

2011

22

39

00

1 U

W93

U

W93

C

UW

93C

44

01

FC

S

1 5.

902E

-15

21

OC

T

2011

23

29

00

1 U

W93

U

W93

C

UW

93C

44

01

FC

S

Page 111: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

96

Tab

le 9

.38:

Irra

diat

ion

Con

stan

ts fo

r M

AD

ER

AS-

004

Irra

diat

ion

C

onst

ants

40

/36(

a)

%1σ

40

/36(

c)

%1σ

38

/36(

a)

%1σ

38

/36(

c)

%1σ

39

/37(

ca)

%1σ

38

/37(

ca)

%1σ

36

/37

(ca)

%

40/3

9 (k

) %

BH

5991

6

75 °

C

295.

5 0

0.01

8 35

0.

1869

0

1.49

3 3

0.00

0673

0

0 0

0.00

0264

0

0 0

BH

5992

7

20 °

C

295.

5 0

0.01

8 35

0.

1869

0

1.49

3 3

0.00

0673

0

0 0

0.00

0264

0

0 0

BH

5993

7

85 °

C

295.

5 0

0.01

8 35

0.

1869

0

1.49

3 3

0.00

0673

0

0 0

0.00

0264

0

0 0

BH

5994

8

30 °

C

295.

5 0

0.01

8 35

0.

1869

0

1.49

3 3

0.00

0673

0

0 0

0.00

0264

0

0 0

BH

5995

8

75 °

C

295.

5 0

0.01

8 35

0.

1869

0

1.49

3 3

0.00

0673

0

0 0

0.00

0264

0

0 0

BH

5996

9

25 °

C

295.

5 0

0.01

8 35

0.

1869

0

1.49

3 3

0.00

0673

0

0 0

0.00

0264

0

0 0

BH

5997

9

80 °

C

295.

5 0

0.01

8 35

0.

1869

0

1.49

3 3

0.00

0673

0

0 0

0.00

0264

0

0 0

BH

5998

10

50 °

C

295.

5 0

0.01

8 35

0.

1869

0

1.49

3 3

0.00

0673

0

0 0

0.00

0264

0

0 0

BH

5999

11

40 °

C

295.

5 0

0.01

8 35

0.

1869

0

1.49

3 3

0.00

0673

0

0 0

0.00

0264

0

0 0

BH

6000

12

25 °

C

295.

5 0

0.01

8 35

0.

1869

0

1.49

3 3

0.00

0673

0

0 0

0.00

0264

0

0 0

T

able

9.3

8: C

ontin

ued

38/3

9(k)

%

36/3

8(cl

) %

K/C

a %

K/C

l %

Ca/

Cl

%1σ

0.01

206

0 0

0 0.

43

0 0

0 0

0 0.

0120

6 0

0 0

0.43

0

0 0

0 0

0.01

206

0 0

0 0.

43

0 0

0 0

0 0.

0120

6 0

0 0

0.43

0

0 0

0 0

0.01

206

0 0

0 0.

43

0 0

0 0

0 0.

0120

6 0

0 0

0.43

0

0 0

0 0

0.01

206

0 0

0 0.

43

0 0

0 0

0 0.

0120

6 0

0 0

0.43

0

0 0

0 0

0.01

206

0 0

0 0.

43

0 0

0 0

0 0.

0120

6 0

0 0

0.43

0

0 0

0 0

Page 112: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

97

128.7 ± 22.2 Ka

200

100

0

100

200

300

400

500

600

700

800

900

1000

0 10 20 30 40 50 60 70 80 90 100

Cumulative 39Ar Released [ % ]

UW93C44.AGE >>> MAD004 >>> UW93C PROJECT

Ar-Ages in Ka

WEIGHTED PLATEAU128.7 ± 22.2TOTAL FUSION 125.8 ± 30.9NORMAL ISOCHRON 136.5 ± 33.8INVERSE ISOCHRON136.5 ± 16.7

MSWD0.25

Sample Info

groundmassUW93C44Brian Jicha

IRR = UW93J = 0.00026230 ± 0.00000013

Figure 9.9: Age plateau for MADERAS-004

0.136 ± 0.031

0.00

0.03

0.07

0.10

0.13

0.17

0.20

0.23

0.27

0.30

0.33

0 10 20 30 40 50 60 70 80 90 100

Cumulative 39Ar Released [ % ]

UW93C44.AGE >>> MAD004 >>> UW93C PROJECT

Ar-Ages in Ka

WEIGHTED PLATEAU128.7 ± 22.2TOTAL FUSION 125.8 ± 30.9NORMAL ISOCHRON 136.5 ± 33.8INVERSE ISOCHRON136.5 ± 16.7

Sample Info

groundmassUW93C44Brian Jicha

IRR = UW93J = 0.00026230 ± 0.00000013

Figure 9.10: K-Ca plateau for MADERAS-004

Page 113: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

98

0

30

60

90

120

150

180

210

240

270

300

330

360

390

0 5 10 15 20 25 30 35 40 45 50 55 60 65

39Ar / 36Ar

UW93C44.AGE >>> MAD004 >>> UW93C PROJECT

Ar-Ages in Ka

WEIGHTED PLATEAU128.7 ± 22.2TOTAL FUSION 125.8 ± 30.9NORMAL ISOCHRON 136.5 ± 33.8INVERSE ISOCHRON136.5 ± 16.7

MSWD0.23

40AR/36AR INTERCEPT295.0 ± 1.7

Sample Info

groundmassUW93C44Brian Jicha

IRR = UW93J = 0.00026230 ± 0.00000013

Figure 9.11: Normal isochron for MADERAS-004

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

0.0045

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

39Ar / 40Ar

UW93C44.AGE >>> MAD004 >>> UW93C PROJECT

Ar-Ages in Ka

WEIGHTED PLATEAU128.7 ± 22.2TOTAL FUSION 125.8 ± 30.9NORMAL ISOCHRON 136.5 ± 33.8INVERSE ISOCHRON136.5 ± 16.7

MSWD0.23

40AR/36AR INTERCEPT295.0 ± 0.9

Sample Info

groundmassUW93C44Brian Jicha

IRR = UW93J = 0.00026230 ± 0.00000013

Figure 9.12: Inverse isochron for MADERAS-004

Page 114: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

99 9.2.

4 Sa

mpl

e M

AD

ER

AS-

011

T

able

9.3

9: In

crem

enta

l hea

ting

sum

mar

y fo

r M

AD

ER

AS-

011

Incr

emen

tal

Hea

ting

36

Ar(

a)

37A

r(ca

) 38

Ar(

cl)

39A

r(k)

40

Ar(

r)

Age

±

40A

r(r)

39

Ar(

k)

K/C

a ±

(Ka)

(%

) (%

) B

H60

60

740

°C

0

.000

124

0.0

2301

9 0

.000

003

0.0

1568

8

0.00

3512

10

7.5

± 16

6.0

8.7

3 1

.51

0.29

3 ±

0.01

8 B

H60

61

800

°C

0

.000

228

0.0

7009

3 0

.000

000

0.0

5583

2

0.01

9952

17

1.6

± 44

.8

22.

87

5.3

9 0.

343

± 0.

018

BH

6062

8

50 °

C

0.0

0030

9 0

.121

757

0.0

0000

0 0

.125

356

0.

0454

82

174.

2 ±

21.9

3

3.23

1

2.09

0.

443

± 0.

024

BH

6063

9

00 °

C

0.0

0044

4 0

.166

247

0.0

0000

0 0

.200

783

0.

0730

28

174.

6 ±

12.5

3

5.77

1

9.37

0.

519

± 0.

028

BH

6064

9

50 °

C

0.0

0037

7 0

.157

022

0.0

0000

0 0

.212

810

0.

0788

61

177.

9 ±

9.4

41.

42

20.

53

0.58

3 ±

0.03

1 B

H60

65

1010

°C

0

.000

495

0.1

8714

3 0

.000

000

0.2

0170

7

0.07

3853

17

5.8

± 17

.5

33.

53

19.

46

0.46

3 ±

0.02

4 B

H60

66

1080

°C

0

.000

590

0.1

6152

0 0

.000

071

0.1

1465

6

0.04

3542

18

2.3

± 19

.5

19.

98

11.

06

0.30

5 ±

0.01

6 B

H60

67

1160

°C

0

.000

744

0.1

0641

8 0

.000

170

0.0

5235

7

0.02

0646

18

9.3

± 80

.2

8.5

8 5

.05

0.21

2 ±

0.01

1 B

H60

68

1225

°C

0

.001

367

0.2

1559

2 0

.000

269

0.0

5735

6

0.02

0090

16

8.2

± 64

.2

4.7

4 5

.53

0.11

4 ±

0.00

6

Σ 0

.004

679

1.2

0881

0 0

.000

514

1.0

3654

4

0.37

8966

T

able

9.3

9: C

ontin

ued

Info

rmat

ion

on A

naly

sis

R

esul

ts

40(r

)/39

(k)

± 2σ

A

ge

± 2σ

MSWD

39A

r(k)

K

/Ca

± 2σ

(Ka)

(%

,n)

Sam

ple

= M

AD

011

A

ge P

late

au

0.36

82

± 0.

0128

17

6.8

± 6.

1 0.

19

100.

00

0.21

2 ±

0.09

1 M

ater

ial =

gro

undm

ass

±

3.47

%

± 3.

47%

9

Loc

atio

n =

UW

93C

47

M

inim

al E

xter

nal E

rror

±

9.2

2.31

S

tatis

tical

T R

atio

A

naly

st =

Bria

n Ji

cha

A

naly

tical

Err

or

± 6.

1 1.

0000

E

rror

Mag

nific

atio

n P

roje

ct =

UW

93C

Mas

s D

iscr

imin

atio

n La

w =

LIN

Tot

al F

usio

n A

ge

0.36

56

± 0.

0179

17

5.5

± 8.

6

9 0.

369

± 0.

007

Irra

diat

ion

= U

W93

± 4.

90%

±

4.90

%

J =

0.0

0026

230

± 0.

0000

0013

Min

imal

Ext

erna

l Err

or

± 11

.0

FC

S =

28.

201

± 0.

023

Ma

A

naly

tical

Err

or

± 8.

6

Page 115: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

100

Table 9.40: Normal Isochron Table for MADERAS-011

Normal Isochron

39(k)/36(a) ± 2σ 40(a+r)/36(a) ± 2σ

r.i.

