an approach for optimization of

Upload: antjjournal

Post on 14-Jan-2016

20 views

Category:

Documents


0 download

DESCRIPTION

ENHANCED ACTIVITY OF ANTIBIOTICS BYLIPOSOMAL DRUG DELIVERY

TRANSCRIPT

  • Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015

    1

    AN APPROACH FOR OPTIMIZATION OF

    MANUFACTURE MULTIEMITTER

    HETEROTRANSISTORS

    E.L. Pankratov1 and E.A. Bulaeva2

    1 Nizhny Novgorod State University, 23 Gagarin avenue, Nizhny Novgorod, 603950,

    Russia 2 Nizhny Novgorod State University of Architecture and Civil Engineering, 65 Il'insky

    street, Nizhny Novgorod, 603950, Russia

    ABSTRACT

    In this paper we introduced an approach to model manufacture process of a multiemitter heterotransistor. The approach gives us also possibility to optimize manufacture process. p-n-junctions, which include into the multiemitter heterotransistor, have higher sharpness and higher homogeneity of dopants distributions in enriched by the dopant area.

    KEYWORDS

    Multiemitter heterotransistor, Approach to optimize technological processes.

    1. INTRODUCTION

    Logical elements often include into itself multiemitter transistors [1-4]. To manufacture bipolar transistors it could be used dopant diffusion, ion doping or epitaxial layer [1-8]. It is attracted an interest increasing of sharpness of p-n-junctions, which include into bipolar transistors and decreasing of dimensions of the transistors, which include into integrated circuits [1-4]. Dimensions of transistors will be decreased by using inhomogenous distribution of temperature during laser or microwave types of annealing [9,10], using defects of materials (for example, defects could be generated during radiation processing of materials) [11-14], native inhomogeneity (multilayer property) of heterostructure [12-14].

    Framework this paper we consider a heterostructure, which consist of a substrate and three epitaxial layers (see Fig. 1). Some dopants are infused in the epitaxial layers to manufacture p and n types of conductivities during manufacture a multiemitter transistor. Let us consider two cases: infusion of dopant by diffusion or ion implantation. Farther in the first case we consider annealing of dopant so long, that after the annealing the dopants should achieve interfaces between epitaxial layers. In this case one can obtain increasing of sharpness of p-n-junctions [12-14]. The increasing of sharpness could be obtained under conditions, when values of dopant diffusion coefficients in last epitaxial layers is larger, than values of dopant diffusion coefficient in average epitaxial layer. At the same time homogeneity of dopant distributions in doped areas increases. It is attracted an interest higher doping of last epitaxial layers, than doping of average epitaxial layer, because the higher doping gives us possibility to increase sharpness of p-n-junctions. It is

  • Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015

    2

    also practicably to choose materials of epitaxial layers and substrate so; those values of dopant diffusion coefficients in the substrate should be smaller, than in the epitaxial layer. In this situation one can obtain thinner transistor. In the case of ion doping of heterostructure it should be done annealing of radiation defects. It is practicably to choose so regimes of annealing of radiation defects, that dopant should achieves interface between epitaxial layers. At the same time the dopant could not diffuse into another epitaxial layer. If dopant did not achieves interface between epitaxial layers during annealing of radiation defects, additional annealing of dopant required.

    Main aims of the present paper are analysis of dynamics of redistribution of dopants in considered heterostructure (Figs. 1) and optimization of annealing times of dopants. In some recent papers analogous analysis have been done [4,10,12-14]. However we can not find in literature any similar heterostructures as we consider in the paper.

    Substrate

    Epitaxial layer 1

    Epitaxial layer 2

    Epitaxial layer 3

    n-type dopant p-type dopant n-type dopant

    Fig. 1a. Heterostructure, which consist of a substrate and three epitaxial layers. View from above

    Epitaxial layer 1 Epitaxial layer 2 Epitaxial layer 3

    n-type dopantp-type dopant

    n-type dopant 1

    n-type dopant 2

    n-type dopant 3

    n-type dopant 4

    Fig. 1b. Heterostructure, which consist of a substrate and three epitaxial layers. View from one side

  • Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015

    3

    2. Method of Analysis

    Redistribution of dopant in the considered heterostructure has been described by the second Ficks low [1-4]

    ( ) ( ) ( ) ( )

    +

    +

    =

    z

    tzyxCDzy

    tzyxCDyx

    tzyxCDxt

    tzyxCCCC

    ,,,,,,,,,,,,

    (1)

    with boundary and initial conditions

    ( ) 0,,,0

    =

    =xx

    tzyxC,

    ( ) 0,,, =

    = xLx

    x

    tzyxC,

    ( ) 0,,,0

    =

    =yy

    tzyxC,

    ( ) 0,,, =

    = yLy

    ytzyxC

    ,

    ( ) 0,,,0

    =

    =zz

    tzyxC,

    ( ) 0,,, =

    = zLz

    z

    tzyxC, C (x,y,z,0)=fC (x,y,z). (2)

    Here C(x,y,z,t) is the spatio-temporal distribution of concentration of dopant; x, y, z and t are current coordinates and times; D is the dopant diffusion coefficient. Value of dopant diffusion coefficient depends on properties of materials in layers of heterostructure, speed of heating and cooling of heterostructure (with account Arrhenius low), spatio-temporal distributions of concentrations of dopants and radiation defects. Two last dependences of dopant diffusion coefficient could be approximated by the following relation [15,16]

    ( ) ( )( )( ) ( )

    ( )

    ++

    += 2*

    2

    2*1

    ,,,,,,1,,,

    ,,,1,,,V

    tzyxVV

    tzyxVTzyxPtzyxCTzyxDD LC

    . (3)

    Here DL (x,y,z,T) is the spatial (due to inhomogeneity () of heterostructure) and temperature (due to Arrhenius low) dependences of dopant diffusion coefficient; P

    (x,y,z,T) is the limit of solubility of dopant; parameter depends of properties of materials and could be integer in the interval

    [1,3] [15]; V

    (x,y,z,t) is the spatio-temporal distribution of concentration of radiation vacancies; V* is the equilibrium distribution of vacancies. Concentrational dependence of dopant diffusion coefficient has been discussed in details in [15]. It should be noted, that radiation damage absents in the case of diffusion doping of haterostructure. In this situation 1= 2= 0. Spatio-temporal distributions of concentrations of point radiation defects could be determine by solution of the following system of equations [17-19]

    ( ) ( ) ( ) ( ) ( ) ( )

    +

    =

    tzyxIy

    tzyxITzyxDyx

    tzyxITzyxDxt

    tzyxIII ,,,

    ,,,

    ,,,

    ,,,

    ,,,

    ,,, 2

    ( ) ( ) ( ) ( ) ( ) ( )tzyxVtzyxITzyxkz

    tzyxITzyxDz

    Tzyxk VIIII ,,,,,,,,,,,,

    ,,,,,,,,

    + (4)

    ( ) ( ) ( ) ( ) ( ) ( )

    +

    =

    tzyxVy

    tzyxVTzyxDyx

    tzyxVTzyxDxt

    tzyxVVV ,,,

    ,,,

    ,,,

    ,,,

    ,,,

    ,,, 2

    ( ) ( ) ( ) ( ) ( ) ( )tzyxVtzyxITzyxkz

    tzyxVTzyxD

    zTzyxk VIVVV ,,,,,,,,,

    ,,,

    ,,,,,,,,

    +

  • Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015

    4

    with initial (x,y,z,0)=f (x,y,z) (5a)

    and boundary conditions ( ) 0,,, =

    = yLy

    ytzyx

    ,

    ( ) 0,,,0

    =

    =zz

    tzyx,

    ( ) 0,,, =

    = zLz

    z

    tzyx. (5b)

    Here =I,V; I (x,y,z,t) is the spatio-temporal distribution of concentration of interstitials; D(x,y, z,T) are diffusion coefficients of interstitials and vacancies; terms V2(x,y, z,t) and I2(x,y,z,t) correspond to generation of divacancies and analogous complexes of interstitials; kI,V(x,y,z,T), kI,I(x,y,z,T) and kV,V(x,y,z,T) parameters of recombination of point radiation defects and generation of complexes.