BH6060 740 °C 126.2 ± 18.5 323.8 ± 47.8 0.9914 BH6061 800 °C 245.3 ± 18.7 383.1 ± 29.4 0.9895 BH6062 850 °C 405.3 ± 25.1 442.5 ± 27.5 0.9935 BH6063 900 °C 452.5 ± 17.9 460.1 ± 18.2 0.9890 BH6064 950 °C 563.8 ± 20.8 504.4 ± 18.6 0.9923 BH6065 1010 °C 407.2 ± 20.4 444.6 ± 22.3 0.9958 BH6066 1080 °C 194.3 ± 5.1 369.3 ± 9.8 0.9786 BH6067 1160 °C 70.3 ± 2.8 323.2 ± 12.8 0.9884 BH6068 1225 °C 42.0 ± 0.8 310.2 ± 5.9 0.9409

Table 9.40: Continued

Results 40(a)/36(a) ± 2σ 40(r)/39(k) ± 2σ Age ± 2σ

MS

WD

(Ka)

Normal Isochron

295.4061 ± 5.2321 0.3683 ± 0.0189 176.8 ± 9.1 0.23 ± 1.77% ± 5.14% ± 5.14%

Minimal External Error ± 11.4 Analytical Error ± 9.1

Statistics Statistical F ratio 2.01 Convergence 0.0000000023 Error Magnification 1.0000 Number of Iterations 17

Number of Data Points 9 Calculated Line Weighted York-2

Table 9.41: Inverse isochron table for MADERAS-011

Inverse Isochron

39(k)/40(a+r) ± 2σ 36(a)/40(a+r) ± 2σ

r.i.

BH6060 740 °C 0.389861 ± 0.007511 0.003089 ± 0.000456 0.1058 BH6061 800 °C 0.640108 ± 0.007115 0.002610 ± 0.000201 0.1346 BH6062 850 °C 0.915773 ± 0.006475 0.002260 ± 0.000140 0.0960 BH6063 900 °C 0.983482 ± 0.005769 0.002174 ± 0.000086 0.0831 BH6064 950 °C 1.117656 ± 0.005116 0.001983 ± 0.000073 0.0711 BH6065 1010 °C 0.915842 ± 0.004224 0.002249 ± 0.000113 0.0447 BH6066 1080 °C 0.526070 ± 0.002881 0.002708 ± 0.000072 0.1231 BH6067 1160 °C 0.217620 ± 0.001314 0.003094 ± 0.000123 0.0814 BH6068 1225 °C 0.135291 ± 0.000909 0.003224 ± 0.000061 0.0462

Table 9.41: Continued

Results 40(a)/36(a) ± 2σ 40(r)/39(k) ± 2σ Age ± 2σ

MS

WD

(Ka)

Inverse Isochron

295.4567 ± 2.6172 0.3683 ± 0.0095 176.8 ± 4.5 0.21 ± 0.89% ± 2.57% ± 2.57%

Minimal External Error ± 8.3 Analytical Error ± 4.5

Statistics Statistical F ratio 2.01 Convergence 0.0000013935 Error Magnification 1.0000 Number of Iterations 4

Number of Data Points 9 Calculated Line Weighted York-2

Page 116: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

101

Tab

le 9

.42:

Rel

ativ

e ab

unda

nces

for

MA

DE

RA

S-01

1

Rel

ativ

e A

bund

ance

s

36A

r %

37A

r %

38A

r %

39A

r %

40A

r %

Age

±

40A

r(r)

39

Ar(

k)

K/C

a ±

(Ka)

(%

) (%

)

BH

6060

7

40 °

C

0.00

0130

4 6.

981

0.0

2301

92

3.00

0 0

.000

2159

5.

827

0.0

1570

33

0.42

0 0

.040

2394

0.

867

107.

5 ±

166.

0 8

.73

1.5

1 0.

293

± 0.

018

BH

6061

8

00 °

C

0.00

0246

2 3.

514

0.0

7009

31

2.66

8 0

.000

6623

4.

774

0.0

5587

93

0.14

6 0

.087

2230

0.

536

171.

6 ±

44.8

2

2.87

5

.39

0.34

3 ±

0.01

8

BH

6062

8

50 °

C

0.00

0341

5 2.

785

0.1

2175

69

2.66

0 0

.001

4062

1.

053

0.1

2543

75

0.14

0 0

.136

8849

0.

325

174.

2 ±

21.9

3

3.23

1

2.09

0.

443

± 0.

024

BH

6063

9

00 °

C

0.00

0487

6 1.

775

0.1

6624

65

2.65

3 0

.002

3439

1.

198

0.2

0089

52

0.19

4 0

.204

1555

0.

220

174.

6 ±

12.5

3

5.77

1

9.37

0.

519

± 0.

028

BH

6064

9

50 °

C

0.00

0418

9 1.

636

0.1

5702

17

2.65

5 0

.002

5520

1.

550

0.2

1291

56

0.14

9 0

.190

4073

0.

173

177.

9 ±

9.4

41.

42

20.

53

0.58

3 ±

0.03

1

BH

6065

10

10 °

C

0.00

0544

8 2.

260

0.1

8714

33

2.63

1 0

.002

5164

0.

458

0.2

0183

34

0.16

5 0

.220

2427

0.

161

175.

8 ±

17.5

3

3.53

1

9.46

0.

463

± 0.

024

BH

6066

10

80 °

C

0.00

0632

8 1.

207

0.1

6151

97

2.66

8 0

.001

5643

2.

054

0.1

1476

44

0.17

4 0

.217

9478

0.

211

182.

3 ±

19.5

1

9.98

1

1.06

0.

305

± 0.

016

BH

6067

11

60 °

C

0.00

0772

4 1.

898

0.1

0641

80

2.67

1 0

.000

9406

2.

162

0.0

5242

85

0.20

6 0

.240

5887

0.

221

189.

3 ±

80.2

8

.58

5.0

5 0.

212

± 0.

011

BH

6068

12

25 °

C

0.00

1423

6 0.

896

0.2

1559

21

2.65

3 0

.001

2159

2.

367

0.0

5750

08

0.31

3 0

.423

9441

0.

121

168.

2 ±

64.2

4

.74

5.5

3 0.

114

± 0.

006

Σ 0.

0049

982

0.61

9 1

.208

8104

0.

961

0.0

1341

75

0.58

4 1

.037

3580

0.

067

1.7

6163

34

0.07

5

T

able

9.4

2: C

ontin

ued

Info

rmat

ion

on A

naly

sis

and

Con

stan

ts U

sed

in C

alcu

latio

ns

Sam

ple

= M

AD

011

Ext

ract

ion

Met

hod

= U

ndef

ined

M

ater

ial =

gro

undm

ass

Hea

ting

= 90

0 se

c L

ocat

ion

= U

W93

C47

Is

olat

ion

= 15

.00

min

A

naly

st =

Bria

n Ji

cha

Inst

rum

ent =

MA

P21

5 P

roje

ct =

UW

93C

L

ithol

ogy

= U

ndef

ined

M

ass

Dis

crim

inat

ion

Law

= L

IN

Lat

-Lon

= U

ndef

ined

- U

ndef

ined

Ir

radi

atio

n =

UW

93

Age

Equ

atio

ns =

Con

vent

iona

l J

= 0

.000

2623

0 ±

0.00

0000

13

Neg

ativ

e In

tens

ities

= F

orce

d Z

ero

FC

S =

28.

201

± 0.

023

Ma

Dec

ay C

onst

ant 4

0K =

5.4

63 ±

0.1

07 E

-10

1/a

IGS

N =

Und

efin

ed

Dec

ay C

onst

ant 3

9Ar =

2.9

40 ±

0.0

29 E

-07

1/h

Pre

ferr

ed A

ge =

Und

efin

ed

Dec

ay C

onst

ant 3

7Ar =

8.2

30 ±

0.0

82 E

-04

1/h

Cla

ssifi

catio

n =

Und

efin

ed

No

36C

l Cor

rect

ion

Exp

erim

ent T

ype

= U

ndef

ined

N

o 36

Cl C

orre

ctio

n

Page 117: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

102

Tab

le 9

.42:

Con

tinue

d

Res

ults

40

(r)/

39(k

) ±

Age

±

MSWD

39A

r(k)

K

/Ca

± 2σ

(K

a)

(%,n

)

Age

Pla

teau

0.

3682

±

0.01

28

176.

8 ±

6.1

0.19

10

0.00

0.

212

± 0.

091

± 3.

47%

±

3.47

%

9

Min

imal

Ext

erna

l Err

or

± 9.

2 2.

31

Sta

tistic

al T

Rat

io

Ana

lytic

al E

rror

±

6.1

1.00

00

Err

or M

agni

ficat

ion

Tot

al F

usio

n A

ge

0.36

56

± 0.

0179

17

5.5

± 8.

6

9 0.

369

± 0.

007

± 4.

90%

±

4.90

%

Min

imal

Ext

erna

l Err

or

± 11

.0

Ana

lytic

al E

rror

±

8.6

Nor

mal

Is

ochr

on

0.36

83

± 0.

0189

17

6.8

± 9.

1 0.

23

100.

00

± 5.

14%

±

5.14

%

9

Min

imal

Ext

erna

l Err

or

± 11

.4

2.01

S

tatis

tical

F ra

tio

Ana

lytic

al E

rror

±

9.1

1.00

00

Err

or M

agni

ficat

ion

Inve

rse

Isoc

hron

0.

3683

±

0.00

95

176.

8 ±

4.5

0.21

10

0.00

±

2.57

%

± 2.

57%

9

Min

imal

Ext

erna

l Err

or

± 8.

3 2.

01

Sta

tistic

al F

ratio

A

naly

tical

Err

or

± 4.

5 1.

0000

E

rror

Mag

nific

atio

n

T

able

9.4

3: D

egas

sing

pat

tern

s for

MA

DE

RA

S-01

1

Deg

assi

ng

Pat

tern

s

36A

r(a)

%

36A

r(c)

%

36A

r(ca

) %

36A

r(cl

) %

37A

r(ca

) %

38A

r(a)

%

38A

r(c)

%

38A

r(k)

%

BH

6060

7

40 °

C

0.00

0124

7

.32

0.00

0000

0

.00

0.00

0006

3

.00

0.00

0000

0

.00

0.02

3019

3

.00

0.

0000

23

7.3

2

0.00

0000

0

.00

0.

0001

89

0.4

2

BH

6061

8

00 °

C

0.00

0228

3

.81

0.00

0000

0

.00

0.00

0019

2

.67

0.00

0000

0

.00

0.07

0093

2

.67

0.

0000

43

3.8

1

0.00

0000

0

.00

0.

0006

73

0.1

5

BH

6062

8

50 °

C

0.00

0309

3

.09

0.00

0000

0

.00

0.00

0032

2

.66

0.00

0000

0

.00

0.12

1757

2

.66

0.

0000

58

3.0

9

0.00

0000

0

.00

0.

0015

12

0.1

4

BH

6063

9

00 °

C

0.00

0444

1

.97

0.00

0000

0

.00

0.00

0044

2

.65

0.00

0000

0

.00

0.16

6247

2

.65

0.

0000

83

1.9

7

0.00

0000

0

.00

0.

0024

21

0.1

9

BH

6064

9

50 °

C

0.00

0377

1

.84

0.00

0000

0

.00

0.00

0041

2

.66

0.00

0000

0

.00

0.15

7022

2

.66

0.

0000

71

1.8

4

0.00

0000

0

.00

0.

0025

66

0.1

5

BH

6065

10

10 °

C

0.00

0495

2

.50

0.00

0000

0

.00

0.00

0049

2

.63

0.00

0000

0

.00

0.18

7143

2

.63

0.

0000

93

2.5

0

0.00

0000

0

.00

0.

0024

33

0.1

7

BH

6066

10

80 °

C

0.00

0590

1

.31

0.00

0000

0

.00

0.00

0043

2

.67

0.00

0000

0

.00

0.16

1520

2

.67

0.

0001

10

1.3

1

0.00

0000

0

.00

0.

0013

83

0.1

7

BH

6067

11

60 °

C

0.00

0744

1

.97

0.00

0000

0

.00

0.00

0028

2

.67

0.00

0000

0

.00

0.10

6418

2

.67

0.

0001

39

1.9

7

0.00

0000

0

.00

0.

0006

31

0.2

1

BH

6068

12

25 °

C

0.00

1367

0

.94

0.00

0000

0

.00

0.00

0057

2

.65

0.00

0000

0

.00

0.21

5592

2

.65

0.

0002

55

0.9

4

0.00

0000

0

.00

0.

0006

92

0.3

1

Σ 0.

0046

79

0.6

6 0.

0000

00

0.0

0 0.

0003

19

0.9

6 0.

0000

00

0.0

0 1.

2088

10

0.9

6

0.00

0875

0

.66

0.

0000

00

0.0

0

0.01

2501

0

.07

Σ

0.

0049

98

0.6

3 1.

2088

10

0.9

6

Page 118: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

103

Tab

le 9

.43:

Con

tinue

d

38A

r(ca

) %

38A

r(cl

) %

39A

r(k)

%

39A

r(ca

) %

40A

r(r)

%

40A

r(a)

%

40A

r(c)

%

40A

r(k)

%

0.

0000

00

0.0

0

0.00

0003

37

0.21

0.01

5688

0

.42

0.

0000

15

3.0

0

0.00

3512

7

7.22

0.03

6727

7

.32

0.

0000

00

0.0

0

0.00

0000

0

.00

0.

0000

00

0.0

0

0.00

0000

0

.00

0.

0558

32

0.1

5

0.00

0047

2

.67

0.

0199

52

13.

04

0.

0672

71

3.8

1

0.00

0000

0

.00

0.

0000

00

0.0

0

0.

0000

00

0.0

0

0.00

0000

0

.00

0.

1253

56

0.1

4

0.00

0082

2

.66

0.

0454

82

6.2

8

0.09

1402

3

.09

0.

0000

00

0.0

0

0.00

0000

0

.00

0.

0000

00

0.0

0

0.00

0000

0

.00

0.

2007

83

0.1

9

0.00

0112

2

.65

0.

0730

28

3.5

9

0.13

1127

1

.97

0.

0000

00

0.0

0

0.00

0000

0

.00

0.

0000

00

0.0

0

0.00

0000

0

.00

0.

2128

10

0.1

5

0.00

0106

2

.66

0.

0788

61

2.6

4

0.11

1547

1

.84

0.

0000

00

0.0

0

0.00

0000

0

.00

0.

0000

00

0.0

0

0.00

0000

0

.00

0.

2017

07

0.1

7

0.00

0126

2

.63

0.

0738

53

4.9

8

0.14

6390

2

.50

0.

0000

00

0.0

0

0.00

0000

0

.00

0.

0000

00

0.0

0

0.00

0071

4

5.26

0.11

4656

0

.17

0.

0001

09

2.6

7

0.04

3542

5

.35

0.

1744

06

1.3

1

0.00

0000

0

.00

0.

0000

00

0.0

0

0.

0000

00

0.0

0

0.00

0170

1

2.09

0.05

2357

0

.21

0.

0000

72

2.6

7

0.02

0646

2

1.17

0.21

9943

1

.97

0.

0000

00

0.0

0

0.00

0000

0

.00

0.

0000

00

0.0

0

0.00

0269

1

0.78

0.05

7356

0

.31

0.

0001

45

2.6

5

0.02

0090

1

9.07

0.40

3854

0

.94

0.

0000

00

0.0

0

0.00

0000

0

.00

0.

0000

00

0.0

0

0.00

0514

9

.67

1.

0365

44

0.0

7

0.00

0814

0

.96

0.

3789

66

2.4

5

1.38

2668

0

.66

0.

0000

00

0.0

0

0.00

0000

0

.00

0.

0138

89

0.3

6

1.03

7358

0

.07

1.

7616

33

0.7

4

T

able

9.4

4: A

dditi

onal

par

amet

ers f

or M

AD

ER

AS-

011

Add

ition

al

Par

amet

ers

40

(r)/3

9(k)

40

(r+a

) 1σ

40

Ar/

39A

r 1σ

37

Ar/

39A

r 1σ

36

Ar/

39A

r 1σ

T

ime

(day

s)

37A

r (d

ecay

) 39

Ar

(dec

ay)

40A

r (m

oles

)

BH

6060

7

40 °

C

0.2

2387

8

0.17

289

0.0

4023

9

0.00

035

2.5

6248

6

0.02

468

1.4

6588

6

0.04

440

0.0

0830

2

0.00

058

132

.021

13

.573

0603

5 1.

0009

3212

2.

375E

-16

BH

6061

8

00 °

C

0.3

5735

3

0.04

661

0.0

8722

3

0.00

047

1.5

6091

7

0.00

867

1.2

5436

5

0.03

352

0.0

0440

5

0.00

015

132

.056

13

.582

3724

0 1.

0009

3237

5.

148E

-16

BH

6062

8

50 °

C

0.3

6282

8

0.02

279

0.1

3688

5

0.00

044

1.0

9126

0

0.00

386

0.9

7065

8

0.02

585

0.0

0272

2

0.00

008

132

.091

13

.591

8772

7 1.

0009

3262

8.

079E

-16

BH

6063

9

00 °

C

0.3

6371

8

0.01

307

0.2

0415

6

0.00

045

1.0

1622

9

0.00

298

0.8

2752

9

0.02

201

0.0

0242

7

0.00

004

132

.126

13

.601

2022

3 1.

0009

3286

1.

205E

-15

BH

6064

9

50 °

C

0.3

7056

8

0.00

978

0.1

9040

7

0.00

033

0.8

9428

5

0.00

205

0.7

3748

3

0.01

961

0.0

0196

8

0.00

003

132

.160

13

.610

5335

9 1.

0009

3311

1.

124E

-15

BH

6065

10

10 °

C

0.3

6613

7

0.01

823

0.2

2024

3

0.00

035

1.0

9121

0

0.00

252

0.9

2721

7

0.02

444

0.0

0269

9

0.00

006

132

.196

13

.620

0581

7 1.

0009

3336

1.

300E

-15

BH

6066

10

80 °

C

0.3

7976

0

0.02

031

0.2

1794

8

0.00

046

1.8

9908

9

0.00

520

1.4

0740

3

0.03

764

0.0

0551

4

0.00

007

132

.231

13

.629

4024

7 1.

0009

3360

1.

286E

-15

BH

6067

11

60 °

C

0.3

9433

6

0.08

348

0.2

4058

9

0.00

053

4.5

8889

5

0.01

384

2.0

2977

5

0.05

438

0.0

1473

2

0.00

028

132

.265

13

.638

7531

7 1.

0009

3385

1.

420E

-15

BH

6068

12

25 °

C

0.3

5026

6

0.06

682

0.4

2394

4

0.00

051

7.3

7283

8

0.02

472

3.7

4937

4

0.10

016

0.0

2475

8

0.00

024

132

.301

13

.648

2975

0 1.

0009

3410

2.

502E

-15

Page 119: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

104

Tab

le 9

.45:

Pro

cedu

re B

lank

s for

MA

DE

RA

S-01

1

Pro

cedu

re

Bla

nks

36A

r 1σ

37

Ar

38A

r 1σ

39

Ar

40A

r 1σ

BH

6060

7

40 °

C

0.0

0004

3 0

.000

006

0.0

0000

6 0

.000

010

0.0

0002

7 0

.000

009

0.0

0001

7 0

.000

014

0.0

1324

2 0

.000

329

BH

6061

8

00 °

C

0.0

0004

4 0

.000

006

0.0

0000

8 0

.000

010

0.0

0002

2 0

.000

009

0.0

0001

7 0

.000

014

0.0

1365

0 0

.000

329

BH

6062

8

50 °

C

0.0

0004

5 0

.000

006

0.0

0000

9 0

.000

010

0.0

0001

9 0

.000

009

0.0

0001

7 0

.000

014

0.0

1399

0 0

.000

329

BH

6063

9

00 °

C

0.0

0004

6 0

.000

006

0.0

0001

1 0

.000

010

0.0

0001

7 0

.000

009

0.0

0001

8 0

.000

014

0.0

1433

0 0

.000

329

BH

6064

9

50 °

C

0.0

0004

7 0

.000

006

0.0

0001

4 0

.000

010

0.0

0001

5 0

.000

009

0.0

0001

9 0

.000

014

0.0

1467

0 0

.000

329

BH

6065

10

10 °

C

0.0

0004

8 0

.000

006

0.0

0001

7 0

.000

010

0.0

0001

3 0

.000

009

0.0

0002

1 0

.000

014

0.0

1507

8 0

.000

329

BH

6066

10

80 °

C

0.0

0005

0 0

.000

006

0.0

0002

1 0

.000

010

0.0

0001

3 0

.000

009

0.0

0002

3 0

.000

014

0.0

1555

4 0

.000

329

BH

6067

11

60 °

C

0.0

0005

1 0

.000

006

0.0

0002

6 0

.000

010

0.0

0001

4 0

.000

009

0.0

0002

7 0

.000

014

0.0

1609

8 0

.000

329

BH

6068

12

25 °

C

0.0

0005

2 0

.000

006

0.0

0003

1 0

.000

010

0.0

0001

6 0

.000

009

0.0

0003

1 0

.000

014

0.0

1654

0 0

.000

329

T

able

9.4

6: In

terc

ept v

alue

s for

MA

DE

RA

S-01

1

Inte

rcep

t V

alue

s 36

Ar

r2

37

Ar

r2

38

Ar

r2

BH

6060

7

40 °

C

0.00

0176

0.