    Spatio-temporal distributions of concentrations of divacancies V(x,y,z,t) and analogous complexes of interstitials I(x,y,z,t) will be determined by solving the following systems of equations [17-19]

    ( ) ( ) ( ) ( ) ( ) +

    +

    =

    y

    tzyxTzyxD

    yxtzyx

    TzyxDxt

    tzyx II

    II

    I

    ,,,

    ,,,

    ,,,

    ,,,

    ,,,

    ( ) ( ) ( ) ( ) ( ) ( )tzyxITzyxktzyxITzyxkz

    tzyxTzyxD

    zIII

    II ,,,,,,,,,,,,

    ,,,

    ,,,2

    ,+

    +

    (6)

    ( ) ( ) ( ) ( ) ( ) +

    +

    =

    y

    tzyxTzyxD

    yxtzyx

    TzyxDxt

    tzyx VV

    VV

    V

    ,,,

    ,,,

    ,,,

    ,,,

    ,,,

    ( ) ( ) ( ) ( ) ( ) ( )tzyxVTzyxktzyxVTzyxkz

    tzyxTzyxD

    zVVV

    VV ,,,,,,,,,,,,

    ,,,

    ,,,2

    ,+

    +

    with boundary and initial conditions ( )

    0,,,

    0

    =

    =xx

    tzyx,

    ( )0

    ,,,

    =

    = xLxx

    tzyx,

    ( )0

    ,,,

    0

    =

    =yy

    tzyx,

    ( )0

    ,,,

    =

    = yLyy

    tzyx,

    ( )0

    ,,,

    0

    =

    =zz

    tzyx,

    ( )0

    ,,,

    =

    = zLzz

    tzyx, I(x,y,z,0)=fI (x,y,z), V(x,y,z,0)=fV (x,y,z). (7)

    Here DI(x,y,z,T) and DV(x,y,z,T) are diffusion coefficients of complexes of point radiation defects; kI(x,y,z,T) and kV(x,y,z,T) are parameters of decay of the complexes.

    To determine spatio-temporal distributions of concentrations of complexes of radiation defects we used considered in Refs. [14,19] approach. Framework the approach we transform approxi-mations of diffusion coefficients of complexes of point radiation defects to the following form: D (x,y,z,T) = D0 [1+ g (x,y,z,T)] and kI,V (x,y,z,T)=k0I,V[1+ h(x,y,z,T)], where D0 and k0I,V are the average values of appropriate parameters, 0V

  • Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015

    5

    2

    2

    2

    2

    1z

    y

    x

    y

    y LL

    LL

    b ++= , 2

    2

    2

    2

    1y

    z

    x

    z

    z LL

    LLb ++= . Using the above variables leads to transformation Eqs. (4) to

    the following form

    ( ) ( )[ ] ( ) +

    +=V

    I

    y

    II

    V

    I

    xDD

    bITg

    DD

    bI

    0

    0

    0

    0 1,,,~

    ,,,11,,,~

    ( )[ ] ( ) ( )[ ] ( )

    ++

    +

    ,,,~,,,11,,,

    ~

    ,,,1 ITgb

    ITg II

    z

    II

    ( )[ ] ( ) ( ) ,,,~,,,~,,,1*

    *

    0

    0 VIThIV

    DD

    V

    I + (8)

    ( ) ( )[ ] ( ) +

    +=I

    V

    y

    VV

    I

    V

    xDD

    bV

    TgDD

    bV

    0

    0

    0

    0 1,,,~

    ,,,11,,,~

    ( )[ ] ( ) ( )[ ] ( )

    ++

    +

    ,,,~,,,1,,,

    ~

    ,,,1 VTgVTg VVVV

    ( )[ ] ( ) ( ) ,,,~,,,~,,,11*

    *

    0

    0 VIThVI

    DD

    b IV

    z

    + .

    We will determine solution of Eqs. (8) as the following power series

    ( ) ( ) = =

    =

    =0 0 0~ ,,,

    ~

    ,,,~

    i j k ijkkji . (9)

    Substitution of the series into Eqs. (8) gives us possibility to obtain system of equations for initial-order approximations of concentrations of defects ( ) ,,,~000 and corrections for them

    ( ) ,,,~ijk (i1, j1, k1). The equations are presented in Appendix.

    Substitution of the series (9) into appropriate boundary and initial conditions gives us possibility to obtain boundary and initial conditions for the functions ( ) ,,,~ijk . The conditions dard approaches [21,22], are presented in Appendix. and solutions for the functions ( ) ,,,~ijk (i0, j0, k0), which have been obtained by stan

    Farther we determine spatio-temporal distributions of concentrations of point radiation defects. To calculate the distributions we transform approximations of diffusion coefficients to the following form: DI(x,y,z,T)=D0I[1+IgI(x,y,z,T)], DV(x,y,z,T)= D0V[1+VgV (x,y,z,T)]. In this situation Eqs. (6) will be transform to the following form

    ( ) ( )[ ] ( ) ( )[ ]

    ++

    +=

    Tzyxgyxtzyx

    Tzyxgxt

    tzyxII

    III

    I,,,1,,,,,,1,,,

    ( ) ( ) ( ) ( ) ( )tzyxITzyxktzyxITzyxkDy

    tzyxIIII

    I,,,,,,,,,,,,

    ,,, 2,0 +

  • Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015

    6

    ( ) ( )[ ] ( ) ( )[ ]

    ++

    +=

    Tzyxgyxtzyx

    Tzyxgxt

    tzyxVV

    VVV

    V,,,1

    ,,,

    ,,,1,,,

    ( ) ( ) ( ) ( ) ( )tzyxVTzyxktzyxVTzyxkDy

    tzyxVVVV

    V,,,,,,,,,,,,

    ,,, 2,0 +

    .

    We determine solutions of these equations as the following power series

    ( ) ( ) = =

    0

    ,,,,,,

    ii

    i tzyxtzyx , (10)

    where =I,V. Substitution of the series (10) into Eqs. (6) and appropriate boundary and initial conditions gives us possibility to obtain equations for initial-order approximations of concentrations of complexes of point radiation defects, corrections for them, boundary and initial conditions for all above functions. The equations, conditions and solutions, which have been obtained by standard approaches [21,22], are presented in the Appendix.

    Analysis of spatio-temporal distributions of concentrations of radiation defects has been done by using the second-order approximations on parameters, which used in appropriate series, and have been defined more precisely by using numerical simulation.

    Farther we determine solution of the Eq.(1). To calculate the solution we used the approach, which has been considered in [13,18]. Framework the approach we transform approximation of dopant diffusion coefficient DL(x,y,z,T) into following form: DL(x,y,z,T) =D0L[1+ L gL(x,y,z,T)]. We determine solution of the Eq.(1) as the following power series

    ( ) ( ) = =

    =0 0,,

    i j ijji

    L txCtxC . (11)

    Substitution of the series into Eq. (1) gives us possibility to obtain system of equations for initial-order approximation of dopant concentration C00(x,y,z,t) and corrections for them Cij(x,y,z,t) (i1, j1). Substitution of the series (11) into appropriate boundary and initial conditions for the functions Cij(x,y,z,t) (i0, j0)

    ( )0

    ,,,

    0

    =

    =x

    ij

    x

    tzyxC

    ;

    ( )0

    ,,,

    =

    = xLx

    ij

    x

    tzyxC

    ;

    ( )0

    ,,,

    0

    =

    =y

    ij

    ytzyxC

    ; ( )

    0,,,

    =

    = yLy

    ij

    ytzyxC

    ;

    ( )0

    ,,,

    0

    =

    =z

    ij

    z

    tzyxC

    ;

    ( )0

    ,,,

    =

    = zLz

    ij

    z

    tzyxC

    ; C00(x,y,z,0)=fC (x,y,z); Cij(x,y,z,0)=0, i0, j0.

    Solutions of equations for the functions Cij(x,y,z,t) (i0, j0), which has been calculated by standard approaches [21,22], are presented in the Appendix.

    Analysis of spatio-temporal distribution of dopant concentration has been done analytically by using the second-order approximation on parameters, which has been used in appropriate series and have been defined more precisely by using numerical simulation.

  • Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015

    7

    3. Discussion

    In this section we analyzed dynamics of redistribution of dopant with account relaxation of distributions of concentrations of radiation defects (in the case of ion doping of heterostructure). The Figs. 2 show distributions of concentrations of infused and implanted dopants in one of last epitaxial layers in direction, which is perpendicular to interfaces between epitaxial layers, after annealing of dopant and/or radiation defects, respectively. In this case values of dopant diffusion coefficient in last epitaxial layers is larger, than value of dopant diffusion coefficient in average epitaxial layer. The figures show, that interfaces between epitaxial layers under the above conditions give us possibility to increase sharpness of p-n-junctions and at the same time to increase homogeneity of distributions of concentrations of dopants in enriched by the dopants areas.

    The Figs. 3 show distributions of concentrations of infused and implanted dopants in one of last epitaxial layers in direction, which is perpendicular to interfaces between epitaxial layers, after annealing of dopant and/or radiation defects, respectively. In this case values of dopant diffusion coefficient in last epitaxial layers is smaller, than value of dopant diffusion coefficient in average epitaxial layer. The figures show, that presents of last epitaxial layers leads to increasing of homogeneity of dopant in the average epitaxial layers. However sharpness of p-n-junctions decreases in comparison with p-n-junctions for Figs. 2. In this case one can obtain accelerated diffusion in last epitaxial layers. The decreasing of sharpness of p-n-junctions is a reason to use higher level of doping of last epitaxial layer to use nonlinearity of dopant diffusion. In this case one obtain n+-p-n+ and/or p+-n-p+ structures.

    x

    0.0

    0.5

    1.0

    1.5

    C(x,

    )

    12

    34

    56

    0 L/4 L/2 3L/4 L

    Interface

    Epitaxial layer2

    Epitaxial layer1

    Fig. 2a. Distributions of concentrations of infused dopant in heterostructure from Fig. 1. Increasing of number of curves corresponds to increasing of difference between values of dopant diffusion coefficient

  • Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015

    8

    x

    0.0

    0.5

    1.0

    1.5

    2.0

    C(x,

    )

    12

    34

    0 L/4 L/2 3L/4 L

    Interface

    Epitaxial layer2

    Epitaxial layer1

    Fig. 2b. Distributions of concentrations of implanted dopant in heterostructure from Fig. 1. Increasing of number of curves corresponds to increasing of difference between values of dopant diffusion coefficient

    x

    0.0

    0.5

    1.0

    1.5

    C(x,

    )

    0 a=2L/3 L-a1 =-L/3

    1

    3

    2

    Fig. 3a. Distributions of concentration of infused in average epitaxial layer dopant in the heterostructure in Fig. 1 without another epitaxial layers (curve 1) and with them for the case, when dopant diffusion

    coefficient in the average epitaxial layer is smaller in comparison with dopant diffusion coefficients in another layers (curves 2 and 3). Increasing of number of curves corresponds to increasing of difference

    between values of dopant diffusion coefficients epitaxial layers of heterostructure

    x

    0.00001

    0.00010

    0.00100

    0.01000

    0.10000

    1.00000

    C(x,

    )

    fC(x)

    L/40 L/2 3L/4 Lx0

    1

    2

  • Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015

    9

    Fig. 3b. Distributions of concentration of implanted in average epitaxial layer dopant in the heterostructure in Fig. 1 without another epitaxial layers (curve 1) and with them for the case, when dopant diffusion coefficient in the average epitaxial layer is smaller in comparison with dopant diffusion coefficients in another layers (curves 2 and 3). Increasing of number of curves corresponds to increasing of difference

    between values of dopant diffusion coefficients epitaxial layers of heterostructure

    Optimal value of annealing time we determine framework recently introduced criterion [12-14]. Framework the criterion we approximate real distributions of dopant by step-wise function and minimize the following mean-squared error

    ( ) ( )[ ] = L xdxxCLU 02

    ,

    1 (12)

    at annealing time . Dependences of the optimal value of annealing time from different parameters are presented on Figs. 4.

    0.0 0.1 0.2 0.3 0.4 0.5a/L, , ,

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    D

    0 L-

    2

    3

    2

    4

    1

    Fig. 4a. Dependences of dimensionless optimal value of annealing time of infused dopant, which has been calculated by minimization the mean-squared error (12), on different parameters of heterostructure. Curve 1

    is the dependence of annealing time on relation a/L, = = 0 and equal to each other values of dopant diffusion coefficient in epitaxial layers. Curve 2 is the dependence of annealing time on parameter for

    a/L=1/2 and = = 0. Curve 3 is the dependence of annealing time on parameter for a/L=1/2 and = = 0. Curve 4 is the dependence of annealing time on parameter for a/L=1/2 and = = 0

    0.0 0.1 0.2 0.3 0.4 0.5a/L, , ,

    0.00

    0.04

    0.08

    0.12

    D

    0 L-

    2

    3

    2

    4

    1

  • Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015

    10

    Fig. 4b. Dependences of dimensionless optimal value time of additional annealing of implanted dopant, which has been calculated by minimization the mean-squared error (12), on different parameters of

    heterostructure. Curve 1 is the dependence of annealing time on relation a/L, = = 0 and equal to each other values of dopant diffusion coefficient in epitaxial layers. Curve 2 is the dependence of annealing time

    on parameter for a/L=1/2 and = = 0. Curve 3 is the dependence of annealing time on parameter for a/L=1/2 and = = 0. Curve 4 is the dependence of annealing time on parameter for a/L=1/2 and = = 0

    The figures show, that optimal values of annealing time after ion implantation are smaller, than optimal values of annealing time after infusion of dopant. Reason of the difference is necessity to use annealing of radiation defects after ion implantation. After that (if necessary) it could be used additional annealing of dopant. One can obtain spreading of distribution of concentration during annealing of radiation defects. Increasing of annealing time with increasing of thickness of epitaxial layer is the consequence of necessity of higher time for dopant to achieve interfaces between epitaxial layers of heterostructure. Decreasing of annealing time with increasing of values of parameters and is the consequence of increasing of values of dopant diffusion coefficient in the area, where main part of dopant has been diffused. Increasing of annealing time with increasing of the parameter is the consequence of decreasing of the term [C (x,y,z,t)/ P (x,y,z,T)] in approximation of dopant diffusion coefficient (3) with increasing of the parameter , because dopant concentration did not usually achieved value of limit of solubility of dopant and parameter is not smaller, than 1.

    4. Conclusion

    In this paper we introduce an approach of manufacturing multiemitter heterotransistors. Framework the approach the considered transistors became more compact and will include into itself p-n-junctions with higher sharpness.

    ACKNOWLEDGEMENTS

    This work is supported by the contract 11.G34.31.0066 of the Russian Federation Government, grant of Scientific School of Russia and educational fellowship for scientific research.