0000

07

0.41

93

EX

P

8 of

8

0.00

1728

0

.000

023

0.89

01

EX

P

8 of

8

0.00

0245

0.

0000

09

0.70

94

EX

P

8 of

8

BH

6061

8

00 °

C

0.00

0295

0.

0000

07

0.80

20

EX

P

8 of

8

0.00

5248

0

.000

027

0.98

39

EX

P

8 of

8

0.00

0692

0.

0000

31

0.30

05

EX

P

8 of

8

BH

6062

8

50 °

C

0.00

0394

0.

0000

08

0.81

00

EX

P

8 of

8

0.00

9106

0

.000

045

0.98

49

EX

P

8 of

8

0.00

1440

0.

0000

12

0.94

50

EX

P

8 of

8

BH

6063

9

00 °

C

0.00

0544

0.

0000

07

0.88

28

EX

P

8 of

8

0.01

2423

0

.000

057

0.98

87

EX

P

8 of

8

0.00

2385

0.

0000

27

0.89

81

EX

P

8 of

8

BH

6064

9

50 °

C

0.00

0475

0.

0000

04

0.93

31

EX

P

6 of

8

0.01

1728

0

.000

055

0.98

50

EX

P

8 of

8

0.00

2593

0.

0000

39

0.82

74

EX

P

8 of

8

BH

6065

10

10 °

C

0.00

0604

0.

0000

11

0.53

02

EX

P

8 of

8

0.01

3969

0

.000

041

0.99

45

EX

P

8 of

8

0.00

2556

0.

0000

07

0.99

60

EX

P

8 of

8

BH

6066

10

80 °

C

0.00

0695

0.

0000

05

0.94

54

LIN

8

of 8

0.

0120

55

0.0

0006

4 0.

9844

E

XP

8

of 8

0.

0015

93

0.00

0031

0.

6417

E

XP

8

of 8

B

H60

67

1160

°C

0.

0008

39

0.00

0014

0.

8368

LI

N

8 of

8

0.00

7949

0

.000

042

0.98

47

EX

P

8 of

8

0.00

0964

0.

0000

18

0.84

96

EX

P

8 of

8

BH

6068

12

25 °

C

0.00

1505

0.

0000

11

0.98

26

PA

R

6 of

8

0.01

6071

0

.000

071

0.98

91

EX

P

8 of

8

0.00

1244

0.

0000

28

0.70

76

EX

P

8 of

8

Page 120: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

105

Table 9.46: Continued

39Ar 1σ r2 40Ar 1σ r2

0.015786 0.000065 0.9760 EXP 6 of 8 0.053481 0.000116 0.9823 EXP 8 of 8 0.056131 0.000079 0.9988 EXP 7 of 8 0.100873 0.000333 0.9876 PAR 8 of 8 0.125982 0.000172 0.9987 EXP 8 of 8 0.150875 0.000299 0.9943 EXP 8 of 8 0.201758 0.000387 0.9975 EXP 8 of 8 0.218485 0.000305 0.9973 EXP 8 of 8 0.213829 0.000313 0.9985 EXP 8 of 8 0.205077 0.000029 1.0000 EXP 4 of 8 0.202702 0.000329 0.9981 EXP 8 of 8 0.235321 0.000131 0.9997 EXP 7 of 8 0.115270 0.000197 0.9979 EXP 8 of 8 0.233502 0.000323 0.9978 EXP 8 of 8 0.052676 0.000106 0.9967 EXP 8 of 8 0.256687 0.000417 0.9977 EXP 7 of 8 0.057773 0.000179 0.9872 LIN 8 of 8 0.440484 0.000395 0.9993 EXP 4 of 8

Table 9.47: Sample parameters for MADERAS-011

Sample Parameters Sample Material Location Analyst

Tem

p Standard %1σ J %1σ (in Ma)

BH6060 740 °C MAD011 groundmass UW93C47 Brian Jicha 740 28.201 0.08 0.0002623 0.05

BH6061 800 °C MAD011 groundmass UW93C47 Brian Jicha 800 28.201 0.08 0.0002623 0.05

BH6062 850 °C MAD011 groundmass UW93C47 Brian Jicha 850 28.201 0.08 0.0002623 0.05

BH6063 900 °C MAD011 groundmass UW93C47 Brian Jicha 900 28.201 0.08 0.0002623 0.05

BH6064 950 °C MAD011 groundmass UW93C47 Brian Jicha 950 28.201 0.08 0.0002623 0.05

BH6065 1010 °C MAD011 groundmass UW93C47 Brian Jicha 1010 28.201 0.08 0.0002623 0.05

BH6066 1080 °C MAD011 groundmass UW93C47 Brian Jicha 1080 28.201 0.08 0.0002623 0.05

BH6067 1160 °C MAD011 groundmass UW93C47 Brian Jicha 1160 28.201 0.08 0.0002623 0.05

BH6068 1225 °C MAD011 groundmass UW93C47 Brian Jicha 1225 28.201 0.08 0.0002623 0.05

Table 9.47: Continued

MDF %1σ Volume

Ratio Sensitivity

Day

Mon

th

Yea

r

Hou

r

Min

Res

ist

Irradiation Project Experimen

t Nm

b Standard

Name (mol/volt)

1.00515 0.03 1 5.902E-15 24 OCT 2011 17 41 001 UW93 UW93C UW93C47 01 FCS

1.00515 0.03 1 5.902E-15 24 OCT 2011 18 31 001 UW93 UW93C UW93C47 01 FCS

1.00515 0.03 1 5.902E-15 24 OCT 2011 19 22 001 UW93 UW93C UW93C47 01 FCS

1.00515 0.03 1 5.902E-15 24 OCT 2011 20 12 001 UW93 UW93C UW93C47 01 FCS

1.00515 0.03 1 5.902E-15 24 OCT 2011 21 02 001 UW93 UW93C UW93C47 01 FCS

1.00515 0.03 1 5.902E-15 24 OCT 2011 21 53 001 UW93 UW93C UW93C47 01 FCS

1.00515 0.03 1 5.902E-15 24 OCT 2011 22 43 001 UW93 UW93C UW93C47 01 FCS

1.00515 0.03 1 5.902E-15 24 OCT 2011 23 33 001 UW93 UW93C UW93C47 01 FCS

1.00515 0.03 1 5.902E-15 25 OCT 2011 00 24 001 UW93 UW93C UW93C47 01 FCS

Page 121: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

106

Tab

le 9

.48:

Irra

diat

ion

cons

tant

s for

MA

DE

RA

S-01

1

Irra

diat

ion

Con

stan

ts

40/3

6(a)

%

40/3

6(c)

%

38/3

6(a)

%

38/3

6(c)

%

39/3

7(ca

) %

38/3

7(ca

) %

36/3

7(ca

) %

BH

6060

7

40 °

C

295.

5 0

0.01

8 35

0.

1869

0

1.49

3 3

0.00

0673

0

0 0

0.00

0264

0

BH

6061

8

00 °

C

295.

5 0

0.01

8 35

0.

1869

0

1.49

3 3

0.00

0673

0

0 0

0.00

0264

0

BH

6062

8

50 °

C

295.

5 0

0.01

8 35

0.

1869

0

1.49

3 3

0.00

0673

0

0 0

0.00

0264

0

BH

6063

9

00 °

C

295.

5 0

0.01

8 35

0.

1869

0

1.49

3 3

0.00

0673

0

0 0

0.00

0264

0

BH

6064

9

50 °

C

295.

5 0

0.01

8 35

0.

1869

0

1.49

3 3

0.00

0673

0

0 0

0.00

0264

0

BH

6065

10

10 °

C

295.

5 0

0.01

8 35

0.

1869

0

1.49

3 3

0.00

0673

0

0 0

0.00

0264

0

BH

6066

10

80 °

C

295.

5 0

0.01

8 35

0.

1869

0

1.49

3 3

0.00

0673

0

0 0

0.00

0264

0

BH

6067

11

60 °

C

295.

5 0

0.01

8 35

0.

1869

0

1.49

3 3

0.00

0673

0

0 0

0.00

0264

0

BH

6068

12

25 °

C

295.

5 0

0.01

8 35

0.

1869

0

1.49

3 3

0.00

0673

0

0 0

0.00

0264

0

T

able

9.4

8: C

ontin

ued

40/3

9(k)

%

38/3

9(k)

%

36/3

8(cl

) %

K/C

a %

K/C

l %

Ca/

Cl

%1σ

0 0

0.01

206

0 0

0 0.

43

0 0

0 0

0 0

0 0.

0120

6 0

0 0

0.43

0

0 0

0 0

0 0

0.01

206

0 0

0 0.

43

0 0

0 0

0 0

0 0.

0120

6 0

0 0

0.43

0

0 0

0 0

0 0

0.01

206

0 0

0 0.

43

0 0

0 0

0 0

0 0.

0120

6 0

0 0

0.43

0

0 0

0 0

0 0

0.01

206

0 0

0 0.

43

0 0

0 0

0 0

0 0.

0120

6 0

0 0

0.43

0

0 0

0 0

0 0

0.01

206

0 0

0 0.