    APPENDIX

    Equations and conditions for functions ( ) ,,,~ijk (i0, j0, k0) could be written as

    ( ) ( ) ( ) ( )

    ++=

    2000

    2

    2000

    2

    2000

    2

    0

    0000 ,,,~1,,,~1,,,~1,,,~

    I

    bI

    bI

    bDDI

    zyxV

    I ;

    ( ) ( ) ( ) ( )

    ++=

    2000

    2

    2000

    2

    2000

    2

    0

    0000 ,,,~1,,,~1,,,~1,,,~

    V

    bV

    bV

    bDDV

    zyxI

    V ;

    ( ) ( ) ( ) ( )+

    ++=

    200

    2

    200

    2

    200

    2

    0

    000 ,,,~1,,,~1,,,~1,,,~

    i

    z

    i

    y

    i

    xV

    Ii Ib

    Ib

    IbD

    DI

    ( ) ( ) ( ) ( )

    +

    +

    +

    ,,,~

    ,,,

    1,,,~,,,

    1 1001000

    0 iI

    y

    iI

    xV

    I ITgb

    ITg

    bDD

  • Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015

    11

    ( ) ( )

    +

    ,,,~

    ,,,

    1 100iI

    z

    ITg

    b, i 1;

    ( ) ( ) ( ) ( )+

    ++=

    200

    2

    200

    2

    200

    2

    0

    000 ,,,~1,,,~1,,,~1,,,~

    i

    z

    i

    y

    i

    xI

    Vi Vb

    Vb

    VbD

    DV

    ( ) ( ) ( ) ( )

    +

    +

    +

    ,,,~

    ,,,

    1,,,~,,,

    1 1001000

    0 iV

    y

    iV

    xI

    V VTgb

    VTg

    bDD

    ( ) ( )

    +

    ,,,~

    ,,,

    1 100iV

    z

    VTgb

    , i 1;

    ( ) ( ) ( ) ( )

    ++=

    2010

    2

    2010

    2

    2010

    2

    0

    0010 ,,,~1,,,~1,,,~1,,,~

    I

    bI

    bI

    bDDI

    zyxV

    I

    ( ) ( ) ,,,~,,,~ 000000**

    VIIV

    ;

    ( ) ( ) ( ) ( )

    ++=

    2010

    2

    2010

    2

    2010

    2

    0

    0010 ,,,~1,,,~1,,,~1,,,~

    V

    bV

    bV

    bDDV

    zyxI

    V

    ( ) ( ) ,,,~,,,~ 000000**

    VIIV

    ;

    ( ) ( ) ( ) ( )

    ++=

    2020

    2

    2020

    2

    2020

    2

    0

    0020 ,,,~1,,,~1,,,~1,,,~

    I

    bI

    bI

    bDDI

    zyxV

    I

    ( ) ( ) ( ) ( ) ,,,~,,,~,,,~,,,~ 010000**

    000010*

    *

    VIIVVI

    IV

    ( ) ( ) ( ) ( )

    ++=

    2020

    2

    2020

    2

    2020

    2

    0

    0020 ,,,~1,,,~1,,,~1,,,~

    V

    bV

    bV

    bDDV

    zyxI

    V

    ( ) ( ) ( ) ( ) ,,,~,,,~,,,~,,,~ 010000**

    000010*

    *

    VIVIVI

    VI

    ;

    ( ) ( ) ( ) ( )+

    ++=

    2110

    2

    2110

    2

    2110

    2

    0

    0110 ,,,~1,,,~1,,,~1,,,~

    I

    bI

    bI

    bDDI

    zyxV

    I

    ( ) ( ) ( ) ( )

    +

    +

    +

    ,,,~

    ,,,

    1,,,~,,,

    1 0100100

    0 ITgb

    ITg

    bDD

    I

    y

    I

    xV

    I

    ( ) ( ) ( ) ( )

    +

    *

    *

    000100*

    *

    010,,,

    ~

    ,,,

    ~,,,

    ~

    ,,,

    1IVVI

    IVITg

    b Iz

    ( ) ( ) ,,,~,,,~ 100000 VI ; ( ) ( ) ( ) ( )

    +

    ++=

    2110

    2

    2110

    2

    2110

    2

    0

    0110 ,,,~1,,,~1,,,~1,,,~

    V

    bV

    bV

    bDDV

    zyxI

    V

    ( ) ( ) ( ) ( )

    +

    +

    +

    ,,,~

    ,,,

    1,,,~,,,

    1 0100100

    0 VTgb

    VTg

    bDD

    V

    y

    V

    xI

    V

  • Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015

    12

    ( ) ( ) ( ) ( )

    +

    *

    *

    000100*

    *

    010,,,

    ~

    ,,,

    ~,,,

    ~

    ,,,

    1IIVI

    IIVTg

    b Vz

    ( ) ( ) ,,,~,,,~ 100000 VI ; ( ) ( ) ( ) ( )

    ++=

    200

    2

    200

    2

    200

    2

    0

    000 ,,,~1,,,~1,,,~1,,,~

    k

    z

    k

    y

    k

    xV

    Ik Ib

    Ib

    IbD

    DI

    ( ) ( ) ( ) ( )

    ++=

    200

    2

    200

    2

    200

    2

    0

    000 ,,,~1,,,~1,,,~1,,,~

    k

    z

    k

    y

    k

    xI

    Vk Ib

    Ib

    IbD

    DV;

    ( ) ( ) ( ) ( )+

    ++=

    2101

    2

    2101

    2

    2101

    2

    0

    0101 ,,,~1,,,~1,,,~1,,,~

    I

    bI

    bI

    bDDI

    zyxV

    I

    ( ) ( ) ( ) ( )

    +

    +

    +

    ,,,~

    ,,,

    1,,,~,,,

    1 0010010

    0 ITgb

    ITg

    bDD

    I

    y

    I

    xV

    I

    ( ) ( )

    +

    ,,,~

    ,,,

    1 001ITgb I

    z

    ;

    ( ) ( ) ( ) ( )+

    ++=

    2101

    2

    2101

    2

    2101

    2

    0

    0101 ,,,~1,,,~1,,,~1,~

    V

    bV

    bV

    bDDV

    zyxI

    V

    ( ) ( ) ( ) ( )

    +

    +

    +

    ,,,~

    ,,,

    1,,,~,,,

    1 0010010

    0 ITgb

    ITg

    bDD

    V

    y

    V

    xI

    V

    ( ) ( )

    +

    ,,,~

    ,,,

    1 001ITgb V

    z

    ;

    ( ) ( ) ( ) ( )+

    ++=

    2

    0112

    2

    0112

    2

    0112

    0

    0011 ,,,~1,,,~1,,,~1,,,~

    I

    bI

    bI

    bDDI

    zyxV

    I

    ( ) ( ) ( ) ( ) ( )[ ,,,~,,,~,,,,,,~,,,~ 000000000001** VIThVIIV ( ) ( )] ,,,~,,,~ 001000 VI

    ( ) ( ) ( ) ( )

    ++=

    2011

    2

    2011

    2

    2011

    2

    0

    0011 ,,,~1,,,~1,,,~1,,,~

    V

    bV

    bV

    bDDV

    zyxI

    V

    ( ) ( ) ( ) ( ) ( )[ ,,,~,,,~,,,,,,~,,,~ 000000000001** VIThVIIV ( ) ( )] ,,,~,,,~ 001000 VI .

    ( )0

    ,,,~

    0

    =

    = ijk ; ( ) 0,,,~

    1

    =

    = ijk ; ( ) 0,,,~

    0

    =

    = ijk ; ( ) 0,,,~

    1

    =

    = ijk ;

    ( )0

    ,,,~

    0

    =

    = ijk ; ( ) 0,,,

    ~

    1

    =

    = ijk

    , i 1, j 1, k 1; ( ) ( )*

    ,,

    0,,,~000 f= ;

    ( ) 00,,,~ = ijk , i 1, j 1, k 1. Solutions of equations for the functions ( ) ,,,~ijk (i0, j0, k0) could be written as

  • Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015

    13

    ( ) ( ) ( ) ( ) ( )+= =1

    000

    21,,,

    ~

    nnn

    ecccFLL

    ,

    where ( ) ( ) ( ) ( ) = 10

    1

    0

    1

    0*

    ,,

    1udvdwdwvufwcvcucF

    nn , cn() = cos (pi n ), ( ) ( )IVnI DDne 0022exp pi = , ( ) ( )VInV DDne 0022exp pi = ;

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) = =1 0

    1

    0

    1

    0

    1

    02

    000 ,,,

    *

    2,,,

    ~

    nVnnnnnnn

    zyxx

    i TwvugvcuseecccnLLLbD

    pi

    ( ) ( ) ( ) ( ) ( ) ( ) ( )

    =

    1 02

    0100

    *

    2,,,~n

    nnnnn

    zyxy

    in

    eecccnLLLb

    Ddudvdwd

    u

    wvuwc

    pi

    ( ) ( ) ( ) ( ) ( ) ( )

    =

    12

    01

    0

    1

    0

    1

    0

    100

    *

    2,,,~,,,

    nn

    zyxz

    iVnnn cnLLLb

    Ddudvdwd

    v

    wvuTwvugwcvsuc

    pi

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

    0

    1

    0

    1

    0

    1

    0

    100,,,

    ,,,~

    dudvdwdTwvugw

    wvuwsvcuceecc V

    innnnnnn

    , i 1;

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) = =1 0

    1

    0

    1

    0

    1

    0*

    *

    0010

    *

    2,,,

    ~

    nnnnInInnnn

    zyx

    I wcvcuceecccIV

    LLLIDI

    ( ) ( ) dudvdwdwvuVwvuI ,,,~,,,~ 000000 ; ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) =

    =1 0

    1

    0

    1

    0

    1

    0*

    *

    0010

    *

    2,,,

    ~

    nnnnVnVnnnn

    zyx

    I wcvcuceecccVI

    LLLVD

    V

    ( ) ( ) dudvdwdwvuVwvuI ,,,~,,,~ 000000 ; ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) =

    =1 0

    1

    0

    1

    0

    1

    0*

    *

    0020

    *

    2,,,

    ~

    nnnnInInnnn

    zyx

    I wcvcuceecccIV

    LLLID

    I

    ( ) ( ) ( ) ( ) ( ) ( ) =1*

    *

    0000010

    *

    2,,,

    ~

    ,,,

    ~

    nInnnn

    zyx

    I ecccIV

    LLLIDdudvdwdwvuVwvuI

    ( ) ( ) ( ) ( ) ( ) ( ) 0

    1

    0

    1

    0

    1

    0010000 ,,,

    ~

    ,,,

    ~ dudvdwdwvuVwvuIwcvcucennnIn ;

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) = =1 0

    1

    0

    1

    0

    1

    0*

    *

    0020

    *

    2,,,

    ~

    nnnnVnVnnnn

    zyx

    I wcvcuceecccVI

    LLLVDV

    ( ) ( ) ( ) ( ) ( ) ( ) =1*

    *

    0000010

    *

    2,,,

    ~

    ,,,

    ~

    nVnnnn

    zyx

    I ecccVI

    LLLVDdudvdwdwvuVwvuI

    ( ) ( ) ( ) ( ) ( ) ( ) 0

    1

    0

    1

    0

    1

    0010000 ,,,

    ~

    ,,,

    ~ dudvdwdwvuVwvuIwcvcucennnVn ;

    ( ) ( ) ( ) ( ) 0,,,~,,,~,,,~,,,~ 002001002001 ==== VVII ; ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) =

    =1 0

    1

    0

    1

    0

    1

    0*

    *

    20

    110*

    2,,,

    ~

    nnnnInInnnn

    zyxx

    I wcvcuseecccnIV

    LLLIbDI

    pi

    ( ) ( ) ( ) ( ) ( ) ( ) + =1*

    *

    20010

    *

    2,,,~,,,

    nInnnn

    zyxy

    II ecccI

    VLLLIb

    Ddudvdwdu

    wvuITwvug pi

    ( ) ( ) ( ) ( ) ( ) ( ) + 200

    1

    0

    1

    0

    1

    0

    010

    *

    2,,,~,,,

    zyxz

    IInnnIn LLLIb

    Ddudvdwdv

    wvuITwvugwcvsucen pi

  • Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015

    14

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) =1 0

    1

    0

    1

    0

    1

    0

    010*

    *,,,

    ~

    ,,,

    nInnnInnn dudvdwd

    w

    wvuITwvugwsvcuceccnIV

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) =1 0

    1

    0

    1

    0

    1

    0100*

    *

    0,,,

    ~

    *

    2n

    nnInInnnn

    zyx

    IInn wvuIvcuceecccI

    VLLLI

    Dec

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) =1 0

    1

    0

    1

    0

    1

    0*

    *

    0000

    *

    2,,,

    ~

    nnnnInInn

    In

    wcvcuceecIV

    LIDdudvdwdwvuVwc

    ( ) ( ) ( ) ( )nn

    ccdudvdwdwvuVwvuI ,,,~,,,~ 100000 ;

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) = =1 0

    1

    0

    1

    0

    1

    0*

    *

    20

    110*

    2,,,

    ~

    nnnnVnVnnnn

    zyxx

    V wcvcuseecccnVI

    LLLIbD

    V

    pi

    ( ) ( ) ( ) ( ) ( ) ( ) + =1*

    *

    2

    0010

    *

    2,,,~,,,

    nVnnnn

    zyxy

    V

    V ecccnVI

    LLLVbD

    dudvdwdu

    wvuVTwvug

    pi

    ( ) ( ) ( ) ( ) ( ) ( ) + **

    20

    0

    1

    0

    1

    0

    1

    0

    010

    *

    2,,,~,,,

    VI

    LLLVbDdudvdwd

    v

    wvuVTwvugwcvsuce

    zyxz

    VVnnnVn

    pi

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) =1 0

    1

    0

    1

    0

    1

    0

    010 ,,,~

    ,,,

    nVnnnVnnnn dudvdwd

    w

    wvuVTwvugwsvcucecccn

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) =1 0

    1

    0000100

    0,,,

    ~

    ,,,

    ~

    *

    2n

    nVnVnn

    zyx

    VVn dudvdwdwvuVwvuIvceecLLLV

    De

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) =1 0

    1

    0

    1

    0

    1

    0000*

    *

    0*

    *

    ,,,

    ~

    *

    2n

    nnnVnnnnV

    nnwvuIwcvcuceccc

    VI

    LVD

    VI

    cc

    ( ) ( ) VnedudvdwdwvuV ,,,~100 ; ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) =

    =1 0

    1

    0

    1

    0

    1

    02101

    ,,,

    *

    2,,,

    ~

    nInnInInnnn

    zyxx

    TwvugvcuseecccnLLLIb

    I

    pi

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) + =1 0

    1

    02

    001

    *

    2,,,~

    nnInInnnn

    zyxy

    nuceeccc

    LLLIbdudvdwd

    u

    wvuIwc

    pi

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )+ =1

    1

    0

    1

    0

    001

    *

    2,,,~,,,

    nInnnn

    z

    Inn ecccnIbdudvdwd

    v

    wvuITwvugwcvsn pi

    ( ) ( ) ( ) ( ) ( ) ( )2

    0

    1

    0

    1

    0

    1

    0

    001 1,,,~

    ,,,

    zyx

    InnnIn LLLdudvdwd

    w

    wvuITwvugwsvcuce

    ;

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) = =1 0

    1

    0

    1

    0

    1

    02101

    ,,,

    *

    2,,,

    ~

    nVnnVnVnnnn

    zyxx

    TwvugvcuseecccLLLVb

    V

    pi

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) + =1 0

    2001 2,,,

    ~

    nVnVnnnn

    yzyx

    neecccn

    bLLLdudvdwd

    u

    wvuVwcn

    pi

    ( ) ( ) ( ) ( ) ( ) ( ) + =12

    1

    0

    1

    0

    1

    0

    001

    *

    2,,,~

    *

    ,,,

    nn

    zyxz

    Vnnn

    cnLLLVb

    dudvdwdv

    wvuVV

    Twvugwcvsuc pi

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

    0

    1

    0

    1

    0

    1

    0

    001 ,,,~

    ,,, dudvdwdw

    wvuVTwvugwsvcuceecc VnnnVnVnnn ;