43

0 0

0 0

0

Page 122: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

107

176.8 ± 6.1 Ka

50

0

50

100

150

200

250

300

350

400

0 10 20 30 40 50 60 70 80 90 100

Cumulative 39Ar Released [ % ]

UW93C47.AGE >>> MAD011 >>> UW93C PROJECT

Ar-Ages in Ka

WEIGHTED PLATEAU176.8 ± 6.1TOTAL FUSION 175.5 ± 8.6NORMAL ISOCHRON 176.8 ± 9.1INVERSE ISOCHRON176.8 ± 4.5

MSWD0.19

Sample Info

groundmassUW93C47Brian Jicha

IRR = UW93J = 0.00026230 ± 0.00000013

Figure 9.13: Age plateau for MADERAS-011

0.212 ± 0.091

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 10 20 30 40 50 60 70 80 90 100

Cumulative 39Ar Released [ % ]

UW93C47.AGE >>> MAD011 >>> UW93C PROJECT

Ar-Ages in Ka

WEIGHTED PLATEAU176.8 ± 6.1TOTAL FUSION 175.5 ± 8.6NORMAL ISOCHRON 176.8 ± 9.1INVERSE ISOCHRON176.8 ± 4.5

Sample Info

groundmassUW93C47Brian Jicha

IRR = UW93J = 0.00026230 ± 0.00000013

Figure 9.14: K-Ca plateau for MADERAS-011

Page 123: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

108

0

50

100

150

200

250

300

350

400

450

500

550

600

650

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700

39Ar / 36Ar

UW93C47.AGE >>> MAD011 >>> UW93C PROJECT

Ar-Ages in Ka

WEIGHTED PLATEAU176.8 ± 6.1TOTAL FUSION 175.5 ± 8.6NORMAL ISOCHRON 176.8 ± 9.1INVERSE ISOCHRON176.8 ± 4.5

MSWD0.23

40AR/36AR INTERCEPT295.4 ± 5.2

Sample Info

groundmassUW93C47Brian Jicha

IRR = UW93J = 0.00026230 ± 0.00000013

Figure 9.15: Normal isochron for MADERAS-011

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

0.0045

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0 3.3

39Ar / 40Ar

UW93C47.AGE >>> MAD011 >>> UW93C PROJECT

Ar-Ages in Ka

WEIGHTED PLATEAU176.8 ± 6.1TOTAL FUSION 175.5 ± 8.6NORMAL ISOCHRON 176.8 ± 9.1INVERSE ISOCHRON176.8 ± 4.5

MSWD0.21

40AR/36AR INTERCEPT295.5 ± 2.6

Sample Info

groundmassUW93C47Brian Jicha

IRR = UW93J = 0.00026230 ± 0.00000013

Figure 9.16: Inverse isochron for MADERAS-011

Page 124: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

109 9.2.

5 Sa

mpl

e M

AD

ER

AS-

013

Tab

le 9

.49:

Incr

emen

tal h

eatin

g su

mm

ary

for

MA

DE

RA

S-01

3

Incr

emen

tal

Hea

ting

36

Ar(

a)

37A

r(ca

) 38

Ar(

cl)

39A

r(k)

40

Ar(

r)

Age

±

40A

r(r)

39

Ar(

k)

K/C

a ±

(Ka)

(%

) (%

) B

H60

76

675

°C

0

.000

044

0.0

0562

7 0

.000

000

0.0

3038

5

0.00

6506

10

0.1

± 68

.1

33.

16

1.6

2 2.

32

± 0.

25

BH

6077

7

40 °

C

0.0

0010

9 0

.015

823

0.0

0000

0 0

.091

692

0.

0180

62

92.1

±

27.4

3

5.99

4

.87

2.49

±

0.16

B

H60

78

800

°C

0

.000

280

0.0

5780

5 0

.000

000

0.3

4537

8

0.06

2318

84

.4

± 8.

0 4

3.00

1

8.36

2.

57

± 0.

14

BH

6079

8

50 °

C

0.0

0034

1 0

.081

124

0.0

0000

0 0

.455

868

0.

0847

35

86.9

±

5.8

45.

71

24.

24

2.42

±

0.13

B

H60

80

900

°C

0

.000

453

0.0

8634

2 0

.000

000

0.4

2979

6

0.07

6329

83

.0

± 5.

5 3

6.31

2

2.85

2.

14

± 0.

11

BH

6081

9

50 °

C

0.0

0064

1 0

.063

424

0.0

0000

0 0

.229

797

0.

0420

19

85.5

±

9.7

18.

16

12.

22

1.56

±

0.09

B

H60

82

1010

°C

0

.001

543

0.0

5218

0 0

.000

388

0.1

8417

9

0.03

4426

87

.4

± 10

.0

7.0

2 9

.79

1.52

±

0.08

B

H60

83

1080

°C

0

.001

969

0.0

3544

8 0

.000

176

0.0

9619

7

0.01

3979

67

.9

± 48

.6

2.3

5 5

.11

1.17

±

0.07

B

H60

84

1160

°C

0

.001

355

0.0

2460

1 0

.000

027

0.0

1589

4

0.00

2811

82

.7

± 21

3.4

0.7

0 0

.85

0.28

±

0.02

B

H60

85

1225

°C

0

.000

192

0.0

0802

2 0

.000

004

0.0

0177

6

0.00

1211

31

8.9

± 14

51.1

2

.09

0.0

9 0.

10

± 0.

01

Σ 0

.006

925

0.4

3039

6 0

.000

595

1.8

8096

1

0.34

2396

T

able

9.4

9: C

ontin

ued

Info

rmat

ion

on A

naly

sis

R

esul

ts

40(r

)/39

(k)

± 2σ

A

ge

± 2σ

MSWD

39A

r(k)

K

/Ca

± 2σ

(Ka)

(%

,n)

Sam

ple

= M

AD

013

A

ge P

late

au

0.18

22

± 0.

0067

85

.2

± 3.

1 0.

25

100.

00

0.19

±

0.22

M

ater

ial =

gro

undm

ass

±

3.69

%

± 3.

70%

10

Loc

atio

n =

UW

93D

48

M

inim

al E

xter

nal E

rror

±

4.6

2.26

S

tatis

tical

T R

atio

A

naly

st =

Bria

n Ji

cha

A

naly

tical

Err

or

± 3.

1 1.

0000

E

rror

Mag

nific

atio

n P

roje

ct =

UW

93D

Mas

s D

iscr

imin

atio

n La

w =

LIN

Tot

al F

usio

n A

ge

0.18

20

± 0.

0101

85

.1

± 4.

7

10

1.88

±

0.04

Ir

radi

atio

n =

UW

93

±

5.56

%

± 5.

56%

J =

0.0

0025

540

± 0.

0000

0020

Min

imal

Ext

erna

l Err

or

± 5.

8

F

CS

= 2

8.20

1 ±

0.02

3 M

a

Ana

lytic

al E

rror

±

4.7

Page 125: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

110

Table 9.50: Normal isochron table for MADERAS-013

Normal Isochron

39(k)/36(a) ± 2σ 40(a+r)/36(a) ± 2σ

r.i.

BH6076 675 °C 684.8 ± 231.0 442.1 ± 149.2 0.9997 BH6077 740 °C 843.3 ± 141.0 461.6 ± 77.2 0.9995 BH6078 800 °C 1235.4 ± 87.9 518.4 ± 36.9 0.9995 BH6079 850 °C 1338.7 ± 74.9 544.3 ± 30.5 0.9990 BH6080 900 °C 948.5 ± 36.0 463.9 ± 17.6 0.9983 BH6081 950 °C 358.6 ± 9.0 361.1 ± 9.0 0.9926 BH6082 1010 °C 119.4 ± 1.1 317.8 ± 2.7 0.9413 BH6083 1080 °C 48.9 ± 0.8 302.6 ± 5.2 0.9921 BH6084 1160 °C 11.7 ± 0.2 297.6 ± 5.4 0.9250 BH6085 1225 °C 9.2 ± 0.9 301.8 ± 29.3 0.9731

Table 9.50: Continued

Results

40(a)/36(a) ± 2σ 40(r)/39(k) ± 2σ Age ± 2σ

MS

WD

(Ka)

Normal Isochron

295.5822 ± 2.3714 0.1818 ± 0.0082 85.0 ± 3.8 0.28 ± 0.80% ± 4.49% ± 4.49%

Minimal External Error ± 5.1 Analytical Error ± 3.8

Statistics Statistical F ratio 1.94 Convergence 0.0000000018 Error Magnification 1.0000 Number of Iterations 21

Number of Data Points 10 Calculated Line Weighted York-2

Table 9.51: Inverse isochron table for MADERAS-013

Inverse Isochron

39(k)/40(a+r) ± 2σ 36(a)/40(a+r) ± 2σ

r.i.

BH6076 675 °C 1.548944 ± 0.013157 0.002262 ± 0.000763 0.0183 BH6077 740 °C 1.826888 ± 0.009483 0.002166 ± 0.000362 0.0183 BH6078 800 °C 2.383012 ± 0.005496 0.001929 ± 0.000137 0.0207 BH6079 850 °C 2.459332 ± 0.006094 0.001837 ± 0.000103 0.0297 BH6080 900 °C 2.044369 ± 0.004511 0.002155 ± 0.000082 0.0290 BH6081 950 °C 0.993136 ± 0.003036 0.002770 ± 0.000069 0.0412 BH6082 1010 °C 0.375695 ± 0.001136 0.003146 ± 0.000027 0.0680 BH6083 1080 °C 0.161492 ± 0.000351 0.003305 ± 0.000057 0.0131 BH6084 1160 °C 0.039432 ± 0.000291 0.003360 ± 0.000061 0.0218 BH6085 1225 °C 0.030619 ± 0.000702 0.003313 ± 0.000322 0.0088

Table 9.51: Continued

Results 40(a)/36(a) ± 2σ 40(r)/39(k) ± 2σ Age ± 2σ

MS

WD

(Ka)

Inverse Isochron

295.5736 ± 1.1856 0.1820 ± 0.0041 85.1 ± 1.9 0.28 ± 0.40% ± 2.24% ± 2.24%

Minimal External Error ± 3.8 Analytical Error ± 1.9

Statistics Statistical F ratio 1.94 Convergence 0.0000000220 Error Magnification 1.0000 Number of Iterations 4

Number of Data Points 10 Calculated Line Weighted York-2

Page 126: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

111

Tab

le 9

.52:

Rel

ativ

e ab

unda

nces

for

MA

DE

RA

S-01

3

Rel

ativ

e A

bund

ance

s

36A

r %

37A

r %

38A

r %

39A

r %

40A

r %

Age

±

40A

r(r)

39

Ar(

k)

K/C

a ±

(Ka)

(%

) (%

)

BH

6076

6

75 °

C

0.0

0004

59

16.

316

0.0

0562

74

5.32

3 0

.000

3713

5.97

5 0

.030

3883

0.

222

0.0

1961

63

0.36

2 10

0.1

± 68

.1

33.

16

1.6

2 2.

32

± 0.

25

BH

6077

7

40 °

C

0.0

0011

29

8.

047

0.0

1582

26

3.22

6 0

.001

0900

1.63

0 0

.091

7022

0.

166

0.0

5019

00

0.19

9 92

.1

± 27

.4

35.

99

4.8

7 2.

49

± 0.

16

BH

6078

8

00 °

C

0.0

0029

48

3.

372

0.0

5780

49

2.69

2 0

.003

8727

0.68

3 0

.345

4171

0.

069

0.1

4493

34

0.09

2 84

.4

± 8.

0 4

3.00

1

8.36

2.

57

± 0.

14

BH

6079

8

50 °

C

0.0

0036

20

2.

626

0.0

8112

42

2.69

1 0

.005

3339

1.03

6 0

.455

9231

0.

071

0.1

8536

28

0.10

1 86

.9

± 5.

8 4

5.71

2

4.24

2.

42

± 0.

13

BH

6080

9

00 °

C

0.0

0047

59

1.

800

0.0

8634

17

2.66

2 0

.005

2352

1.15

7 0

.429

8543

0.

078

0.2

1023

41

0.07

8 83

.0

± 5.

5 3

6.31

2

2.85

2.

14

± 0.

11

BH

6081

9

50 °

C

0.0

0065

76

1.

214

0.0

6342

41

2.75

3 0

.002

8498

1.28

5 0

.229

8392

0.

124

0.2

3138

49

0.08

9 85

.5

± 9.

7 1

8.16

1

2.22

1.

56

± 0.

09

BH

6082

10

10 °

C

0.0

0155

63

0.

421

0.0

5217

97

2.78

2 0

.002

8978

1.11

5 0

.184

2142

0.

136

0.4

9023

63

0.06

7 87

.4

± 10

.0

7.0

2 9

.79

1.52

±

0.08

BH

6083

10

80 °

C

0.0

0197

79

0.

855

0.0

3544

80

2.88

7 0

.001

7038

2.83

9 0

.096

2205

0.

103

0.5

9567

34

0.03

5 67

.9

± 48

.6

2.3

5 5

.11

1.17

±

0.07

BH

6084

11

60 °

C

0.0

0136

10

0.

898

0.0

2460

08

3.03

5 0

.000

4714

6.70

7 0

.015

9109

0.

359

0.4

0307

97

0.08

5 82

.7

± 21

3.4

0.7

0 0

.85

0.28

±

0.02

BH

6085

12

25 °

C

0.0

0019

43

4.

796

0.0

0802

24

4.17

9 0

.000

0618

2

8.56

6 0

.001

7810

1.

122

0.0

5799

16

0.22

2 31

8.9

± 14

51.1

2

.09

0.0

9 0.

10

± 0.

01

Σ 0

.007

0385

0.45

6 0

.430

3958

1.

031

0.0

2388

77

0.

500

1.8

8125

09

0.03

6 2

.388

7025

0.

027

T

able

9.5

2: C

ontin

ued

Info

rmat

ion

on A

naly

sis

and

Con

stan

ts U

sed

in C

alcu

latio

ns

Sam

ple

= M

AD

013

Ext

ract

ion

Met

hod

= U

ndef

ined

M

ater

ial =

gro

undm

ass

Hea

ting

= 90

0 se

c L

ocat

ion

= U

W93

D48

Is

olat

ion

= 15

.00

min

A

naly

st =

Bria

n Ji

cha

Inst

rum

ent =

MA

P21

5 P

roje

ct =

UW

93D

L

ithol

ogy

= U

ndef

ined

M

ass

Dis

crim

inat

ion

Law

= L

IN

Lat

-Lon

= U

ndef

ined

- U

ndef

ined

Ir

radi

atio

n =

UW

93

Age

Equ

atio

ns =

Con

vent

iona

l J

= 0

.000

2554

0 ±

0.00

0000

20

Neg

ativ

e In

tens

ities

= F

orce

d Z

ero

FC

S =

28.

201

± 0.

023

Ma

Dec

ay C

onst

ant 4

0K =

5.4

63 ±

0.1

07 E

-10

1/a

IGS

N =

Und

efin

ed

Dec

ay C

onst

ant 3

9Ar =

2.9

40 ±

0.0

29 E

-07

1/h

Pre

ferr

ed A

ge =

Und

efin

ed

Dec

ay C

onst

ant 3

7Ar =

8.2

30 ±

0.0

82 E

-04

1/h

Cla

ssifi

catio

n =

Und

efin

ed

No

36C

l Cor

rect

ion

Exp

erim

ent T

ype

= U

ndef

ined

N

o 36

Cl C

orre

ctio

n

Page 127: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

112

Tab

le 9

.52:

Con

tinue

d

Res

ults

40

(r)/

39(k

) ±

Age

±

MSWD

39A

r(k)

K

/Ca

± 2σ

(K

a)

(%,n

)

Age

Pla

teau

0.

1822

±

0.00

67

85.2

±

3.1

0.25

10

0.00

0.

19

± 0.

22

± 3.

69%

±

3.70

%

10

Min

imal

Ext

erna

l Err

or

± 4.

6 2.

26

Sta

tistic

al T

Rat

io

Ana

lytic

al E

rror

±

3.1

1.00

00

Err

or M

agni

ficat

ion

Tot

al F

usio

n A

ge

0.18

20

± 0.

0101

85

.1

± 4.

7

10

1.88

±

0.04

±

5.56

%

± 5.

56%

M

inim

al E

xter

nal E

rror

±

5.8

Ana

lytic

al E

rror

±

4.7

Nor

mal

Is

ochr

on

0.18

18

± 0.

0082

85

.0

± 3.

8 0.

28

100.

00

± 4.

49%

±

4.49

%

10

Min

imal

Ext

erna

l Err

or

± 5.

1 1.

94

Sta

tistic

al F

ratio

A

naly

tical

Err

or

± 3.

8 1.

0000

E

rror

Mag

nific

atio

n In

vers

e Is

ochr

on

0.18

20

± 0.

0041

85

.1

± 1.

9 0.

28

100.

00

± 2.

24%

±

2.24

%

10

Min

imal

Ext

erna

l Err

or

± 3.

8 1.

94

Sta

tistic

al F

ratio

A

naly

tical

Err

or

± 1.

9 1.

0000

E

rror

Mag

nific

atio

n

T

able

9.5

3: D

egas

sing

pat

tern

s for

MA

DE

RA

S-01

3

Deg

assi

ng

Pat

tern

s

36A

r(a)

%

36A

r(c)

%

36A

r(ca

) %

36A

r(cl

) %

37A

r(ca

) %

38A

r(a)

%

38A

r(c)

%

38A

r(k)

%

BH

6076

6

75 °

C

0.00

0044

1

6.86

0.00

0000

0

.00

0.

0000

01

5.3

2

0.00

0000

0

.00

0.

0056

27

5.3

2

0.00

0008

1

6.86

0.00

0000

0

.00

0.

0003

66

0.2

2

BH

6077

7

40 °

C

0.00

0109

8

.36

0.

0000

00

0.0

0

0.00

0004

3

.23

0.

0000

00

0.0

0

0.01

5823

3

.23

0.

0000

20

8.3

6

0.00

0000

0

.00

0.

0011

06

0.1

7

BH

6078

8

00 °

C

0.00

0280

3

.56

0.

0000

00

0.0

0

0.00

0015

2

.69

0.

0000

00

0.0

0

0.05

7805

2

.69

0.

0000

52

3.5

6

0.00

0000

0

.00

0.

0041

65

0.0

7

BH

6079

8

50 °

C

0.00

0341

2

.80

0.

0000

00

0.0

0

0.00

0021

2

.69

0.

0000

00

0.0

0

0.08

1124

2

.69

0.

0000

64

2.8

0

0.00

0000

0

.00

0.

0054

98

0.0

7

BH

6080

9

00 °

C

0.00

0453

1

.90

0.

0000

00

0.0

0

0.00

0023

2

.66

0.

0000

00

0.0

0

0.08

6342

2

.66

0.

0000

85

1.9

0

0.00

0000

0

.00

0.

0051

83

0.0

8

BH

6081

9

50 °

C

0.00

0641

1

.25

0.

0000

00

0.0

0

0.00

0017

2

.75

0.

0000

00

0.0

0

0.06

3424

2

.75

0.

0001

20

1.2

5

0.00

0000

0

.00

0.

0027

71

0.1

2

BH

6082

10

10 °

C

0.00

1543

0

.43

0.

0000

00

0.0

0

0.00

0014

2

.78

0.

0000

00

0.0

0

0.05

2180

2

.78

0.

0002

88

0.4

3

0.00

0000

0

.00

0.

0022

21

0.1

4

BH

6083

10

80 °

C

0.00

1969

0

.86

0.

0000

00

0.0

0

0.00

0009

2

.89

0.

0000

00

0.0

0

0.03

5448

2

.89

0.

0003

68

0.8

6

0.00

0000

0

.00

0.

0011

60

0.1

0

BH

6084

11

60 °

C

0.00

1355

0

.90

0.

0000

00

0.0

0

0.00

0006

3

.03

0.

0000

00

0.0

0

0.02

4601

3

.03

0.

0002

53

0.9

0

0.00

0000

0

.00

0.

0001

92

0.3

6

BH

6085

12

25 °

C

0.00

0192

4

.85

0.

0000

00

0.0

0

0.00

0002

4

.18

0.

0000

00

0.0

0

0.00

8022

4

.18

0.

0000

36

4.8

5

0.00

0000

0

.00

0.

0000

21

1.1

3

Σ 0.

0069

25

0.4

6

0.00

0000

0

.00

0.

0001

14

1.0

3

0.00

0000

0

.00

0.

4303

96

1.0

3

0.00

1294

0

.46

0.

0000

00

0.0

0

0.02

2684

0

.04

Σ

0.00

7039

0

.46

0.

4303

96

1.0

3

Page 128: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

113

Tab

le 9

.53:

Con

tinue

d

38A

r(ca

) %

38A

r(cl

) %

39A

r(k)

%

39A

r(ca

) %

40A

r(r)

%

40A

r(a)

%

40A

r(c)

%

40A

r(k)

%

0.

0000

00

0.0

0

0.00

0000

0

.00

0.

0303

85

0.2

2

0.00

0004

5

.32

0.

0065

06

34.

00

0.

0131

11

16.

86

0.

0000

00

0.0

0

0.00

0000

0

.00

0.

0000

00

0.0

0

0.00

0000

0

.00

0.

0916

92

0.1

7

0.00

0011

3

.23

0.

0180

62

14.

88

0.

0321

28

8.3

6

0.00

0000

0

.00

0.

0000

00

0.0

0

0.

0000

00

0.0

0

0.00

0000

0

.00

0.

3453

78

0.0

7

0.00

0039

2

.69

0.

0623

18

4.7

2

0.08

2615

3

.56

0.

0000

00

0.0

0

0.00

0000

0

.00

0.

0000

00

0.0

0

0.00

0000

0

.00

0.

4558

68

0.0

7

0.00

0055

2

.69

0.

0847

35

3.3

3

0.10

0628

2

.80

0.

0000

00

0.0

0

0.00

0000

0

.00

0.

0000

00

0.0

0

0.00

0000

0

.00

0.