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) = =1 0

    1

    0

    1

    0

    1

    0001011 ,,,

    ~

    *

    2,,,

    ~

    nnnInInnnn

    zyx

    wvuIvcuceecccLLLI

    I

  • Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015

    15

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) =1 0

    *

    *

    *

    *

    000*

    2,,,

    ~

    nInInnnn

    zyx

    neeccc

    IV

    LLLIIVdudvdwdwvuVwc

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) =1*

    *1

    0

    1

    0

    1

    0001000

    *

    2,,,

    ~

    ,,,

    ~

    nnn

    zyx

    nnncc

    IV

    ILLLdudvdwdwvuVwvuIwcvcuc

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0

    1

    0

    1

    0

    1

    0001000 ,,,

    ~

    ,,,

    ~

    ,,, dudvdwdwvuVwvuIwcTwvuhvcuceecnnnInInn ;

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) = =1 0

    1

    0

    1

    0

    1

    0*

    *

    011*

    2,,,

    ~

    nnnnVnVnnnn

    zyx

    wcvcuceecccVI

    LLLVV

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) =1 0

    000001*

    2,,,

    ~

    ,,,

    ~

    nVnVnnnn

    zyx

    eecccLLLV

    dudvdwdwvuVwvuI

    ( ) ( ) ( ) ( ) ( ) ( ) =1

    1

    0

    1

    0

    1

    0001000*

    *

    *

    2,,,

    ~

    ,,,

    ~

    nn

    zyx

    nnnc

    LLLVdudvdwdwvuVwvuIwcvcuc

    VI

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0

    1

    0

    1

    0

    1

    0001000*

    *

    ,,,

    ~

    ,,,

    ~

    ,,, dudvdwdwvuVwvuIwcTwvuhvcuceVI

    nnnVn

    ( ) ( ) ( ) Vnnn ecc . Equations for the functions i(x,y,z,t) are

    ( ) ( ) ( ) ( )+

    +

    +

    =

    2

    02

    20

    2

    20

    2

    00 ,,,,,,,,,,,,

    z

    tzyxy

    tzyxx

    tzyxDt

    tzyx IIII

    I

    ( ) ( ) ( ) ( )tzyxITzyxktzyxITzyxk III ,,,,,,,,,,,, 2, + ; ( ) ( ) ( ) ( )

    +

    +

    +

    =

    2

    02

    20

    2

    20

    2

    00 ,,,,,,,,,,,,

    z

    tzyxy

    tzyxx

    tzyxDt

    tzyx VVVV

    V

    ( ) ( ) ( ) ( )tzyxVTzyxktzyxVTzyxk VVV ,,,,,,,,,,,, 2, + ; ( ) ( ) ( ) ( )

    +

    +

    +

    =

    2

    2

    02

    2

    02

    2

    0

    ,,,,,,,,,,,,

    z

    tzyxD

    ytzyx

    Dx

    tzyxD

    t

    tzyx iII

    iII

    iII

    iI

    ( ) ( ) ( ) ( ) +

    +

    +

    ytzyx

    Tzyxgy

    Dx

    tzyxTzyxg

    xD iIII

    iIII

    ,,,

    ,,,

    ,,,

    ,,,1

    01

    0

    ( ) ( )

    +

    z

    tzyxTzyxg

    zD iIII

    ,,,

    ,,,1

    0 , i1;

    ( ) ( ) ( ) ( )+

    +

    +

    =

    2

    2

    02

    2

    02

    2

    0

    ,,,,,,,,,,,,

    z

    tzyxD

    ytzyx

    Dx

    tzyxD

    t

    tzyx iVV

    iVV

    iVV

    iV

    ( ) ( ) ( ) ( ) +

    +

    +

    ytzyx

    Tzyxgy

    Dx

    tzyxTzyxg

    xD iVVV

    iV

    VV

    ,,,

    ,,,

    ,,,

    ,,,1

    01

    0

    ( ) ( )

    +

    z

    tzyxTzyxg

    zD iVVV

    ,,,

    ,,,1

    0 , i1;

    ( )0

    ,,,

    0

    =

    =x

    i

    x

    tzyx,

    ( )0

    ,,,

    =

    = xLx

    i

    x

    tzyx,

    ( )0

    ,,,

    0

    =

    =y

    i

    ytzyx

    ,

    ( )0

    ,,,

    =

    = yLy

    i

    ytzyx

    ,

    ( )0

    ,,,

    0

    =

    =z

    i

    z

    tzyx,

    ( )0

    ,,,

    =

    = zLz

    i

    z

    tzyx, i0; I0(x,y,z,0)=fI (x,y,z), Ii(x,y,z,0)=0,

  • Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015

    16

    V0(x,y,z,0)=fV (x,y,z), Vi(x,y,z,0)=0, i1. Solutions of the equations could be written as

    ( ) ( ) ( ) ( ) ( )+= =

    1

    0

    21,,,

    nnn

    zyxzyx

    tezcycxcFLLLLLL

    tzyx

    ,

    where ( )

    ++= 2220

    22 111expzyx

    n LLLtDnte

    pi , ( ) ( ) ( ) ( ) = x

    L yL zL

    nnnnxdydzdzyxfzcycxcF

    0 0 0,,

    ,

    cn() = cos (pi n /L); ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) =

    =

    1 0 0 0 0

    2.,,

    2,,,

    n

    t xL yL zL

    nnnnnnnn

    zyx

    i TwvugwcvcusetezcycxcnLLLtzyx

    pi

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) =

    1 0 0 02

    1 2,,,n

    t xL yL

    nnnnnnn

    zyx

    iIvsucetezcycxcn

    LLLdudvdwd

    u

    wvu

    pi

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) =

    120

    1 2,,,.,,

    nnnnn

    zyx

    zL iI

    ntezcycxcn

    LLLdudvdwd

    v

    wvuTwvugwc

    pi

    ( ) ( ) ( ) ( ) ( ) ( ) t xL yL zL iI

    nnnndudvdwd

    w

    wvuTwvugwsvcuce

    0 0 0 0

    1 ,,,

    .,,

    , i1,

    where sn() = sin (pi n/L).

    System of equations for functions Cijk(x,y,z,t) (i0, j0, k0) could be written as

    ( ) ( ) ( ) ( )

    +

    +

    =

    200

    2

    200

    2

    200

    2

    000 ,,,,,,,,,,,,

    z

    tzyxCy

    tzyxCx

    tzyxCDt

    tzyxCL ;

    ( ) ( ) ( ) ( )+

    +

    +

    =

    20

    2

    020

    2

    020

    2

    00 ,,,,,,,,,,,,

    z

    tzyxCD

    ytzyxC

    Dx

    tzyxCD

    t

    tzyxC iL

    iL

    iL

    i

    ( ) ( ) ( ) ( ) +

    +

    + y

    tzyxCTzyxg

    yD

    x

    tzyxCTzyxg

    xD iLL

    iLL

    ,,,

    ,,,

    ,,,

    ,,,10

    010

    0

    ( ) ( )

    + z

    tzyxCTzyxg

    zD iLL

    ,,,

    ,,,10

    0 , i 1;

    ( ) ( ) ( ) ( )+

    +

    +

    =

    201

    2

    0201

    2

    0201

    2

    001 ,,,,,,,,,,,,

    z

    tzyxCD

    ytzyxC

    Dx

    tzyxCD

    t

    tzyxCLLL

    ( )( )

    ( ) ( )( )

    ( )+

    +

    +y

    tzyxCTzyxPtzyxC

    yD

    x

    tzyxCTzyxPtzyxC

    xD LL

    ,,,

    ,,,

    ,,,,,,

    ,,,

    ,,, 00000

    00000

    ( )( )

    ( )

    +z

    tzyxCTzyxPtzyxC

    zD L

    ,,,

    ,,,

    ,,, 00000

    ;