4297

96

0.0

8

0.00

0058

2

.66

0.

0763

29

3.3

3

0.13

3906

1

.90

0.

0000

00

0.0

0

0.00

0000

0

.00

0.

0000

00

0.0

0

0.00

0000

0

.00

0.

2297

97

0.1

2

0.00

0043

2

.75

0.

0420

19

5.6

5

0.18

9366

1

.25

0.

0000

00

0.0

0

0.00

0000

0

.00

0.

0000

00

0.0

0

0.00

0388

8

.36

0.

1841

79

0.1

4

0.00

0035

2

.78

0.

0344

26

5.7

2

0.45

5811

0

.43

0.

0000

00

0.0

0

0.00

0000

0

.00

0.

0000

00

0.0

0

0.00

0176

2

7.58

0.09

6197

0

.10

0.

0000

24

2.8

9

0.01

3979

3

5.77

0.58

1694

0

.86

0.

0000

00

0.0

0

0.00

0000

0

.00

0.

0000

00

0.0

0

0.00

0027

11

9.36

0.01

5894

0

.36

0.

0000

17

3.0

3

0.00

2811

12

9.05

0.40

0269

0

.90

0.

0000

00

0.0

0

0.00

0000

0

.00

0.

0000

00

0.0

0

0.00

0004

39

5.75

0.00

1776

1

.13

0.

0000

05

4.1

8

0.00

1211

22

7.53

0.05

6780

4

.85

0.

0000

00

0.0

0

0.00

0000

0

.00

0.

0000

00

0.0

0

0.00

0595

1

1.55

1.88

0961

0

.04

0.

0002

90

1.0

3

0.34

2396

2

.78

2.

0463

07

0.4

6

0.00

0000

0

.00

0.

0000

00

0.0

0

0.

0245

74

0.2

8

1.88

1251

0

.04

2.

3887

02

0.5

6

T

able

9.5

4: A

dditi

onal

par

amet

ers f

or M

AD

ER

AS-

013

Add

ition

al

Par

amet

ers

40

(r)/3

9(k)

40

(r+a

) 1σ

40

Ar/

39A

r 1σ

37

Ar/

39A

r 1σ

36

Ar/

39A

r 1σ

T

ime

(day

s)

37A

r (d

ecay

) 39

Ar

(dec

ay)

40A

r (m

oles

)

BH

6076

6

75 °

C

0.2

1410

7 0.

0728

0 0

.019

616

0.00

007

0.6

4552

1 0.

0027

4 0

.185

184

0.00

987

0.0

0150

9 0.

0002

5 1

32.9

81

13.8

3281

136

1.00

0938

90

1.15

8E-1

6

BH

6077

7

40 °

C

0.1

9698

5 0.

0293

0 0

.050

190

0.00

010

0.5

4731

5 0.

0014

2 0

.172

543

0.00

557

0.0

0123

1 0.

0001

0 1

33.0

16

13.8

4249

149

1.00

0939

15

2.96

2E-1

6

BH

6078

8

00 °

C

0.1

8043

4 0.

0085

2 0

.144

933

0.00

013

0.4

1959

0 0.

0004

8 0

.167

348

0.00

451

0.0

0085

4 0.

0000

3 1

33.0

51

13.8

5198

839

1.00

0939

39

8.55

4E-1

6

BH

6079

8

50 °

C

0.1

8587

6 0.

0061

9 0

.185

363

0.00

019

0.4

0656

6 0.

0005

0 0

.177

934

0.00

479

0.0

0079

4 0.

0000

2 1

33.0

85

13.8

6149

180

1.00

0939

64

1.09

4E-1

5

BH

6080

9

00 °

C

0.1

7759

3 0.

0059

2 0

.210

234

0.00

016

0.4

8908

2 0.

0005

4 0

.200

863

0.00

535

0.0

0110

7 0.

0000

2 1

33.1

21

13.8

7119

200

1.00

0939

89

1.24

1E-1

5

BH

6081

9

50 °

C

0.1

8285

5 0.

0103

3 0

.231

385

0.00

021

1.0

0672

5 0.

0015

4 0

.275

950

0.00

760

0.0

0286

1 0.

0000

3 1

33.1

56

13.8

8070

859

1.00

0940

13

1.36

6E-1

5

BH

6082

10

10 °

C

0.1

8691

4 0.

0106

9 0

.490

236

0.00

033

2.6

6122

9 0.

0040

2 0

.283

255

0.00

789

0.0

0844

8 0.

0000

4 1

33.1

90

13.8

9023

171

1.00

0940

38

2.89

3E-1

5

BH

6083

10

80 °

C

0.1

4532

1 0.

0519

8 0

.595

673

0.00

021

6.1

9071

3 0.

0067

3 0

.368

404

0.01

064

0.0

2055

6 0.

0001

8 1

33.2

26

13.8

9995

202

1.00

0940

63

3.51

6E-1

5

BH

6084

11

60 °

C

0.1

7685

3 0.

2282

4 0

.403

080

0.00

034

25.

3335

51

0.09

340

1.5

4615

8 0.

0472

5 0

.085

541

0.00

083

133

.260

13

.909

4883

4 1.

0009

4087

2.

379E

-15

BH

6085

12

25 °

C

0.6

8216

6 1.

5521

7 0

.057

992

0.00

013

32.

5607

25

0.37

239

4.5

0435

4 0.

1948

8 0

.109

076

0.00

537

133

.295

13

.919

0312

0 1.

0009

4112

3.

423E

-16

Page 129: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

114

Tab

le 9

.55:

Pro

cedu

re b

lank

s for

MA

DE

RA

S-01

3

Pro

cedu

re

Bla

nks

36A

r 1σ

37

Ar

38A

r 1σ

39

Ar

40A

r 1σ

BH

6076

6

75 °

C

0.0

0003

1 0

.000

006

0.0

0000

1 0

.000

015

0.0

0000

2 0

.000

012

0.0

0000

5 0

.000

010

0.0

0843

9 0

.000

053

BH

6077

7

40 °

C

0.0

0003

1 0

.000

006

0.0

0001

3 0

.000

015

0.0

0001

4 0

.000

012

0.0

0000

5 0

.000

010

0.0

0843

9 0

.000

053

BH

6078

8

00 °

C

0.0

0003

0 0

.000

006

0.0

0002

5 0

.000

015

0.0

0001

8 0

.000

012

0.0

0000

6 0

.000

010

0.0

0888

7 0

.000

053

BH

6079

8

50 °

C

0.0

0003

3 0

.000

006

0.0

0002

9 0

.000

015

0.0

0001

5 0

.000

012

0.0

0000

8 0

.000

010

0.0

0945

9 0

.000

053

BH

6080

9

00 °

C

0.0

0003

8 0

.000

006

0.0

0002

9 0

.000

015

0.0

0000

9 0

.000

012

0.0

0001

1 0

.000

010

0.0

0998

3 0

.000

053

BH

6081

9

50 °

C

0.0

0004

2 0

.000

006

0.0

0002

4 0

.000

015

0.0

0000

5 0

.000

012

0.0

0001

0 0

.000

010

0.0

1037

0 0

.000

053

BH

6082

10

10 °

C

0.0

0004

4 0

.000

006

0.0

0001

6 0

.000

015

0.0

0000

2 0

.000

012

0.0

0000

7 0

.000

010

0.0

1071

7 0

.000

053

BH

6083

10

80 °

C

0.0

0004

6 0

.000

006

0.0

0000

7 0

.000

015

0.0

0000

3 0

.000

012

0.0

0000

2 0

.000

010

0.0

1136

4 0

.000

053

BH

6084

11

60 °

C

0.0

0005

0 0

.000

006

0.0

0000

8 0

.000

015

0.0

0000

7 0

.000

012

0.0

0000

7 0

.000

010

0.0

1359

2 0

.000

053

BH

6085

12

25 °

C

0.0

0006

3 0

.000

006

0.0

0002

9 0

.000

015

0.0

0000

5 0

.000

012

0.0

0003

3 0

.000

010

0.0

1796

7 0

.000

053

T

able

9.5

6: In

terc

ept v

alue

s for

MA

DE

RA

S-01

3

Inte

rcep

t V

alue

s 36

Ar

r2

37

Ar

r2

38

Ar

r2

BH

6076

6

75 °

C

0.00

0077

0.

0000

05

A

VE

7

of 8

0.

0004

14

0.00

0012

0.

6578

E

XP

8

of 8

0.

0003

77

0.00

0019

0.

5255

E

XP

8

of 8

B

H60

77

740

°C

0.

0001

46

0.00

0007

0.

1077

E

XP

8

of 8

0.

0011

73

0.00

0016

0.

8711

E

XP

8

of 8

0.

0011

15

0.00

0013

0.

9221

E

XP

8

of 8

B

H60

78

800

°C

0.

0003

31

0.00

0008

0.

3834

E

XP

8

of 8

0.

0042

62

0.00

0020

0.

9845

E

XP

8

of 8

0.

0039

30

0.00

0024

0.

9772

E

XP

8

of 8

B

H60

79

850

°C

0.

0004

03

0.00

0008

0.

2945

E

XP

8

of 8

0.

0059

72

0.00

0030

0.

9808

E

XP

8

of 8

0.

0054

03

0.00

0054

0.

9229

E

XP

8

of 8

B

H60

80

900

°C

0.

0005

24

0.00

0006

0.

6735

E

XP

8

of 8

0.

0063

49

0.00

0021

0.

9865

E

XP

7

of 8

0.

0052

99

0.00

0060

0.

9004

E

XP

8

of 8

B

H60

81

950

°C

0.

0007

13

0.00

0006

0.

9127

LI

N

7 of

8

0.00

4664

0.

0000

35

0.96

14

EX

P

8 of

8

0.00

2884

0.

0000

35

0.92

04

PA

R

8 of

8

BH

6082

10

10 °

C

0.00

1633

0.

0000

03

0.99

91

PA

R

5 of

8

0.00

3830

0.

0000

31

0.95

65

EX

P

8 of

8

0.00

2930

0.

0000

30

0.91

55

EX

P

8 of

8

BH

6083

10

80 °

C

0.00

2064

0.

0000

16

0.97

03

LIN

6

of 8

0.

0025

96

0.00

0027

0.

9359

E

XP

8

of 8

0.

0017

24

0.00

0047

0.

6132

E

XP

8

of 8

B

H60

84

1160

°C

0.

0014

39

0.00

0011

0.

9717

P

AR

7

of 8

0.

0018

04

0.00

0023

0.

9007

E

XP

8

of 8

0.

0004

83

0.00

0029

0.

0719

E

XP

8

of 8

B

H60

85

1225

°C

0.

0002

61

0.00

0007

0.

3512

E

XP

8

of 8

0.

0006

15

0.00

0012

0.

5923

E

XP

8

of 8

0.

0000

67

0.00

0013

0.

0930

E

XP

8

of 8

Page 130: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

115

Table 9.56: Continued

39Ar 1σ r2 40Ar 1σ r2

0.030521 0.000066 0.9943 EXP 8 of 8 0.028056 0.000048 0.7891 LIN 7 of 8 0.092092 0.000150 0.9980 EXP 8 of 8 0.058629 0.000085 0.9913 PAR 8 of 8 0.346872 0.000216 0.9997 EXP 8 of 8 0.153820 0.000123 0.9975 EXP 7 of 8 0.457845 0.000295 0.9997 EXP 8 of 8 0.194822 0.000181 0.9969 EXP 8 of 8 0.431669 0.000311 0.9996 EXP 7 of 8 0.220217 0.000155 0.9986 EXP 8 of 8 0.230814 0.000279 0.9989 EXP 7 of 8 0.241755 0.000199 0.9990 EXP 7 of 8 0.184994 0.000245 0.9984 EXP 8 of 8 0.500953 0.000322 0.9995 EXP 8 of 8 0.096627 0.000095 0.9990 EXP 8 of 8 0.607038 0.000201 0.9999 EXP 8 of 8 0.015985 0.000056 0.0843 EXP 8 of 8 0.416671 0.000340 0.9994 EXP 8 of 8 0.001821 0.000017 0.9870 EXP 8 of 8 0.075959 0.000117 0.9948 EXP 7 of 8

Table 9.57: Sample parameters for MADERAS-013

Sample Parameters Sample Material Location Analyst

Tem

p

Standard %1σ J %1σ MDF (in Ma)

BH6076 675 °C MAD013 groundmass UW93D48 Brian Jicha 675 28.201 0.08 0.0002554 0.08 1.00515

BH6077 740 °C MAD013 groundmass UW93D48 Brian Jicha 740 28.201 0.08 0.0002554 0.08 1.00515

BH6078 800 °C MAD013 groundmass UW93D48 Brian Jicha 800 28.201 0.08 0.0002554 0.08 1.00515

BH6079 850 °C MAD013 groundmass UW93D48 Brian Jicha 850 28.201 0.08 0.0002554 0.08 1.00515

BH6080 900 °C MAD013 groundmass UW93D48 Brian Jicha 900 28.201 0.08 0.0002554 0.08 1.00515

BH6081 950 °C MAD013 groundmass UW93D48 Brian Jicha 950 28.201 0.08 0.0002554 0.08 1.00515

BH6082 1010 °C MAD013 groundmass UW93D48 Brian Jicha 1010 28.201 0.08 0.0002554 0.08 1.00515

BH6083 1080 °C MAD013 groundmass UW93D48 Brian Jicha 1080 28.201 0.08 0.0002554 0.08 1.00515

BH6084 1160 °C MAD013 groundmass UW93D48 Brian Jicha 1160 28.201 0.08 0.0002554 0.08 1.00515

BH6085 1225 °C MAD013 groundmass UW93D48 Brian Jicha 1225 28.201 0.08 0.0002554 0.08 1.00515

Table 9.57: Continued

%1σ Volume Ratio

Sensitivity

Day

Mon

th

Yea

r

Hou

r

Min

Res

ist

Irradiation Project Experiment

Nm

b Standard Name (mol/volt)

0.03 1 5.902E-15 25 OCT 2011 16 43 001 UW93 UW93D UW93D48 01 FCS

0.03 1 5.902E-15 25 OCT 2011 17 34 001 UW93 UW93D UW93D48 01 FCS

0.03 1 5.902E-15 25 OCT 2011 18 24 001 UW93 UW93D UW93D48 01 FCS

0.03 1 5.902E-15 25 OCT 2011 19 14 001 UW93 UW93D UW93D48 01 FCS

0.03 1 5.902E-15 25 OCT 2011 20 05 001 UW93 UW93D UW93D48 01 FCS

0.03 1 5.902E-15 25 OCT 2011 20 55 001 UW93 UW93D UW93D48 01 FCS

0.03 1 5.902E-15 25 OCT 2011 21 45 001 UW93 UW93D UW93D48 01 FCS

0.03 1 5.902E-15 25 OCT 2011 22 36 001 UW93 UW93D UW93D48 01 FCS

0.03 1 5.902E-15 25 OCT 2011 23 26 001 UW93 UW93D UW93D48 01 FCS

0.03 1 5.902E-15 26 OCT 2011 00 16 001 UW93 UW93D UW93D48 01 FCS

Page 131: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

116

Tab

le 9

.58:

Irra

diat

ion

cons

tant

s for

MA

DE

RA

S-01

3

Irra

diat

ion

Con

stan

ts

40/3

6(a)

%

40/3

6(c)

%

38/3

6(a)

%

38/3

6(c)

%

39/3

7(ca

) %

38/3

7(ca

) %

36/3

7(ca

) %

40/3

9(k)

%

BH

6076

6

75 °

C

295.

5 0

0.01

8 35

0.

1869

0

1.49

3 3

0.00

0673

0

0 0

0.00

0264

0

0 0

BH

6077

7

40 °

C

295.

5 0

0.01

8 35

0.

1869

0

1.49

3 3

0.00

0673

0

0 0

0.00

0264

0

0 0

BH

6078

8

00 °

C

295.

5 0

0.01

8 35

0.

1869

0

1.49

3 3

0.00

0673

0

0 0

0.00

0264

0

0 0

BH

6079

8

50 °

C

295.

5 0

0.01

8 35

0.

1869

0

1.49

3 3

0.00

0673

0

0 0

0.00

0264

0

0 0

BH

6080

9

00 °

C

295.

5 0

0.01

8 35

0.

1869

0

1.49

3 3

0.00

0673

0

0 0

0.00

0264

0

0 0

BH

6081

9

50 °

C

295.

5 0

0.01

8 35

0.

1869

0

1.49

3 3

0.00

0673

0

0 0

0.00

0264

0

0 0

BH

6082

10

10 °

C

295.

5 0

0.01

8 35

0.

1869

0

1.49

3 3

0.00

0673

0

0 0

0.00

0264

0

0 0

BH

6083

10

80 °

C

295.

5 0

0.01

8 35

0.

1869

0

1.49

3 3

0.00

0673

0

0 0

0.00

0264

0

0 0

BH

6084

11

60 °

C

295.

5 0

0.01

8 35

0.

1869

0

1.49

3 3

0.00

0673

0

0 0

0.00

0264

0

0 0

BH

6085

12

25 °

C

295.

5 0

0.01

8 35

0.

1869

0

1.49

3 3

0.00

0673

0

0 0

0.00

0264

0

0 0

T

able

9.5

8: C

ontin

ued

38/3

9(k)

%

36/3

8(cl

) %

K/C

a %

K/C

l %

Ca/

Cl

%1σ

0.01

206

0 0

0 0.

43

0 0

0 0

0 0.

0120

6 0

0 0

0.43

0

0 0

0 0

0.01

206

0 0

0 0.

43

0 0

0 0

0 0.

0120

6 0

0 0

0.43

0

0 0

0 0

0.01

206

0 0

0 0.

43

0 0

0 0

0 0.

0120

6 0

0 0

0.43

0

0 0

0 0

0.01

206

0 0

0 0.

43

0 0

0 0

0 0.

0120

6 0

0 0

0.43

0

0 0

0 0

0.01

206

0 0

0 0.

43

0 0

0 0

0 0.

0120

6 0

0 0

0.43

0

0 0

0 0

Page 132: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

117

85.2 ± 3.1 Ka

100

50

0

50

100

150

200

250

300

350

400

450

500

0 10 20 30 40 50 60 70 80 90 100

Cumulative 39Ar Released [ % ]

UW93D48.AGE >>> MAD013 >>> UW93D PROJECT

Ar-Ages in Ka

WEIGHTED PLATEAU85.2 ± 3.1TOTAL FUSION 85.1 ± 4.7NORMAL ISOCHRON 85.0 ± 3.8INVERSE ISOCHRON85.1 ± 1.9

MSWD0.25

Sample Info

groundmassUW93D48Brian Jicha

IRR = UW93J = 0.00025540 ± 0.00000020

Figure 9.17: Age plateau for MADERAS-013

0.19 ± 0.22

0.0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

3.0

3.3

3.6

3.9

0 10 20 30 40 50 60 70 80 90 100Cumulative 39Ar Released [ % ]

UW93D48.AGE >>> MAD013 >>> UW93D PROJECT

Ar-Ages in Ka

WEIGHTED PLATEAU85.2 ± 3.1TOTAL FUSION 85.1 ± 4.7NORMAL ISOCHRON 85.0 ± 3.8INVERSE ISOCHRON85.1 ± 1.9

Sample Info

groundmassUW93D48Brian Jicha

IRR = UW93J = 0.00025540 ± 0.00000020

Figure 9.18: K-Ca plateau for MADERAS-013

Page 133: AN ERUPTIVE HISTORY OF MADERAS VOLCANO ... thesis, “An Eruptive History of Maderas Volcano Using New 40Ar/39Ar Ages and Geochemical Analyses,” is hereby approved in partial fulfillment

118

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700

39Ar / 36Ar

UW93D48.AGE >>> MAD013 >>> UW93D PROJECT

Ar-Ages in Ka

WEIGHTED PLATEAU85.2 ± 3.1TOTAL FUSION 85.1 ± 4.7NORMAL ISOCHRON 85.0 ± 3.8INVERSE ISOCHRON85.1 ± 1.9

MSWD0.28

40AR/36AR INTERCEPT295.6 ± 2.4

Sample Info

groundmassUW93D48Brian Jicha

IRR = UW93J = 0.00025540 ± 0.00000020

Figure 9.19: Normal isochron for MADERAS-013

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

0.0045

0 1 1 2 2 3 3 4 4 5 5 6 6 7 7

39Ar / 40Ar

UW93D48.AGE >>> MAD013 >>> UW93D PROJECT

Ar-Ages in Ka

WEIGHTED PLATEAU85.2 ± 3.1TOTAL FUSION 85.1 ± 4.7NORMAL ISOCHRON 85.0 ± 3.8INVERSE ISOCHRON85.1 ± 1.9

MSWD0.28

40AR/36AR INTERCEPT295.6 ± 1.2

Sample Info

groundmassUW93D48Brian Jicha

IRR = UW93J = 0.00025540 ± 0.00000020

Figure 9.20: Inverse isochron for MADERAS-013