    ( ) ( ) ( ) ( )+

    +

    +

    =

    LLLL Dz

    tzyxCD

    ytzyxC

    Dx

    tzyxCD

    t

    tzyxC02

    022

    0202

    2

    0202

    2

    002 ,,,,,,,,,,,,

    ( ) ( )( )( ) ( ) ( )( )

    ( )

    +

    +

    ytzyxC

    TzyxPtzyxC

    tzyxCyx

    tzyxCTzyxPtzyxC

    tzyxCx

    ,,,

    ,,,

    ,,,

    ,,,

    ,,,

    ,,,

    ,,,

    ,,,00

    100

    0100

    100

    01

  • Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015

    17

    ( ) ( )( )( ) ( )

    ( )( )

    +

    +

    +

    x

    tzyxCTzyxPtzyxC

    xD

    z

    tzyxCTzyxPtzyxC

    tzyxCz

    L

    ,,,

    ,,,

    ,,,,,,

    ,,,

    ,,,

    ,,,0100

    000

    100

    01

    ( )( )

    ( ) ( )( )

    ( )

    +

    +z

    tzyxCTzyxPtzyxC

    zytzyxC

    TzyxPtzyxC

    y,,,

    ,,,

    ,,,,,,

    ,,,

    ,,, 01000100

    ;

    ( ) ( ) ( ) ( )+

    +

    +

    =

    LLLL Dz

    tzyxCD

    ytzyxC

    Dx

    tzyxCD

    t

    tzyxC02

    112

    0211

    2

    0211

    2

    011 ,,,,,,,,,,,,

    ( ) ( )( )( ) ( ) ( )( )

    ( )+

    +

    ytzyxC

    TzyxPtzyxC

    tzyxCyx

    tzyxCTzyxPtzyxC

    tzyxCx

    ,,,

    ,,,

    ,,,

    ,,,

    ,,,

    ,,,

    ,,,

    ,,,00

    100

    1000

    100

    10

    ( ) ( )( )( ) ( )

    ( )( )

    +

    +

    +

    x

    tzyxCtzyxPtzyxC

    xD

    z

    tzyxCTzyxPtzyxC

    tzyxCz

    L

    ,,,

    ,,,

    ,,,,,,

    ,,,

    ,,,

    ,,,1000

    000

    100

    10

    ( )( )

    ( ) ( )( )

    ( ) ( )

    +

    +

    + Tzyxgxz

    tzyxCtzyxPtzyxC

    zytzyxC

    tzyxPtzyxC

    y L,,,

    ,,,

    ,,,

    ,,,,,,

    ,,,

    ,,, 10001000

    ( ) ( ) ( ) ( ) ( ) LLL Dz

    tzyxCTzyxg

    zytzyxC

    Tzyxgyx

    tzyxC0

    010101 ,,,,,,

    ,,,

    ,,,

    ,,,

    +

    +

    .

    Solutions of equations for functions Cij(x,y,z,t) (i0, j0) with account appropriate conditions takes the form

    ( ) ( ) ( ) ( ) ( )+= =1

    00

    21,,,

    nnCnC

    zyxzyx

    tezcycxcFLLLLLL

    tzyxC ,

    where ( )

    ++=

    222022 111exp

    zyx

    CnC LLLtDnte pi , ( ) ( ) ( ) ( ) = xL y

    L zL

    CnnnCn xdydzdzyxfzcycxcF0 0 0

    ,, ;

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) = =1 0 0 0 0

    20,,,

    2,,,

    n

    t xL yL zL

    LnnnnCnCnnnnC

    zyx

    i TwvugwcvcusetezcycxcFLLLtzyxC pi

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

    =

    1 0 0 02

    10 2,,,n

    t xL yL

    nnnCnCnnnnC

    zyx

    i vsucetezcycxcFnLLL

    ndudvdwdu

    wvuC

    pi

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

    =

    1 02

    0

    10 2,,,,,,

    n

    t

    nCnCnnn

    zyx

    zLi

    Ln etezcycxcLLLdudvdwd

    v

    wvuCTwvugwc pi

    ( ) ( ) ( ) ( ) ( )

    xL yL zL

    iLnnnnC dudvdwd

    w

    wvuCTwvugwsvcucFn

    0 0 0

    10 ,,,,,,

    , i 1;

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) =

    =1 0 0 0 0

    00201

    ,,,

    ,,,2,,,

    n

    t xL yL zL

    nnnCnCnnnnC

    zyx TwvuPwvuC

    vcusetezcycxcFnLLL

    tzyxC

    pi

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

    =1 0 02

    00 2,,,n

    t xL

    nnCnCnnnnC

    zyx

    nucetezcycxcFn

    LLLdudvdwd

    u

    wvuCwc

    pi

    ( ) ( ) ( )( )( ) ( ) ( ) ( )

    =120 0

    0000 2,,,,,,

    ,,,

    nnnnnC

    zyx

    yL zL

    nnzcycxcFn

    LLLdudvdwd

    v

    wvuCTwvuP

    wvuCwcvs

    pi

    ( ) ( ) ( ) ( ) ( ) ( )( )( )

    t xL yL zL

    nnnnCnC dudvdwdw

    wvuCTwvuP

    wvuCwsvcucete

    0 0 0 0

    0000 ,,,

    ,,,

    ,,,

    ;

  • Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015

    18

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) =

    =

    1 0 0 0

    100

    0202

    ,,,

    ,,,2,,,

    n

    t xL yL zL

    nnnnCnCnnnnC

    zyx TwvuPwvuC

    wcvcusetezcycxcFnLLL

    tzyxC

    pi

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

    =1 0 0 02

    00 2,,,n

    t xL yL

    nnnCnCnnnnC

    zyx

    vsucetezcycxcFnLLL

    dudvdwdu

    wvuC

    pi

    ( ) ( )( )( ) ( ) ( ) ( ) ( )

    =

    120

    001

    00 2,,,,,,

    ,,,

    nnCnnnnC

    zyx

    zL

    ntezcycxcFn

    LLLdudvdwd

    v

    wvuCTwvuP

    wvuCwc

    pi

    ( ) ( ) ( ) ( ) ( )( )( ) ( )

    =

    120 0 0 0

    001

    00 2,,,,,,

    ,,,

    nn

    zyx

    t xL yL zL

    nnnnC xcnLLLdudvdwd

    w

    wvuCTwvuP

    wvuCwsvcuce

    pi

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )( )

    t xL yL zL

    nnnnCnCnnnC dudvdwdu

    wvuCTwvuP

    wvuCwcvcusetezcycF

    0 0 0 0

    0100 ,,,

    ,,,

    ,,,

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )( )

    =1 0 0 0 0

    01002

    ,,,

    ,,,

    ,,,2n

    t xL yL zL

    nnnCnCnnnnC

    zyx v

    wvuCTwvuP

    wvuCvsucetezcycxcFn

    LLL

    pi

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) =1 0 0 0 0

    2

    2n

    t xL yL zL

    nnnnCnCnnnnC

    zyx

    nwsvcucetezcycxcFn

    LLLdudvdwdwc pi

    ( )( )

    ( )

    dudvdwdw

    wvuCTwvuP

    wvuC

    ,,,

    ,,,

    ,,, 0100 ;

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) = =1 0 0 0 0

    211,,,

    2,,,

    n

    t xL yL zL

    LnnnnCnCnnnnC

    zyx

    TwvugwcvcusetezcycxcFnLLL

    tzyxC pi

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

    =1 0 0 0 02

    01 2,,,n

    t xL yL zL

    nnnnCnCnnn

    zyx

    wcvsucetezcycxcLLL

    dudvdwdu

    wvuC

    pi

    ( ) ( ) ( ) ( ) ( ) ( ) ( )

    =1 02

    01 2,,,,,,

    n

    t

    nCnCnnn

    zyx

    LnC etezcycxcLLLdudvdwd

    v

    wvuCTwvugFn pi

    ( ) ( ) ( ) ( ) ( ) ( )

    =120 0 0

    01 2,,,,,,

    nnnC

    zyx

    xL yL zL

    LnnnnC xcFnLLLdudvdwd

    w

    wvuCTwvugwsvcucFn pi

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )( )

    t xL yL zL

    nnnnCnCnn dudvdwdu

    wvuCTwvuP

    wvuCwcvcusetezcyc

    0 0 0 0

    1000 ,,,

    ,,,

    ,,,

    ( ) ( ) ( ) ( ) ( ) ( )( )( )

    =1 0 0 0 0

    10002

    ,,,

    ,,,

    ,,,2n

    t xL yL zL

    nnnnCn

    zyx

    dudvdwdv

    wvuCTwvuP

    wvuCwcvsucexcn

    LLL

    pi

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) =1 0 0 0 0

    2

    2n

    t xL yL zL

    nnnnCnCnnnnC

    zyx

    nCnnnC wsvcucetezcycxcFnLLLtezcycF pi

    ( )( )

    ( ) ( ) ( ) ( ) ( ) ( )

    =1 02

    1000 2,,,,,,

    ,,,

    n

    t

    nCnCnnnnC

    zyx

    etezcycxcFnLLL

    dudvdwdw

    wvuCTwvuP

    wvuC

    pi

    ( ) ( ) ( ) ( )( )( ) ( )

    =

    120 0 0

    001

    00 2,,,,,,

    ,,,

    nnnC

    zyx

    xL yL zL

    nnnxcFn

    LLLdudvdwd

    u

    wvuCTwvuP

    wvuCwcvcus

    pi

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )( )

    t xL yL zL

    nnnnCnCnn dudvdwdv

    wvuCTwvuP

    wvuCwcvsucetezcyc

    0 0 0 0

    001

    00 ,,,

    ,,,

    ,,,

    ( ) ( ) ( ) ( ) ( )( )( )

    =

    1

    00

    0 0 0 0

    100

    2

    ,,,

    ,,,

    ,,,2n

    t xL yL zL

    nnnnC

    zyx

    dudvdwdw

    wvuCTwvuP

    wvuCwsvcucen

    LLL

    pi

    ( ) ( ) ( ) ( )tezcycxcFnCnnnnC .

  • Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015

    19

    REFERENCES

    [1] I.P. Stepanenko. Basis of Microelectronics, Soviet Radio, Moscow, 1980. [2] A.G. Alexenko, I.I. Shagurin. Microcircuitry Radio and Communication, Moscow, 1990. [3] V.G. Gusev, Yu.M. Gusev. Electronics, Moscow: Vysshaya shkola, 1991, in Russian. [4] V.I. Lachin, N.S. Savelov. Electronics,Phoenix, Rostov-na-Donu, 2001. [5] Jung-Hui Tsai, Shao-Yen Chiu, Wen-Shiung Lour, Der-Feng Guo. High-performance InGaP/GaAs

    pnp delta-doped heterojunction bipolar transistor, Semiconductors. Vol. 43 (7). P. 971-974 (2009). [6] T. Y. Peng, S. Y. Chen, L. C. Hsieh, C. K. Lo, Y. W. Huang, W. C. Chien, Y. D. Yao. Impedance

    behavior of spin-valve transistor, J. Appl. Phys. Vol. 99 (8). P. 08H710-08H712 (2006). [7] S. Maximenko, S. Soloviev, D. Cherednichenko, T. Sudarshan. Observation of dislocations in

    diffused 4HSiC p-i-n diodes by electron-beam induced current, J. Appl. Phys. Vol. 97 (1). P. 013533-013538 (2005).

    [8] I.E. Tyschenko, V.A. Volodin. Quantum confinement effect in silicon-on-insulator films implanted with high dose hydrogen ions, Semiconductors. Vol.46 (10). P.1309-1313 (2012).

    [9] K.K. Ong, K.L. Pey, P.S. Lee, A.T.S. Wee, X.C. Wang, Y.F. Chong. Dopant distribution in the recrystallization transient at the maximum melt depth induced by laser annealing, Appl. Phys. Lett. Vol. 89 (17). P. 172111 (2006).

    [10] Yu.V. Bykov, A.G. Yeremeev, N.A. Zharova, I.V. Plotnikov, K.I. Rybakov, M.N. Drozdov, Yu.N. Drozdov, V.D. Skupov. Diffusion processes in semiconductor structures during microwave annealing, Radiophysics and Quantum Electronics. Vol. 43 (3). P. 836-843 (2003).

    [11] V.V. Kozlivsky. Modification of semiconductors by proton beams, Sant-Peterburg, Nauka, 2003, in Russian.

    [12] E.L. Pankratov. Application of porous layers and optimization of annealing of dopant and radiation defects to increase sharpness of p-n-junctions in a bipolar heterotransistors, J. Optoel. Nanoel. Vol. 6 (2). P. 188 (2011).

    [13] E.L. Pankratov. Increasing of homogeneity of dopant distribution in a p-n-junction by using an overlayers, J. Comp. Theor. Nanoscience. Vol. 8 (2). P. 207 (2011).

    [14] E.L. Pankratov, E.A. Bulaeva. Increasing of sharpness of diffusion-junction heterorectifier by using radiation pro-cessing, Int. J. Nanoscience. Vol. 11 (5). P. 1250028 (2012).

    [15] Z.Yu. Gotra. Technology of microelectronic devices (Radio and communication, Moscow, 1991). [16] E.I. Zorin, P.V. Pavlov and D.I. Tetelbaum. Ion doping of semiconductors, Energy, Moscow, 1975. [17] P.M. Fahey, P.B. Griffin, J.D. Plummer. Point defects and dopant diffusion in silicon, Rev. Mod.

    Phys. 1989. V. 61. 2. P. 289-388. [18] V.L. Vinetskiy, G.A. Kholodar', Radiative physics of semiconductors. (Naukova Dumka, Kiev, 1979,

    in Russian). [19] E.L. Pankratov. Analysis of redistribution of radiation defects with account diffusion and several

    secondary processes, Mod. Phys. Lett. B. 2008. Vol. 22 (28). P. 2779-2791. [20] K.V. Shalimova. Physics of semiconductors, Moscow: Energoatomizdat, 1985, in Russian. [21] A.N. Tikhonov, A.A. Samarskii. The mathematical physics equations, Moscow, Nauka 1972) (in

    Russian. [22] H.S. Carslaw, J.C. Jaeger. Conduction of heat in solids, Oxford University Press, 1964.

    Author

    Pankratov Evgeny Leonidovich was born at 1977. From 1985 to 1995 he was educated in a secondary school in Nizhny Novgorod. From 1995 to 2004 he was educated in Nizhny Novgorod State University: from 1995 to 1999 it was bachelor course in Radiophysics, from 1999 to 2001 it was master course in Radiophysics with specialization in Statistical Radiophysics, from 2001 to 2004 it was PhD course in Radiophysics. From 2004 to 2008 E.L. Pankratov was a leading technologist in Institute for Physics of Microstructures. From 2008 to 2012 E.L. Pankratov was a senior lecture/Associate Professor of Nizhny Novgorod State University of Architecture and Civil Engineering. Now E.L. Pankratov is in his Full Doctor course in Radiophysical Department of Nizhny Novgorod State University. He has 96 published papers in area of his researches.

  • Advanced Nanoscience and Technology: An International Journal (ANTJ), Vol. 1, No. 1, June 2015

    20

    Bulaeva Elena Alexeevna was born at 1991. From 1997 to 2007 she was educated in secondary school of village Kochunovo of Nizhny Novgorod region. From 2007 to 2009 she was educated in boarding school Center for gifted children. From 2009 she is a student of Nizhny Novgorod State University of Architecture and Civil Engineering (spatiality Assessment and management of real estate). At the same time she is a student of courses Translator in the field of professional communication and Design (interior art) in the University. E.A. Bulaeva was a contributor of grant of President of Russia (grant MK-548.2010.2). She has 29 published papers in area of her researches.